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Endpoint estimates from restricted
rearrangement inequalities

Maŕıa J. Carro and Joaquim Mart́ın

Abstract
Let T be a sublinear operator such that (Tf)∗(t) ≤ h(t, ‖f‖1)

for some positive function h(t, s) and every function f such that
‖f‖∞ ≤ 1. Then, we show that T can be extended continuously
from a logarithmic type space into a weighted weak Lorentz space.
This type of result is connected with the theory of restricted weak
type extrapolation and extends a recent result of Arias-de-Reyna con-
cerning the pointwise convergence of Fourier series to a much more
general context.

1. Introduction

Let S be the Carleson maximal operator (see [6])

Sf(x) = sup
n

|Snf(x)|,

where Snf(x) = (Dn ∗ f)(x), being Dn the Dirichlet kernel on T = {z ∈
C; |z| = 1} and f ∈ L1(T). Then, it was proved in [6] and [13] the following
restricted weak-type estimate:

sup
y>0

y λSχA
(y)1/p ≤ C

p − 1
|A|1/p,

for every 1 < p ≤ 2 and every measurable set A, with C independent of p,
where λg(y) = |{x ∈ T : |g(x)| > y}| is the distribution function of g with
respect to the Lebesgue measure. Using this estimate and Yano’s extrapo-
lation theorem (see [22] and [7]), one can easily see that

S : L(log L)2 −→ L1

is bounded.
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However, in [18], this boundedness was improved by using that if we
take the infimum in p in the above inequality then, for every measurable
set E ⊂ T,

(1.1) (SχE)∗(t) � |E|
t

(
1 + log+ t

|E|
)

,

(g∗(t) = inf {s : λg(s) ≤ t} is the decreasing rearrangement) and, proving
that this estimates also holds by the so called special functions. Then, the
boundedness of

S : L log L log log L −→ L1,∞

was proved. Some years later, F. Soria in [20] improves the above extrapo-
lation result by showing that

S : B∗
ϕ −→ L1,∞

is bounded with ϕ(t) = t(1 + log+ 1/t) and B∗
ϕ a block type space such that

L log L log log L ⊂ B∗
ϕ.

In 1996, Antonov (see [1]) proved the following lemma:

Lemma 1.1 (Antonov) Let SNf(x) = sup0≤n≤N |Snf(x)|. Then, for ev-
ery ε > 0, every N ∈ N and every 0 ≤ f(x) ≤ 1, there exists a measurable
set F such that |F | = ‖f‖1 and

∥∥SN (f − χF )
∥∥
∞ ≤ ε.

Using this result and the above estimate on characteristic functions one
can conclude that

(1.2) (Sf)∗(t) � ‖f‖1

t

(
1 + log+ t

‖f‖1

)
,

for every f ∈ L1 such that ‖f‖∞ ≤ 1, and from it, Antonov proves that

S : L log L log log log L −→ L1,∞

is bounded. Quite recently, it has been proved by Arias-de-Reyna in [2] that

S : QA −→ L1,∞

is bounded where QA is a rearrangement invariant space such that

L log L log log log L ⊂ QA and B∗
ϕ ⊂ QA.

Moreover, QA is strictly bigger than both spaces and therefore QA is, up to
now, the biggest space where the pointwise convergence of the Fourier series
is known to hold.
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Antonov’s lemma has been extended in [19] to more general operators,
namely to any maximal operator of the form

Tf(x) = sup
j

|Kj ∗ f(x)|,

where Kj ∈ L1, and therefore, (1.2) holds for any operator T of the above
form such that T satisfies (1.1). Examples of such operators are given in [19]
in the setting of differentiation of integrals and the Halo conjecture.

In particular, (and this is the connection with the weak extrapolation
theory, see [14] and [20]) if T is an operator such that, for every 1 < p ≤ 2,

(Tf)∗(t)t1/p ≤ 1

(p − 1)m
‖f‖p ,

then, for every f ∈ L1 such that ‖f‖∞ ≤ 1,

(Tf)∗(t) ≤ 1

(p − 1)m

‖f‖1/p
1

t1/p
,

and taking the infimum in p, we conclude that

(1.3) (Tf)∗(t) � ‖f‖1

t

(
1 + log+ t

‖f‖1

)m

.

Our main purpose (see Theorem 3.1) is to show that if T is a sublinear
operator satisfying

(Tf)∗(t) � h (t, ‖f‖1) ,

for some positive function h and every ‖f‖∞ ≤ 1, then

T : QD −→ M(R)

is bounded, where h(t, s) ≤ D(s)R(t),

QD = {f ; f =
∑

k

ekfk, ‖fk‖∞ ≤ 1, ‖f‖QD
< ∞},

with

‖f‖QD
= inf

{∑
k

ekD(‖fk‖1)
(
1 + log

1

ak

)
;

∑
k

ak =1, ak ≥ 0, f =
∑

k

ekfk

}
,

and

‖f‖M(R) := sup
t>0

f ∗(t)
R(t)

.

In particular, if

D(s) = s
(
1 + log+ 1

s

)
and T = S, then our space QD coincides with the space of Arias-de Reyna QA.
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Our proof turns out to be very simple and is based in the following basic
result (see [9]):

Lemma 1.2 (Basic result) Let f =
∑

n fn and let cn > 0 be such that∑
n cn = 1. Then

f ∗(3t) ≤
∑

n

(
f ∗

n(t) +
1

t

∫ t

cnt

f ∗
n(s)ds

)
.

From it, the main result of this paper, which covers as a particular case the
result of Arias-de-Reyna, can be immediately obtained.

The point now is that the space QD is difficult to handle and, therefore,
it is convenient for the applications to find spaces of Logarithmic type L
such that L ⊂ QD. As was mentioned before, it was proved, in [2], that
the space L log L log log log L(T) ⊂ QA. We shall extend this result to our
general context.

Another situation we consider in this work is the following: Let Ω be any
domain in Rn, let W 1,p(Ω) be the classical Sobolev space and set W 1,p

0 (Ω)
the closure of C∞

0 (Ω) in W 1,p(Ω), under the norm

‖f‖W 1,p
0 (Ω) = ‖f‖p + ‖∇f‖p,

where ∇f is the gradient of f . Let T be a sublinear operator such that

T : W 1,p
0 (Ω) −→ Lp,∞

is bounded with constant Cp for every p ∈ I ⊂ [1,∞). Then, for every f
such that ‖f‖∞ + ‖∇f‖∞ ≤ 1, it holds that

(Tf)∗(t)t1/p ≤ Cp

( ∫ ∞

0

f ∗(t)p+|∇f |∗(t)p dt
)1/p

≤ Cp

( ∫ ∞

0

f ∗(t)+|∇f |∗(t) dt
)1/p

.

Consequently,

(Tf)∗(t) ≤ inf
p∈I

(
Cp

(‖f‖W 1,1
0 (Ω)

t

)1/p)
:= h(t, ‖f‖W 1,1

0 (Ω)).

Then we show that the technique developed in Section 2 can also be extended
to cover this situation and, in fact, our theory can be presented in the setting
of compatible pairs of Banach spaces Ā = (A0, A1) using some of the ideas
developed in [8]; that is, our operator T will be a sublinear operator acting on
elements of the sum space A0+A1 and taking values on the set of measurable
functions:

T : A0 + A1 −→ L0(µ).

Our first task is to extend the notion of characteristic functions to the setting
of pairs. This will be done in Section 3.
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As usual, the symbol f ≈ g will indicate the existence of a univer-
sal positive constant C (independent of all parameters involved) so that
(1/C)f ≤ g ≤ Cf , while the symbol f � g means that f ≤ Cg. (M, µ) will
be a totally σ−finite resonant measure space and we shall denote by L0(µ)
the class of measurable functions that are finite µ a.e., endowed with the
topology of the convergence in measure. We write ‖g‖p to denote ‖g‖Lp(µ),
λµ

g (y) = µ ({x ∈ M : |g(x)| > y}) is the distribution function of g with re-

spect to the measure µ and g∗
µ(t) = inf

{
s : λµ

g (s) ≤ t
}

is the decreasing
rearrangement (we refer the reader to [3] for further information about dis-
tribution functions and decreasing rearrangements).

In what follows we shall omit the indices µ whenever it is clear the
measure we are working with.

2. Main results

First of all, given a positive concave function D such that D(0+) = 0, we
define the space

Λ(D) =

{
f ; ‖f‖Λ(D) =

∫ ∞

0

D(λf (y)) dy =

∫ ∞

0

f ∗(s)dD(s)

}
.

Then, we have that the following properties holds:

Lemma 2.1 Given a positive concave function D such that D(0+) = 0, we
have that

Λ(D) ⊂ L1 + L∞,

and
QD ⊂ Λ(D),

with continuous embeddings.

Proof: The first embedding is well known, since min(1, s) � D(s) and hence

‖f‖L1+L∞ =

∫ 1

0

f ∗(s)ds =

∫ ∞

0

min(λf (y), 1)dy �
∫ ∞

0

D(λf (y)) dy = ‖f‖Λ(D).

For the second embedding, let us observe that if ‖f‖∞ ≤ 1, then

‖f‖Λ(D) =

∫ 1

0

D(λf (y))dy ≤ D

(∫ 1

0

λf (y)dy

)
= D(‖f‖1),

and hence, if f =
∑

k ekfk, with ‖fk‖∞ ≤ 1, we obtain that

‖f‖Λ(D) ≤
∑

k

ek‖fk‖Λ(D) ≤
∑

k

ekD(‖fk‖1) ≤ ‖f‖QD
.

�



136 M.J. Carro and J. Mart́ın

Now we are ready to formulate our first main result:

Theorem 2.1 Let T be a sublinear operator such that

T : L1(µ) + L∞(µ) −→ L0(µ)

is bounded, and let us assume that, for every f ∈ L1 ∩ L∞ with ‖f‖∞ ≤ 1,

(Tf)∗(t) ≤ h(t, ‖f‖1),

for some positive function h : (0,∞) × (0,∞) → (0,∞) such that for every
t > 0, the function h(t, ·) is increasing and, for every s > 0, t ·h(t, s) is also
an increasing function in the variable t. Then, if D and R are such that

h(t, s) ≤ D(s)R(t),

and D is a concave function satisfying D(0+) = 0, we have that

T : QD −→ M(R)

is bounded.

Although no conditions are assumed on R, it is clear that since t · h(t, s)
is increasing in the variable t, we can assume without loss of generality that
this condition also holds for R.

Proof: Let f ∈ QD and let us write f =
∑

k ekfk with ‖fk‖∞ ≤ 1. Then, by
the previous lemma, we have that the convergence of the series is in L1 +L∞

and therefore, we can conclude that

(Tf)∗(t) ≤
( ∑

k

ekTfk

)∗
(t).

Using now the basic result together with the hypothesis, we obtain that, for
every sequence (ak) of positive numbers such that

∑
k ak = 1,

(Tf)∗(3t) ≤
∑

k

ek(Tfk)
∗(t) +

1

t

∑
k

ek

∫ t

akt

(Tfk)
∗(u) du

≤
∑

k

ekh(t, ‖fk‖1) +
1

t

∑
k

ek

∫ t

akt

h(u, ‖fk‖1) du.

And, using the properties of the function h, we conclude that

(Tf)∗(3t) ≤
∑

k

ekD(‖fk‖1)R(3t) + R(3t)
∑

k

ekD(‖fk‖1) log
1

ak

,

and hence,

‖Tf‖M(R) = sup
t

(Tf)∗(t)
R(t)

≤ ‖f‖QD
.

�
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As was mentioned in the introduction, the point now is to analyze the
space QD to make it useful for the applications. To this end, we have to
introduce the following logarithmic spaces:

Definition 2.1 Let ϕ be a positive and concave function such that ϕ(0+)=0.

(1) The space L log | log L|(ϕ) is defined as the set of measurable functions f
such that

(2.1) ‖f‖L log | log L|(ϕ) :=

∫ ∞

0

f ∗(s) (1 + log (|log s| + e)) dϕ(s) < ∞.

(2) The space L log log L(ϕ) is defined as the set of measurable functions f
such that

(2.2) ‖f‖L log log L(ϕ) :=

∫ ∞

0

f ∗(s)
(

1 + log+ log+ 1

s

)
dϕ(s) < ∞.

(3) The space L log log log L(ϕ) is defined as the set of measurable func-
tions f such that

(2.3) ‖f‖L log log log L(ϕ) :=

∫ ∞

0

f ∗(s)
(

1 + log+ log+ log+ 1

s

)
dϕ(s) < ∞.

We also need the two following technical lemmas:

Lemma 2.2 Let Φ(s) = s(1 + log+ 1
s
) and let f be such that ‖f‖Λ(ϕ) = 1.

Then∫ ∞

0

Φ (f ∗(s)ϕ(s))
dϕ(s)

ϕ(s)
≈

∫ ∞

0

Φ (sϕ (λf (s)))
ds

s
� ‖f‖L log | log L|(ϕ) .

Proof: To show the first equivalence, let H = f ∗◦ϕ−1(s). Then one has that

λH(s) = ϕ(λf (s))

and, by Proposition 4.3 of [21], we have that∫ ∞

0

Φ (sλH(s))
ds

s
≈

∫ ∞

0

Φ (sH(s))
ds

s
.

A simple change of variable ends the proof of the first part.
For the second part, let us consider the sets

E0 =
{

s < 1 : ϕ(s)f ∗(s) >
(

log
1

s
+ e

)−2}
,

and
E1 =

{
s ≥ 1 : ϕ(s)f ∗(s) > (log s + e)−2} .
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Then, we can write∫ ∞

0

Φ
(
f ∗(s)ϕ(s)

)dϕ(s)

ϕ(s)
=

=

(∫
E0

+

∫
(0,1)\E0

+

∫
E1

+

∫
(1,∞)\E1

)
Φ (f ∗(s)ϕ(s))

dϕ(s)

ϕ(s)
= I1 + I2 + I3 + I4.

Now,

I1 =

∫
E0

f ∗(s)
(

1 + log+ 1

f ∗(s)ϕ(s)

)
dϕ(s)

≤
∫ 1

0

f ∗(s)
(

1 + 2 log

(
log

1

s
+ e

))
dϕ(s) ≤ 2 ‖f‖L log | log L|(ϕ)) .

On the other hand, since Φ is increasing, dϕ(s) ≤ (ϕ(s)/s)ds and 1 =
‖f‖Λ(ϕ) ≤ ‖f‖L log | log L|(ϕ), we obtain that

I2 ≤
∫ 1

0

(
1 + 2 log

(
log 1

s
+ e

))
(
log 1

s
+ e

)2

dϕ(s)

ϕ(s)
≤

∫ 1

0

(
1 + 2 log

(
log 1

s
+ e

))
s
(
log 1

s
+ e

)2 ds

� ‖f‖L log | log L|(ϕ) .

Similarly,

I3 ≤
∫ ∞

1

f ∗(s) (1 + 2 log (log s + e)) dϕ(s) � ‖f‖L log | log L|(ϕ) ,

and

I4 ≤
∫ ∞

1

(1 + 2 log (log s + e))

s (log s + e)2 ds � ‖f‖L log | log L|(ϕ) .

�

Lemma 2.3 ([11]) Let w be a positive and measurable function and let ϕ
be a positive and concave function such that ϕ(0+) = 0. Then∫ ∞

0

ϕ (λf (s)) w(s)ds =

∫ ∞

0

(∫ f∗(s)

0

w(t)dt

)
dϕ(s).

Theorem 2.2 Let D be any positive and concave function such that D(0+)=0.
Then,

1) L log | log L|(D) ⊂ QD.

2) If s ≤ D(s), then
L log log L(D) ⊂ QD.

3) If s ≤ D(s) and, for every 0 ≤ s ≤ 1, D(s2) � sD(s), then

L log log log L(D) ⊂ QD.
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Proof: 1) Let f ∈ L log | log L|(D) be such that ‖f‖Λ(D) = 1 and let us
write

f =
∑
i∈Z

2i+1fi,

where fi = 1
2i+1 fχ{2i<|f |≤2i+1}. Then, for every sequence of positive number

(ai)i such that
∑

i∈Z
ai = 1, we have that

‖f‖QD
�

∑
i∈Z

2iD(‖fi‖1)

(
1 + log

1

ai

)
≤

∑
i∈Z

2iD(λf (2
i))

(
1 + log

1

ai

)
.

Taking now

ai =
2iD(λf (2

i))∑
i 2

iD (λf (2i))
,

we conclude that

‖f‖QD
�

∫ ∞

0

D(λf (s))

(
1 + log

1

sD(λf (s))

)
ds,

and the result now follows by Lemma 2.2.

2) Since s ≤ D(s) we have that L log log L(D) ⊆ Λ(D) ⊆ L1. Let f ∈
L log log L(D) be such that ‖f‖Λ(D) = 1, and decompose f as

f = fχ{|f |≤1} +

(∑
i≥0

2i+1fi

)
,

where fi = 1
2i+1 fχ{2i<|f |≤2i+1}. Then, for every (ai)i such that

∑
i ai = 1,

‖f‖QD
� D(‖f‖1) +

∑
i≥0

2iD(λf (2
i))

(
1 + log

1

ai

)
,

and taking (ai)i as in 1), we get

‖f‖QD
� 1 +

∫ ∞

1

D(λf (s))

(
1 + log

1

sD(λf (s))

)
ds � 1 + I.

To estimate I, it follows, by Lemma 2.2, that

I �
∫
{f∗≥1}

f ∗(s)
(

1 + log
1

f ∗(s)D(s)

)
dD(s),

and since sλf∗(s) ≤ 1, we get that λf∗(s) ≤ 1 if s ≥ 1. Hence, {f ∗ ≥ 1} ⊆
[0, 1] and using the same argument than in the proof of Lemma 2.2, it
follows that

I �
∫ 1

0

f ∗(s)
(

1 + log
1

f ∗(s)D(s)

)
dD(s) � ‖f‖L log log L(D) .
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3) In this case, we take f ∈ L log log log L(D) such that ‖f‖Λ(D) = 1 and we
write

f = fχ{|f |≤2} +
∞∑
i=0

22i+1

fi,

where

fi =
1

22i+1 fχ{22i<|f |≤22i+1}.

Then, if
∑

i ai = 1,

‖f‖QD
� 1 +

∞∑
i=0

22i+1

D(‖fi‖1)

(
1 + log

1

ai

)

� 1 +
∞∑
i=0

22i+1

D

(
1

22i+1

2i+1−1∑
j=2i

2jλf (2
j)

)(
1 + log

1

ai

)
,

and since D is concave,

‖f‖QD
� 1 +

∞∑
i=0

22i+1
2i+1−1∑
j=2i

D

(
2j

22i+1 λf (2
j)

)(
1 + log

1

ai

)
.

Now, using D(s)/s decreases, and that 2i ≤ j < 2i+1, we obtain that

22i+1

D

(
2j

22i+1 λf (2
j)

)
≤ (

2j
)2

D

(
λf (2

j)

2j

)
.

Now we take ai = 6/(π2(i + 1)2), and hence

‖f‖QD
� 1 +

∞∑
i=0

2i+1−1∑
j=2i

(
2j

)2
D

(
λf (2

j)

2j

)
(1 + log(i + 1))

�
∞∑
i=0

2i+1−1∑
j=2i

(2j)2D

(
λf (2

j)

2j

)
(1 + log+ log+ log+ 2j)

�
∫ ∞

1

sD

(
λf (s)

s

)
(1 + log+ log+ log+ s) ds.

Using that sλf (s) ≤ 1, we get that

s

λf (s)
≤

( 1

λf (s)

)2

and since sD(1/s) increases

sD

(
λf (s)

s

)
≤ 1

λf (s)
D

(
(λf (s))

2) .
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Moreover, since λf (s) ≤ sλf (s) ≤ 1, if s ≥ 1 and D(st) � sD(s),

1

λf (s)
D

(
(λf (s))

2) � D (λf (s)) .

Using this estimate and Lemma 2.3 we get

I �
∫ ∞

0

D (λf (s))
(
1 + log+ log+ log+ s

)
ds

=

∫ ∞

0

( ∫ f∗(s)

0

(
1 + log+ log+ log+ t

)
dt

)
dD(s).

Now, since
(
1 + log+ log+ log+ t

)
is increasing and sf ∗(s) ≤ 1

I ≤
∫ ∞

0

f ∗(s)
(
1 + log+ log+ log+ f ∗(s)

)
dD(s)

≤
∫ ∞

0

f ∗(s)
(

1 + log+ log+ log+ 1

s

)
dD(s) = ‖f‖L log log log L(D). �

Let us now define the space G = {f ; ‖f‖G < ∞}, where

‖f‖G = inf

{ ∞∑
k=0

(ck+1 − ck)D

(∫ ck+1

ck
λf (y)dy

ck+1 − ck

)
log(k + 2) < ∞

}
,

where the infimum extends over all sequences increasing (ck)k such that
c0 = 0 and limk→∞ ck = ∞.

Proposition 2.1 It holds that G ⊂ QD.

Proof: Let f ∈ G and let (ck)k be a sequence such that

∞∑
k=0

(ck+1 − ck)D

(∫ ck+1

ck
λf (y)dy

ck+1 − ck

)
log(k + 2) < ∞.

Then we write
f =

∑
k

(ck+1 − ck)fk + min(|f |, c1),

where

fk =
min(|f |, ck+1) − min(|f |, ck)

ck+1 − ck

,

and since

‖fk‖1 =

∫ ck+1

ck
λf (y)dy

ck+1 − ck

we conclude that f ∈ QD and ‖f‖QD
� ‖f‖G. �
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Remark 2.1 By taking ck = 22k
, one can easily see that under the condi-

tions of Theorem 2.2, 3), we have that L log log log L(D) ⊂ G.

If T is the Carleson maximal operator S, then one can immediately see that

we can take D(s) = s
(
1 + log+ 1

s

)
and R(t) = t. In this particular case, the

above result has been recently obtained by Arias-de-Reyna in [2]. Also, for
such function D, it is very easy to see that

L log log log L(D) = L log L log log log L(T),

and the boundedness

S : L log L log log log L(T) −→ L1,∞,

was obtained previously by Antonov in [1], and for other more general op-
erators, as mentioned in the introduction, in [19].

3. Extension to arbitrary compatible pairs

Let Ā = (A0, A1) be a compatible pair of Banach spaces, that is, we
assume that there is a topological vector space U such that Ai ⊂ U , i = 0, 1,
continuously. In what follows we drop the terms “compatible” and “Banach”
and refer to a compatible Banach pair simply as a “pair”.

The Peetre K−functional (see [3], [4] and [5]) associated with a pair Ā
is defined, for each a ∈ A0 + A1 and t > 0, by

K(a, t) = K(a, t; Ā) = inf
{‖a0‖A0

+ t ‖a1‖A1
: a = a0 + a1, ai ∈ Ai

}
.

It is easy to see that K(t, a) is a nonnegative and concave function of t > 0,
(and thus also continuous). Therefore

K(a, t; Ā) = K(a, 0+; Ā) +

∫ t

0

k(a, s; Ā) ds,

where the k−functional, k(a, s; Ā) = k(a, s), is a uniquely defined, nonneg-
ative, decreasing and right-continuous function of s > 0.

In order to find the analogue of the set {f ∈ L1; ‖f‖∞ ≤ 1} in the setting
of pairs, let us recall that the Gagliardo completion Ã0 and Ã1 of a pair Ā
is defined by (see [3])

‖a‖Ã0
= sup

t
K(t, a; Ā) < ∞ ,

‖a‖Ã1
= sup

t

K(t, a; Ā)

t
< ∞ .
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Definition 3.1 Given a pair Ā, we say that a is a characteristic element
of Ā if a ∈ Ã0 ∩ Ã1 and ‖a‖Ã1

≤ 1.

The collection of characteristic elements of a pair Ā will be denoted
by C(Ā).

The following lemma was proved in [8] and it is fundamental for our purpose.

Lemma 3.1 Given an element a ∈ A0+A1 such that K(a, 0+; Ā) = 0, there
exist a constant γ (depending only on Ā) and a collection of characteristic
elements (ai)i∈Z such that

a = γ
∑
i∈Z

2iai (convergence in A0 + A1),

and

‖ai‖Ã0
≤ λk(a,·)(2i).

We say that a = γ
∑∞

i=−∞ 2iai is a dyadic decomposition of a.

Definition 3.2 ( [8]) Given a pair Ā = (A0, A1) and a concave function ϕ,
the minimal Lorentz space, Λ(ϕ; Ā), is the set of elements a ∈ A0 + A1 such
that K(a, 0+; Ā) = 0 and

‖a‖Λ(ϕ;Ā) =

∫ ∞

0

k(a, s; Ā) dϕ(s) < ∞.

If Ā is the classical pair (L1(ν), L∞(ν)), then k(a, s) = f ∗(s) and hence
Λ(ϕ; Ā) = Λ(ϕ) is the classical Lorentz spaces defined in the previous section.

Definition 3.3 Given a pair Ā, and a quasi-Banach lattice B ⊂ Λ(ϕ), we
define B(ϕ; Ā) as

(3.1) B(ϕ; Ā) =
{

a ∈ Λ(ϕ; Ā); ‖a‖B(ϕ;Ā) := ‖k(a, ·)‖B < ∞
}

.

Remark 3.1 Obviously,

L log | log L|(ϕ; Ā) ⊂ L log log L(ϕ; Ā) ⊂ L log log log L(ϕ; Ā),

and the above embeddings are, in general, strict. However, if Ā is an ordered
pair, that is A1⊂A0) then k(a, t) = 0 if t > 1, and hence L log | log L|(ϕ; Ā) =
L log log L(ϕ; Ā).
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Definition 3.4 Let h : (0,∞) × (0,∞) → (0,∞) be such that for every
t > 0, the function h(t, ·) is increasing and, for every s > 0, t ·h(t, s) is also
an increasing function in the variable t. We say that a sublinear continuous
operator

T : A0 + A1 −→ L0(µ),

satisfies a restricted h− rearrangement inequality if, for every t > 0 and
every characteristic element a of Ā,

(3.2) (Ta)∗(t) ≤ h(t, ‖a‖Ã0
).

Examples:

1) If Ā = (L1(ν), L∞(ν)), then C(Ā) = {f ∈ L1; ‖f‖∞ ≤ 1}, and hence,
any sublinear operator satisfying (3.2), satisfies the condition assumed in
the previous section.

2) Let Ω be any domain in Rn and let W 1,p(Ω) be the classical Sobolev space

‖f‖W 1,p(Ω) = ‖f‖p + ‖∇f‖p,

where ∇f is the gradient of f . Set W 1,p
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(Ω).
Then it is known, (see [12]), that if Ā = (W 1,1

0 (Ω),W 1,∞
0 (Ω)),

K(t, f ; Ā) ≈ t

(
f ∗∗(t) + |∇f |∗∗(t)

)
,

and therefore C(Ā) = {f ∈ W 1,1
0 (Ω); ‖f‖∞ + ‖∇f‖∞ ≤ 1}. Hence, if T is a

sublinear operator such that

T : W 1,p
0 (Ω) −→ Lp,∞

is bounded with constant Cp for every p ∈ I ⊂ [1,∞), then,

(Tf)∗(t) ≤ inf
p∈I

(
Cp

(‖f‖W 1,1
0 (Ω)

t

)1/p
)

:= h(t, ‖f‖W 1,1
0 (Ω)).

3) Let us now consider, for example, the pair Ā = (Λ1(w), L∞), where Λ1(w)
is the weighted Lorentz space introduced by Lorentz in [15] and defined by

‖f‖Λp(w) =
( ∫ ∞

0

f ∗(t)pw(t) dt
)1/p

< ∞.

Let us recall that the weak type version of these spaces are defined by

‖f‖Λp,∞(W ) = sup
t>0

f ∗(t)W 1/p(t) < ∞.
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Consider a sublinear operator T such that, for some weights w and W ,

T : Λp(w) −→ Λp,∞(W ),

with constant less than or equal to Cp. Then, since it is known that

K(t, f ; Ā) =
∫ t

0
(f ∗)∗w (s) ds, we can conclude that

C(Ā) =
{
f ∈ Λ1(w) : ‖f‖∞ ≤ 1

}
,

and therefore, for every characteristic element,

(Tf)∗(t) ≤ inf
p

(
Cp

(‖f‖Λ1(w)

W (t)

)1/p
)

:= h(t, ‖f‖Λ1(w)).

Let us now define the space

QD(Ā) =

{
a =

∑
k

ekak; ‖ak‖Ã1
≤ 1, ‖a‖QD(Ā) < ∞

}
,

where

‖a‖QD(Ā)

= inf

{∑
k

ekD(‖ak‖Ã0
)

(
1 + log

1

ck

)
;

∑
k

ck = 1, ck ≥ 0, a =
∑

k

ekak

}
.

Then, we have the following extension of Theorem 2.1:

Theorem 3.1 Let T : A0 + A1 → L0(µ) be a sublinear operator satisfying
a restricted h−rearrangement inequality. Then, if D and R are two positive
functions such that D is concave, D(0+) = 0 and

(3.3) h(t, s) ≤ D(s)R(t),

we have that
T : QD(Ā) −→ M(R)

is bounded.

Proof: Given a ∈ Λ(D; Ā) such that ‖a‖Λ(D;Ā) = 1, we can decompose a as
in Lemma 3.1

a = γ
∑
i∈Z

2iai.

Then, if aN = γ
∑N

i=−N 2iai, we have that TaN → Ta in measure, and
therefore,

(3.4) (TaN )∗ (t) → (Ta)∗ (t) a.e. t > 0.
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By the sublinearity of T we get that

(TaN)∗ (t) ≤ γ

( N∑
i=−N

2i |Tai|
)∗

(t) ≤ γ

( ∞∑
i=−∞

2i |Tai|
)∗

(t),

and hence

(Ta)∗ (t) ≤ γ

( ∞∑
i=−∞

2i |Tai|
)∗

(t) a.e. t > 0.

The proof now follows as in Theorem 2.1. �
We also have and analogue to Theorem 2.2:

Theorem 3.2 Let D be any positive and concave function D such that
D(0+) = 0. Then,

1) L log | log L|(D; Ā) ⊂ QD(Ā).

2) If s ≤ D(s), then

L log log L(D; Ā) ⊂ QD(Ā).

3) s ≤ D(s) and, for every 0 ≤ s ≤ 1, D(s2) � sD(s), then

L log log log L(D; Ā) ⊂ QD(Ā).

Proof: 1) In this case, given a ∈ Λ(D; Ā) such that ‖a‖Λ(D;Ā) = 1, we
decompose a as in Lemma 3.1

a = γ
∑
i∈Z

2iai,

and continue as in the proof of Theorem 2.2, 1).

2) Since s ≤ D(s) we have that L log log L(D; Ā) ⊆ Λ(D; Ā) ⊆ Ã0. Let
a ∈ Λ(D; Ā) such that ‖a‖Λ(D;Ā) = 1, and decompose a as

a = γ

( ∑
i<0

2iai +
∑
i≥0

2iai

)
= γ

(
a0 +

∑
i≥0

2iai

)
.

Then since a0 ∈ C(Ā), and ‖ai‖Ã0
≤ λk(a,·)(2i), we have that

‖a‖QD(Ā) � D
(‖a0‖Ã0

)
+

∫ ∞

1

D(λk(a,·)(s))
(

1 + log
1

sD(λk(a,·)(s))

)
ds

= I1 + I2.

Obviously

I1 � D
(‖a‖Ã0

) ≤ D(‖a‖Λ(D;Ā)) = D(1) ≤ D(1) ‖a‖L log log L(D;Ā) ,

and to estimate I2, we follow as in the proof of Theorem 2.2, 2).
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3) In this case, given a ∈ L log log log L(D; Ā) such that ‖a‖Λ(D;Ā) = 1, let

a = γ
∑

i∈Z
2iai be a dyadic decomposition. Then, if, for every k ∈ N,

dk =
∑2k+1−1

i=2k 2i, we obtain that

a =
0∑

i=−∞
2iai +

∞∑
k=0

dk

(
1

dk

2k+1−1∑
i=2k

2iai

)
= a0 +

∞∑
k=0

dkAk,

where, it is immediate to see that both a0 and Ak are characteristic elements.
Then, for every

∑
k ck = 1,

‖a‖QD(Ā) ≤ D(‖a‖Ã0
) +

∞∑
k=0

dkD(‖Ak‖Ã0
)

(
1 + log

1

ck

)
=

(
D(‖a‖Ã0

) + I
)
.

Since ai ∈ C(Ā) and D is subadditive, we have that

dkD(‖Ak‖Ã0
) ≤ dk

2k+1−1∑
i=2k

D

(
2i

dk

‖ai‖Ã0

)
≤ dk

2k+1−1∑
i=2k

D

(
2i

dk

λk(a,·)(2i)

)
,

and the proof now follows as in Theorem 2.2, 3). �

4. Applications

Let T be a sublinear operator satisfying a restricted h-rearrangement in-
equality, where

h(t, s) =
s

t

(
1 + log+ t

s

)m

with m > 0, as it happens with the examples we have mentioned in the
introduction. Then,

h(t, s) ≤ s

t

(
1 + log+ t

s

)m

≤ s
(
1 + log+ 1

s

)m 1

t
(1 + log+ t)m,

and we can take D(s) = s
(
1 + log+ 1

s

)m
and R(t) = 1

t
(1 + log+ t)m in our

Theorems 3.1 and 3.2 to conclude the following result.

Theorem 4.1 If T : A0+A1 → L0(µ) satisfies a restricted h-rearrangement
inequality with h(t, s) = s

t

(
1 + log+ t

s

)m
, T can be extended continuously

T : QD(Ā) −→ M(R),

where D(t) = t
(
1 + log+ 1

t

)m
, and R(t) = 1

t
(1 + log+ t)m.

In particular, T : L log log log L(D; Ā) −→ M(R) is bounded, where

L log log log L(D; Ā) = {a ∈ A0 + A1; k(a, ·) ∈ L(log L)m log log log L},
with ‖a‖L log log log L(D;Ā) = ‖k(a, ·)‖L(log L)m log log log L.
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Examples

(I) If Ā = (L1(T), L∞(T)), k(f, ·) = f ∗ and we recover the result of Section 2.

(II) If Ā = (W 1,1
0 (Ω),W 1,∞

0 (Ω)) where Ω has finite measure, and

T : W 1,p
0 (Ω) −→ Lp,∞

is bounded with constant say 1/(p − 1), then, applying Theorem 4.1, we
obtain that

T : W0(Ω) −→ L1,∞

is bounded, where W0(Ω) is the closure of C∞
0 (Ω) in W (Ω) with

W (Ω) = {f ; |f | + |∇f | ∈ L log L log log log L}.
(III) In all our previous applications we have considered sublinear operators
with values in Lp,∞ where the constant blows up when p tends to 1. This
was the unique interested case since if p tend to p0 with p0 �= 1, then we can
substitute (Tf)∗ by (Tf)∗∗ without a change in the behaviour of the constant
and hence we can apply the strong type extrapolation theory studied in [7]
and [8] instead of the theory developed in this work to obtain better results.
However this is not the general case.

Our third application deals with the theory of weighted Lorentz spaces
and with a sublinear operator T with values in spaces of the form Λp,∞(W1)
where f ∗ can not be, in general, substituted by f ∗∗ even if p �= 1. Let w0

and W1 be weights in (0,∞) and let T be a sublinear operator such that

T : Λ1(w0) + L∞ −→ L0(Rn)

is continuous and, for every p > 2,

T : Λp(w0) −→ Λp,∞(W1)

is bounded with constant p (see, [16], [17], [10] to find examples of opera-
tors T satisfying the above condition); that is

(Tf)∗(t)W1(t)
1/p ≤ p

(∫ ∞

0

f ∗(s)w0(s) ds

)1/p

.

Now, if we take Ā = (Λ1(w0), L
∞), we have that Ã0 = Λ1(w0) and hence, it

follows, taking the infimum in p > 2, that

(Tf)∗(t) � h(W1(t), ‖a‖Ã0
),

where h(t, s) = infp>2 p(s/t)1/p ≈ (s/t)1/2(1 + log+(s/t)). Therefore, we can
deduced the following result.
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Theorem 4.2 Let T be a sublinear operator as above. Then, T can be
extended continuously

T : L log | log L|(D; Ā) → M(R),

where D(s) = s1/2(1 + log+ s), and R(t) = W1(t)
−1/2

(
1 + log+ 1

W1(t)

)−1

.

Open Question: When is is true that the space L log log log log L(D;A) ⊂
QD(Ā) or in general, L log(m) L(D;A) ⊂ QD(Ā)?
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tions to a.e. convergence of Fourier series. Studia Math. 94 (1989), 235–244.

[21] Soria, F.: Characterizations of classes of functions generated by blocks
and associated Hardy spaces. Indiana Univ. Math. J. 34 (1985), 463–492.

[22] Yano, S.: Notes on Fourier analysis. XXIX. An extrapolation theorem.
J. Math. Soc. Japan 3 (1951), 296–305.

Recibido: 11 de abril de 2002

Maŕıa J. Carro
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