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Levi equation for almost

complex structures

Giovanna Citti and Giuseppe Tomassini

Abstract

In this paper we are dealing with the boundary problem for Levi
flat graphs in the space R*, endowed with an almost complex struc-
ture J. This problem can be formalized as a Dirichlet problem for
a quasilinear degenerate elliptic equation, called Levi equation. The
Levi equation has the form

D? 4+ D3 —D,f =0,

where Dy and Dy are nonlinear vector fields. Under geometrical as-
sumptions on the boundary a lipschitz continuous viscosity solution
is found. The regularity of the viscosity solution is studied in suitable
anisotropical Sobolev spaces, and it is proved that the solution has
derivatives of any order in the direction of the vectors Dy and Do
i.e. it is of class C™ in these directions, but not necessary regular in
the third direction of the space. Finally, after proving a weak version
of the Frobenius theorem, we show that the graph of the solution is
foliated in holomorphic curves.

1. Introduction and generalities

Let (R*,J) be the space R* equipped with an almost complex structure J.
We recall that J is a differentiable map R* — GL(4,R) such that J(p)? =
—1Id, for every p € R*. Let M be a differentiable hypersurface in R*. For
every p € M the tangent hyperplane T,M contains a (unique) J-invariant
plane Tp‘] M. The distribution of planes p — Tp‘] M is called the Levi distribu-
tionon M, and M is said to be J-Levi flat whenever p — TPJM is integrable.
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In view of Frobenius Theorem M is then foliated by regular surfaces on
which J induces an integrable almost complex structure. Consequently M
is foliated by complex curves, whose complex structure is in general different
from that induced by Jy, the standard one.

Let J = Jy. The problem of finding a Levi flat hypersurface with a pre-
scribed boundary I' has been extensively studied by methods of the geo-
metric theory of several complex variables (cf. [BG], [BK], [A], [S], [K],
[CS], [ST]).

A different approach is found in [SIT] where the boundary problem for
Levi flat graphs is reduced to a Dirichlet problem for a nonlinear, second
order, elliptic degenerate operator L, the so called Levi operator (see (1.7)
below). Also an existence and uniqueness theorem of viscosity solutions was
proved. Then, based on ideas from [F'S], [RS] and [FL], a new regularization
technique for nonlinear operators was settled down in [CM1], [CM2], [CLM],
which allows to establish interior regularity of a (viscosity) solution u of
Lu = 0 in the directions of non degeneracy. As a consequence, in [CM2] was
proved that the graph of u is foliated by holomorphic curves: a local result
which is independent of the properties of the boundary I'.

In the context of general almost complex structures Gromov in [G] proved
a remarkable existence theorem under the following hypothesis:

a) I' is embedded in the boundary bV of an almost complex manifold
(V,J) with no rational curve; bV is strongly J-pseudoconvex and J
is a tamed almost complex structure. (Recall that an almost com-
plex structure J is said to be tamed by the symplectic form w if
w(X, J,X) > 0 for every X,Y € R}, p € RY).

b) T'is a smooth 2-sphere with two only elliptic complex tangency points.

In the present paper we apply the methods of [SIT] and [CM2] to treat the
boundary problem in a meaningful case which is not covered by Gromov’s
theorem. Precisely we consider a bounded domain €2 in the (z1, 2, x3)-space
and the (tamed by the standard symplectic form) almost complex structure
J on ) x R defined by the matrix

0
(1.1) J{ 8
0

with f regular on a neighbourhood of € x R. The boundary I is a graph
over bS) for which we do not require the validity of the crucial condition b)
in Gromov’s theorem.
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We then prove that, under appropriate hypothesis for I' and f, there
exists a J-Levi flat graph M over €2 whose boundary is I" (c¢f. Th. 1.1).

Let us make explicit the analytic condition in order for a graph M =

{z4 = u(z1, 22, 23)} to be J-Levi flat. It is easily obtained, for the J-invariant
tangent plane Tp‘] M at a point p € M is spanned by the vectors

(1.2) ¢=(1,0,a,f —b) and n=(0,1,b,a)
where
82u - 83u(81u - f) (92u83u + 01u — f
1. S = - - _
(13) a=afu) 1+ (05u)? b=b(u) 1+ (O5u)?
Let D; and D- denote the vector fields
(14) D1 = 81 + (183, DQ = 82 + bag;

then & = D1+ (f—b)04, n = Dy+ady and [, n] = 0 if and only if [Dy, Ds] = 0.
D, and D, satisfy the following main identity:

(1.5) Diu=—-b+f, Dyu=a

(see [CM1] for the case f = 0). Evaluating the bracket [Dy, Ds|, we then
obtain

(16) |:D1, D2:| == (le — Dga)ag = — (D%U, + Dgu — D1f> 83.
In particular the graph of u is J-Levi flat if and only if w is a solution of
(1.7) Ly = D¥u+ Dju— D, f = 0.

L7u is, by definition, the J-Levi operator for the almost complex struc-
ture J. L£7u is a second order elliptic degenerate operator with two positive
eigenvalues. Thus, in our situation, the boundary problem for J-Levi flat
hypersurfaces amounts to solve the Dirichlet problem

{E‘]u:() in Q

(18) u=g on bS).

The main result of the paper is contained in the following

Theorem 1.1 Assume that ) is bounded and b2 is strictly J-pseudoconver.
Let f € C™TY(Q), g € C*(bQ) and either f=0 orsup O,f <0 in Q. Then

the problem (1.8) has a unique (viscosity) solution u € Lip(€2) whose Lie
derivatives of order k < m, in the directions of the vector fields D;, are of
class CY. for all oo < 1. w may not be reqular in the usual sense but its graph
1s foliated by complex curves.
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In order to prove the main theorem we approximate (1.8) by the problem

LIu=0 in Q
(1.9) { u=gq on bS2
where
(1.10) L) =D?+ D3+ D2~ D, f
and

3

Dy———" 9,
VS ENCINERE

The existence of a regular solution to (1.9) is proved in Section 2. In our
context the operators D; play the same role as the derivatives in the classical
setting. So under the assumption that b€} is strictly J-pseudoconvex, we
establish some a priori uniform (with respect to €) estimates for d3u and for
the intrinsic gradient

e> 0.

(D1, Dyu, Dyu)

(cf. Th. 2.7). We observe that, due to the presence of f, the proof of these
estimates is technically much more involved than in the case of the standard
complex structure Jy (when f = 0). Once the gradient estimate is achieved,
the existence of a regular solution u. of (1.9) classically follows. We also im-
mediately deduce that u = lim._ . is a Lip(Q) solution of (1.8) (cf. Th. 4.1).

Next, following [CLM], [CM2], natural anisotropic Sobolev spaces are
defined, (cf. Sec. 3). Using in full strength the representation (1.10) of £/
and the technique of [CLM], [CM2], a priori uniform estimates in this setting
are proved for u. and u (cf. Cor. 3.6 and Th. 4.3).

Finally, in the last section we show that the graph of u is foliated by holo-
morphic curves. To this end we study the existence of Lie derivatives in the
intrinsic directions Dy, Dy. We emphasize that here we cannot apply the
same technique as in the case f = 0 where the local regularity of u was con-
sequence of some analytic estimates. In our situation we have not such
estimates, f being not analytic, so we cannot argue in the same way. In-
stead we prove a weak version of Frobenius Theorem with non Lipschitz
coefficients:

Theorem 1.2 Let §,( € C2,, a > 1/2, and D, =, + 005, Dy = 0 + (0;3.
Assume that the distributional derivatives D;0, D;( exist and belong to C2.(§2)
and that 050,05¢C € L (Q),p > 3n. Then, if the compatibility conditon

D¢ = Dy is fullfilled, in a neighbourhood of a fived & = (Z1,Zs) there

exists a local solution t € C* of the system

{ Ort(z1,22) = O(x1, 22, t(21, 22))
Oat (1, 2) = ((21, T2, t(71, 72)).

Then the foliation property follows (cf. prof. of Th. 1.1).
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2. Existence theorem for elliptic regularization

In this section we find a solution of the regularized Dirichlet problem (1.9).
We suitably adapt the classical procedure for quasilinear equations to our
context. Using the usual representation of £7u in coordinates, we establish
a priori bounds for v and its gradient at the boundary. Then, using the
particular structure of the operator as a sum of squares, we establish an a
priori bound for the intrinsic gradient (Dyu, Dou, Dsu), and for dsu, instead
of the standard gradient. This procedure leads in particular to an a priori
bound for the gradient, and the existence of a solution classically follows.

2.1. A priori bound for u

Let us represent the operator £7 in coordinates.

Proposition 2.1 The operator L u writes

Ly
Lly=—"—_
Y 1 + (83/1,6)2
where

(21) ZJU = anu + (922u + 2a813u + 2b(923u + (CL2 + b2)833u -
—(03f0yu — Op fO3u + 01 f).

Proof. By definition

L= (0 + a83)2u + (02 + 533)2U — D1 f
= 811U+ 2@813U+ a2833u+D1a83u+ (922u+ 2b823u+ b2833u + ng@gu —le

Clearly, we have only to compute
Diadsu + DybOsu — Dy f = D1 Dy0su — DayDiudsu + Do fOsu — D1 f =
(since [Dy, DoJu = —L7udsu)
= — L7 u(05u)* + 0y fOsu + bOs fOsu — Oy f — aOsf =
(since bOsu — a = bOsu — Dou = —0au)
= —L7u(05u)* 4 Oy fOsu — Doudsf — Oy f.

Inserting this in the previous expression we get the assertion. [
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Let us also note that for every derivation X one has
€
(1 + (O5u)?)3/2

Then the elliptic regularisation (1.10) of £7u can be expressed as follows:

(2.2) XDyu = X0yu.

2

1 €
I — pd D2 - - J I -/
Liu=L'u+ D3u = T+ (Gy)2 (E u—l—l (83U)283u>,
and we call

Py Y € 2
Liu=L u—|—1+(63u)283u

the elliptic regularisation for L£7u. Since L/ is elliptic, for a regular function

u € C°(Q) we have the following:

1) if &1 f >0 and £ (u) > 0 then u(z )<n%gxu

2) if O1f <0 and L (u) <0 then min v < u(x)
for every z € Q.

Let us now prove a comparison principle for subsolutions and supersolu-
tions. Consider two regular functions u, v such that £/(u) > £/(v) and let
w = u —v. We have

(14 (950)%) { L (u) (v)} = LI (u —I—chaw

= Onw + Opw + 2a813w + 2003w + (a® + b?)Os3w +
2

+ + (Osu)?

8§w+ Zc]@ w = Q7 (w),
7j=1
where a = a(u), b = b(u) and ¢; = ¢;(u,v) is linear in 2. Since Q7(w) is
elliptic, then
(1= 0)(a) < max (u—v)

for every z € Q.
Now take a, 3 such that (z; — a)? + (22 — 3)? > 0 in Q and consider the

function v~ = exp ¢((z; — a)? + (z2 — 5)?). We have
Llw) = expel(ar—a)’ + (22 = 6)) e + 46 (1 — @) + (w2 = B)°) —
—2c(x2 — B)02f] — Ouf;

thus £7(v™) > 0 (uniformly with respect to ¢ — 0) if ¢ is sufficiently large.
Similarly, if vT = —expc((z; — a)? + (z9 — §)?), we have L (vT) < 0.
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In view of the comparison principle, for a solution u € C%(Q2) N C'(Q) of
L u = 0 we derive the following estimates

u(xr) —vt(z) < max (u—vh)
v (x) —u(x) < max (v —u).

In particular we obtain the a priori estimate
(23) el ooy < C

where C'is a constant depending only on u,q.

2.2. A priori bound for Vu at the boundary

As usual we first estimate the normal derivative and next we bound |Vu| by
a constant C' depending only on Vupg.

Let us suppose that €2 is defined by ¢ < 0 where p is a smooth function
such that Vo # 0 on bQ. Let g be in C?(b2) and g be a C? extension of g
to R3. Let u~ = g+ Mo, u™ = §g— Ao where ) is a positive constant. We have

(14 (85uT)?) L (uT) = £X3{(330)% (D110 + Dr0) + ((810)* + (D20)*)Dsz0 —
— 20100500130 — 20200500230 + (050)% (0200 f + 03002 f)} + R(\)

where R(\) is a polynomial in A of degree < 2 whose coefficients are uni-
formly bounded as € — 0. Let us define the function k&7 : b — R by

(2.4) k7 = (050)%(0110 + D220) + ((910)* + (020)*) D330 — 20, 00300130 —
— 20500500030 + (930)* (02005 f + 3001 ).

The condition &/ > 0 on b does not depend on the defining function o
and provides the notion of J-pseudoconverity of bS2. Thus, if b§2 is strictly
J-pseudoconvex, L£Z(u~) > 0 and L/ (u") < 0, provided \ is sufficiently
large.

Since u* = g on b2 in view of the comparison principle we obtain the
following: if u is a regular solution of the Dirichlet problem (1.9) then

+

uw <u<ut.
In particular for the normal derivative Ou/0v we have the estimate
(2.5) ||8u/6u||bg <C

where C is a positive constant depending only on Vg and V?g.
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2.3. A priori bound for Vu in

We proceed now to prove an a priori estimate for Du treating (Osu)? and
(Dyu)? + (Dyu)? separately, {93, Dy, Dy}being a base of T,R3.

The proof is actually rather involved and requires some technical, prep-
aratory results, which are collected in the following three lemmas.

Lemma 2.2 Let u be a regqular function a and b the associated coefficients
defined in (1.3). We have the identities:

Dlagu + 63uD2(93u 63f
2. b = —
(2.6) % 1+ (O5u)? 1+ (O5u)?
D283U — 83uD183u 83u83f
2. = .
(2.7) 95a 1+ (D)2 1+ (Dsu)?

Proof. These two assertions are similar so we give here only the proof of
the first one. We argue as in [CM1] (for the case f = 0).

Since [05, D1| = 05a03, [03, Do] = 03b05 from (1.5) we derive
03b = —03D u + 03 f = —03a05u — D10su + O3 f;
again by (1.5) the last quantity equals
—03Dyulsu — D105t + O3 f = —03b(05u)? — DyOsudsu — D10su + Osf.
The assertion follows immediately. [

Lemma 2.3 Let u be a regular solution of LIu = 0 and v = arctan(dsu).
Then for the brackets of Dy, Dy, D3 we have the following formulas:

3}
(28) |:D1, DQ] = DgUDg, [Dl, Dg} = —DQUDg - ﬁé];u)QaguDg
95 f
[Dg, D3] = D1UD3 — W.Dg

Proof. Since £L/u = 0, the first identity immediately follows from (1.6) for
[D1, Do) = —(Diu+ Diu— D; f)05 = D3uds

and D3uds; = D3vDj3 by virtue of (2.2).
As for the second, in view of (2.7), we have

g
Dy, D3] = (D) (———=) — D3a)0; =
(D1, 4] = (Di(m=s) ~ Daa)s
L D,05u e0s _ Dydsu + Ozuds f
N (83u1 + (O3u)? * 83a> 1+ (O5u)? o 1+ (O3u)? Ds.

The proof of the third assertion is similar. [ ]
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Lemma 2.4 Let 0 be a reqular function and w a reqular solution of

3
(2.9) > Diw=4.
j=1

Then

2D383UD231U 2D283UD32”£U
]_ —I— (8311,)2 ]_ + (63u)2
03u83f 2 83u83f
e U Dy (5 - (83u)2>D3w,
2D363uD13w B 2D163UD?2’1,U
1+ (83u)2 1+ (83U)2

Osf 9 O3 f
T (e Dy (5 - (a3u)2>D3w,

3
(210) > D}(Dyw) = Dif —
j=1

+2

3

(211) > D}(Dw) = Daf) +
j=1

+ 2

3
(212) Z D?(agl()) = 839 — 83D2f83w — 2(93aD183w—
j=1

— 283[)D283U) + 283UD3UD38310.

Moreover

03(D2(f))83w = 83(02f — Dluﬁgf + fagf)agw
where v = arctan(Osu).
Proof. Set s; = Dyw. Differentiating the equation with respect to D; and
using the identities (2.8) we get
D%sﬁ— D%sl + Dgsl =
= D10 — [Dl, DQ]DQU) — DQ[Dl, Dg]w — [Dl, Dg]Dgw — Dg[Dl, Dg]w =
= D19 — D3/UD3D2U) — D2D3UD3U) + DQ'UD%U]"—

9sf
1+ (83'&)2

83u83f

+ 1+ (8311,)2

(93UD32)'LU + D3(D2UD3U)) + D3< D3’LU) .

Observe that, by virtue of (2.8)

— D3vD3Dow + DyvDiw = —D3v Dy D3w + DyvDsvDsw + DyvDiw =
= —DQ (Dg'UDgw) +D2D3’UD3U} +D1’UD3UD3'LU —|—D3 (DQUDg’U]) —D3D2’UD3'LU
= —DQ (Dg'UDgw) + D3 (DQ'UDgU)) + 2D1UD3UD3’[U.

Substituting this in the last equality we obtain the first assertion.
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The proof of the second identity is similar.
As for the third set s3 = 93w, ¢ = ((1+ (93u)*)~"/? and differentiate the
equation with respect to 0d;. We get

3

3
S Disy =3 (DZH — 95, D3] Dyw — Dy[D;, ag]w>.
=1

i=1
Let us compute the terms which contain the commutators:
(05, Di](Dyw) + Di([D;, d5]w) =
= 03003 D1w+ D1 (03a05w) 403003 Daw+ D (03b05w)+05¢ 03 D3w—+ D3 (03¢ D3w)
= O3aD103w + 03a[03, D1|w + [Dy, 03]adsw + 03 D1adsw + dsa Dy 03w+
+ 030Dy 03w + 03b[03, Do|w + [Dg, 03]b0sw + 03 D2b0sw + 03bDadsw+
+ 03¢ D303w + 05¢[03, D3|w + [D3, 93](03w + 03 D3¢ 03w + 03¢ D3 03w

= 2(83aD183w + 831)D283w + 83'LLD3U83'UJ) + (93 (Dla + Dzb + D3<) 83w

since 0s3a|0s, Di|w + [D1, 05]adsw vanishes, as well as the analogous terms
involving b and (. In view of (1.5) and [Dy, Dy] = D3uds from the last
equality we derive

=2 <836LD183U) + 83()D203w + (93uD3v83w) +
-+ 63 <D1D2u - D2D1u + Dgf - D§u33u> 63’(1) =

=2 <83aD183w + 83bD283w -+ 03uD31)83w> + 63D2f03w.
|

Now we are in position to prove the maximum principle for the gradient.

Proposition 2.5 Assume that f € C2(Q) and that there exist constants
and 3 such that

sl s 1
B\

Let u € C3(Q) N C?(Q) be a reqular solution to (1.9). Then

(2.13) —adyf

+1) = 052 f — fOs3f — |05f]> > 0.

(2.14) |0su| < C

where C'is a constant only depending on max |Vul.
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Proof. Let us write the equation (1.9) in the form

3

j=1
Let 1 be an invertible function, to be chosen later, such that u = (). Then
(2.16)  Dju = 9'(u)D;a,
Diu = ¢'(w)Dju +¢"(a)(D;a)* = ¢'(@) Dja + q(Dju)?,

j = 1,2, where 7j denotes the function v"/(+')?. Substituting in (2.15)
we obtain

3 p 3

j=1 ]:1

and from this, applying 03, in view of (2.12), we deduce

3 _ 3
2 17 Z D263U+< 7’] > Z(Dju)Qﬁgﬂ + 2% Zl Djuc‘?ngu =
j=

j=1
01 f + Dyud _
= ou(PE2EBT) ou(fy - Dy + 07 -
— 2830JD1(93’17/ — 283bD28312 + 283UD3'UD3837?L.

Let us denote A, Ay, A3 the terms at the left hand side, and Ay,..., Ag
those at the right one.
Since

(2.18) D?((95u)%) = D;(205uD;05) = 2(D;05u)* + 20;uD?0s1,

then
3
(219) 836/11 83uz D 83u = Z D2 83u Z D; @3’&
j=1

Besides, using (1.5) and Lemma 2.2 to evaluate 05D u, 03Dsu, and (2.2) to
compute d3Dsu, we have

Ag = 2— <D1U85D1U + DQU@gDQU + D3U&3D3U> =

w/
77 Dlagu + 83UD283U, (agu)Q
- Qw, Dl ( 1 —|— (83u)2 1 + (83U)283f>+
Dgagu — 83UD183U 83u 77 D3U,D383U
+ 2¢/D2 o (050)° I <agu)2a3f> 2T O
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Using (2.16) for j = 1,2,3, we have

D. D. a 57aly! "
jwa/‘g,u = J(V;/uw ) = Djagﬂ + %aguDju = Djagﬂ + ﬁDjuﬁgﬂ,

so that, substituting in the expression of A3, and using again (2.16), we have

(2.20)

A35 = 277D1U<D1831a_:_ (6(99331;1))2283& nDlluj (aai%uagu +%)&,u
e LT L D
+27Dau(; f 2223)2 i —|—lz§;u)2636> 050 =

3 3
= S aaDy @)+ 23 1 o'
+ (QUDW%astrQT}DQU%) (05u)?,

where

A Holder type inequality then yields

(2.21)  Azdsu < iﬁj,le((é’sﬁ)Q) +

=1
+1 Z (Dju)? Dau)? (83U) +(03£)*(05u)°.

For the terms A, and A5 we have

Ay + A5 = 33(81]64_1#%) — 03(0af — Dyudsf + fOsf)0su =

—i)(01f + Douds f)0su + — (D13 f 4+ Daudss f + O3 Dauds f) —

T
— (323f — Dyu0ss f + fOssf — O3(D1u — f)33f> O3l

Moreover

83f83D2U — agfag(Dlu f)f)gu =

_ 03/
wl

wza:%f(a?)DQU — O3(Dyu — [f)0su) =

D283u = 63fD203u + (93an2u83u

1/]/

owing to (1.5) and (2.20).
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Then
Ay +As = —nofosu+ — Y (513f + D2Ua33f)
—(Oo3f — Dyudssf + fO33f) 05t + O3 f Dy0s.
Since .
,((913f + Doudss f) = =—(O13f + Doudss f)0su
w agu

in the second and third term we obtain:

3
(As+ A5)05t = B;2D;((051)%) — 00y f (D511)*+
=1
a13f Dzuaasf
+ ( 83u 83u

where we have denoted

ﬁl,Q = ﬁ372 = 07 52,2 -

9%f
5
Thus the last sum is not less than

022) Y gD (@) -y LY

im
Oisf  |0ssf] ( 1

( oS+ e (G 1) — O f — faggf) (95)?.
Finally set
3
(223) (Aﬁ + A7 + Ag)ag’a == Z ﬁj’ng(<83ﬁ)2),
j=1
where

51,3 = —0sa, 52,3 = —0sb, ﬁ3,3 = OsuD3v.

Multiplying (2.17) by 0su and inserting (2.19), (2.21), (2.22), (2.23),
|Osu| > [ we finally obtain

3 3
—ZD2 ((050)") = > _(D305m)* + Y B Don((95)°) >
j=1

m,j=1
_, 3 3

163

Onaf + Dyudssf — [0 ) (950)°

for

Ui 279 —\2 72 2 3 1 u)?
> S D+ (n S (D~ s - 5))<@~3,u> ;

j=1 j=1
1] 105 S1?
B oo p?

+(—7731f—

T3+ 1) — 0l — [0 — | ) (@s0)”
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Now take 77 = «, where the constants « and [ are as in (2.13), and
accordingly choose 1 such that

1/}//
(v')?

With this choice of 1 the right hand side is positive as well as the second
term at the left hand side. Consequently,

3" D) + D s D(50)7) 2 0.

m.j=1

= 1.

In view of the maximum principle, applied to the function |dsu|?, on the set
{x :|05u* > 5°}, we get |Dsu] < ﬁ—i-IIll)%X |Vu|. This concludes the proof. B

Proposition 2.6 Let u € C3(Q) N C*(Q) be a solution to (1.9). Then
(2.24) (Dyu)? + (Dyu)? + (Dsu)?* < C

where C' is a constant depending only on max |Vul.

Proof. As in Proposition 2.5 we take an invertibile function 1 such that

u = 1(u). We also define

2

(2.25) }: 2+ 2(05u)°.

Denoting n = 9" /4, from (2.15) and (2.17) we deduce that u is a solution of

(2.26) Z 20+ nz i)? — =L — 83f Dyt = 0.

7j=1
Applying Dy, in view of (2.10) we obtain

D383UD231_L Dgagupgﬁ

_ ’D 7
1 + (83u)2 1 + <83U)2 + " 1

-

(227) > D}(Diu) +2 (D;u)*

Jj=1

3
0
+ 2n Z DjuDq;u — Dy J}f — D103 fDoti — 05 f Dot
j=1
O3 f O3 _
283 (83 ) D3 U+ e (1 i (83u)2)3/2 83UD3U+
+ 2(1 - (8311,)2) a3f D383UD37?L = 0.

(14 (F5u)?)?
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Let us denote Ay, ..., Ay the terms in (2.27). Arguing as in (2.19) we have
3 13 3
DAy = Dy  DiDii=5 )  Di(Diu)” Z (D;Dyu)?
=1 j=1 =

In order to treat As + As we first observe that, by (2.20)
(228) D]03u = ¢’Dj(?3@ + ¢,ﬁDjU83ﬂ = 1/}le837] + nDju83ﬂ

and consequently

_ . 8831_6 . €Dj@3ﬂ _ 8831183UD]‘83U
(2.29) D;Dst —Dﬂ<(1+(agu)2)1/2> S0t 0D (L4 (050)2)
. 5Dj63ﬂ - 6(83U)2Dj63ﬂ _ sagﬂ(ﬁgu)%Djﬂ .
(L @su) 2 (L4 (Gsu)2)P2 (14 (Dsu)?)*2
_ 5Dj83ﬁ _ 8831_1(83U)27]Dj’t_t
(1+(G5u)?)¥2 (14 (O5u)?)??
Then
W' D30zt + nDsudsu i A
Ay + Az =2 (f _i (6’3u)2)35/2 3 (5D283u — 87](83%)21)2’&83%) —

1//D283ﬂ + ﬁDQﬂ@gU
(1 + (O5u)?)>/?
. 27’]D2(6(931_L)83UD31_L 27]D3(€83ﬂ) (83u)3D212 27]D3(€8317/)83UD2?7/

<5D383ﬂ — 5n(83u)2D31183ﬂ> =

(1+ (Osu)?)>2 (L+ (D)) (14 (%u)?)?
2nD2(€83ﬂ)(83U)3D3ﬂ o 277D2(583ﬂ)83UD3ﬂ _ 277D3(€63’ZL)83UD217,
(L+(B5u)?)>2 (14 (Osu)?)*? (14 (O5u)?)?/?
and
1
. < —n?wt
(2.30) |Dyi|| Ay + As 5; 1(0510))? + <1

where w is defined in (2.25) and 0 is a suitable constant to be chosen later.
Similarly,
2
(2.31) |DyaAs| = | Dy ‘217 S D,aD, Dju + 217D3aD1D3ﬂ‘ <

j=1

2 D
<|D1U“2772D 'LLDlD U 7]5831& 1(58311)‘

(14 (03u)?)?

277 583“) 33U 377
1+ (@) <2 +5Z\D1D af? + 8| Dy (c0ym) .

+HDl |
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For the terms Ag, A7, Ag, Ao we have

(2.32) |Dyu||As + A7 + Ag + Ajo| =
onf + ao
=|- W (91f¢/D1u — (O1sf + ady f) Dyu—

_ O3 f im -
- a3fD1D2u + 5(1 T (83;))“)2>3/2 aSUDgU |D1U‘ <

C vt — —
< W(l + [ Dol [¢'| + [ Dyal) | Dyl +

/ _ _ _ 1 _
L, Il
<O |w* + O PRATE ‘) |w/w+<5§ (Dyju)?,

since a = Dyu = 9’ Dyt and the derivatives of f are bounded
For the remaining terms, using (2.29), we have

_ 837]6 2 8Bf( (03u) ) .
(233) Ag + A11 = 283u i (@3U)2D3u + 2 ( (a3u) ) D3(93uD3u
— _9 Ozu0s f

_ (03u)0s f
(1+ (83u)2)5/2D3<€a3“) RRUTERGRIEER "
+ 205u(1 — (d5u)?) it (gi BEE Dy (d501) + 2n83f (‘?131(1 a;ugfj;g) )(eagu)ﬂ.

Then there exists a constant C' such that

C
|D1ﬂ||A9 + A12| S 5(D3(883ﬁ))2 + g + C|77|ZIJ2,

(for a suitable ¢ to be chosen later)
Substituting all the above estimates in (2.27) we obtain the following
inequality:

3

1 3
(2:34) 5 > D}(Dyu)’ - ) (D3 u)’
j=1 J=1
3 772
> 352 (D3;0)* =36 Y (D;(c051))* + 1 (Dy1)*w® — CFu_fl—
j=1
C C
o o3 1 ’nl a2y -
/] (+ +ogr et e =
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We now differentiate (2.26) with respect to Dy. Owing to (2.11) we
obtain

3 _ 3
D30suDi3u D,0suD? u
9. DQ Doii) — 2 33 13 9 1V3 _
(2.35) Z § (Do) =25 + (Osu)? T (Dsu)? ug
8lf _ 2_
+ 21 Z D;uDyDjii — Dy—=- 5 — Dy8sf Dyt — Oy f D3u—
7=1
O3 f 2 O3 f _
21 T (a3u)2D3u 283u(1 T (a3u)2)2D383UD3U =0.

Let us denote A, ..., Aj the terms in (2.35). We proceed exactly in the
same way as for the corresponding terms in (2.27). Here we make explicit
some computations just for the reader’s convenience.

We have:

Dy, = %Z DX(Dya)?) — 3 (D Dy’

j=1
27’}D1 583u)83uD3u 2UD3(883@)83UD1TL
T+ @uPP? 1+ @)

<6 (Dj(05m))* +

Dt} Ay + A = | Dyil <

> Q
3
N

Moreover

Dy Ay = 1/ (Dot)?| D),
Oiaf + 0012 f

Dyti| | Ag + Ar + Ag + Ayo| < | Dot |( d} 61fw/D2u‘+
_ _ _ f _
+ |D2U|’(823f + b@33f)D2U + anDQQU + 8(1 T (gju)z)i”/? 83uD3u’ S
< OlY'|w? +O(1+ + ’77,’) + 0 + 0(Dsti)
9] ']
and
. 3 C
| Dyii||Ag + Ayy| <6 (Ds(e0sm))” + =+ C|n|w@?.

=1
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Collecting together all these inequalities we obtain

(2.36) %Zg:D?((D 23: D, Dyi)?

]:

2 2
> —352 D3;u)* — 30 Y (D;(e05u))* + 0/ (Datt)*w” — T gt —
7j=1

. |77| . e
Oy |w +c(1+ o n)uﬁ—cW'w—

Finally to treat e0su we slightly modify the computations in Proposition 2.5.
We have already proved that

> Q

3

3 ;3
ZD?(&@;;@)Q —Z 585u Z ﬁm] 683U Z Eagu
j=1

m,j=1 =

+ (ﬁZZ(DjU)z(l - % - %) — |7l sup |01 f| = C) (edsu)” =

7=1
3
> = N By Duledsn)? — 1 (Du)*(c5u)* — OPa* — C(Jp!| + 1)u?
m,j=1
since ,
(=77 /¢ + 7%) (Du)® = —(;7,)2< u)? = —if (Du),

and nDu = nDu.

Let us estimate terms involving 3, ;. We have

3
D> By Diledsu)? < (2| Dil + C) \eagu\\zp (c0u)| <

m=1 j=1

On the other hand, owing to Lemma 2.2 and remembering that v
arctan(dsu), we have

3
—53371 Z ﬁjg Dj (883’11) =
j=1

= —26(9311((93aD1 (583@) + 83bD2 (€83ﬂ) — 83UD3UD3<€831TL)> =
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— — 205D, (9311) (D2831u+— gzzglaf*“ : i?’l(bg;{ )2>
_Qd%@Dﬂd%m<—lha?:i§ﬁ§ﬁ%u 1+%éuy>
| 2e040 83uligi3?£z§€83u)
(by (2.28))
w8 i
<+a:€%%§a>+Zﬁw§ﬁ%%?%%Dﬁ%m+wa@m
> 2e%(0su)? (D195 +1(22<a§3; (Ds0s1)" - 52 (c0s1))?
- 0%2 7t — Ca? — %
Hence

3
(2.37) Z (010 ZDJ (e05u)* > (52 (€031))* — n'w*(e0s1)?
7j=1

1 n2, c C
2 ! / 2
—C’n(1+5)w —C’(|7]||@/J|+1+—5)w—wl2 5

Summing (2.34), (2.36), (2.37), we finally obtain

-§:zﬂuﬂz>(1—fw)§:

=1 7

)w4 — Ol "~

(D;Dju)® — (1—76) Y  Dy(eds11)*~

1
—(#—Cﬁﬂ+—

)
7]
-¢( M

Now fix § < 1/8 so that the first two terms of the second member are
positive. Then, reminding that n = 1" /¢’, make a choice of 1) so as to have

)2 C(1+

1
—n' > On*(1+ 5) = C11?,

C being a fixed constant.
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For instance the function v : [1,27] — R defined by

P(s) = Cy /8 exp(—c?)do + m,

where m = minu, and Cy is such that ¢(27) > maxu, has the required
property. With this choice of 1, we have

and, consequently,

1672
- —Cin? >4 — T

>2

for a suitable 7. It follows
2

3

1 1

3 E D?w? > 2w* — C|¢'|w® — 0(1 5+ |LZ,’| + |nY'| + %)aﬂ
i=1

> Q

1 C
C D o— —
+ (1+ |¢/|>w ¢/2

and the right hand side is positive if @w > 0. Thus, if w? > 0, @? is a
subsolution of an elliptic operator and then we invoke the maximum principle
to conclude the proof. [ |

2.4. Existence of a solution

Let us state the existence theorem for the Dirichlet problem (1.9):

Theorem 2.7 Let f € C*%(Q), k > 2, satisfy the hypothesis of Proposition
2.5. Assume that b2 is strictly J-pseudoconvex, and that the boundary value
g is of class C**. Then there exists a unique solution u € C*1(Q) N
C%%(Q) of problem (1.9). Moreover

(238) (D1U>2 + (DQU)2 + (Dgu)2 + (6311,)2 S K
where K 1s a constant depending only on upg and Vupg.

Proof. The existence of the solution follows, by standard procedure, from
(2.3) in Section 2.1 and Proposition 2.6. The uniqueness is a consequence
of the comparison principle stated in Section 3.1. [

Remark 2.1 Note that the hypothesis of Proposition 2.5 is satisfied if either
f=0orsup o, f <0.
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3. A priori estimates in the Sobolev spaces

In this section we introduce some Sobolev spaces naturally defined in terms
of the vector fields D;. Then, suitably adapting a technique introduced
n [CM1], [CLM], [CM2] for the standard complex structure (f = 0) we
prove some uniform (with respect to ¢) estimates of the solution of the
approximated problem (1.9). For this purpose we study the linear equation

3 3
(3.1) Z D?w =1y + Z v;Djw
j=1 j=1

which has the same structure as the (elliptic regularization of the) Levi
equation. Here the coeflicients of the vector fields D = 01 + ads, Dy =
Oy + b03 depend upon a fixed function u: a = a(u), b = b(u). Although
some of the statements below are valid for a general u we assume that w is
a solution of the approximated problem.

Let us recall the definition of weak derivative. We say that a function w &
L. (Q) is weakly differentiable with respect to D; if there exists a function
v € L (Q) such that

(3.2) /wD;f¢ i\ = /w i\ Yo e CR(Q)
where D7 is the formal adjoint of D; (and d\ the Lebesgue measure).
For any domain U C 2 let
Wmr(U) ={w € L. (U) : Dyw € LP(U),VI : |I| < m}
lwllwrowy = Y [1Drwl|w)
|[7]<m

In particular

vy = lwllw

A function w € Li. () is said to be in W/\7(Q) if w € WP(U) for every

domain U € Q. Finally W™P(Q) = W™ (Q) is the usual Sobolev space.

From now on we denote by K a fixed constant as in the estimate (2.38).
In the sequel we need the following simple lemma:

Lemma 3.1 Let u € W™™?(Q) and v = arctan(Osu). Assume that v €
WmmP(Q) and that f € C™Y(Q). Then there exists a constant C' =
C(Q, K) such that

[1F (D50)05 [ [{ys0)

SOV fllo sup [VTE(S)| ([0l gy + ullhnm )
s€[—K,K],m<|I|

for any function F € C*(R).
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Proof. Denote V, = 0y, -+ 0p,, 0 = (01, ...,0%). Since a = Dsu,
D103 f = O13f + Daudss f.

Let I be a multi-index. By a simple induction argument it is shown that
there are integers T},, and a family I, ; of multi-indices, |o| < |I|, | < T},
such that:

Tro
(3.3) D;osf = Z ng< H Dpu>V06’3f,
|lo|<|1] =1 p€lsr

where ¢,’s are suitable constants, (possibly zero) and for every o, 1, con-
tains at most |I| multi-indices of length less or equal |I|. Assume that
this is true for any multi-index of length s. Let I be of length | = s 4 1.
Then I = (j,1'), with |I'| = s. For simplicity we assume j = 1. Since
Dy = 01 + Dyuds, differentiating the previous expression we have:

e

D183f DlD]/ 83f Z C ZD1< H Dpu>vaa3f+
lo|<s IS P
e e
+ 3G (I pow)arvedss+ Y ¢ Z( [1 Do) D2utsV,0sf.
lo|<s =1 pel,, lo|<s =1 p€lor
Note that

Tro Try
ZD1< I1 Dpu> > II b
=1 p€l, 1 =1 p€l,, 1

where AIvgJ, ; contains at most s multi-indices of length less or equal s+1, while

Tro
> (11 Dpu>D2u—Z 1 oo
=1 p€ls; pEIatI

where AIVC,,Z, 7 contains at most s+1 multi-indices of length [ < s. Relation (3.3)
is then proved. By the chain rule

]

t
03u Z F(l 83u Z ( H DU]. 63’&)
j=1

1= (0—17"'707)

where F® is the {** derivative of F. Then, if L; denotes the set of ordered
submulti-indices of I,

Dy <F(83u)83f) = Z DI—TF(83U)D7'83JC =

T€L]
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]Il Tro

Y 0 Y (HDU]33U> 3 CUZ( ] » u)v 0, f.
TeL; I=1 I—T:(Ul,m, l |0‘|<|7‘| =1 pElsr
We obtain the assertion taking the LP norms. [

The main property of the solutions of equation (3.1) is expressed by the
following;:

Theorem 3.2 Let p > 3, m € N\ {0} be fized. Assume that f € C™1(Q),
u,v = arctan(dyu) € W™(Q)). Also assume that vy € W23(Q), v; €

g,loc g,loc

WHR () N W”{OCI *(Q), and let w be a solution of equation (3.1). If Q4 €

Qy € Q then there exists a constant C' = C(p, f,1,Q9, K), such that the
following estimate holds true

follmosny + 30 Dl <

[I|=m+1
3

2p/3
< C(HUOH p{n 219/3(Q ) Z |UZ||me (Q2) + ||U1||Wm 12P(Q2)>+

O ) + I )

+ ||w|| WEm’Qmp(Qg)

WI™2P(Qg)

as € — 0.

Proof. This result generalizes Theorem 4.1 in [CLM]. The presence of the
term f affects very little the proof of the assertion there.

If w satisfies equation (3.1), by Lemma 2.4 the derivatives of w satisfy an
equation of the same type, with different second member, whose coefficients
depend on

O3 f or 05 fO5u
1+ (83/&)2 1+ (63/&)2 '
Hence these terms play the same role as the coefficients v; of the equation.
Thus, as in [CLM] (proof of Th. 4.1 at the end of Sec. 4), we obtain

1,2 S
W (1)

ol + S [[lDel ]

||—m1

2p/3
= C(””“” p{”ﬂ/d +Z [0l gy + 10l limns.20(0)) + 011y,

O3 f (1 + D3u) ||

83f(1 + Osu) ||P H >
WP () 1+ (O3u)? llwm-120(0,)/

o0 T @

2
+ ||U||V€gﬂ,2p

We obtain the assertion in view of Lemma 3.1. |
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In order to apply Theorem 3.2 we have now to study the properties of
the function v = arctan(dsu). A first simple consequence of Lemma 2.4 is
the following;:

Lemma 3.3 The function v = arctan(dsu) satisfies the equation

3
(3.4) Z D?U = vy + v1 D1V + v9Dsyv

j=1
where

8:auasf 812f(83u)2 832f(?3u . 83U(33f)2
1+ (83u)2 1+ (83U)2 1+ (83’&)2 1+ (83u)2’

Vo = aQQfDQU +

_ 233u83f vy — 83f((83u)2 — 1)
1+ (83u)2’ 2T 1+ (83U)2 ’

V1 =

Since u is a solution of (3.4), a similar result holds true for v (cf. [CM2],
Prop. 3.1). We refer to that paper for the proof.

Lemma 3.4 Let f € C?(Q). For every open set Q; € Q and p > 1 there
exists a constant C' = C(f,p, 2, K) such that

|| arctan(Osu)|lyy1r(q,) < C
as € — 0. The same estimate holds true for Ozu.

By iteration, from Lemma 3.4 we deduce

Proposition 3.5 Let f € C™(Q). Let u = u. be a solution of (1.9) satis-
fying (2.38). If Qy € Q and p > 1 there exists a constant C' = C(f,p, 4, K)
such that

1 Drull o) + 105 (Drw)||oor) < C
for every I with |I'| <m, |I| <m+ 1, and

1Drullz2e,) + 10s(Drw)l| 2,y < C
for |[I'l=m+1, |[I| <m+2, ase — 0.

Proof. Indeed by (2.38) and Lemma 3.4 there exists a constant C indepen-
dent on € — 0 such that

||u||W51’p(Q1) + HUHWQ”’(QH = (1.
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Since u is a solution of (1.9) it satisfies (1.10)

> Dju=0\f+ dsf Dau
Then, in view of Theorem 3.2
||U||W37P(Ql) <y,

where C) depends only on f. Applying the same theorem to v we then
obtain

HUHWE”)(Ql) + HUHWE*”(QN =G

and, by iteration,

ullwmr @y + V] lwme @) < C

for some constant C'. Moreover, since u belongs to C™(£2),
||U| |€V5m+l’p(91) + ||U| |$/V5m+2’2(ﬂl) S C
The coefficients of the equation satisfied by v are in C™~1(£2), which implies

HUHP mP(Q) + |’vH12/Vgn+1,2(Ql) <C.

On the other hand, in view of (2.6) and (2.7), we have

Dl('?gu + 83uD2(93u i 83f

angu - _836 + agf - 1+ (83U)2 1+ (8316)2

+ 04,

Denote a. = a(u,), b: = b(u) the coefficients introduced in (1.3) and let D .,
D, be the corresponding vector fields defined in (1.4). Let X7 denote any
derivative of order j and I a multi-index: I € {1,2,3}™. By differentiation
and iteration, from the last formula we then have

(35) 5’3(D1,5u) = P((?gu, X@gu, te ,Xmﬁgu)

where P is a rational function whose denominator is a power of 1 + (J3u)?.
This concludes the proof. [ |

Corollary 3.6 Let f € C™(Q). Let u be a solution of (1.9) satisfy-
ing (2.38). For every 3 € Q and p > 1 there exists a constant C' =
C(f,p,2,Q9, K) such that

IV Dyl oy + 19 (D) |12y < €

for every I such that |I'| <m, |[I| <m+1, ase — 0.
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4. Dirichlet problem for the Levi equation

In this section we prove the existence of a solution of the problem (1.8),
letting € go to 0 in the approximating problem. In this way we see that the
problem has a viscosity solution whose derivatives are in the Sobolev spaces.

4.1. Existence of a viscosity solution

Assume that the function f which defines the almost complex structure J is
of class C2. Given a sequence €; — 0 of positive numbers we denote by u; the
solution of the approximated problem: £ u; = 0in 2 and u;,, = g. We also
denote by a; = a(u;), b; = b(u;), the coefficients introduced in (1.3). Let
D1, D., 5 be the corresponding vector fields defined in (1.4), and D, ; the
higher order derivatives. By virtue of Theorem 2.7 there exists a constant
C' > 0 such that (uniformly with respect to e — 0)

(4.1) Ve u* < 4((De, 1uy)? + (De, ouj)? + (93u;)?) < C.
Thus

Theorem 4.1 Let f satisfy the hypothesis of Proposition 2.5. Assume that
b§Y is strictly J-pseudoconver and that the boundary value g is of class C2.

Then there exists a unique viscosity solution u € Lip(§2) of problem (1.8).
Moreover

(4.2) |[Vu| < C
where C is a constant.

Here we adopt the definition of viscosity solution given in [CIL]. The exis-
tence immediately follows from the uniform Lipschitz condition (4.1) while
the uniqueness can be proved using the technique of [CIL].

4.2. Regularity properties in the Sobolev spaces

Let us show that, if f is of class C™*!, the solution u belongs to a suitable
Sobolev space. The technique of proof here is partially inspired by [CM1]
and [CM2].

Following the notations introduced in the previous section let ij’” (92)
be the Sobolev space corresponding to D, 1, D, . By (2.38) and Proposi-
tion 3.5 we can assume (changing the sequence ¢; if necessary) that:

{D., ru;} is strongly convergent in Lj , weakly in VVIiCp(Q), for every
p > 1 and multi-index [ such that || < m;

{D., ru;} is strongly convergent in Ly , weakly VVkl)f(Q), for every

p < 6 and multi-index I such that |I| =m + 1.
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Let
a = lim a;, (= lim b;.
j—00 j—o0
Due to the nonlinearity of a and b as functions of the gradient, it is not
obvious that a = a(u), and § = b(u) as defined in 1.3 in terms of u. This is
proved in Lemma 4.2 below. Let us introduce vector fields formally defined
as in (1.4), with a and [ instead of a and b:
51 = 81 + a83 52 = (92 +583
D is the gradient (Dy, Dy) and WP (Q) the associated Sobolev space.

Lemma 4.2 . The following holds true:

{Dreuj} — Dru strongly in LP and weakly in WLP(Q), for every
p > 1 and multi-index I such that |I| < m;

{Dre,u;} — Dru strongly in LP and weakly in WL2(Q), for every
p < 6 and multi-index I such that |I| = m + 1.

Proof. Let ¢ be a test function. Since {Dy.,u;} is convergent in Lj , we
only have to prove that it is weakly convergent to D;u. Integrating by parts

lim QﬁD[’EjUj d\ = — hm UjDLEijd)\ — hm /Uj@bagaj d\
J—00 J—00

o0
—/uD1¢dA—/u¢83ad)\

and this ensures the weak convergence of {Dr. u;} to Dyu. The proof for
derivatives Dy is similar. [ |

As a consequence we derive the expression of a and f:
Remark 4.1 « and (3 satisfy the following relation:
a:D2u7 ﬁ:_Dlu—i_f?

and

(43) o= a(u) = 2 . i?’l(‘éf;;g_ h,

Proof. Indeed by definition

_82’&83“ + alu — f
1+ (63’&)2

5= blu) =

o= hjm a; = h;n D, puj = Dou

while
6 = hm bj = hm(f — DstUj) = f - Dlu.
J J
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Then

a = Dou = Oyu+F05u = Oqu+(f — Diu)0su = Ogu+ fOsu— (Oyu+adsu)dsu,
B =f—Diu= f—01u—adsu = f—01u—Dyudsu = f—0 u—(0su+[F05u)0su.
(4.3) immediately follows from these two formulas. |

We can now prove the regularity properties of the limit function v in the
Sobolev space:

Theorem 4.3 Assume that feC™ 1 (Q). Then the function w = Dju be-
longs to W,5P(Q) N WE2.(Q), for every p > 1 and multi-index T such that

loc
|I| <m. In particular Dyu € for every a < 1 and the equation

loc
(4.4) D?u+ Diu = O, f + 0sfDyu
1s satisfied everywhere in Q.

Proof. From Proposition 4.1 we immediately obtain that D!u belongs to
WEP(Q) N WE2.(Q) for every I, |I| < m, p > 1. On the other hand w;
is a solution of L. ,u; = 0 for every j. Letting j — oo, owing to Lemma
4.2, we deduce immediately that u is a solution of (4.4) in the sense of
Sobolev spaces. Moreover, by the classical Sobolev embedding theorem,

Diu e C2.(Q), for all a < 1, |I] < m. |

We remark that derivatives Dju here are defined in the sense of distri-
bution. In the next section we prove that in fact they can be computed
pointwise.

5. Existence of Lie derivatives and foliation

In this section we state regularity properties of the solution w of problem
(1.8). As a consequence, through a weak version of Frobenius Theorem, we
obtain that the graph of wu is foliated by complex curves.

5.1. A weak version of the Frobenius Theorem

Let us recall some relations between weak and Lie derivatives, already proved
in [CM2]. In that paper a Frobenius theorem for non Lipschitz vector fields
was proved, under an analyticity condition in the direction of vector fields.
Here we drastically weaken this assumption only requiring that weak deriva-
tives of first order in some directions are bounded, and derivatives in the
other directions belong to LP.

Let Q C R? 6,¢ € C2.(Q), 0 < a < 1, and define operators 51, Do by

loc

Dy =0, + 0085, Dy=0y+ (0.
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The following remark was proved in [CM2].

Remark 5.1 Assume that v and v, are two solutions of

(23

with i fized. There exists a positive constant ¢ such that
(5.2) d(v(s),m(s)) < est7,
where d is the euclidean distance.

In this situation we say that a function i has the Lie derivative at T € €,
in the direction of the vector field D, if, for every solution 7y of problem (5.1),

there exists
d

%(h © 7)|s:0

and it is independent of ~.

The weak derivative (in the Sobolev sense) of a sufficiently regular func-
tion h coincides with the Lie derivative (cfr. [CM2]):

Proposition 5.1 Let he C%(Q), B3>1— «, with weak derivatives D;h, i =
1,2, in C?(Q). Suppose that dsh € L} (Q), p > 1/8. Then Lie derivatives

loc
of h exist for all x € Q and coincide with the weak ones.

We then obtain the following uniqueness theorem

Theorem 5.2 Assume that 0,( and weak derivatives 510, EZC, 1 =1,2
are in C2.(QY) for o > 1/2,and 0sC, 057 € L1 () for p > 1/a. Then
problem (5.1) has a unique solution. In particular, the above notion of Lie
deriwative coincides with the standard one and the weak derivatives of 0 and

are Lie derivatives.

Proof. Let us consider the problem (5.1), and assume by simplicity that
i = 1. If  is a solution of (5.1), by the definition of the Lie derivative, and
Proposition 5.1, the function # o «y is differentiable, with derivative 1310. It
follows that the coefficient @ of the equation is of class C! along . If the
problem had two solutions v and 4, then 6 would be Lipschitz continuous on
the union of their graphs, and could be extended to a Lipschitz continuous
function on all of R3, by Whitney’s theorem. Since v and ~; are both solu-
tions of the problem (5.1) with this new second member, they must coincide.
The weak derivatives of § and ¢ are Lie derivatives by Proposition 5.1. W
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Proof of Theorem 1.2 Such a function ¢ exists if and only if (z1,xs) —
T(Il, IL‘Q) = (Il, 2, t([L’l, ZL’Q)) satisfies

81T(x1, 1'2) = (1, 0, 9)(t($1, ZL‘Q)), 62T(x1, IL’Q) = (0, 1, C) (t(l’l, 1‘2)),

and in that case
T = exp((z1 — 71) D1 + (22 — T2) Ds)(Z).

Since we have already proved the uniqueness of solutions of problem (5.1),
for all = (71, Ty, T3) in Q there exists a neighborhood B of (Z,Z,) in R?
such that for every (z1,x2) in B the exponential map is uniquely defined at
(21, z2). This concludes the proof. |

Corollary 5.3 For every function h = h(x1,xs,x3) of class C{. such that

= loc
Dih e C3., 7 =1,2, we have
81h(:t1,:132,t($1,172)) == Elh(xthat(xl;xQ));
an(iClaiC%t(l’l,xQ)) = Dzh(xb%mt(xl,xz))-

5.2. Lie derivatives and foliation of the graph

The proof of Theorem 1.1 is achieved applying Frobenius Theorem to the
coefficients a and b of the Levi equation (cfr.1.3).

Theorem 5.4 Assume that [ € C3(2), and let u be a solution of (1.8).
Then every T € Q lies on a 2-dimensional manifold S = Sy, of class C?,
such that u|s satisfies

O (uis) + B3 (us) = Da(fis).
Proof. We observe that the following conditions are satisfied:
i) a,b, D;a, D;b € C*(2) for a > 1/2 and Db = Dsa,
ii) Osa,03b € LY (), p>1/a.

loc
Hence we can apply Theorem 1.2: for every fixed z € (2 there exists a unique
solution ¢ of the system

{ alt([lfl,afg) (Z(Qfl,l’Q,t(ZEl,l'Q))
Ot (1, w2) = b(21, T2, t(71, 72))

defined in a neighborhood of (%, Z,), such that z = (z1, Z2,t(Z1,72)). Let
us call T' be the map (xy,x5) — (21,22, t(z1,22)), and Sz its range. Since
Dyu € C?%, for |I| <2, then, by Corollary 5.3

FuwoT) +BwoT) =d(foT). .
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Proof of Theorem 1.1 In view of Theorem 4.3 we know that, if [ is a
multi-index such that [/| < m — 1 and w = Dju, then w belongs to C{.,
as well as its derivatives Dyw, Dow, and 0sw € L, . By Proposition 5.1 the
weak derivatives D;w are Lie derivatives.

In order to prove that the graph of u is foliated by complex curves we
need observe that, if p = (Z,u(z)), & = (%1, T2, T3), is a point of the graph
of u Theorem 5.4 says that F, = {(z,(uoT)(z):z € Sz} is a C? integral
variety of the Levi distribution. [ |
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