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Isometries between C*-algebras

Cho-Ho Chu and Ngai-Ching Wong

Abstract
Let A and B be C*-algebras and let T be a linear isometry from

A into B. We show that there is a largest projection p in B** such
that T'(-)p : A — B™* is a Jordan triple homomorphism and

T(ab*c+ cb*a)p = T(a)T(b)*T(c)p + T(c)T(b)*T(a)p

for all a, b, cin A. When A is abelian, we have ||T'(a)p|| = ||a| for all
a in A. Tt follows that a (possibly non-surjective) linear isometry be-
tween any C*-algebras reduces locally to a Jordan triple isomorphism,
by a projection.

1. Introduction

In his seminal paper [10], Kadison showed that a surjective linear isometry T’
between unital C*-algebras A and B is of the form T'(-) = un(-) where u is a
unitary element in B and 7 is a Jordan *-isomorphism. This result remains
true in the non-unital case although the unitary element u generally comes
from B @ C [13]. In both cases, T preserves the Jordan triple product:

T(ab*c+ cb*a) = T(a)T(b)*T(c) + T(c)T(b)*T(a)

for all a,b,c € A. In infinite-dimensional holomorphy, C*-algebras, and the
larger class of JB*-triples, arise as tangent spaces to bounded symmetric
domains and it has been shown in [11] that the geometry of these domains
is completely determined by the Jordan triple structures of these spaces.
Indeed, a bijective linear map T' between two JB*-triples is an isometry if,
and only if, it preserves the Jordan triple product:

T{a,b,c} ={T'(a),T(b),T(c)}
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as shown in [11, Proposition 5.5] (see also [3, 4, 6, 16]). By polarization, T'
preserves the Jordan triple product if, and only if,

T{a,a,a} ={T(a),T(a),T(a)}.

The Jordan triple product in a C*-algebra is given by
1
{a,b,c} = §(ab*c + cb*a)

and in particular, the above characterization of surjective linear isometries
between JB*-triples extends Kadison’s result as well as giving it a geometric
perspective. It also highlights the importance of the Jordan triple product
in the study of isometries of C*-algebras.

It is natural to ask to what extent the above triple-preserving property
of a linear isometry persists if it is not surjective. We address this question
in this paper. Let T': A — B be a linear isometry, possibly non-surjective.
We study T locally. Without surjectivity, the C*-algebra and affine geo-
metric techniques of [10, 4] can not be used directly to obtain conclusive
results. Nevertheless, we show there is a largest projection p € B**, called
the structure projection of T, such that T(A)p is a Jordan subtriple of B**
and the map

T()p: A — T(A)p

is a triple homomorphism with T{a,a,a}p = {T(a),T(a),T(a)}p for all
a € A. The structure projection p is closed but the map T'(-)p need not be
injective. When A is abelian, we study the structure projection p in some
detail, motivated by the question of the local behaviour of T, and show that
the map T'(+)p is isometric which also extends Holsztynski’s result in [8] for
non-surjective isometries between continuous function spaces (see also [9]).
It follows that, for any A and B, the isometry T is reduced locally to a triple
isomorphism by a projection in the sense that, for any a € A, there is a
closed projection p, € B** such that the map 7T'(-)p, is a triple isomorphism
from the Jordan subtriple Z, of A, generated by a, into B** and

T{SL’, Y, Z}pa = {T(SL’), T(y)7 T(Z)}pa

for all z,y,z € Z,. Although T(A)p could be zero if A is nonabelian, we
give conditions for T'(A)p to be non-zero in this case.

This work was carried out during the second author’s visit at University
of London. He would like to thank colleagues there for their warm hospital-
ity. We wish to thank Professor L..G. Brown for a useful discussion and for
drawing our attention to the norm identity in Remark 4.4. We also thank
the referee for many helpful suggestions.
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2. Isometries of C*-algebras and their ranges

Throughout the paper, an isometry between Banach spaces is not assumed
to be surjective. We first recall that a JB*-triple Z is a complex Banach
space equipped with a Jordan triple product {,-,-} : Z3 — Z which is
symmetric and linear in the outer variables, and conjugate linear in the
middle variable such that for a,b,c,z,y € Z, we have

(1) {a,b,{c,z,y}} = {{a, b, ¢}, 2,4} = {e, {b,a, 2}, y} + {e, 2, {a, b, y}};

(ii) the map z € Z — {a,a,z} € Z is hermitian with nonnegative spec-
trum;

(ii) [{a,a,a}(| = fla®.

A closed subspace of a JB*-triple is called a subtriple if it is closed with
respect to the triple product. A linear map T : Z — W between JB*-
triples is called a triple homomorphism if it preserves the triple product in
which case, the range T'(Z) is a subtriple of W and the kernel J of T is a
triple ideal of Z, that is, {Z, Z, J}+{Z,J, Z} C J. We refer to [2, 17, 18, 20|
for expositions as well as recent surveys of JB*-triples and symmetric Banach
manifolds. In the sequel, we write a®® = {a,a,a}. We note that a norm-
closed subspace Z of a C*-algebra is a JB*-triple if a € Z implies aa*a € Z,
in which case Z is called a JC*-triple and the triple product is given by
triple polarization

2{a,b,c} = ab*c+ cb*a

= % Z af(a+ ab+ Ge)(a+ ab+ pe)*(a+ ab+ Be).

at=p2=1
In C*-algebras, the closed triple ideals are the closed algebra two-sided ide-
als [7, p. 350].
We begin with a simple example of a linear isometry 7" : A — B
between abelian C*-algebras which is not a triple homomorphism.

Example 2.1. Let C(€2) and C(QQU {8}) be the C*-algebras of continuous
functions on the closed unit disc Q@ C C and Q U {#} respectively, where

B — C(QuU{B}) by
[ f@) itren
0 =4 {5y + oy o= 5
Then T is a linear isometry and T(C(Q2)) = {h € C(Q U {B}) : 2h(p) =

h(1) + h(0)} which is not a subtriple of C(Q U {3}). So T is not a triple
isomorphism onto its range. Nevertheless, we have T(f®) = T(f)® if

f(1) = f(0) =0.
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Let T : A — B be a linear isometry between C*-algebras. Although
the range T'(A) need not be a subtriple of B, we show in Proposition 2.2
below that T'(A), cut down by a projection, is always a subtriple of B**.
This result will be used to study 7' locally later. In Example 2.1, such a
projection is given by the characteristic function of Q in C'(2U {3}).

We need some notation first. We denote by 7™* the second dual map
of T" and for convenience, we often write T'a for T'(a). The identity of a
unital C*-algebra will be denoted by 1. Given a C*-algebra A, we denote
its closed unit ball by A, and by A} the closed unit ball of the dual A*. Let
Q(A) = {p € A} : ¢ > 0} be the quasi-state space which is weak™ compact
and convex. Every weak™ closed face of Q(A) containing zero is of the form
F(p) ={p € Q(A) : ¢(1—p) = 0} for some closed projection p € A**, called
the support projection of the face (cf. [5, 15] or [14, 3.11.10]). The polar
decomposition of a functional ¢ € A* is denoted by ¥(-) = v*|¢|(-) = |[¢|(v*)
where v* is a partial isometry in A**.

For each ¢ in Q(A), we let (7,, H,,w,) be the Gelfand-Naimark-Segal rep-
resentation of A induced by ¢. As usual, we also denote by 7, the extended
representation of A** on the Hilbert space H, (see, for example, [14, p. 60]).
For simplicity, we write zw,, for m,(z)w, in H, whenever x € A**. Thus we
have zw, = 0 if, and only if, ¢(z*x) = 0. Further, we have ¢(z*z) = 0 for all
v € F(p) if, and only if, xp = 0 (cf. [14, §3.10] and [1, Corollary 3.5]). We
note that if ¢ is a pure state with support projection p, then F'(p) = [0, 1]¢p.

Proposition 2.2. Let A and B be C*-algebras and let T : A — B be a
linear isometry. Then there is a largest projection p in B** such that

(i) T(-)p: A— B** is a triple homomorphism;
(i1) T{a,b,c}p ={Ta, Tb,Tc}p for all a,b,c in A.

Further, p is a closed projection and (T'a)*(Tb)p = p(Ta)*(Th) for all a, b
in A.

Proof. Let
B = ﬂ {peQ(B): (Ta(3))w¢ = (Ta)(g)wcp}
= [ {¢€QB): ¢ ((Ta® — (Ta)?)(Ta® — (Ta)¥)) =0} .

Then F} is a weak™® closed face of Q(B) containing zero. For a in A;, we
define a weak® continuous affine map ®, : Q(B) — Q(B) by

Pu(p)(-) = ¢ ((Ta)"(Ta) - (Ta)*(Ta)) .
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Forn=1,2,..., the sets

Fn+II{Q0€Fn3(I)a(Q0>an,VCLEAl}: m anq)z;l(FTJ

a€A;

form a decreasing sequence of weak™ closed faces of Q(B). The intersection
F =", F, is a weak™ closed face of Q(B) containing zero. Let p be the
closed projection in B** supporting F':

F=F(p)={peQ(B):p(l—-p) =0}
For cach a in A; and ¢ in F, we have
Pu(p)() = ((Ta)*(Ta) - (Ta)"(Ta)) € F,
and consequently,
(p(Ta) (Ta)w,, (Ta) (Ta)w,) = Cu(0)(p) = Pul(¢)(1) = |(Ta)* (Ta)wy|.

Hence
p(Ta) (Ta)w, = (Ta)*(Ta)w,, Yo e F =F(p)

and therefore
p(Ta) (Ta)p = (Ta)"(Ta)p.

It follows that
p(Ta)* (Ta) = (Ta)*(Ta)p, Va € A.

By polarization, we have
(2.1) p(Ta)"(Th) = (T'a)*(Tb)p
for all a,b € A. To verify (i), we note that
(Ta®)w, = (Ta)Pw,, Ve F.

This gives
(Ta(g))p = (Ta)(?’)p.

By triple polarization and (3.1), we get
T{a,b,ctp = {Ta,Tb,Tctp ={(Ta)p, (Tb)p, (T'c)p}.
Finally, if ¢ is a projection in B** satisfying conditions (i) and (ii), then
Flg)={peQ(B):p(l—q)=0}CF,, n=12...

since ®,(F(q)) C F(q) for a € Ay and it is evident that F'(¢) C F;. Therefore
F(q) C F(p) and ¢ < p. The last assertion has been shown in (2.1). [
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Remark 2.3. (a) Although the above result only requires 7' to be contrac-

tive, all subsequent applications of the result, including the next two
remarks, requires 7" to be isometric.

In the above proof, if T" is surjective or T'(A) is a subtriple of B, then
Fi=Q(B) and p=1.

For an arbitrary projection p € B**, conditions (i) and (ii) above are
independent of each other in general and they need not imply (2.1).
Consider, for instance, the identity map 7' : A — A, for which (ii)
is satisfied by any projection, but only the central projections in A**
satisfy (i) and (2.1). Nevertheless, if 7%*(1) is unitary, then (i) implies
(2.1) and hence (ii), for any projection p € B**. Indeed, if T**(1) =
1, then 7' commutes with involution and, by weak*-continuity of the
triple product and (i), we have T{1,1,a}p = {1p,1p,T(a)p} which
gives T'(a)p = pT(a)p = pT(a) for a = a* and hence for all a €
A. For unitary T**(1), the map 7**(1)*7** is unital and the pre-
ceding statement gives pT'(a)*T(b) = p(T**(1)*T(a))*(T**(1)*T(b)) =
(T*(1)*T(a))"(T*Q)*T(b))p = T(a)*T(b)p. If B is abelian, then of
course (i) and (ii) are equivalent.

Definition 2.4. We denote by pr the projection for the isometry T in
Proposition 2.2 and call it the structure projection of T

We give the following examples of structure projections pr. Let M, be

the C*-algebra of n x n matrices.

Example 2.5. Let T : My — M3 be defined by

0 b a b 0
T(c d) =|lc d 0
0 0 a

Then T is a unital linear isometry and 7'(M,) is not a subtriple of M3. The
structure projection pr is given by

o = O
o O O

1
pr= |0
0

We note that Morita [12] has shown that a linear isometry 7" : M,, — M,
is of the form T'(x) = uxv or T'(x) = uz'v for some unitary u,v € M, where
x! denotes the transpose of x.
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Example 2.6. Let A = C[0,1], B = C([0,1]U{2}) and define T": A — B by

f(x) for z € [0, 1]
(Th)(z) = { fol f(y)dy for z =2.

Then T is a unital linear isometry, T(A) = {h € B : h(2) = fol h(y)dy} has
co-dimension 1 in B and it is not a subtriple of B. We have pr = X0, the
characteristic function of [0, 1], which is in B.

Example 2.7. Let T': C — M, be defined by

T(a) = (2 g) .

Then T is an isometry and 7'(C) is not a subtriple of M,. Also T'(1) is
not unitary and 7'(C) contains no nontrivial positive element. Its structure

projection pr is given by
(10

which does not commute with T(a) for a # 0. Also T(a®) # T(a)® for all
non-zero a € C.

Example 2.8. Let K(H) be the C*-algebra of compact operators on a
Hilbert space H with an orthonormal basis {e1, es, ...}, and B(H) the alge-
bra of bounded operators on H. Define a linear isometry T': ¢ — K (H) by

Iy To
T(r) = Eel®61+w1€3®62+565@)634‘1'267@64—}—---

1 o0 o
= 3 Z TpCan—3 & €ap—1 + Z TnCan—1 & €2n
n=1 n=1
where = (z,,) € ¢p and (e; ® ex)(+) = (-, ex)e;. We have
$(3) = (xgg)a xé?))v e ')7

1 o0 o0
T(QJ(B)) = 5 Z 33'23)641173 & €1 + Z »’177(13)64n71 X €an,

n=1 n=1

and
1 & >
T(x)(?’) = g ; %(13)6471—3 ® e2p—1 + Z 9623)6471—1 X €ap

= n=1

by orthogonality. Hence, for any projection ¢ in K(H)** = B(H),

T(z®)g = T(x)®q
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if, and only if,
(Z 2P esn 3 ® €2,-1)q = 0.
n=1

This happens for all = in ¢y exactly when ges,_y = 0 for n = 1,2,....
Therefore the structure projection pr is the orthogonal projection onto
span{es, €4, ...} and we have

[T (x)pr|l = ||=|  and  pr(Tz) =0
for all z in cy.

Remark 2.9. Let T': A — B be a linear isometry between C*-algebras.
Let B be a C*-subalgebra of B, with common approximate identity, and
regard B** as a subalgebra of B**. Then the structure projection pr of the
isometry 7' : A — B is the same as pr. Evidently, we have pr < pr.
Suppose pr # pr. Choose a state ¢ € B* such that ¥(pr) < ¥ (pr). Then

the state o
Y(pr - pr)
U(pr)

is in the closed face F(pr) of Q(E) supported by pr. This means, by the
proof of Proposition 2.2, that

o() =

() ((Ta® — (Ta)P)* (Ta® — (Ta)®) =0 (a,be A, n=0,1,2,...)

where ®Y(¢) = ¢ and @} is the nth iterate of ®,. The restriction ¢|p is a
state of B and clearly the above identity remains true when ¢|g replaces ¢,
that is, p|p € F(pr) C Q(B) which gives the contradiction

o _ Y(prprpr) _ Y(pr)
b= elen) = = ey T UG

So pr = pr.

We note that, for a linear isometry T': A — B between C*-algebras,
the triple homomorphism T'(-)pr = 0 if, and only if, 7**(1)pr = 0. This
follows from the weak™ continuity of the triple product and the identity

T(a)pr =T (a)pr = T {1,1,a}pr = {T**(1)pr, T (1)pr, T (a)pr}.

We study various necessary and sufficient conditions for T'(-)pr # 0 in the
next two sections. The above identity also shows that T**(1)pr is a partial
isometry in B**.
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3. Isometries from abelian C*-algebras

In this section, we study the structure projection of a linear isometry on
an abelian C*-algebra. This is motivated by the intention to study a linear
isometry locally, that is, to study its restriction on a subtriple generated
by an element. We show in Theorem 3.10 below that when A is abelian,
the structure projection pr of an isometry T from A into any C*-algebra
B is large enough to make the triple homomorphism 7'(-)py an isometry.
Consequently, a linear isometry 7 on any C*-algebra reduces locally to a
triple isomorphism via a projection, as shown in Corollary 3.12. We also give
an alternative construction of py in Proposition 3.14 when the codomain B
is a dual C*-algebra. We prove some lemmas first.

Definition 3.1. Let T': A — B be a linear map between C*-algebras. For
each ¢ in A* with ||¢|| =1, let

A, ={a e A:p(a) = |al| =1}.
Similarly, for each ¢ in B* with ||¢0]] = 1, let
By ={be B: ()= o] = 1},
If A, # 0, we define
Qy={¢ € B*: ||| =1 and T(A,) C By}.

Lemma 3.2. Let T': A — B be a linear isometry between C*-algebras.
For ¢ in A* with |l¢|| = 1 and A, # 0, the set Q, is a non-empty weak*™
closed face of BY.

Proof. We first note that ), is an intersection of non-empty weak™ closed
faces of Bj:

Qp = () {v € B} :¢(Ta) = 1}.

a€Ap
We show these faces have finite intersection property. To this end, let
ai, as, ..., a, be in A, and let a =>_"  a;. Since ¢(a) = n, we have
|Ta|| = ||a|]| = n. Therefore, there is a norm one functional ¢ in B* such
that ¢(Ta) = n. It follows that >  ¢(Ta;) = n and so ¢(Ta;) = 1 for
i=1,2,...,n. Consequently, we have ¢ € N, (Ta;)"{1}. [

Lemma 3.3. Let T : A — B be a linear isometry between C*-algebras,
and let ¢ € A* with ||p|]| = 1 and A, # 0. Then for any a € A, and
Y € Q, C Bf with polar decomposition v = v*|1|, we have

(1) [[(Ta)wyll = 1;
(ii) (Ta)ww‘:vww and (Ta)*vww‘:mw m HW'
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Proof. Given a € A, and ¢ € (), we have T'a € By, and therefore,

U= ¢(Ta) = [l (Ta))
= (v (Ta)w), W) = ((Ta)wy), vwiy)) = (W), (Ta) vwyy)) -

Since ||vwyy|| = 1 and ||[(Ta)wyy|| < [|Ta|| = 1, we have ||(T'a)w;y|| = 1 and
(T'a)wjy| = vwyy|. Similarly, we have (T'a)*vwy| = wjy|- |

In the remaining lemmas of this section, we assume that A is an abelian
C*-algebra and is identified with the algebra Cy(X) of continuous functions
on a locally compact Hausdorff space X, vanishing at infinity. Fix a linear
isometry T : Cy(X) — B, where B is any C*-algebra. We write

Ap = A5, ={f € Go(X) : f(x) = If]| = 1}

Qr = Qs, ={Y € B": || = 1 and T(A;) € By}
where 0, is the point mass at 2. Note that A, # () for all z in X.
We let @ = |,y @» and define |Q,| = {|¢]| : ¥ € Qz}, [Q] = U,ex |Qal-

Lemma 3.4. Given x # a2’ in X, we have |Q| N |Qu| = 0.

Proof. We first show that Q, N Q. = (. Suppose, otherwise, that there
exists ¥ € Qp N Qy. Then TA, C By, and TA,y C By. Let f € A, and
f € Ay with ff' = 0. Since T is an isometry and ||f + f'|| = 1, we have
ITf+Tf) =1. But (Tf) =(Tf') =1 implies |[Tf +Tf|| >1+1=2
which is a contradiction.

Now suppose there exists ¢ € |Q.|N|Q.| with ¢ = |¢| = |¢'| and ¢ € Q,,
¢ € Qu. Let p = v*|p| and ¢’ = v"*|¢’| be the polar decompositions. By
Lemma 3.3, given f in Cy(X), we have

feds = (THwy = vwy;
fed, = (Tf)w¢ = v'ww.

We can choose an f in A, N A, which then gives vw,, = v'w,. Consequently,
for every a in A we have

/¥

pla) = Y(v'a) = (awy, vwy),, = (aww,v’www =((v"a) = ¢'(a).
Hence ¢ = ¢’ € (), N Q. which is impossible. [ |

Definition 3.5. Define o : |Q| — X by

o(lY]) =z for ¢ € Qs



ISOMETRIES BETWEEN C*-ALGEBRAS 97

Let P(B) be the set of all pure states of B. The following lemma shows
that |Q| N P(B) # 0.

Lemma 3.6. ¢(|Q|NP(B)) = X.

Proof. Consider the isometry T" from A = Cy(X) onto T'(A). The adjoint
map 7™ sends the set OT(A)} of extreme points in the closed unit ball of
T(A)* onto the extreme points of the closed unit ball of Cy(X)*. In partic-

ular, for each x in X, there is a 1 in QT(A)Ijvith T*) = 0,. Let ¢ be an
extreme point in By extending 1. Let ¢ = v*|1)| be the polar decomposition
of ¢. Then @bLTf) =T*Y(f) = f(zx) for all fin Co(X) which implies that
Y€ Q. and [¢] € |Q.| N P(B). Hence o(|¢)]) = . |

Let ¢ = V{p, : ¢ € |Q| N P(B)} be the atomic projection in B**

supporting all pure states in |Q| where p,, is the minimal projection in B**
supporting the pure state ¢. Note that ¢ depends on T

Lemma 3.7. For all f in Cy(X), we have ||(T f)q|| = ||Tf]|-

Proof. Let ||f|| = [f(z)] > 0 for some = in X. Then 57 € A, and

% € By, for some ¢ € @, with |[¢| € |Q| N P(B) by Lemma 3.6. It follows
from Lemma 3.3 that ||(Tf)wy|l = [[f]| = ITf]l. So [|[Tf|| > [[(Tf)qll >

ICT )prstll = 1T F)ewpll = 1T u

Lemma 3.8. Let ¢ = |p| for some p in Q with polar decomposition p = v*p.
Let f € Co(X). If f(o(p)) =0, then (Tf)w,= (Tf)"vw, =0.

Proof. Without loss of generality, we may assume that ||f|| = 1. By
Urysohn’s Lemma, it suffices to show that if f vanishes in a neighborhood
of o(p) in X, then (T f)w, = (T'f)*vw, = 0. For this, we choose ¢ in Ay,
such that fg = 0. Then

gl =1 =g(a(¢))
and

If+gll=1=(f+g)(a(p)).

By Lemma 3.3, we have
(Tg)w, = vwy, =T(f + g)w,

and
(Tg) vw, =w, = (T(f + g)) vw,.
Consequently (T f)w, = (T f)*vw, = 0. n
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Lemma 3.9. Let ¢ € Q have polar decomposition 1 = v*¢ where ¢ = |1].
Then for all f in Cy(X), we have (T fw, = f(o(¢))vw, and (Tf)vw, =
flo(p))we.

Proof. Recall that o(p) = z if ¢ € Q.. Pick h € Cy(X) such that
h(o(p)) =1 =||h||, that is, h € A,(,). Since

(f = fla(@))h)(e(p)) =0,

Lemma 3.8 gives

T(f = flo(p)h)w, = (T(f = f(o(p))h)) vw, = 0.
Therefore
(T flwe = flo(@))(Th)w, = fo(p))vw,
since (T'h)w, = vw,, by Lemma 3.3. Similarly, we have, by Lemma 3.3 again,

(Tf)vw, = f(a(@))(Th) vw, = f(o(p))w,.

|
We are now ready to prove that 7'(-)pr is an isometry if A is abelian.

Theorem 3.10. Let T : A — B be a linear isometry between C*-algebras
and let A be abelian. Let pp € B** be the structure projection of T. Then
we have

[(Ta)prll = llall  (a € A).

Proof. Let ¢ € B* be the atomic projection, determined by 7', in Lemma
3.7. We show that T'(-)q is a triple homomorphism from A = Cy(X) onto
T(A)g. Let ¢ € |Q| N P(B) with ¢ = || for some ¢ € Q. Let ©» = v*p be
the polar decomposition. By Lemma 3.9, we have

(Tfw, = O o(p))vw, = F(o(9) f(a(9) fo(p))ow, = (Tf) P,
Hence, by the definition of ¢, we have

(TfP)g=(Tf)Pq

for every f in Cy(X), and hence the map T'(-)q is a triple homomorphism.
On the other hand, using Lemma 3.9 again, we get

(Tg) (T fw, = g(a () f(o(0))w,

which gives ¢(T9)*(Tf)w, = (Tg9)*(Tf)w, since quw, = w,. Therefore
qTg) (Tf)g = (Tg)*(Tf)q and ¢ commutes with (T'g)*(Tf) for all f, g
in Cy(X). It follows that ¢ satisfies condition (ii) in Proposition 2.2 and so
q < pr by maximality of pr. By Lemma 3.7, T'(-)q is an isometry which
implies that T'(-)pr is such also. [
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Remark 3.11. When B is abelian, Theorem 3.10 gives a result of Holsz-
tynski [8, 9] as a special case.

Given any element a in a C*-algebra or, more generally, a JB*-triple A,
the (closed) subtriple Z, of A generated by a is linearly isometric (and hence
triple isomorphic) to an abelian C*-algebra [11, Corollary 1.15]. Applying
the above theorem to the restriction of a linear isometry to Z,, we obtain
the following local result on linear isometries between C*-algebras.

Corollary 3.12. Let T : A — B be a linear isometry, where A is a JB*-
triple and B is a C*-algebra. Then for every a € A, there is a largest
projection p, € B**, which is closed, such that T(-)p, : Zo — B™ is an
isometry and a triple homomorphism satisfying

T{CL’, Ys Z}pa = {Tl’, Ty, TZ}pa
forall x,y,z € Z,.

Remark 3.13. (a) Clearly, pr < p,, but it can happen that pr # p, = 1.
In Example 2.1, we have pr # 1 and if a € C(Q) satisfies a(0) = a(1) =
0, then every b € Z, also satisfies b(0) = b(1) = 0 since {f € C(Q) :
f(0) = f(1) = 0} is a (closed) subtriple of C(€2) containing a. Therefore
T restricts to a triple isomorphism on Z,, in other words, p, = 1.

(b) The condition T{a,a,a} = {T'a,Ta,Ta} alone need not imply that p, =
1. This amounts to saying that the condition T'(a'®) = T'(a)® need not
imply T(a®*V) = (Ta)?"*V for all n. Consider the unital isometry T
in Example 2.6 and the function

25 63

f(x):z—sz

in C|0,1]. A simple calculation gives

z/olf(:c)dfcz
:/01f<3>(x)dx:/01 (%-%ﬁ)gmﬂ.

Therefore, we have T'(f3) = (T£)®), but T(f®) £ (T f)® since

and

20959168

1O = [ 1O = -2 2 1 = (rpoe)
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In the proof of Theorem 3.10, the two maps T'(+)q and T'(-)pr are actually
equal if B is a dual C*-algebra. We show this in the next proposition as
well as giving an exact formula relating ¢ and pr.

A C*-algebra B is called a dual C*-algebra if I++ = I for all closed one-
sided ideals I of B, where for any closed left (resp. right) ideal I (resp. J)
of B, we define I+ = {b € B:Ib={0}} (resp. J* ={be B:bJ ={0}}).
It is known that a C*-algebra B is dual if and only if every maximal abelian
subalgebra of B is generated by minimal projections, or equivalently, B is a
co-sum of algebras of compact operators on Hilbert spaces (cf. [19, p.157]).
Therefore, a unital dual C*-algebra is finite-dimensional. Given a dual C*-
algebra B, the minimal projections in B are also minimal in B**, and every
singular state of B** vanishes on B.

Given b in B**, we denote by r(b) the right support projection of b which
is the smallest projection in B** satisfying br(b) = b. If T is a linear isometry
from a C*-algebra A into B, then for the partial isometry 7**(1)pr, we have
r(T™)pr) = prT (1) T (1)pr.

Proposition 3.14. Let pr be the structure projection of T : A — B in
Theorem 3.10 and q the projection in its proof. Let B be a dual C*-algebra.
Then we have

(i) T()pr = T(-)g;
(i1) q is the right support projection of T**(1)pr;
(ii)) pr = q+1—r(TA) where r(T'A) = \/{r(T(a)) : a € A}.

Proof. (i) We note that ¢ < py from the proof of Theorem 3.10. Let
z = pr —q. We show that T'(-)z = 0. Suppose otherwise. Then 7'(-)z :
A — T(A)z is a non-zero triple homomorphism as T'(a®)z = T(a®)prz =
(Ta)®prz = (Ta)®z, and z commutes with T'(a)*T(a) because pr and
q do. Hence the quotient A/ker T'(-)z is isometrically triple isomorphic to
T(A)z. If we identify A with Cy(X), then A/ ker T'(-)z identifies with Cy(Y),
where Y is a nonempty closed subset of X and the quotient map is just
the restriction map. Pick y € Y. Applying Lemma 3.2 to the isometry
Co(Y) — T(A)z C B*™, we find an extreme point ¢ in (B**)} such that
(T f)z) =1 whenever f € Cy(X) satisfies f(y) = || f]| = 1. Let ¢» = v*|¢|
be the polar decomposition with v € B***. Then || is a pure state of B**
and [¢|(z) = 1 by Schwarz inequality. Hence

1¥1(q) = [¥|(gz) = 0.
We note that [[((T'f)*Tf) = 1 since

1= [¢[(w(Tf)z) = [l Tf) < [[(Tf)Tf) < 1.
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It follows that || is a pure normal state of B** as it does not vanish on B
and a pure state is normal or singular. Therefore 1 is normal on B** since
B* = B***z, for some central projection zy in B*** (cf. [19, p. 126]) and we

have 1z = v*[¢|z9 = v*|¢p| = 9. Therefore || € |Q,| N P(B) because

V((Tf)A = 2)) = [l (Tf)A —2)) =0
yields
W(Tf)=v((Tf)z) =1

for f € A,. It follows that |1|(¢) = 1, by the definition of ¢, which gives a
contradiction.

(ii) By weak™ continuity and Lemma 3.9, we have
)T (Dw, = w,, Ve €lQ)|.
Therefore
Q)T (1)q = q

and

prT™ () T )pr = (T )pr) (T (L)pr) = (T (1)) (T (1)g) = ¢-
(iii) Since T'(A)z = 0, we have
pr—q=2z<1-—r(TA).
On the other hand, since T'(-)(1 — r(T'A)) = 0, we have
1—-r(TA)<pr and q1—-7r(TA))=0
which gives
pr=q+1—-r(TA).
|

The use of dual C*-algebras in Proposition 3.14 hints at the atomic prop-
erty of B** and a general formulation of the result, without any assumption
on B, should relate the atomic part of pr to ¢, as the following example
shows.

Example 3.15. Let A = Cy(0,1] and T': A — C[—1,1] be the natural
embedding, namely, T'f agrees with f on (0, 1] and is zero elsewhere. Then
we have pr =1, 7(TA) = V ;. T(f) = x01 € O[-1,1]" and ¢ = zatX(0,1] I8
in the atomic part of C[—1, 1]**, where z, is the maximal atomic projection
in C[—1,1)*. We see, in this case, T'(-)prza. = T(-)q and prz., = ¢+ (1 —
r(TA))zat.



102 C.-H. Cuu aND N.-C. WoNG

4. Isometries into abelian C*-algebras

Every C*-algebra can be embedded into an abelian C*-algebra by a linear
isometry. It is therefore natural to consider isometries into abelian C*-
algebras. We begin with a description of the structure projection.

Proposition 4.1. Let T : A — B be a linear isometry between C*-algebras
and let B be abelian. Then pr = N,c4Pa where p, is the projection in
Corollary 3.12.

Proof. Let p = A\ ,c4Pa- We only need to prove pr > p. For every a € A,
we have

T{a,a,a}tp =T{a,a,a}p,p = {Ta,Ta,Tatp.,p = {Ta,Ta,Ta}p.

Since B is abelian, T'(-)p : A — B*" is a triple homomorphism. Hence
pr > p by the maximality of pr in Proposition 2.2. [ |

By a character p of a C*-algebra A, we mean an algebra homomorphism
p: A— C\{0}. It is clear that the algebra M, does not have a character.
Also, a C*-algebra is abelian if, and only if, its pure states are all characters.

Lemma 4.2. Let N be a von Neumann algebra. Then N has a weak*
continuous character if, and only if, N contains an abelian summand.

Proof. The sufficiency is obvious. Suppose N has a weak* continuous char-
acter p. Then N must contain a type I summand N; for otherwise, the
‘Halving Lemma’ implies that NV is of the form D ® M, (cf. [19, Proposition
V.1.22]) and the restriction of p to 1® M, is a character which is impossible.
Since Ny is of the form ), N, ® B(H,, ) where N}, is abelian and B(H,, ) is a
type I, -factor, N; must contain an abelian summand because the contrary
would imply p|ny, =0 and p = 0. [

The above lemma implies that a C*-algebra A has a character if, and
only if, A** contains an abelian summand. We show below that this con-
dition is equivalent to the non-triviality of the map T'(-)pr if T is a linear
isometry from A into an abelian C*-algebra B.

Proposition 4.3. Let T : A — B be a linear isometry between C*-algebras
where B is abelian. Let pr € B** be the structure projection of T'. Then

(1) T(-)pr is an isometry if, and only if, A is abelian.

(1) T(-)pr # 0 if, and only if, A admits a character.
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Proof. (i) The necessity is obvious since T'(A)pr is an abelian JB*-triple.
The sufficiency follows from Theorem 3.10.

For (ii), we first assume that T'(-)pr # 0. Then there exists a char-
acter p of B* which does not vanish on T'(A)pr, and hence the compos-
ite po (T'(\)pr) : A — C is a non-zero triple homomorphism. Since
the closed triple ideals of C*-algebras are algebra ideals, it follows that
A/ker po (T()pr) is a one-dimensional C*-algebra and the natural quotient

map p: A — A/kerp o (T()pr) is a character of A.

Conversely, let 77 be a character of A and let B = Cy(Y') for some lo-
cally compact Hausdorff space Y. Then n is a pure state of A. Since the
extreme points in the closed unit ball of T'(A)* can be extended to the ex-
treme points in the closed unit ball of Cy(Y)*, we have n = T™(\dy|ra))
for some y in Y and |A\| = 1 where 7% : T(A)* — A* is an isometry. The
support projection ps, € Co(Y)** of ¢, is a minimal projection and we have
AT (a®)ps, = NT(a®)(y)ps, = n(a®)ps, = n(a)®ps, = AT'(a)®ps, for all
a in A. Therefore ps, < pr by maximality of pr, and thus T'(-)pr #0. H

Remark 4.4. Let A, B and T be as in Proposition 4.3. If A has a character,
then we actually have

*

— —

|T(a)pr|| = sup{|n(a)| : n is a character of A},

which gives an alternative proof of the sufficiency in (i). The identity follows
from

T (a)pr|| = sup{|p(T(a)pr)|: p is a character of B**}

= sup{|(

a)| : pis a character of B*}
< sup{|n(a)| : n is a character of A},

where p is the quotient map A — A/ker po (T()pr) and the last term is
at most ||T'(a)pr|| from the proof of (ii).

The result of Proposition 4.3 does not hold if B is nonabelian. In Exam-
ple 2.5, we have T'(-)pr # 0 for some linear isometry 7' : My — M;z. We
conclude with the following example.

Example 4.5. There is a linear isometry T': My — B(H), where B(H)
is the algebra of bounded operators on an infinite dimensional separable
Hilbert space H, such that T'(-)pr = 0.

To see this, let Y be the closed unit ball of MJ and j be the canonical
linear embedding of M into C'(Y'). Take a faithful nondegenerate represen-
tation m of C'(Y') on a separable Hilbert space H. Then T'= moj is a linear
isometry from M, into B(H). By Remark 2.9 and Proposition 4.3, we have

T(-)pr =T()p; = 0.
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