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Transitive flows on manifolds

Vı́ctor Jiménez López and Gabriel Soler López

Abstract
In this paper we characterize manifolds (topological or smooth,

compact or not, with or without boundary) which admit flows having
a dense orbit (such manifolds and flows are called transitive) thus
fully answering some questions by Smith and Thomas. Namely, it
is shown that a surface admits a transitive flow (which can be got
smooth) if and only if it is connected and it is neither homeomorphic
to the sphere nor the projective plane nor embeddable in the Klein
bottle (or, alternatively, if it is connected and includes two orientable
topological circles intersecting transversally at exactly one point).
We also prove that any (connected) manifold with dimension at least 3
admits a transitive flow, which can be got smooth if the manifold
admits a smooth structure.

In particular, this allows us to characterize ω-limit sets with non-
empty interior for flows in a given n-manifold (as they can be des-
cribed by the property of being the closure of its transitive n-submani-
folds).

1. Introduction

A flow on a manifold M (topological or smooth, compact or not, with or
without boundary) is a one-parameter family {Φt}t∈R of homeomorphisms
of M such that Φt ◦ Φs = Φt+s for any t, s ∈ R (we also assume that the
map Φ : R × M → M given by Φ(t, x) = Φt(x), which we will identify with
the flow in the sequel, is continuous). The orbit of a point x ∈ M under
a flow {Φt}t∈R is the set {Φt(x) : t ∈ R}. A flow on a manifold M is said
to be (topologically) transitive if there is a point whose orbit under the flow
is dense in M , and we say that a manifold M is transitive if it admits a
transitive flow; if the manifold M admits a (fixed) smooth (C∞) structure
and Φ is smooth then we will refer to them as smooth transitive.
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The problem of finding transitive flows on manifolds has a long tradition
(cf. for instance the bibliography in [16]). Needless to say, the circle is the
only transitive 1-manifold. That neither the sphere S2, the projective plane
P

2 nor the Klein bottle B
2 are transitive was more or less known since the

seminal work of Bendixson [2] a century ago in the sphere case (and probably
in the projective plane case as well), and since at least 1969 [9] in the Klein
bottle case. The existence of smooth transitive flows for all other closed
surfaces is proved e.g. in [4], although probably it was known rather earlier.
In the multidimensional case (n≥3) one should refer at least to Oxtoby and
Ulam [12], who proved in 1941 that virtually all n-dimensional compact con-
nected polyhedra admit (continuous) transitive flows, to a lesser known pa-
per by Sidorov [15] (1968) where it is shown that any region in Rn is smooth
transitive (with the standard differential structure) and to Anosov [1] (1974)
whose more general result on ergodic flows implies in particular that all com-
pact connected smooth n-manifolds (and also R

n) are smooth transitive.
The task of classifying transitive manifolds was systematically under-

taken by Smith and Thomas in 1988 in the papers [16] and [17]. Essentially,
they characterize transitive (and, equivalently, smooth transitive) compact
connected surfaces as those which cannot be embedded in S2, P2 or B2, and
provide an alternative, simpler proof of the above-mentioned weaker ver-
sion of Anosov’s result: the problems of characterizing which non-compact
surfaces and manifolds are transitive are posed as open there.

Up to our knowledge, the last steps in this direction where independently
given by Benière in his Ph.D. Thesis [3] (1998) and the second author in his
Master Thesis [18] (1999). In [3] it is proved that all connected orientable
surfaces without boundary which are not embeddable in S

2 are smooth min-
imal and hence smooth transitive. Alternatively, smooth transitive con-
nected surfaces without boundary were characterized (under the additional
assumption of finite genus) in [18] as those including two “crossing circles”,
that is, two orientable simple closed curves intersecting transversally at ex-
actly one point.

In this paper we culminate the classification of transitive manifolds by
proving first:

Theorem A. Let S be a connected surface (resp. a connected orientable
surface). Then the following statements are equivalent:

(i) S is smooth transitive;

(ii) S is transitive;

(iii) S is not homeomorphic to S2, P2, nor to any surface in B2 (resp. is
not homeomorphic to any surface in S2);

(iv) S has two crossing circles.
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Remark 1.1. In the orientable case much of Theorem A follows of course
from Beniére’s result, but some rather strong tools are required (Falconer’s
results on Hausdorff measures and interval exchange transformations) which
are unnecessary for our purposes. Thus we have decided to include a rather
elementary and complete proof of Theorem A below.

We also prove:

Theorem B. Let M be a connected n-manifold (resp. a connected smooth
n-manifold), n ≥ 3. Then it is transitive (resp. smooth transitive).

Recall that if x ∈ M and Φ is a flow on a n-manifold M then the ω-limit
set of the orbit of x under the flow Φ is defined by

ωΦ(x) = {y ∈ X : there is a sequence (tm)m → ∞ with (Φtm(x))m → y}
(the α-limit set of the orbit of x, αΦ(x), is analogously defined just replacing
∞ by −∞). If, moreover, ωΦ(x) has nonempty interior O, then O is con-
nected and invariant for the flow Φ (in particular it includes the orbit of x)
and has ωΦ(x) as its closure: see Lemma 2.2. Hence, Φ can be seen as a tran-
sitive flow on O, which is then a transitive n-submanifold of M . Conversely,
let T be a transitive n-submanifold of M and let Φ be the corresponding
transitive flow on T (then T is an ω-limit set for Φ by Lemma 2.4). As all
maps Φt are homeomorphisms and, because of the theorem of invariance of
domain [8, p. 475], any subset of M which is homeomorphic to an open
set of R

n is open as well, the combinatorial boundary ∂T of T is invariant
for Φ. Then we can see Φ as a flow on the open set T \∂T and extend it via
Lemma 2.3 to a flow on M still having T as one of its ω-limit sets. Thus,
ω-limit sets (and, similarly, α-limit sets) with nonempty interior in M are
exactly the closure of its transitive n-submanifolds and Theorems A and B
allow us to characterize them.

2. Preliminaries

Let X be a metrizable space (much of the ensuing discussion also works in
less restrictive settings, but this one is general enough for our purposes).
We call a continuous map Φ : Λ ⊂ R × X → X a local flow on X provided
that the following properties hold:

(i) Λ is open in R × X; moreover, for any x ∈ X the set of numbers t for
which Φ(t, x) is defined is an open interval Ix � 0;

(ii) Φ(0, x) = x for any x ∈ X;

(iii) if Φ(t, x) = y then Iy = {s − t : s ∈ Ix}; moreover, Φ(u, y) =
Φ(u,Φ(t, x)) = Φ(u + t, x) for any u ∈ Iy.
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If we are in the particular case Λ = R × X then we get a flow on X,
as we did in the Introduction in the case of manifolds. Notice that if X is
compact then Ix = R for any x ∈ X so any local flow is in fact a flow. We
use the notation Φ(t, x) = Φt(x) = Φx(t) whenever it makes sense, being
Φx(Ix) the orbit of a point x under the local flow Φ. We say that a point
x ∈ X is singular if its orbit consists of just the point x.

Of course we are primarily interested in manifolds, and local flows nat-
urally arise there as associated to autonomous systems of differential equa-
tions (thus the need of introducing this otherwise artificial notion). More
precisely, it is well known that if Φ : Λ → M is a smooth local flow then
there is a smooth vector field F : M → TM (its associated vector field)
such that ∂Φ

∂t
(t, x) = F (Φ(t, x)) for any t and x and that, conversely, for

any smooth vector field F on M there is a smooth local flow Φ on M (its
associated local flow) such that ∂Φ

∂t
(t, x) = F (Φ(t, x)) for any t and x.

When we speak about an n-manifold (or sometimes just a manifold)
we refer to a Hausdorff topological space with a countable base (usually
denoted by M) which is locally homeomorphic to the closed ball {x ∈ Rn :
‖x‖ ≤ 1} (hence it need not be compact and may have (combinatorial)
boundary points, which are those having no neighbourhood homeomorphic
to the open ball {x ∈ R

n : ‖x‖ < 1}). As usual, if M is an n-manifold then
we denote by ∂M the set of its boundary points. If n = 2 then M is called
a surface and we will often use the symbol S to denote it; in the particular
case when S is compact, connected and has empty boundary we call it a
closed surface. As it is well known, all n-manifolds with n ≤ 3 admit a
smooth structure which is unique up to diffeomorphisms (cf. Theorem 2.1),
but if n > 3 they may admit one, none or even infinitely many. Thus, when
speaking about a smooth manifold in this setting, we will implicitly assume
that we have fixed a smooth structure on it.

If X is metrizable and A ⊂ X then Cl A, Int A, Bd A and diam A will
denote the closure, the interior, the boundary of A and the diameter (for a
fixed distance d(·, ·) in X) of A, and if f is a map defined on X, then f |A will
denote its restriction to A. Notice that “boundary” refers now to topological
boundary, as opposed to “combinatorial boundary” before (in the rest of
the paper it should be clear what kind of “boundary” we are referring to
in each case) We will use the symbol “∼=” to denote “homeomorphic to”.
A continuous map f : X −→ Y is called an embedding if f maps X home-
omorphically onto f(X); in this situation we also say that X is embeddable
or can be embedded in Y . If additionally X and Y are manifolds and f maps
diffeomorphically X onto f(X) then we say that f is a smooth embedding.



Transitive flows on manifolds 111

We will denote by ‖ · ‖ the euclidean norm in R
n, when O

n(ρ) = {x ∈
Rn : ‖x‖ < ρ}, Dn(ρ) = {x ∈ Rn : ‖x‖ ≤ ρ}, will be the corresponding open
and closed balls of radius ρ. We will rewrite On := On(1), Dn := Dn(1)
and put S

n = {x ∈ R
n+1 : ‖x‖ = 1} as usual. Also, let T

2 = S
1 × S

1,
P

2 = S
2/ ∼, M

2 = (S1 × (−1, 1))/ ∼ (with x ∼ y if x = ±y in both
cases) and B

2 = (S1 × [−1, 1])/ ∼ (here “∼” identifies the points (t, 1) and
(−t,−1) for any t ∈ S1). We call an open arc (resp. an arc, a circle, a disk,
a closed disk, a sphere, a torus, a projective plane, a Klein bottle, a Möbius
band, an annulus, a closed annulus, an n-cell and an n-sphere) any space
homeomorphic to an open interval (resp. a compact interval, S

1, O
2, D

2,
S

2, T
2, P

2, B
2, M

2, S
1 × (−1, 1), S

1 × [−1, 1], D
n and S

n). Notice that we
are using “arc” and “circle” instead of the more usual, but longer terms,
“simple curve” and “simple closed curve”.

When denoting a circle by a greek letter, say α, we will use the symbol
to simultaneously refer to the circle itself and a (fixed) homeomorphism
mapping S1 onto the circle. For instance, if α and β are the components of
the boundary of a closed annulus A and we say that they have compatible
orientations then we mean that there is a homeomorphism h : S1×[−1, 1] →
A such that h(t,−1) = α(t) and h(t, 1) = β(t) (this amounts to say that
both circles are either clockwise oriented or counterclockwise oriented by the
homeomorphisms α and β after seeing A as a plane subset). Similarly, we say
that two disjoint circles α, β ⊂ S2 have compatible orientations if they have
compatible orientations with regard to the closed annulus S2 \ (Dα ∪ Dβ),
where Dα and Dβ are the disjoint disks enclosed by α and β. If α ⊂ X is a
circle then we will say that α is orientable (resp. nonorientable) if it admits a
neighbourhood homeomorphic to the annulus S

1×(−1, 1) (resp. the Möbius
band M2) with the central circle being mapped by the homeomorphism
onto α. It is well known that any circle in a surface S is either orientable
or nonorientable (after we include among orientable circles those which are
components of ∂S, as they admit a neighbourhood homeomorphic to a closed
annulus). A surface admitting only orientable circles is called orientable;
otherwise it is nonorientable.

And finally, we say that two circles α, β ∈ X intersect transversally at x
if x ∈ α ∩ β and there is a neighbourhood (a disk) D of x such that both
γ = α ∩ D and δ = β ∩ D are open arcs, they decompose D into two disks
Dγ

1 , D
γ
2 and Dδ

1, D
δ
2, and they are decomposed by x into two open arcs γ1, γ2

and δ1, δ2 with δi ⊂ Dγ
i and γi ⊂ Dδ

i , i = 1, 2. If two orientable circles
intersect (transversally) at exactly one point then we refer to them as two
crossing circles.
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We conclude this section stating and proving some previously cited results.

Theorem 2.1. Any n-manifold (n ≤ 3) admits a (unique up to diffeomor-
phisms) smooth structure. In particular, if M and N are homeomorphic
n-manifolds (n ≤ 3) then they are diffeomorphic.

Proof. See for instance Example 3.1.6 from [19, p. 112] (the restrictions
∂M = ∂N = ∅ there are not essential). �
Lemma 2.2. Let Φ be a flow on a metrizable space X and let x ∈ X.
Assume that O = Int ωΦ(x) �= ∅. Then O is invariant for Φ (in particular
Φx(R) ⊂ O), O is connected and ClO = ωΦ(x).

Proof. The orbit Φx(R) must intersect O at some point y. Since ωΦ(x) is
invariant under Φ then Φ(R × O) ⊂ ωΦ(x); in particular, Φx(R) = Φy(R) ⊂
ωΦ(x). Notice that Φ(R × O) is open (because it is the union of all sets
Φt(O), which are open since Φt is a homeomorphism for every t), connected
and dense in ωΦ(x) (these last two properties because it includes the orbit
Φx(R)). Observe that Φ(R × O) = O and then we are done. �
Lemma 2.3. Let Y be a locally compact metrizable space and let X ⊂ Y be
open. Let Φ : Λ → X be a local flow on X. Then there is a flow Ψ on Y for
which all points from Y \X are singular and having the same orbits as those
of Φ in X. Moreover, for any x ∈ X the bijection θx : Ix → R satisfying
Φx(t) = Ψx(θx(t)) for any t is increasing.

Moreover, if Y is a smooth manifold and Φ is smooth on X, then the
flow Ψ can be got smooth in Y .

Proof. We will first prove the lemma in its continuous version. To begin
with, notice that it is not restrictive to assume that Y is connected (as if Z
is an arbitrary component of Y then the open subset X ∩Z of Z is a union
of orbits of Φ, that is, the restriction of Φ to Λ∩ (R× (X ∩Z)) is a local flow
on X ∩ Z). Moreover, since Y is locally compact and metrizable we have
then that Y has a countable base (see [11, pp. 257 (Theorem 41.4) and 261
(Exercise 10)]); hence, Y∞ is metrizable as well [8, p. 43, Theorem 5].

Fix a distance d in Y∞ for which there is some y ∈ X such that
d(y, Bd X) > 1 (here Bd X is the boundary of X in Y∞) and find posi-
tive numbers tn, n = 1, 2, . . ., small enough so that if d(x, Bd X) ≥ 1/n then
d(Φ(t, x),Bd X) ≥ 1/(n+1) for any |t| ≤ tn. Fix a continuous map Θ : X →
(0,∞) satisfying Θ(x) ≥ 1/tn for any x with d(x, Bd X) ≥ 1/(n + 1). Now,
for any θ ∈ R and x ∈ X there is exactly one number t(θ, x) := t ∈ Ix such
that θ =

∫ t

0
Θ(Φ(s, x)) ds. It is simple to check that t(θ, x) is continuous and,

then, that Ψ(θ, x) = Φ(t(θ, x), x) is a flow on X which can be continuously
extended to the rest of Y∞ (in particular to Y ) by writing Ψ(θ, x) = x for
any θ ∈ R and any x ∈ Y∞\X.
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Now we generalize the ideas from [16, Lemma 2.1] to prove the smooth
version of the lemma. See Y as an n-submanifold of Rm for m = 2n. We
can suppose that Y is bounded in Rm and hence that K = (Cl Y ) \ X is
compact. Fix a collection {Ui}∞i=1 of open bounded neighbourhoods of K in
R

m such that Cl Ui+1 ⊂ Ui for any i and
⋂∞

i=1 Ui = K. Find smooth maps
λi : R

m → [0, 1] satisfying λi ≡ 1 on R
m \ Ui and λi ≡ 0 on ClUi+1 and

consider the (clearly well defined and smooth) vector fields Fi : Y → Rm

given by

Fi(x) =

{
λi(x)F (x) if x ∈ X,

0 otherwise,

where F : X → R
m is the smooth vector field associated to Φ.

Take a countable atlas {ϕi}∞i=1, ϕi : Vi ⊂ R
n → Y . It is not restrictive to

assume that, if {εi}∞i=1 are appropriately chosen small positive numbers and
we write Gi(x) = εiFi(x), then, for any j, we have that the compositions
Gj ◦ ϕi, i = 1, 2, . . . , j, have all its partial derivatives up to the order j
uniformly bounded by 1/2j . Then it is clear that G =

∑∞
i=1 Gi is a smooth

vector field in Y vanishing at Y \ X and whose associated local flow Ψ has
the same orbits, with the same orientations, as those of Φ. Moreover, we can
assume that the choosing of the numbers εi guarantees that ‖G(x)‖ < d(Rm\
Ui,Cl Ui+1) (with d(·, ·) the euclidean distance) for any x ∈ X ∩ (Ui \ Ui+1).
Now, it is obvious that Ψ is in fact a flow and we have finished. �

Lemma 2.4. Let Φ be a flow on a locally compact metrizable space X. Then
the following statements are equivalent:

(i) there is a point x ∈ X whose orbit is dense in X;

(ii) there is a Gδ dense set of points each of them having X as both its
ω-limit and its α-limit set.

Proof. We only have to prove (i)⇒(ii). As X is a Baire space [11, p. 299], we
just have to find open dense sets {On}∞n=1 in X such that αΦ(y) = ωΦ(y) = X
for any y ∈ ⋂∞

n=1 On.
Notice that X is connected and thus has a countable base {Un}∞n=1 of

open sets. Take x ∈ X with Cl Φx(R) = X. Fix any pair Um and Un of these
sets. Then there are points a = am,n and z = zm,n in Φx(R)∩Um and numbers
ta < −n and tz > n with Φa(ta),Φz(tz) ∈ Un (and then Φu(ta),Φv(tz) ∈ Un

for any u ∈ Wa and v ∈ Wz for some small neighbourhoods Wa and Wz of a
and z). Now it suffices to take

On =

( ∞⋃
m=1

Wam,n

) ⋂( ∞⋃
m=1

Wzm,n

)
.

�
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3. Proof of Theorem A

A few words about the proof. After some preliminary work we will show
that we can restrict ourselves to the empty boundary case (Lemma 3.4).
Then, to prove (iv)⇒(i) (the implications (i)⇒(ii), (ii)⇒(iii) and (iii)⇒(iv)
are easy or even trivial) we will proceed as follows. First we show that there
is a dense region O ⊂ S, still having two crossing circles, which can be
embedded in T2.

Next we prove that O is homeomorphic to T
2 \A, with A being a totally

disconnected set which is included in an arc of constant irrational slope.
Finally we slightly alter the corresponding irrational flow in T

2 so that A
is exactly the set of critical points of the new flow (which, in particular, has
a dense orbit in T

2 \ A), apply Theorem 2.1 to carry this flow to a smooth
transitive flow on O, and use Lemma 2.3 to get the desired transitive flow
on S.

Before going into the details we need to recall some topological results on
surfaces that will be used later. Throughout the section we will use liberally,
without further reference, some intuitively obvious (but deep) results on
the sphere. Among them: a circle decomposes the sphere into two disks,
each of them having the circle as its boundary (the Jordan curve theorem);
any homeomorphism between two circles in a sphere can be extended to a
homeomorphism on the whole sphere (the Schönflies theorem); if we take
off the interiors of two disjoint closed disks from the sphere then we get a
closed annulus (the two-dimensional annulus theorem); no arc separates the
sphere; and so on (a good general reference is [8, Chapter 10]). In fact, the
previously stated property for any circle in a surface of being either orientable
or nonorientable follows elementary (if rather tediously) from these results
(plus of course the fact that a surface is locally euclidean).

Recall that two closed surfaces are homeomorphic if and only if they
have the same genus and Euler characteristic. In what follows Mg and
Ng will denote (appropriately fixed) orientable and nonrientable surfaces
of genus g. Thus M0

∼= S2, M1
∼= T2, N1

∼= P2 and N2
∼= B2 but the

corresponding equalities need not happen. Recall that χ(Mg) = 2 − 2g and
χ(Ng) = 2 − g, where χ(S) denotes the Euler characteristic of S (that is,
χ(S) = F + V − E with F , V and E being the number of faces, vertexes
and edges of an arbitrary triangulation of S).

We next describe a typical procedure to generate all posible closed (and,
indeed, non-closed) surfaces. Let {αi, βi}i0

i=1, {γj}j0
j=1, 0 ≤ i0, j0 ≤ ∞, be

countable families (notice that they may be empty and/or infinite) of cir-
cles in S

2. Assume additionally that the following properties hold (Σ =
{αi, βi}i0

i=1 ∪ {γj}j0
j=1):
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(i) the circles σ ∈ Σ are pairwise disjoint and enclose pairwise disjoint
disks Dσ;

(ii) the circles αi, βi have compatible orientations for any i;

(iii) d(Dσ,
⋃

σ′ �=σ Dσ′) > 0;

(iv) if i0 = ∞ then limi→∞ d(Dαi
, Dβi

) = 0;

(v) if i0 = ∞ (resp. j0 = ∞) then limi→∞ diam Dαi
= limi→∞ diam Dβi

=
0 (resp. limj→∞ diam Dγj

= 0).

Define in S2 \⋃
σ∈Σ Dσ the following equivalence relation: x ∼ y if and only

if either:

• x = y;

• x = αi(t), y = βi(t) (or y = αi(t), x = βi(t)) for some t ∈ S1 and
some i;

• x = γj(t), y = γj(−t) for some t ∈ S1 and some j.

We call the compact, connected (indeed even metrizable by the Nagata-
Smirnov theorem) quotient space S2

Σ := S2/ ∼ a pseudosurface. Notice if
[A] = [A]Σ denotes the set of equivalence classes under ∼ including points
from a set A ⊂ S

2, then [σ] is a circle in S
2
Σ for any σ ∈ Σ, which is orientable

in the case σ = αi or σ = βi, and nonorientable in the case σ = γj. It turns
out that if i(Σ) := i0 and j(Σ) := j0 are both finite then S

2
Σ is a closed

surface, with S2
Σ

∼= Mi(Σ) in the case j(Σ) = 0 and S2
Σ

∼= N2i(Σ)+j(Σ) if
j(Σ) > 0.

A nice thing about pseudosurfaces is that non-closed surfaces can also
be embedded into them [14]:

Theorem 3.1. Let S be a connected surface, ∂S = 0. Then there is a
embedding e : S → S

2
Σ for some collection of circles Σ such that S

2
Σ \ e(S)

is totally disconnected (that is, each of its components consists of one point)
and intersects none of the circles [σ], σ ∈ Σ. Moreover, for any ε > 0 the
maximum distance from the points of the circles [σ] to S2

Σ\e(S) is less than ε
(except at most for finite number of circles).

The next result is essentially proved e.g. in [6, Lemma 2.4]. We will only
need to use it in some particular cases, but for completeness we state it in
its full generality. Recall that a circle C ⊂ X is null homotopic if there is a
continuous map H : [0, 1] × [0, 1] → X satisfying H([0, 1] × {0}) = C and
H(0, s) = H(1, s) = H(t, 1) = x for some x ∈ C and every t, s ∈ [0, 1].
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Lemma 3.2. Let S be a closed surface, let α ⊂ S be a circle and let g be
the genus of S.

(i) If α is nonorientable (thus S ∼= Ng) then either S\α ∼= M(g−1)/2 \D or
S\α ∼= Ng−1 \ D for any closed disk D in the corresponding surface.

(ii) If α is orientable and S\α is connected then S\α ∼= Mg−1\(D1∪D2) (if
S ∼= Mg), and S\α ∼= M(g−2)/2 \ (D1 ∪D2) or S\α ∼= Ng−2 \ (D1 ∪D2)
(if S ∼= Ng) for any pairwise disjoint closed disks D1 and D2 in the
corresponding surface.

(iii) If α is orientable and non-null homotopic, and S\α = O1∪O2 for some
pairwise disjoint open sets O1 and O2, then there are positive integers
g1, g2 such that g1 + g2 = g with Oi

∼= Mgi
\ Di, i = 1, 2 (if S ∼= Mg),

and such that 2g1 + g2 = g with O1
∼= Mg1 \ D1, O2

∼= Ng2 \ D2, or
g1 + g2 = g with Oi

∼= Ngi
\ Di, i = 1, 2 (if S ∼= Ng), for any closed

disks Di, i = 1, 2, in the corresponding surfaces.

Moreover, if in cases (ii) and (iii) α ⊂ U ⊂ S is a closed annulus which is
decomposed by α into two closed annuli Ui, i = 1, 2, then the restriction of the
corresponding homeomorphism f with domain S \α to Ui\α can be extended
(after renaming if necessary the closed disks Di) to a homeomorphism fi :
Ui → f(Ui \ α) ∪ Bd Di, i = 1, 2.

Remark 3.3. To complete Lemma 3.2 let us emphasize that if α is a null
homotopic circle in S then there is a closed disk D ∈ S with Bd D = α (in
particular, any null homotopic circle is orientable).

After this preparatory work we are ready to prove Theorem A. Let us
first emphasize that:

Lemma 3.4. Theorem A holds for every surface if and only if it holds for
all surfaces with empty boundary.

Proof. It suffices to prove that, under the assumption that Theorem A
holds true in the empty boundary case, a surface S satisfies (i) (resp. (ii),
(iii) or (iv)) in the statement of Theorem A if and only if R = S \ ∂S
satisfies (i) (resp. (ii), (iii) or (iv)). Indeed, for properties (i) and (ii) our
claim follows from Lemma 2.3, and for property (iv) from the fact that if S
has two crossing circles then they can be easily modified to get two crossing
circles in R (using for instance that, according to the collaring theorem [5,
pp. 113–114] , there is an embedding e : ∂S × [0, 1) → S with e(x, 0) = x
for any x ∈ ∂S).

We must be a bit more careful regarding property (iii). Clearly, it suffices
to show that if R is embeddable in B2 (resp. in S2) then S is embeddable
in B

2 (resp. in S
2) as well.
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To do this we use again the collaring theorem to embed S in a surface
with empty boundary T (which is orientable if S is orientable) so that T \S ∼=
∂S × (0, 1). Now it is simple to check that if α, β are two crossing circles
in T then they both must intersect R and hence can be modified to get two
crossing circles in R. Since R cannot have two crossing circles (recall that
we are assuming that Theorem A holds true in the empty boundary case),
T cannot have them either and we can apply Theorem A to the surface
without boundary T to conclude that it is embeddable in B2 (resp. in S2).
Hence S is embeddable in B2 (resp. in S2) as we desired to show. �

Thus we will prove Theorem A under the additional assumption ∂S = ∅.
The statement (i)⇒(ii) is trivial, and (ii)⇒(iii) follows from the fact that
all ω-limit sets for flows in S2, P2 or B2 have empty interior (see e.g. [17]).

We next prove (iii)⇒(iv) by showing that if S has no crossing circles then
it is homeomorphic to either S

2, P
2 or a region in B

2 (or, if S is orientable,
to a region in S

2).
Consider the embedding e : S → S

2
Σ from Theorem 3.1. We claim that

i(Σ) = 0 and j(Σ) ≤ 2.
Assume i(Σ) �= 0. Then for some totally disconnected closed set C ⊂

S
2 \ (

⋃
σ∈Σ ClDσ) we have that S ∼= S

2
Σ \ [C]Σ. Moreover, since C is totally

disconnected and then cannot separate S
2 (use e.g. [8, p. 189 and p. 539,

Th. 5]), there is an arc δ ⊂ S
2 having each of its endpoints in α1 and β1,

respectively, and intersecting no other points from C ∪ ⋃
σ∈Σ Cl Dσ. Since

α1 and β1 have compatible orientations, [δ]Σ and [α1]Σ = [β1]Σ are crossing
circles in S2

Σ \ [C]Σ. Thus S has two crossing circles, a contradiction.

Now we show j(Σ) ≤ 2 (notice that if additionally S is orientable then we
automatically get j(Σ) = 0 and S is embeddable in S

2 as required). Again
we argue by contradiction to find in S three pairwise disjoint nonorientable
circles, say δ, φ1 and φ2 (see Figure 1). Starting from an orientable circle
ζ enclosing δ it is easy to find two nonorientable circles δ1 and δ2 close to
δ (hence disjoint from φ1 and φ2) intersecting transversally at exactly one
point x ∈ δ. Further, there are pairwise disjoint closed disks K1 and K2 in
S such that Kl ∩ δl = µl and Kl ∩ φl = ρl are arcs in Bd Kl, l = 1, 2. Say
Bd Kl = µl ∪ τl,1 ∪ ρl ∪ τl,2 for appropriate (minimal) arcs τl,1, τl,2. Then
(δl \ µl) ∪ τl,1 ∪ (φl \ ρl) ∪ τl,2, l = 1, 2, are orientable circles intersecting
transversally at x, a contradiction.

Thus, i(Σ) = 0 and j(Σ) ≤ 2. This means that S is embeddable in S
2,

P2 or B2. Moreover, if it is not homeomorphic to any of the first two surfaces
then, as any proper region of S2 or P2 is embeddable in B2 (cf. Lemma 3.2(i)),
it would be embeddable in B2 as well. The statement (iii)⇒(iv) is proved.

It only rests to show (iv)⇒(i). As indicated at the beginning of the
section, the proof consists of three steps.
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δ

δ1 δ2

x

x

δ1 δ2

........................................................................................................
K1

............... ..............................................................................................................

........................................................................................................

........................................................................................................K2

...... ................

τ1,2

τ1,1 τ2,1

τ2,2

µ1

µ2

ζ

p

ρ1

p

q

q

r

rs

s

φ2

�

�
φ1

�

�

ρ1 ρ2 ρ2

Figure 1: Proof of j(Σ) ≤ 2. Here δ, φ1 and φ2 are nonorientable Jordan curves,
when each point is identified with its opposite as marked for x, p, q, r and s.

Step 1: Finding the region O.
As in the proof of (iii)⇒(iv) we retort to the embedding e : S → S

2
Σ

when, according to the reasoning there, we must have either i(Σ) �= 0 or
j(Σ) ≥ 3. If we are in the case i(Σ) �= 0 then it suffices to take off from S all
the circles which are mapped by e onto the circles [αi] = [βi] (i �= 1) and [γj ]
to get the desired set O (notice that with the notation we used there, e−1([δ])
and e−1([α1]), are crossing circles in O; moreover, O is trivially embeddable
in S2

Σ′ , Σ′ = {α1, β1}, which is homeomorphic to T2.
The case j(Σ) ≥ 3 requires more work. We already know how to proceed

to find a dense region O′ ⊂ S embeddable in N3 and having two crossing
circles. We next show how to take off a nonorientable circle from O′ so than
the resultant region O (which is still dense in S) still has two crossing circles
but can now be embedded in T

2.
First we need to find an appropriate description for N3. Let M2 ⊂ R3 be

chosen in such a way that x ∈ M2 implies −x ∈ M2 as well. Let “≈” denote
the equivalence relation in M2 identifying x and −x for all x ∈ M2. Then
N3

∼= M2/ ≈ and we can assume in fact O′ ⊂ N3 = M2/ ≈. [Indeed it is
clear that M2/ ≈ is a closed surface. To prove that it is nonorientable let π :
M2 → M2/ ≈ denote the quotient map, fix points x,−x ∈ M2 and construct
an arc α ⊂ W having x and −x as its endpoints. It is not restrictive to
assume that α contains no other pair of symmetrical points (otherwise take
an open arc β ⊂ α small enough having no such pairs, include it in a maximal
open arc γ ⊂ α with the same property and replace α by the closure of γ).
Clearly, there is a homeomorphism h : [−1, 1]×(−1, 1) → U ⊂ M2 such that
h([−1, 1] × {0}) = α and h(−1, t) = −h(1,−t) for any t ∈ [−1, 1]. Then
π(α) is a circle in M2/ ≈ having π(U) (a Möbius band) as a neighbourhood

and π(α) is nonorientable. Finally, χ(M2/ ≈) = χ(M2)
2

= −1 = χ(N3) is
easy to prove by constructing a triangulation of M2 such that if K is any of
its faces, edges or vertexes then −K = {−x : x ∈ K} is also a face, an edge
or a vertex of the triangulation.]
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It turns out that π−1(O′) is connected. This follows from the fact that
if V ⊂ Ng is an arbitrary region and U is one of the components of π−1(V )
then π|U is surjective, and hence we have that either π−1(V ) is connected
or π−1(V ) consists of exactly two components, homeomorphic to V , and
symmetrical each other: in the particular case O′ = V , the nonorientability
implies that the first possibility holds. [To prove the surjectivity of π|U
argue by contradiction to find a boundary point b of π(U) in V (because V
is connected). Notice that, since π(U) is open (because π is an open map),
b /∈ π(U). Find a sequence (yn)n of points of π(V ) converging to b and
take points xn in U with π(xn) = yn; it is not restrictive to assume that
(xn)n converges, say to a. Since π(a) = b, a /∈ U . Now it suffices to take a
very small connected neighbourhood Ua of a and note that π(U ∪ Ua) ⊂ V ,
contradicting the definition of U .]

Now it is easy to prove that if σ, τ ⊂ O′ are crossing circles then π−1(σ) =
σ1 ∪ σ2 and π−1(τ) = τ1 ∪ τ2, where σl and τl are crossing circles, l = 1, 2,
and (σ1 ∪ τ1) ∩ (σ2 ∪ τ2) = ∅. Clearly, π−1(O′) \ (σ1 ∪ τ1 ∪ σ2 ∪ τ2) is
then connected, so we can construct in it a (minimal) arc δ connecting two
symmetrical points x,−x ∈ O′. Now α = π(δ) is a nonorientable circle and
σ, τ ⊂ O := O′\α. According to Lemma 3.2(i), O is embeddable either in B

2

or in T
2. The existence in O of crossing circles excludes the first possibility.

Step 2: Constructing the homeomorphism to T
2 \ A.

Apply Theorem 3.1 to the surface O to find the corresponding embedding
e′′ : O → S

2
Σ′′ . Since O is orientable we have j(Σ′′) = 0, since O has two

crossing circles we have i(Σ′′) ≥ 1, and since O is embeddable in the torus
we have i(Σ′′) ≤ 1 (otherwise O would have two pairs of pairwise disjoint
crossing circles, and since each of these circles is orientable and non-null
homotopic —cf. Remark 3.3— we would apply Lemma 3.2(ii) to arrive
a contradiction). Thus S

2
Σ′′ ∼= T

2 and we can assume O ⊂ T
2 and that

C = T
2 \ O is totally disconnected.

Denote by α and β the crossing circles in O. Fix an annular neigh-
bourhood B ⊂ O of β intersecting α at exactly a small open arc γ. Use
Lemma 3.2(ii) to find a homeomorphism f : T

2\α → S
1 × (−1, 1) such that,

if U is a closed annulus which is decomposed by α into two closed annuli Ul,
l = −1, 1, then the restriction of f to Ul \ α can be extended to a homeo-
morphism fl : Ul → f(Ul \ α)∪ (S1 × {l}), l = −1, 1. Notice that the circles
S1 ×{l} = fl ◦α =: αl have compatible orientations in S1 × [−1, 1] (because
the disk f(B \ γ) connects them).

Take into account that, because of [8, p. 539, Th. 5], any totally dis-
connected compact subset of S2 is included into some arc, that is, a home-
omorphic set to a compact interval. Further, for any two given arcs in S

2

there is a homeomorphism of the sphere mapping one of them onto the
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other one [8, p. 535, Th. 1]. Combining these facts it is easy to construct a
circle µ including f(C) and separating S1 × [−1, 1] into two closed annuli:
let us denote them by P−1 and P1. We can assume that αl and µ have
compatible orientations in Pl, l = −1, 1. Then we can construct a homeo-
morphism p from S

1 × [−1, 1] into itself such that p(t, l) = αl(t), l = −1, 1,
and p(t, 0) = µ(t) for any t ∈ S

1.
Fix now in S1 × (−1, 1) an arc δ of constant (say ρ) irrational slope,

include it in a circle φ separating S1×[−1, 1] into closed annuli Ql, l = −1, 1,
and, as before, find a homeomorphism q from S1 × [−1, 1] into itself leaving
its boundary invariant and mapping S

1 × {0} onto φ. Clearly, it is not
restrictive to assume that r = q ◦ p−1 maps f(C) into δ. Notice also that
(r ◦ fl ◦ α)(t) = (r ◦ αl)(t) = (t, l) for any t ∈ S1 and l = −1, 1. Let
A = (r ◦ f)(C). Then it is clear that O is homeomorphic to T2 \A (now we
are seeing S1 × (−1, 1) as a subset of T2).

Step 3: Finishing the proof.
Consider the irrational flow of slope ρ in T

2, take a diffeomorphic copy
M1 ⊂ R

3 of T
2 and carry this flow to a smooth flow in M1 with associated

vector field F : M1 → R3. Multiply F by a smooth nonnegative function
λ : M1 → [0,∞) such that the resulting vector field has an associated flow
which, after being carried to T

2, has A as its set of singular points. Use
Theorem 2.1 to construct a smooth transitive flow on O and extend it to a
smooth flow Φ on the whole S by means of Lemma 2.3. This concludes the
proof of (iii)⇒(iv) and Theorem A.

4. Proof of Theorem B

The idea of the proof is fairly simple. The “bricks” of our construction are
compact cylinders C ⊂ M (“blocks”) with pairwise disjoint interiors, which
will be useful to parametrize in order to fix their tops U(C), their bottoms
R(C), and their open fibres (“vertical” curves in Int C connecting one point
from U(C) with another one from R(C)). Starting from a “basement” B,
we successively add “flats” (blocks whose bottom is included in the top
of a previous flat or the basement) and “stairs” (blocks whose bottom is
also included in the top of some flat or the basement and now with its top
included in the bottom of the basement) to get an “infinite tower” dense
in M . This will be done in such a way that the open fibres of the blocks
are (not necessarily maximal) orbits of an appropriate flow and, moreover,
one of the orbits of this flow (a countable union of open fibres from all the
blocks and points from the corresponding tops and bottoms) is dense in M .

Throughout the proof we will assume, without loss of generality (cf.
Lemma 2.3), that M has empty boundary.
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Recall that a set C ⊂ M is called an n-cell if it is homeomorphic to the
closed ball Dn. If additionally θ : [−1, 1] × Dn−1 → C is a homeomorphism
then we will call the pair (C, θ) a parametrized n-cell. We will write R(C) =
R(C, θ) = θ({−1}×D

n−1) and U(C) = U(C, θ) = θ({1}×D
n−1), and the arcs

θ([−1, 1]×{z}) (z ∈ D
n−1) will be called the closed fibres of C (with respect

to the parametrization θ). If in these last definitions we replace D
n−1 by O

n−1

and [−1, 1] by (−1, 1) then we get RO(C) = RO(C, θ), UO(C) = UO(C, θ)
and the open fibres of C (with respect to the parametrization θ).

Let {(B, β)}∪{(Fi, φi)}r
i=1∪{(Sj, σj)}s

j=1 be a finite collection of param-
etrized n-cells in M . We call this collection (which, if no confusion arises,
we will identify with the union set T = B ∪⋃r

i=1 Fi ∪
⋃s

j=1 Sj) a tower with
basement B = (B, β), flats Fi = (Fi, φi) and stairs Sj = (Sj, σj) (we will
generically refer to B, Fi and Sj as the blocks of T ), provided that, for any
block C, there is a nonnegative integer l(C) (the level of C) such that the
following properties hold:

(i) l(B) = 0 and l(C) > 0 for any other block C;

(ii) if F is a flat of level l then there is a flat F ∗ of level l − 1 such that
F ∩ F ∗ = R(F ) ⊂ UO(F ∗) (if l = 1 then F ∗ means the basement B);
moreover, F ∩ C = ∅ for any other block C with l(C) ≤ l;

(iii) if S is a stair of level l then S ∩ B = U(S) ⊂ RO(B) and there is a
flat F ∗ of level l− 1 such that S ∩F ∗ = R(S) ⊂ UO(F ∗) (if l = 1 then
we mean F ∗ = B and S ∩F ∗ = R(S)∪U(S) with U(S) ⊂ RO(B) and
R(S) ⊂ UO(B)); moreover, S ∩ C = ∅ for any other block C.

Assume additionally that there is a number 0 < ε < 1 such that for
any block (C, θ) of T there is a continuous (or, if M is smooth, a smooth)
embedding extending θ, e(θ) : (−1 − ε, 1 + ε) × O

n−1(1 + ε) → M , and put
e(C) := e(θ)((−1 − ε, 1 + ε) × O

n−1(1 + ε)). Moreover, assume that:

(iv) if C and C ′ are disjoint blocks then e(C) and e(C ′) are disjoint as well;

(v) if F = (F, φ) and F ∗ = (F ∗, φ∗) are as in (ii) then e(φ)({−1}×O
n−1(1+

ε)) ⊂ UO(F ∗) and e(φ)(t, z) = e(φ∗)(t+2, z∗) for any t ∈ (−1−ε,−1+ε)
whenever z and z∗ are such that e(φ)(−1, z) = e(φ∗)(1, z∗);

(vi) if S = (S, σ) and F ∗ = (F ∗, φ∗) are as in (iii) then e(σ)({−1} ×
On−1(1 + ε)) ⊂ UO(F ∗) and e(σ)(t, z) = e(φ∗)(t + 2, z∗) for any
t ∈ (−1 − ε,−1 + ε) whenever z and z∗ are such that e(σ)(−1, z) =
e(φ∗)(1, z∗); also, e(σ)({1} × On−1(1 + ε)) ⊂ RO(B) and e(σ)(t, w) =
e(β)(t − 2, w∗) for any t ∈ (1 − ε, 1 + ε) whenever w and w∗ are such
that e(σ)(1, w) = e(β)(−1, w∗).
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Then we will call T a regularizable tower and also write e(T ) = e(B) ∪⋃r
i=1 e(Fi) ∪

⋃s
j=1 e(Sj). The fibres of T are the maximal path-connected

subsets of Int T consisting of a countable union of open or closed fibres of
any of the blocks which the towers Tm are made of. See Figure 2.

fibre

B

F2

e(F2) �

�

F1

S1e(S1)�
�

F3
�

e(F3)�

fibre �

e(B) �

e(F1) �

�

Figure 2: Regularizable tower with basement B, flats F1, F2 and F3 and stair S1

for which l(B) = 0, l(F1) = l(F2) = l(S1) = 1 and l(F3) = 2.

Finally, we call T an infinite regularizable tower if T =
⋃∞

m=0 Tm, where
all Tm are regularizable towers such that T0 = {(B, β)} and, for any m ≥ 1,
there is a block (Cm, θm) of Tm such that Tm = Tm−1 ∪ {(Cm, θm)}. The
fibres of T are similarly defined as before.

We intend to construct an infinite regularizable tower T dense in M
containing a dense fibre. The hardest part of the process consists of de-
scribing how to add to a given regularizable tower a new block containing
(in an appropriate place) a prescribed point outside the initial tower. Next
proposition pursues this aim:

Proposition 4.1. Let T ⊂ M be a regularizable tower (we keep the notation
above). Let x ∈ UO(F ) for some flat F of T of level l ≥ 0 (if l = 0 then we
mean F = B) and assume that x /∈ C for any other block C of T .

(a) Let y ∈ M \T . Then there is a regularizable tower T ∗ = T ∪{(F ∗, φ∗)}
for which F ∗ is a flat of level l + 1 and such that x = φ∗(−1,0),
y = φ∗(1,0).

(b) Let y ∈ RO(B). Then there is a regularizable tower T ∗ = T∪{(S∗, σ∗)}
for which S∗ is a stair of level l + 1 and such that x = σ∗(−1,0),
y = σ∗(1,0).
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We will divide the proof into two steps. First we will assume that M is
just a topological manifold; then we will deal with the smooth case.

Proof of Proposition 4.1 (the continuous case). It is easy to show
that e(T ) \ T is connected (here we need of course n ≥ 3), and since e(T )
is an open neighbourhood of T in M we get that M \ T is connected as
well. Then we can use that T is regularizable to easily construct an arc A
having x and y as its endpoints so that A \ {x, y} ⊂ M \ T . Due to the
compactness of A, there is a number δ > 0 small enough such that if A′ ⊂ A
is an arc whose diameter is less than δ then there is an open set W in M ,
homeomorphic to R

n, such that A′ ⊂ W .
We will begin by assuming that diam A < δ, fixing an open set W homeo-

morphic to Rn including A, and proving Part (a) of the proposition.
Construct small disjoint n-cells Cx and Cy in W containing respectively x

and y in their boundaries Bx and By. Indeed, we will take Cx = e(φ)([1, 1+
µ] × D) for a small number µ < ε and a small closed ball D ⊂ O

n−1 and
assume that e(φ)(1, a) = x for the centre a of D. Notice that we can
also assume that both Bx and By are regularizable n-spheres, that is, there
are open neighbourhoods Ox and Oy of Bx and By and homeomorphisms
hx, hy from (−1, 1) × S

n onto Ox and Oy such that hx({0} × S
n) = Bx,

hy({0}× S
n) = By. If e(φ)(1 + µ, a) = x∗, we can finally suppose that there

is an arc A∗ ⊂ W connecting x∗ and y and containing no other point from
Cx ∪ Cy ∪ T .

Let W∞ denote the one-point compactification of W . As both Bx and By

are regularizable, the annulus theorem [10, 7, 13] guarantees the existence of
a homeomorphism h : [−1, 1]×S

n → W∞ \ Int(Cx ∪Cy) mapping {−1}×S
n

onto Bx, and {1}×S
n onto By. It is then rutinary to construct closed (n−1)-

cells Kx∗ and Ky in Bx and By (with indeed Kx∗ = e(φ)({1 + µ} × E) for
some smaller closed ball E ⊂ D also centred in a), and a parametrized n-cell
(F+, φ+) in W \ Int(Cx ∪ Cy), very close to A∗ (hence not intersecting T ),
satisfying F+ ∩Bx = R(F+) = Kx∗ , F+ ∩By = U(F+) = Ky, and such that
φ+(−1,0) = x∗, φ+(1,0) = y.

The next step is to parametrize F++ = F+ ∪ e(φ)([1, 1 + µ] ×E) with a
map φ++ such that R(F++) = Kx := e(φ)({1}×E) (and still U(F++) = Ky)
and with the additional property that if u ∈ Kx∗ and e(φ)(1 + µ, z) = u for
some z ∈ E then there is a z++ ∈ D

n−1 such that φ++(t, z++) = e(φ)(2+t, z)
for any t ∈ [−1,−1 + µ]. Certainly we can also assume φ++(−1,0) = x,
φ++(1,0) = y.

Finally we just write F ∗ = φ++([−1, 1] × Dn−1(ν)) for some ν < 1 and
define φ∗(t, z) = φ++(t, z/ν). Obviously T ∗ = T ∪{(F ∗, φ∗)} is regularizable
(notice that we can use the same extensions for the blocks from T just
restricting them for an appropriate ε+ < ε).
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This ends the proof of Part (a) of the proposition under the additional
assumption that diamA < δ. The proof of Part (b) has no substantial
novelties; one just has to proceed similarly with both x and y, using the
basement B for y as we previously did with F and x.

In the general case, choose points x = x0, x1, . . . , xk = y decomposing
A into arcs A1, . . . , Ak with diameters less than δ. Reason as in the proof
of Part (a) above to construct a parametrized n-cell (F ∗

1 , φ∗
1) with x0 =

φ∗
1(−1,0), x1 = φ∗

1(1,0) and such that T1 = T ∪{(F ∗
1 , φ∗

1)} is a regularizable
tower for which F ∗

1 is a flat of level l + 1. Notice that the construction
allows us to additionally assume that T1 ∩ (A3 ∪ · · · ∪ Ak) = ∅. Further
(replacing if necessary A2 for a very close arc with the same endpoints and
not intersecting the closed fibre in F ∗

1 containing both x0 and x1, and then
taking a thinner F ∗

1 ), it is not restrictive to suppose that (A2 \ {x1})∩ T1 =
∅. Thus we proceed similarly as before to extend T1 via a flat (F ∗

2 , φ∗
2)

of level l + 2 with x1 = φ∗
2(−1,0), x2 = φ∗

2(1,0) to a regularizable tower
T2 = T1 ∪ {(F ∗

2 , φ∗
2)}.

Reasoning in this way we can construct in M a regularizable tower T ∪
{(F ∗

i , φ∗
i )}k

i=1 (if we are proving Part (a)) or T ∪ {(F ∗
i , φ∗

i )}k−1
i=1 ∪ {(S∗, σ∗)}

(if we are proving Part (b)) such that xi−1 = φ∗
i (−1,0), xi = φ∗

i (1,0) for
any i (when we mean φ∗

k = σ∗ in Part (b)). Now, if we take a very small
ν and define E1 = D

n−1(ν) and, inductively, Ei for any 1 < i ≤ k by the
property φ∗

i ({−1} ×Ei) = φ∗
i−1({1} ×Ei−1), it is clear that

⋃k
i=1 φ∗

i (I ×Ei)
is an appropriate choice for respectively F ∗ or S∗ (the corresponding φ∗ or
σ∗ can be easily defined). �

Proof of Proposition 4.1 (the smooth case). The basic ideas are anal-
ogous to those previously used (and we will maintain the notation above);
only, in the part of the proof when diam A < δ we have to proceed more
carefully in order to guarantee differentiability. We next show how to do it
(for Part (a) as before).

Notice first that if W ⊂ M is the homeomorphic set to Rn such that
A ⊂ W we can assume, without loss of generality, that it is diffeomorphic
to Rn as well.

Recall that λ := e(θ) : (1− ε, 1 + ε)×On−1(1 + ε) → M is now a smooth
embedding and take as before Cx = λ([1, 1 + µ] × D) for a small number
µ < ε and a small closed ball D ⊂ O

n−1 with λ(1, a) = x for the centre a
of D. Just to manage a symmetrical notation and stress the similarity of
the argument for Part (b), we can assume that there is a smooth embedding
γ : (1− ε, 1+ ε)×On−1(1+ ε) → M such that Cy := γ([−1−µ,−1]×K) for
a small closed ball K ⊂ O

n−1 whose centre b satisfies γ(−1, b) = y. We will
assume that the radius of both D and K is µ, that λ([1−µ, 1+µ]×D) and
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γ([−1 − µ,−1 + µ] × K) are disjoint and included in W and that γ([−1 −
µ,−1 + µ] × K) does not intersect T . In what follows we will identify W
to Rn (thus T ′ := T ∩ W will be seen as a subset of Rn); as the ensuing
argument will make clear, it is not restrictive to do it so.

Consider the curves α : [1−µ, 1+µ] → R
n and η : [−1−µ,−1+µ] → R

n

respectively defined by α(t) = λ(t, a) and η(t) = γ(t, b). Notice that, since
λ and γ are diffeomorphisms, we have α′(t) �= 0 and η′(t) �= 0 for any t.
Now it is simple to connect them in a smooth way, that is, there is an
injective smooth map κ : [−1 − µ, 1 + µ] → Rn satisfying κ′(t) �= 0 for any
t, κ(t) = α(t + 2) for any t ∈ [−1 − µ,−1 + µ], and κ(t) = η(t − 2) for any
t ∈ [1−µ, 1+µ]. We can additionally assume that κ([−1+µ, 1−µ]) ⊂ R

n\T ′

and that

(4.1)
κ([−1 + µ, 1 − µ]) ∩ λ([1 − µ, 1 + µ/2] × D) = ∅,

κ([−1 + µ, 1 − µ]) ∩ γ([−1 − µ/2,−1 + µ] × K) = ∅.
From [5, p. 69, Proposition 1.2] κ′(t)/‖κ′(t)‖ cannot map the interval [−1−
µ, 1 + µ] onto Sn, that is, there is a point p ∈ Sn such that κ′(t)/‖κ′(t)‖ �= p
for any t. Fix a diffeomorphism g : R

n−1 → S
n−1 \ {p}, and define Gr :

S
n−1 \ {p} → R

n, 1 ≤ r ≤ n − 1, by

Gr(q) =
∂g

∂zr

(g−1(q)),

where zr denotes the r-th component in Rn−1. As all vectors Gr(κ
′(t)/‖κ′(t)‖)

are ortogonal to κ′(t), {κ′(t), G1(κ
′(t)/‖κ′(t)‖), . . . , Gn−1(κ

′(t)/‖κ′(t)‖)} is a
base for any t and we can assume, provided that µ∗ < µ is small enough,
that ξ : (−1 − µ, 1 + µ) × O

n−1(µ∗) → R
n given by

ξ(t, z1, . . . , zn−1) = κ(t)+z1G1(κ
′(t)/‖κ′(t)‖)+ · · ·+zn−1Gn−1(κ

′(t)/‖κ′(t)‖)
is an embedding and
(4.2)

ξ([−1 + µ/4, 1 − µ/4] × D
n−1(µ∗/2)) ∩ λ([1 − µ, 1 + µ/8] × D) = ∅,

ξ([−1 + µ/4, 1 − µ/4] × D
n−1(µ∗/2)) ∩ γ([−1 − µ/8,−1 + µ] × K) = ∅.

Let ρc,d,s : Rn → R, d > c > 0, s > 0, be a nonnegative smooth map
satisfying ρc,d,s(t, z) = 1 for any (t, z) ∈ [−c, c] × Dn−1(s/2) and vanishing
exactly at R

n \ (−d, d) × O
n−1(s), and construct in R

n the vector fields
defined by

X(λ(t, z)) = ρµ/4,µ/2,µ(t − 1, z − a)
∂λ

∂t
(t, z),

Y (γ(t, z)) = ρµ/4,µ/2,µ(t + 1, z − b)
∂γ

∂t
(t, z),

Z(ξ(t, z)) = ρ1−µ/2,1−µ/4,µ∗/2(t, z)
∂ξ

∂t
(t, z),
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whenever the expressions above make sense and zero elsewhere. Clearly,
they all are well defined and smooth. Moreover, let H = X + Y + Z. As H
vanishes outside a bounded subset of Rn, its associated flow Φ is well defined
as well. Notice that, because of (4.1), the arc κ([−1 − µ, 1 + µ]) is included
in one of the orbits of Φ, and, because of (4.2), we have

(4.3)
Φ(t, λ(1, z)) = λ(t + 1, z), |t| ≤ µ/8, z ∈ D,

Φ(t, γ(−1, z)) = γ(t − 1, z), |t| ≤ µ/8, z ∈ K.

Say Φ(tx, x) = y (thus Φx([0, tx]) = κ([−1, 1])) and define ϕ : R ×
Int D → R

n by ϕ(t, z) = Φ(t, λ(1, z)). We claim that dϕ(t, z) is regular
(its determinant does not vanish) for any (t, z). Indeed

∂ϕ

∂zr

(t, z) = dΦt(λ(1, z))
∂λ

∂zr

(1, z),

1 ≤ r ≤ n − 1, and

∂ϕ

∂t
(t, z) = lim

h→0

Φt(Φ(h, λ(1, z))) − Φt(Φ(0, λ(1, z)))

h

=
∂

∂h
Φt(Φ(h, λ(1, z)))

∣∣∣∣
h=0

= dΦt(λ(1, z))
∂ϕ

∂t
(0, z) = dΦt(λ(1, z))

∂Φ

∂t
(0, λ(1, z))

= dΦt(λ(1, z))H(λ(1, z)) = dΦt(λ(1, z))
∂λ

∂t
(1, z).

The claim follows from the fact that both λ and Φt are diffeomorphisms.
Let µ∗∗ > 0 be so small a number that γ−1 ◦ ϕ is well defined on (tx −

µ∗∗, tx + µ∗∗) × O∗∗, with O∗∗ the open disk of radius µ∗∗ centred in a, and
let τ denote the first component of γ−1. Then

∂(τ ◦ ϕ)

∂t
(tx, a) = ∇τ(tx, a) · ∂ϕ

∂t
(tx, a)

= ∇τ(tx, a) · H(Φ(tx, λ(1, a)))

= ∇τ(y) · H(y)

= ∇τ(y) · ∂γ

∂t
(−1, b)

= 1

and (provided that µ∗∗ is small enough) we can apply the implicit function
theorem to find a smooth map t = t(z) satisfying t(a) = tx and ϕ(t(z), z) ∈
γ(−1,K) for any z ∈ O∗∗.
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Let f1, f2 : R → R be nondecreasing smooth maps satisfying, respec-
tively:

f1(t) = t, t ∈ ( −∞,
µ

8

]
; f1(t) =

µ

4
, t ∈ [µ

4
,∞)

; f ′
1(t) > 0, t ∈ ( −∞,

µ

4

)
;

f2(t) = 0, t ∈ (−∞, 0]; f2(t) = 2 − µ

2
, t ∈ [1,∞); f ′

2(t) > 0, t ∈ (0, 1),

and define

f(t, z) = f1(t) + f2

(
t − µ/8

t(z) − µ/4

)
+ µ/4 − f1(t(z) − t).

As ϕ(t, z) is a local diffeomorphism, it is rutinary to check (again if µ∗∗ is
sufficiently small) that the map ϕ∗ : (−µ/8, 2 + µ/8) × O∗∗ → R

n given by

ϕ∗(f(t, z), z) = ϕ(t, z)

is a well defined diffeomorphism, satisfying for any z ∈ O∗∗

ϕ∗(2, z) ∈ γ({−1} × K)

and (due to (4.3))

ϕ∗(t, z) = λ(t − 1, z), |t| ≤ µ/8,

ϕ∗(t + 2, z) = γ(t − 1, w) (if z and w are such that ϕ(2, z) = γ(−1, w)),

|t| ≤ µ/8.

Now we define φ∗(t, z) = ϕ∗(t + 1, 2(z − a)/µ∗∗) and F ∗ = φ∗([−1, 1], Dn−1)
and we are done. �

Proof of Theorem B. Using Proposition 4.1 we can construct an
infinite regularizable tower T in M with the additional property that one
of its fibres, �∗, is dense in M . More precisely, fix a dense sequence of
points {um}∞m=0 in M . Then it suffices to construct inductively (see the
next paragraph) the corresponding regularizable towers Tm with common
basement B and union the desired T so that all fibres of all Tm are open
arcs (thus their closures are arcs), and there are fibres �m of Tm such that,
for any m,

(*) neither of the endpoints of Cl �m belong to the intersection of two
blocks of Tm,

(**) �m ⊂ �m+1,

(***) d(�m, um) < 1/2m,

because then �∗ :=
⋃∞

m=0 �m would do the job.
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It is worth emphasizing that if α is an arbitrary fibre of some Tm then
one of the endpoints belongs to RO(B) and the other one belongs to UO(F )
for some block (a flat or the basement) F of Tm, and neither of them belong
to another RO(C) or UO(C), with C any block of Tm. Thus (*) means that
if zm ∈ RO(B) and xm ∈ UO(Fm) are the endpoints of Cl �m then they do
not belong to another R(C) or U(C).

The choosing of T0 is trivial, as it is that of Tm+1 in the case when
um+1 �∈ Tm: just use Proposition 4.1(a) to add a flat (F, φ) to Tm so that
φ(−1,0) = xm and φ(1,0) = um+1, when �m+1 := �m ∪ φ([−1, 1) × {0}). If
um+1 ∈ Tm then we find a fibre α of Tm very close to um+1 with endpoints
z ∈ RO(B) and x ∈ UO(F ) so that neither of them belong to any other
R(C) or U(C). The way to do this is first choosing a fibre α1 of Tm just
close enough to um+1, then (if necessary) a fibre α2 with its endpoint in
RO(B) very close to that of α1 so that it belongs to U(S) for no stair S
of Tm, and finally (if necessary) the fibre α with both of its endpoints very
close to those of α2 and satisfying the required property. Then we apply
Proposition 4.1(b) to add a stair (S, σ) to Tm satisfying σ(−1,0) = xm and
σ(1,0) = z, being �m+1 := �m ∪α∪ σ([−1, 1]×{0}). Observe that we must
be careful in choosing S thin enough so that all fibres of Tm starting from
U(S) end in UO(F ), and all fibres of Tm ending at R(S) start from points
of RO(B) outside U(S). In this way, we guarantee that all fibres from Tm+1

are open arcs.

Notice that if � is a fibre of T and u ∈ � then there are an open interval
Iu � 0 and a bijection �u : Iu → � (both unambiguously defined) such that
�u(0) = u and having the following property: for any v ∈ � ∩ e(C) for some
block (C, φ) in T , v = �u(t

∗) = e(φ)(t∗∗, z), there is a small number εv > 0
such that �u(t+t∗) = e(φ)(t+t∗∗, z) for all |t| < εv. It is not difficult to realize
that Φ(t, u) := �u(t) is a well defined local flow on M (which is differentiable
in the smooth case as, once we see M as embedded in R

2n and put with the
notation above F (v) := ∂e(φ)

∂t
(t∗∗, z), it is clear that the map F : O → R2n

so constructed is a well defined smooth vector field on M whose associated
local flow is precisely Φ). Apply Lemma 2.3 to finish the proof. �

Remark 4.2. It must be stressed that, in a sense, the proof of Theorem B
can be shortened as one could dispose of Part (b) of Proposition 4.1. Indeed,
using just Part (a) of the proposition it is not hard to prove that Rn can
be densely embedded in M , and now we only need to use a transitive flow
in Rn as those of [15], [1] or [16].

Yet we think that our approach is preferable. On the one hand, it pro-
vides a self-contained proof of the transitivity of R

n which is rather simpler
than those of [1] or [16]. Moreover, Part (b) generalizes (and thus brings
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into attention to the western readership) the beautiful ideas in Sidorov’s pa-
per [15]. Finally, when constructing a transitive flow one should ideally tried
to devise it with a number of singular points as small as possible, as then
one could have a better chance to derive a minimal flow from it: Part (b), up
to some extent, “reduces” this number. In this context it is worth recalling
that the very important problem of proving or disproving that S

3 admits a
minimal flow still remains open.
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