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Estimates for multiple stochastic
integrals and stochastic

Hamilton-Jacobi equations

Vassili N. Kolokol’tsov, René L. Schilling and Alexei E. Tyukov

Abstract

We study stochastic Hamilton-Jacobi-Bellman equations and the
corresponding Hamiltonian systems driven by jump-type Lévy pro-
cesses. The main objective of the present paper is to show existence,
uniqueness and a (locally in time) diffeomorphism property of the so-
lution: the solution trajectory of the system is a diffeomorphism as a
function of the initial momentum. This result enables us to implement
a stochastic version of the classical method of characteristics for the
Hamilton-Jacobi equations. An —in itself interesting— auxiliary result
are pointwise a.s. estimates for iterated stochastic integrals driven by
a vector of not necessarily independent jump-type semimartingales.

1. Introduction

Over the last few years interest in stochastic Hamilton-Jacobi-Bellman (HJB
for short) equations has increased, see e.g. the papers [R], [So], [DaPDe]
and references given there. The HJB equations are important as they de-
scribe the evolution of optimally controlled systems with random dynamics,
but they are also useful tools when studying various classes of stochastic
models in probability theory and mathematical physics. Presently, the no-
tion of stochastic HJB equation is used in two different contexts: firstly, for
classical differential equations with a random Hamiltonian and, secondly,
for truly stochastic differential equations where the Hamiltonian includes a
non-homogeneous semimartingale term which does not allow to write down
the corresponding equation in classical form.
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In the sequel we will consider the second type of HJB equations, that is
to say equations of the form

(1.1) dS+H(x,g—S) dt 4+ c(z)dé =0, x€RY t>0,
x

where H : R — R and ¢ : R — R? are smooth functions and & is
a stochastic process (driving noise) in R?. The corresponding Hamilton
system is then

__ O0H

(1.2)
dp = — 2 gt — 2 g,

The equation (1.1) driven by a Wiener process {& }i>o was considered in
[K1], [K2], and [TrZ1], [TrZ2] for various classes of real H and c¢. The corre-
sponding case of complex valued H and ¢ was taken up in [K3|. The main
objective of the present paper is to study the equations (1.1), (1.2), where
{&}i>0 i1s a Lévy noise without Brownian part and to develop a stochastic
analogue of the theory of classical (i.e. smooth in x) solutions of the Cauchy
problem for equation (1.1). Generalised solutions can then be constructed
(see [KT2]) in the same way as they are constructed for the case of a Wiener
process {& }i>0 in [K1], [K2] (see also [KMa]).

For this programme we need to be able to solve a boundary value problem
for the stochastic Hamilton system (1.2). The analysis of the latter prob-
lem is the second main topic of our paper. Boundary value problems for
Hamilton systems of type (1.2) with a Wiener process {& }+>0 and their con-
nections with the calculus of variations were investigated in [K2]. However,
the proof of the existence and uniqueness of the solution of the boundary
value problem was only sketched in [K2]. In this paper we give complete
proofs of the corresponding results for Hamilton systems driven by Lévy
noise without a Brownian part.

An important tool for the analysis of the behaviour of the solutions for
Hamilton systems is the study of their linearised approximations (equation
in variations). These linearised approximations turn out to be linear non-
homogeneous Hamilton systems. Using perturbation theory we can derive
a representation of the solutions of such linear systems as series of multiple
stochastic integrals. In order to prove the convergence of these series, we
are led to the third topic of the article —obtaining estimates for multiple
stochastic integrals. In the present paper we use these estimates as auxil-
iary tools for the study of linear stochastic Hamilton systems. We believe,
however, that they are of independent value. Let us mention here the pa-
per [Ta], where a rather general linear system driven by Brownian motion
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was considered, convergence of the series from perturbations theory proved,
and necessary estimates for multiple integrals obtained. Multiple stochastic
integrals with respect to general semimartingales or infinitely divisible pro-
cesses were also considered, see e.g. [KwW], [Sz| and references given there.

Let us give a brief outline how our paper is organized. In Section 3
we obtain estimates for the symmetric sum of multiple integrals driven by
semimartingales. Under some additional assumptions on H and ¢ we prove
in Section 4 well-posedness of certain boundary value problems for stochas-
tic Hamilton systems (1.2) for times ¢ not exceeding some stopping time.
For proving this we first observe that well-posedness is equivalent to the
statement that the map py — X(¢,t0, zo,p0) (Where X (t,tg,zo,po) is a so-
lution of (1.2) with initial conditions (zg,pg) at time ¢ = ty) is a diffeomor-
phism. We call this statement diffeomorphism theorem. In Section 5 we de-
velop the method of stochastic characteristics to solve stochastic Hamilton-
Jacobi equations with Lévy noise.

Some applications of our results to the theory of stochastic heat equation
(large deviation type asymptotics) are considered in the paper [KT2].

2. Preliminaries

Throughout this paper we consider Lévy processes as driving noise terms
in the Hamiltonian system (1.2). Our standard references for Lévy pro-
cesses are the monographs by Bertoin [Berl] and Sato [Sa]. For Lévy pro-
cesses and stochastic calculus with jumps we use the books by Jacod and
Shiryaev [JSh] and Protter [Pro]. We will collect a few definitions and results
from these books.

A Lévy process (on R?) is a stochastic process {&}+>0 on a probabil-
ity space (2, F,P) with stationary and independent increments which is
also stochastically continuous. We will assume that & = 0 a.s. The state
space will always be R, We can (and will) choose a version that has right-
continuous sample paths with everywhere finite left-hand limits (cadlag, for
short); if not otherwise mentioned, we will use the augmented canonical
filtration of {&; }+>0. The process {&; }+>o is uniquely (up to stochastic equiv-

alence) determined through its Fourier transform,
Ee™ét = e~ t>0,neR,

where the characteristic exponent v : R? — C is given by the Lévy-
Khinchine representation
(1 — et W0 ) v(dy).

¥(n =if-n+n-Qn+/
() y#0 1ﬂ_|y|2
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Here, ¢ is some vector in R?, Q € R?*? is a positive semi-definite matrix
and v is the Lévy or jump measure with support in R?\ {0} such that
fy 40 ly|> A 1v(dy) < oco. The Lévy-Khinchine formula is actually a one-to-
one correspondence between the function ¢ and the Lévy triplet (¢,Q,v).

Stochastically, the Lévy-Khinchine representation translates into a path
decomposition of the process {&;}+>o. Fix some Borel set A C R?\ {0}, and
write Ny(w, A) for the Poisson point process with intensity measure v(A).
It is known that N;(w, A) describes jumps of & with sizes contained in A
and we get

(2.1) &(w) = at + By(w) + My(w) + Jy(w),

where oo = E(fl —f|y|>1 y Ny (w, dy)> is the drift coefficient, B, is a d—dimen-

sional Wiener process with (possibly degenerate) covariance matrix @,
M) = [y (e d) — ()
y|<1

is a martingale which is the compensated sum of all small jumps (modulus
less than 1), and

Jiw) = Y A& Tgag sy

0<s<t

is the sum of all big jumps (modulus greater than 1). As usual, we write
Al = & — - = & — limyq &, for the jump at time s > 0. Note that J,
is a process of bounded variation on compact time-intervals. This is the
case since cadlag paths can have only finitely many jumps of size > 1 on
any finite time interval. The above decomposition of & shows that Lévy
processes are semimartingales and, therefore, good stochastic integrators.

The following two formulae for point processes hold whenever the right-
hand side is finite:

IE</Af(y) Nt(-,dy)> It/Af(y)V(dy)

and

22 ({ [ s —tu(dy>>}2) =t [ 100y viay)

In particular, we get
(23) E(;mss)) =t [ s vty

for finite right-hand sides.
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It is not hard to see that

t+— & has a.s. finite variation if and only if / ly| v(dy) < oo
0<|yl<1

and that
E|&| < oo if and only if / ly|v(dy) < oo.

ly|>1
If & has a.s. bounded jumps, i.e., if the support of v is a bounded set, & has
absolute moments of any order.
We will also need the following simple Lemma. Since we could not find
a precise reference for it, we include a short proof.

Lemma 2.1 Let {&:}is0, € = (&1,...,&a) be a Lévy process with Q@ =0 and
Lévy measure v satisfying f|y|>1 ly|? v(dy) < oo. For any 0 < ¢ < 1/2 we
find a stopping time R. (w) < 1 such that

T€[0,¢]

U = 22 ( sup |§zT| + [fwgz]t%) < t%_e

holds for all t < R., where P(R. > 0) = 1. In particular, one can find a
stopping time R > 0 a.s. such that for allt <R

d
(2'4) Uy = 22 ( sup |€z¢| + [gzafz]ti> L.
=1

T€[0,t]
Remarks

1. In this paper we will use only the fact that 1, < 1 for t < R. The
stopping times R. will be needed in [KT2].

2. Lemma 2.1 remains valid if @) # 0. Since we do not need this result,
we settle for the case () = 0 and the somewhat simpler proof.

Proof. As usual we write {; = sup.¢p |¢-]- Since @ = 0, we get from (2.1)

E({&)) <3[lal*?+E ({M;}?) +E ({J;}%)].

Using (a + )% < 2a® + 20 and (2.2) we get for t < 1

E({J}?) <E({D A& gaesn ) =E({ |z Ni(-, dz)}?)

S<t |$‘>1

B ({[ ol il dr) — de)))?) +22( [

|z|>1

o] ()

|z|>1
< 2t(1 4+ v(B(0 z|? v(dz),
11+ o <>>>/z|>1|| (dx)

where we used ¢ < 1 and Jensen’s inequality for the last term.
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Doob’s martingale inequality and (2.2) give
E ({M;}?) <4E (M) = 4t/ |z|? v(dz).
|z|<1
Formula (2.3) implies that
Bl ) = [ lafv(da)
|z|>0
Thus, the process
G={&Y +5¢
satisfies E¢; < Ct for t < 1, where C' = C(a,v) > 0 is a constant. By
Chebyshev’s inequality
E(G) _ Ct
R R’
Choosing t = 27% and R = (8d)7'127(179% we find

P((; > R) < t<1.

D P {Gr > (8d) 1271 <8dC Y T 27 < 0.
k=1 k=1

The Borel-Cantelli Lemma implies that
Cor < (8d)7127079% for k> ko(w) for some ko(w) € N.

Set k1 (w) = ko(w) V [@ + 1}. Then (1 —2e)5L <1 —¢ for k > ky(w).
If 2=+ <t < 27 for some k > k;(w) we find, as t — (; is an increasing

function,

(1-2¢)

(1—e)k
(8d)G < (8d)Gpe <2707 (270HW) T (27D) T <107,

Using the elementary inequality (a; + - - + agq)* < (2d)(a? + -+ - + a3,) we
get with R.(w) = 27k«

19? < (8d)¢; < 2, Vit < R.,
and the lemma follows. [ |

Notation. Most of our notation should be standard or self-explanatory.
All stochastic integrals are Ito-integrals and our main reference texts for
stochastic integrals with jumps are Jacod and Shiryaev [JSh] and Prot-
ter [Pro]. In particular, we follow the conventions of Protter

b
/ Xs dY; = Xs difs, [X, Y]o = XO}/O and XO— = (X_)() =0.
a (a,b]
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3. Estimates for multiple stochastic integrals driven by
semimartingales

Here we derive some estimates for multiple stochastic integrals which will be
needed later on. We use the following notation. For any A € RM*Y we write

[A]loe = max |(A)i;|.

We will always consider k-fold stochastic integrals driven by (general)
real-valued semimartingales {n;;}+>0, j =1,...,d, with cadlag paths or by
the deterministic process 1y, = t. We assume that all semimartingales are on
the same probability space (€2, F,P) and are adapted to the same filtration
{Fi}i>0. The filtration is assumed to satisfy the usual conditions, i.e., it is
right-continuous and augmented. Since the dn;,, 7 =0,...,d, may appear
in any order we want to keep track when we deal with a Stieltjes differential
dr = dno,, and a (genuinely) stochastic differential dn, ., j =1,...,d. To do
so we introduce and fix throughout this section a sequence ¢,, € N such that

(31) Egn_l < Egn and ézn +1< fgn_,_l.

We set
M= {1,...,d}  if Ly 1 <i <y,
' {0} otherwise.

This means that for (ji,...,jx) € M = My X --- X My, the first £; — 1
integrals of the stochastic differential
(3.2) Anj, - dnjy 7y - - - A0y 7,

are deterministic, the next up to label /5 are semimartingales, those up to
{3 — 1 are again deterministic, etc.:

¢, = min{s € [0,k]: js # 0}
ly = min{s € ({1,k] 1 js =0} —1

ggnfl = min{s S (ggnfg,k’] st 7é 0}
fgn = min{s S (6277,—17/{;] st = 0} —1

(min() = k& + 1). Moreover,
(3.3) m=m(k)= > (la—Llon_1 +1)
neN, lo, <k

is the number of non-trivial differentials in (3.2), i.e.

m:#{SZjS#O}.



340 V.N. KoLokoLTsov, R.L. SCHILLING AND A.E. TYUKOV

Let W;, = W, (w), In, = Ip.(w) be RM*M_valued continuous processes
adapted to the filtration {F,},>¢ and such that
(3.4) sup [[Wislleo <1, j=0,...,d,

s>to

and let v, be some real-valued F;-adapted increasing process such that for
any s,t € Ry, s <t,

(3.5) Wit — Wislloo Sve—wvs, j=1,...,d

We also assume that [n;,n;]°=0, i=1,...,d, and

(3.6) 2 sup |Min — Mgl <1, i=1,...,d.
loST1IST

Notice that the assumptions (3.4), (3.6) can always be achieved by suitable
(pre-)stopping arguments.
For 0 <ty < 7 we set

(3.7) Iy, =
Tk— T2—
Z / JksTk / e </ Wj1,71[0,‘r1 d77J'1,T1> e 'dnjk—177k71>dnjk77'k7
(J150:Jk)EM to to
where M = M; x --- x M, as above, and
(3.8)

[SIES

D-=M-d [UT —vy 4 (t sup. M = Migo| + (05,15 — [, mil,,) )] :
j=1 0XTIT

We will use the abbreviation BV-process for a process with (almost surely)

paths of bounded variation on compact time-intervals.

We can now state the main result of this section.
Proposition 3.1 Let n,,, 1 = 1,...,d, be F,-semimartingales, W, be
Fr-adapted continuous processes as set out above, ¢, € N be any fized se-

quence such that (3.1) holds and I, be as defined above in (3.7). Moreover
we assume that

(3.9) W; Wi =W, W, . jyi=1,....,d.
If Iy, = Eyr € RM*M s the identity matriz or if {1 > 1 (or both), we have
(3.10) 1 rlloo < bk DF{M (T — 10)} (15 1 o

where |15, |loo = suPs <oy |o,sllo0, with m from (3.3) and

(3.11) by = 27 _
(In{In{k + 2}})7
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The proof of Proposition 3.1 is quite technical and a few words of guid-
ance are in order. Basically, we prove Proposition 3.1 by induction in &, the
number of iterated integrals in I. There are two different ways how I, can
arise from I5: (i) the (k4 1)st integrator is deterministic, or (ii) the (k+1)st
integrator is a semimartingale. Case (i) is easily dealt with (Case 1 of Step 1
of the proof), while (ii) requires a few auxiliary results which we prove in
Lemmas 3.1-3.6 below. The idea here is to consider the last two, i.e. kth
and (k + 1)st, integrations simultaneously and to look first at the more
complicated (but symmetrised) object

d T T2 —
(3.12) 2%y, :Z Z Z SRJ’,J,T/ Ujry ( W/z‘,nfk—l,n—dmm)dﬁéa
0 0

i=1 JeNd,|J|=m J'<J

where U, is a product of W;’s and QR ;, are the coefficients of a multi-
nomial series (see (3.19) and (3.20)). Notice that Ipi1, = 2,,,. The
symmetrisation has the effect that we are effectively integrating against
d(ne — n,)”—but this integrator would not be well-defined in Itd’s sense.

The technique is to apply integration by parts to the two inner integrals
in (3.12) (the general formula is given in Lemma 3.1, Corollary 3.1 contains
the ‘symmetrised’ version which we are going to use later on) and then to es-
timate the three appearing terms (3.27)—(3.29) which is done in Lemma 3.3.
Depending on the nature of the integrators in (3.12), the main estimates are
done in Lemmas 3.5 and 3.6. Their proofs use mainly Lemmas 3.2-3.4 which
are of technical nature and can be skipped on first reading. This induction
gives the basic estimate of Proposition 3.1 without revealing the form of the
coefficients by. The coefficients are obtained in a separate induction (Step 2
in the proof of Proposition 3.1). This part of the proof rests entirely on
some tedious estimates and recurrence relations which we deferred to the
appendix (Lemmas A.1-A.4).

Notation

(2) We will use throughout the paper matrix and vector notation for
stochastic integrals. Since matrices are, in general, non-commutative the
position of stochastic differentials etc. is important.

(22) All stochastic integrals, where the integrand is a vector (or a ma-
trix) and the integrator is an R-valued semimartingale will be understood
coordinate-wise. In a similar way, brackets of vectors and R-semimar-
tingales or matrices of R-semimartingales are understood coordinatewise.
The bracket of two matrices A, B is defined as a matrix

M
[A, Bl = laij,bi), i k=1,...,M,
j=1
which is compatible with the rules of stochastic calculus and matrix algebra.
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We start with rewriting the integration by parts formula in the form we
need later on.

Lemma 3.1 Let {U.},>0 be an Fr-adapted continuous BV process with val-
ues in RM*M L& Y~ an F,-adapted cadlag process with values in RM*M
and let {v:}r>0, {Kr}r>0 be two real-valued F,-semimartingales. Then the
iterated stochastic integral

T To—
Qr = / U, </ O _ dyﬁ> dk,
0 0

can be written in the form
T T2 — T T

Qr= /417/ dU,, x / o, dv,, + /417/ U.,®,,_dv,, —/ U,®,,_dv,kl,
0 0 0 0

T To— T
(3.13) —/ du,, x nTQ_/ o, dv, —/ Koy Upy @y dus,.
0 0 0

Proof. We use the following integration by parts formula for R-valued
semimartingales:

/ Yo dZey = Y, 2y — YoZo — [V, 2}, — / Zpy Y,
0 0
With the coordinate conventions detailed in the above remark we may choose
Y, =U, / o, _du,, and Ly = Kry.
0

Clearly, Yy = 0 and therefore
T L] T T2
Qr = /@TUT/ b, _dv,, — [U./ @Tl_dvﬁ,/i.] —/ K:7—2_d<U72/ b, dI/Tl)
0 0 + Jo 0
=1+ 11+ 1III.

An application of [to’s formula gives

T2
(3.14) d(UT2/ N dyﬁ) =
0

= dU,, x / &, _dvy, +U,®,.,_dv,, +d [U. : / d,, _ dyﬁl .
0 0 -

2

Since U is a continuous BV-process, the square bracket vanishes and we get

T To— T
(3.15) I= /17/ du,, x / O, dv, + /{T/ Un,®,,_ dv,,.
0 0 0
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From (3.14) we also find

II = —[(U,/ (IJTl_dVTI),/{.}
0 T

= —[(/ U, @, de),m.] = [/ au., X/ N dVT2,/<a.] .

0 T 0 0 T

Since U, is a continuous BV-process, so is the stochastic integral driven by
dU, and the last bracket above vanishes. So,

(3.16) = — / U, ®.,_dly,x].,.
0

Finally, using (3.14) the third time gives

I = — / Koy dU,, X / @, dv,, — / by Uy, s duy,.
0 0 0

Combining this with (3.15) and (3.16) completes the proof. [

Later on, we will use Lemma 3.1 in the following form.

Corollary 3.1 Let {U,}r>0, {®r}r>0, {Vr}r>0 be as in Lemma 3.1 and let
{Rar}rs0 and {Kar}r>0 be finitely many (o € A) real-valued F.-semimar-
tingales such that

(3.17) > Farkiar =0.

Then the iterated stochastic integral
T To—
QT = Z %a,f / UT2 (/ ®T17 dVTl) d/{a,‘rg
ac 0 0
can be written in the form

T T T2 —
QT - - E'a,‘r/ UT2(I)7'2* d[”? '%01]7'2 _Z%Q,T/ dUT2 X HO&J’2/ q)Tlf dy"’l
0 0

0

(3.18) — 7{&77/0 Kory—Ur,®ry— dv,.

Proof. For a fixed o € A we can apply Lemma 3.1 with x; = K, to
get (3.13). Now multiply (3.13) with K, , and sum over a € 2. Because
of (3.17), the first two terms vanish and we get (3.18). [
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Recall the following common notations for multi-indices J = (j1, .. ., ja),
‘]/ = (]17 cee 7.]2[) € Ng we say JI < Jlf.]i < jla s ajé < jd7 |‘]| = ]1+ : '+jd7
JxJ =(GiEg,. -, Jatiy), andif nr = (M1r,. 0 Na7),

=l
We also set
(3.19) Ry gr = (—1)V1711 (jl> (?‘f) U (P §
]1 Jd
From the binomial formula we easily see
(320) > Ryuenh = O = 00) = Oes = M)+ (Mairy — Nar)
J<J

Below is a technical lemma which we need in order to estimate the norm of

some integrals driven by BV-processes.

Lemma 3.2 Let {n;,}.>0, ¢ =1,...,d, be real-valued F,-semimartingales
with [n;,m;]° = 0, mip = 0 and such that the inequalities (3.6) are satisfied.
Then we have for all J',J € N¢ with J' < J and |J'| =m/, |J| =

(i) sup ’nJ J’< (4M - d)~ (m— m’)+1Dm m—l

<SKT

() sup |n!~""| < (AM - d)~(m=m) pmom’,

0<s<T

(i60) sup |nf'| < (4M -d)~" D},

0<s<T
(7:'0) |A[77Jl,771]7| < (2M . d)—m’_lD:—n/ADT’
(v) X [Ryasrl sup A7 0| <274(M - d)"" ' DIPAD,,

J'<T 0L <t

(vi) > |Ryu-| sup ]77;]2,] <202M - d)~mtipm-t

J<T OS2 <r

(wid) > Ry (M -d)™™ D™ < (M -d)~™ D™,
JI<T

Proof. By the very definition (3.8) of D, we get

(3.21) max max{|77”| |An; |} < (AM - d)™!

11111

Hence, due to (3.6),

’m—m’—l

J=J' m—m/'
sup |n; 7| < sup max |1 < sup max 7.
0<s<T 0<s<r =1,...d 0<s<r i=1,.,d

(4M d) (m— m)+1Dm m/—1
and (3.2) follows. Similarly we obtain (3.2) and (3.2).
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We proceed with (3 2). Using (3.21), the elementary identity

Alay-as-.. Z ag ... ar_1(Aay)(ary1 —Aapyq) o (Qrsr — Aapri1),

r=1

where ag = ap41 = 1, Aag = Adym1 = 0, and m/27"' ! < 1 we find

m’'—1
|AnY'| < m (Sup max !ms|> <,5r11axd|Am,T|>

<s<r i=1,....d )  \i=1,.,

< (2M - d)~™H pmt max |An; -]

Since 7; and 7/ are pure jump semimartingales, it follows

(322) A7 ndel = |AnY M| < (2M ) DI max (A f?

=1,...,

Due to (3.8)
1
for any i = 1,...,d, where we used that v, and sup |n,| are increasing
0<s<T
functions of 7. Since
3 Alni, i) Alni, mil |An; - 2

2 17 N-1D_’
el + eml2. 2]z (M -d)7D:
we conclude

(3.23) |An;i,|> < (2M - d)">D,AD,
and the combination of (3.22), (3.23) proves (3.2).

Using the fact that
S () (1) =2

we see the implications: (3.2), (3.2) = (3.2); (3.2), (3.2) = (3.2); and
(3.2) = (3.2) . n

Given L' = (I},...,l}) e N¢ and J = (41, ..., js) € N& we put
I ,

(324) fL/(l’l,...,l'd) = .ﬁEl . .Td,
d
afL (77772 )
(325) 5!3’,7'2 - A[fL’ (77)]7'2 - Z TATh T2
i=1 ¢
and
1 ; ; . :
(326) UJ77—2 = j (WLTZ)Jl .. (Wdﬂ-z)]d, J! = j1! .. jd‘
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We are going to estimate the norms of the following integrals and sums

(327) AJ,i,T - _Z%J/,J,T/ UJ,Tlvvi,TlIk—l,Tl— d[nJlani]’rlv
J<T 0
(328) Byis = — Y Ryus / AU, x 12 _ / Wi D1 my— A0z,

(329) Crr = > Y RurUpnhi-imum

L'<L0<m2<T

driven by BV-processes. As we will see in Lemmas 3.5 and 3.6, these integrals
arise from an application of the integration by parts formula to iterated
integrals of a certain type.

Lemma 3.3 For m,k € N and B,, = {J € N¢: |J| = m} we have

d

1 m [
330) |3 A <3P [ Mian-l, dDn,
i=1 JEB, o0
d 1 r
(3.31) S Bue| <y D8 Ml 4D
i=1 JEBm o (m—=1) 0
1 m [
(3:32) > il <5 [ il dD,
LEBm+1 o

Proof. Applying (3.2) of Lemma 3.2 we have

HAJ,z‘,THOO = Z Ry - /T Ui Wi g1, - d[T)J/,m]n
J<T 0 )
<27Y (M -d)y"™ D™ /OT N\Use Wi Ii—1,1—|| o dD7,.
Because of
(3.33) IYZllow < MY |l Zllo, Y. Z € R,

definition (3.26), and condition (3.4) we obtain for J € B,,

Mm Mm+1
”UJ,T1I/VZ',T1[/€*1,T1*HOO < T ||VVi,T1[k*1,7'1*||oo < T H[kfl,ﬁfuoo?

and so

1 d—m—l . T
(3.34) [sirll <5 5 02 [ Mics-l 4D
. 0




MULTIPLE STOCHASTIC INTEGRALS AND HAMILTON-JACOBI EQUATIONS 347

Summing (3.34) over all J € B,,, i = 1,...,d, and using the multinomial
identity

1 am
(3.35) Y o=
ol JU m!

gives (3.30).

To estimate B, ; we observe that for the continuous BV-processes W
which satisfy (3.9) one has

d
1 .
dUJ,Tz = j Z(WLTQ)]l ce (d(W’/‘,Tz) ) Wd 7—2 Z UJ er 7'2 7‘7’27
Tor=1

Jr >O

where

(3.36) e, =(0,...,0,1,0,...,0) € N&.
Therefore, using (3.5), (3.33) and

1 m
Z(J—e,)!:ﬁ

r=1
jr>0

we obtain for any cadlag F,-adapted RM*M

/ AU,y X Zoy

0

-valued process Z,

<5 [ 12, do,

Note that according to the assumptlon of the lemma

(3.37) ‘

d —
Ik,T = Z/ Wi,ﬁ Ik)—l,Tl— dlr]i,ﬁ
: 0

(ie. My ={1,...,d} in the set M = M; X --- x M) and hence, by the
very definition (3.7) of I ,

Z %J/JT\/\dUJTQ X 7772 (Z/ini,n[kl,ﬁdmﬂ'l) H

J'<J
To—
< _Mm Z |%J’ nTQ—Z/ VVank 1,7 — dnzn dUTQ
J'<JT
S ij(Z|ERJ’JT| ilinTW )/ [k my— [ 0o dUr,
J'<J

< _M(Qd) m—HDT_l/ [k ,m— 0o AVry,

J! 0 ’
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where we used (3.2) of Lemma 3.2. Summing over all J € B, and using the
multinomial identity (3.35) we get

> B

i=1 JeBm
Since Av, < (M - d)*lADT we arrive at (3.31).

We proceed with Cp .. An application of Taylor’s formula and (3.25)
imply

9= m+1

Smo1)

-0 [ i do,
0

82fL’ (777'2— + HAU’Q)

d
1
100/ | < 3 < sup Z

0<6<1 5 0x;0x; |) n=l,.,
P A1
Since, by (3.24), fr(z1,...,zq) = 2" =[] x;
j=1
d
Pho@)| N
Z 0T, 3% < (m'+ m’ max ||

we get from (3.8) and (3.23)
1 /
ol < 5+ Vo (s, sup (il + 180" ) (a8
i=1,..., dogsgm i=1,....,d

< = (m' + 1)m/(AM - d)"™ ' D™ (2M - d) 2D, AD,,)

2
1
2
]_ ’ !

<3 (m'+1)(2M - d)"™" ' D AD,,.
(

We apply (3.2) of Lemma 3.2 to find for L € B,, 11

m+1 1
‘|CL7THOO< 2 <Z |mL'LT|<2M d) 1D )/ ||ULT1[]€ 17— H dDﬁ

L'<L

gm—i—l
2

(M -d) "D / Vs Iism— | dDs,
0

(3.38)
< d=m 1t (m+1)
2 L!

o / Voo |l. dDs,.

where we used the fact that sup ||[W;s|leo < 1, cf. (3.4). Since
0<s<t

m+1 1
2 L T oml’

LEBm+1

summing (3.38) over all L € B,,; completes the proof. [ |
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Lemma 3.4 For any m,k € N one has

d T
(3.39) Z Z ZmL/,L,T/O l;n-;[-;/:eiUL,Tglk'—l,TQ—dni,Tg

i=1 LEBp 1 L'<L

d T
:Z Z Z mJI»J,T/O nﬂk'lglfUJ,’T2‘/VL',T2]-]€71,T27d777:,’TQ7

i=1 JEBy J'<J
where e; € N& is the i-th unit multi-index.

Proof. Given L', L € N¢, i € {1,...,d} such that L' < L and I} > 0 we take
(3.40) J=L—e, J=L—¢.
From (3.19) we find that

I
(341) %J:,J,T = l_l iRLr’L,T.

Since
UJ,TQWi,TQ - (]z + ]-)UJ—l-ei,Tg - liUL,’7'27

it follows

!/

T e lz T ’
(3-42) l;/ nTLz— ULy k10— dNizy = IR / 77;]2—UJ7T2M/1',7'2[1€71,7'27 A 7
0 7 0

Multiplying both sides of (3.42) by 2R/ 1, and using (3.41) gives
(343) ngLn’%/ 7771_/2':61' UL,T2]’€—1772— dniJQ
0
- %J/,J,T/ T]ngJ,TQW’L‘,TQIk—LTQ— dn’i,TQ'
0

We sum (3.43) over all triples (L, L’,i) such that i = 1,...,d, L' < L,
L € B, and Il > 0. By (340), L = J +¢; and L' = J' + e; which
means that

{(L,L)i):i=1,...,d, L' <L € By, l, >0}
= {(J, ) i=1,....d,J <JEBy},

i.e. we can express the summation of the r.h.s. of (3.43) in terms of (J, J', 7).
On the left, the terms where I, = 0 do not contribute and we may, therefore,
simply sum over all (L,L' i) with L' < L € By41, ¢ = 1,...,d. This
proves (3.39). |
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Using integration by parts for I ; will lead to expressions of the form

(344) QJZT - Z m]’ JT/ UJTQ (/ Wz Tllk‘ 1,71— dT/z 71> dTIT27

J<J 0

where J € N¢, i € {0,...,d} and Uy, is given by (3.26). We want to esti-
mate the norm of the sum Zu‘:m Q.- through the norm of Z\L|=m+1 Qrir
plus some correction terms. This will be needed in the main induction step
in the proof of Proposition 3.1.

Lemma 3.5 For any m € N the stochastic integrals Q) s, » satisfy

Z > Qs

i=1 JeB,
Dm

(3.45) <

/ e T / ||l dD.,
Z Z%L/,L,T/ UL,TQkaLTgfd??TLQ/
0

LeBpi1 L'SL

o0

Proof. We write for the right-hand side of (3.45) I + IT 4 III. For any
J € B, 1€ {l,...,d} an application of Corollary 3.1 with 2 = {J" € Ny :
J' < J}, a=J and

UTQ = UJ,TQ) (I)Tl = VVi,ﬁ [k71,7'17 Vi = Nirs  Ragr = 77;]/7 T{/a,‘r = iRJ’,J,T

yields

QJ,i,T = Z mj’ JT/ UJ,Tl ‘/Vi,nlkfl,nf d[77‘]/, 771‘]7'1

JI<J
- ZmJ/JT/ dUJ’T2 XT/»Q / VVleIk 1,71— d7717'17
J'<J
(3.46) — Z mJ’,Jﬂ'/ 777{2/7UJ,T2Wi,Tz-[k‘—l,TQ—dni,Tz7
J<T 0

where we used that, by (3.20),

~ 7
§ Ra,rRar = E 9:{J’,J,TT]T :Oa

e J'<T

i.e. (3.17) is satisfied.
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Observe that the first two integrals in (3.46) are just Ay, , and By, ,
defined in (3.27) and (3.28). Therefore, Lemma 3.3 gives

ZZQJ” ZZCJH

i=1 JEBm =1 JeBm,

(3.47) I +II+

Y

with I, IT as required for (3.45) and with —C 7ir- given by the last term
n (3.46). We still have to estimate the last sum.

Recall that fr/(xy,...,x4) and 01/, are given by formulae (3.24) and (3.25)
respectively. Since the 7, are pure-jump semimartingales, an application of
It6’s formula to fr/(z1,...,xq) = 2 and the process 7,, = (Mirys -« s Ndory)
yields

T L Ofrr(Mry—)
3.48 UrmyIi1my dnf = Up Dy 2220 g
( ) /0 Lyrodk—1,19 n7—2 i:1\/0 Lyrodk—1,m9 8332 i, o

+ Z UL,’TQ Ik—l,Tg—éL/,Tg .

0<1o<T

We multiply (3.48) by PR/ -, sum it over all L' < L and obtain using
01 (1r,) [0 = U, =

(3.49) ZmL’,L,T/ UL o170 — dng
L'<L 0
d

- Z Z 9:{L/’Lﬂ—l;/ né_ez UL:TQIk—l,’Q— dni,ﬂ'z + CL,TJ
0

i=1 L/'<L

with C; as in (3.29). Summing (3.49) over all L € B,,+; and applying
Lemma 3.4 we find

d

-
Z Z r Z Z ~ }:

SRL’,L,T\/' UL,TQIk:—l,Tz— d777_2 - CJ,Z',T + OL,T‘

LEBp i1 L'<L 0 i=1 JEBy LEBp i1

Therefore, by (3.32),

>3 an

1
+III§§I+III.
i=1 JEBm,

Z CLT

LeBy,

Combining this and (3.47) we arrive at (3.45). [
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Here is the modification of Lemma 3.5 for the case when the inner integral
in (3.44) is driven by dr.

Lemma 3.6 If (5, < k' < l9,,1 for somen € N or 1 < k' < {; then

Z Z%J JT/O UJTQ(/ Woﬁlk/ 1,11 d7'1>d'r}7_2

JeBm J'<J

<—Dm/ ||I]€/_17 || d7—2+
\m' T 0 T2 |1 00

(3.50)

o0

1
— D! L ry—||oe D,
(m_1)| T /O”k’,z || 2

Proof. For any J € B,,, i € {1,...,d} we apply Corollary 3.1 with 2 =
{JeNg:J' < J}a=J, v, =n, =7 and

_ _ o~
U, =Ujry, Pn=Worly 17, FKar=1, FKar=Rris

As before
Z%a,rﬁa,r = Z 92(J’,J,T??;-]l =0

e J'<JT

Moreover, [v, ko] = 0. Therefore we estimate the left-hand side of (3.50) by
I+ II, where

I = Z ZmJ’JT/ U;IQIUJ,TQW()@Ik'—l,TQ dra||
JEBm J'<J o0
= > Z%J/JT/ AUz, X 17, / Wonlyorm dn|

JeBm J'<JT

Similar calculations to those in the proof of Lemma 3.3 give

t<ar Y 5 (X Bl s 1) [ ihesldn

JEBm J'<JT OsmisT
Dm [T
<miz / Vit o 2.
m! J,

From (3.37) and arguments similar to those of Lemma 3.3 we deduce

I mMm Z i (ZP}{J Jirl sup |17 )/ 1 Lk 7y — || 0o dUr,

JEBm J'<J OSmisT

pr-t
<M [ el o

Dm 1
<o | M lapn

Piecing together the above estimates completes the proof. [ |
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Now we are ready to prove Proposition 3.1.
Proof of Proposition 3.1. Without loss of generality we may assume that
to = 0. We define p;, | € Ny, recursively by po = 1 and for

n

n—1
L€ (Yn-1,7]) := (2(521 —lyiq + 1), Z(@z — lai1 + 1)} Y =0
i=1

=1

by

(3.51) Pt = Py 1 Qi—v_1s
where the g are defined by formula (A.3) in the appendix.

Recall that m = m(k), D, were defined at the beginning of this section.
Throughout this proof we suppress the argument in m(-) if the argument
is k, i.e. m = m(k). We split the proof into two steps.

Step 1. We show by induction that

(M7)k—m
(k —m)!
Clearly, (3.52) is true for k = 0. Assume that (3.52) holds for 0,...,k — 1.

Case 1. Uy, < k < lopqq forsomen € Nor 1 < k < /. Inthiscasen;, , =7
in the definition of Iy, and m(k) = m(k — 1). Therefore,

(MS)k 1-m
1 <M I M Dm—
il <0 [ icrallds <01 [ pmDP 20—

MH [
(k —m)! Lorllec

(3.52) [k rlloe < pmDT Horlloo: kN

ds [| 15[l

< pmDY

which is just (3.52).
Case 2. ly,—1 < k < {y, for some n € N; then 7, - is a semimartingale. For
m € N and 7 = ly,_1,...,k, we denote by

Z Z‘ﬁJ'JT/ Ursli_1s— dn;]"
JeBy, JI<T

Note that z;, = I+, and

T+1T:Z Z QJ“" Z;njl Z Z%J’J’r/ ULT2 P ng—drr]TQa
0

i=1 JeBg, LeBs 1 L'<L
where

QJ’LT - Z mJ/JT/ UJ7'2 (/ WzﬁIr lTlanTl) d7772
0

J'<J
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Applying Lemma 3.5 with the above @), ; we get
(8:53) 127} lloo <

Dm
e T N T / Vsl dDs 4 1225

If k > l5,_1 we obtain after the change of indices m = m+1, 7+1 =k —m,
m:O,]_,...,k?—an_l—]_,

(354) sz ”OO Hzm+72n+1) 7-”00 g ﬁm+1,‘r + ﬁm,ﬂ
where
(3.55) —1.5]lo0 dD.

Summing (3.54) over m = 0,..., (k — lo,—1 — 1), we get

k—fap_1—1
(356) Nzt lloe = 2 27 Moo < Bor + Bretonrr +2 D B

m=1

Set k' = f5,_1 — 1 and observe that f5,_ o < k' < f9,_1. An application of
Lemma 3.6 gives

Dk —lop—1+1

(3.57) ||ap ottt

-
lon—1,T ”00 = (k E |M/(; HI‘e2n71*2772H00d72+ﬁk*e2n—lﬂ"
-1 !

If k = {5,_1, the inequality (3.57) is obviously true by Lemma 3.6. Combin-
ing (3.56), (3.57) we arrive at

k—fan—1

M/ ||I€2n 1— 27'2Hood7—2+2 Z B,z

Dk £2n 1+1
(k — oy + 1)

(3.58) [lzk.rlloo <

Since
(3.59) mk—m—1)=m(k) —m —1, m=0,....k— Lo, 1,

we can use the induction hypothesis (3.52) and deduce from (3.55) for m =
0,1, k— Ly 1,

Dm T - (MS)k_m .
5m,7’ < |pm—m 1/O Ds 1mdD8 ||IO,T||00

Pt B2
(m—m)m! 7 (k—m) O

(3.60) <
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Since m(lo,—1 —2) = m(ly,—1 — 1) = m(k) — (k —l2,—1 + 1) we may use again
the induction hypothesis (3.52) to get

B0 M [ i ianl i

M k—m—1
< P (b—ton 1+1)Dm—(/’€ —lop— 1+1)M/ ST

Together (3.58), (3.60) and (3.61) show

D™ (Mr)k—m
3.62 b oo < Pri g
(3:62)  l2kylloo < Pm—th—tons41) (k—tlon1+ 1)l (k—m)!
k—fon_1

pm m— 1D (MT)’“ "

5700

Since m—(k—/{a,_1+1) = 7,1 it follows from (3.51), (3.59) with | = m—m—1
that

Pm—m—1 = Pyp_19(k—top_1+1)—m—1, m=0,...,k—lo_1.
From this and definition (A.3) in the appendix we find

k—fan—1 k—f2n—1

pm—(k—égn,rf—l) 2pmfm71 3Q(k—€2n71+1)—m—1
_EPwmomol
(k’ — ggn_l + 1)' + mz:() (m — m) m! S Py mz:(] ((k’ — €2n—1 + 1) — m) m!

(3.63) = Py 1 Qk—tsn_1+1 = Pms
where we used m > k — {5,_; + 1. Combining (3.62) and (3.63) we arrive
at (3.52).
Step 2. We are going to prove that
Pm (2D
(B —m)! ™ (Inln(k +1)) %

If 1 <k < then m(k) =0, pn = po = 1, and estimate (3.64) is clear.
From definition (3.51) we deduce

(3.64)

n—1

Pm = qk—fgn_1+1 H quj—ﬁgjfl-i-l for €2n—1 < k < EQTL
7j=1

and

pm - qu2j—£2j—1+1 for EQTL < k < 6271—}—1'
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From (A.4) we know

Pm 6\k 7—1

3.65 ——— < (2277,
(3.65) o < @)
where

m)! H (In{o; + 1}) Tj.

7=1

Here o = loj —lyj_1 +1, 7 =1,....n—1, and o, = k — l,1 + 1
for £2n 1 < k < ggn, ay = by, — o1 + 1 for fgn < k< €2n+1 Clearly
kE—m > n — 1. Using the estimate from Lemma A.3 with m = k — m gives

1 k.
(3.66) Z > > o (Inln(k + 1))16
and (3.65), (3.66) show (3.64). The proposition now follows from (3.52)
and (3.64). [

4. Boundary value problems for stochastic Hamilton
systems (diffeomorphism theorem)

We consider the following Hamiltonian system

dx = pdt
(4.1)
dp = IV (z) gt 8c(x)d§t’
ox ox

with initial condition (zg,po) € R?? at t = t,. We write
(X, P) = (X(t, to, w0, po), P(t, to, w9, po)) € R*

for its solution. The coefficients

ov Oc
Rd — € Rdxd

oz Oz
are derivatives of functions V : R — R! and ¢ = (¢,...,cq) : R — R4
which admit (at least) continuous partial derivatives up to order 3 such that

OV (z)] |0We(x)
4.2 <K |L|=2,3
(42 e 1|
and
Jc(x)

4.3 =0 v > K
(4.3 @0 vl

for some constant K > 1.
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The driving noise & = (&14,...,&q) 18 a d-dimensional Lévy process
such that
(44) [éj,gj]c:O, j:].,...,d,

i.e. it contains no Brownian component. The main result of this section is
the following.

Theorem 4.1 Under the assumptions (4.2)-(4.4), there exists a stopping
time T such that P(T > 0) =1 and for 0 <ty <t < T(w), o € RY,

(2) the system (4.1) has a solution (X,P),

0X or
0X

(4.6) = (t—to)Es+ O((t — t)?),

apo
where O(+) is uniform with respect to xo, po,
(22) the map
@ : Rd - Rdv Po — X(t,to,l‘o,po)
1s a diffeomorphism.
Remark. We can rewrite the system (4.1) in the following form
X(t ! !
(7)) = [vxenreas - [ e e
( ) to to

with coefficients

Vi = ( oV (2)/0 ) €RY aler) = ( 0 Be(eylde ) € R

and the (degenerate) Lévy noise

Ct:(g)eRQd'

Notice that V and ~ are globally Lipschitz continuous; Theorem 7 of
[Pro, pp. 197-198] guarantees existence and uniqueness of a solution

()},

Moreover, if the coefficients have globally Lipschitz continuous partial
derivatives up to order N + 2, then we may differentiate

()},

w.r.t. the initial conditions up to order N, cf. [Pro, p. 254, Theorem 40].
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For the proof of Theorem 4.1 we need the following auxiliary result.

Lemma 4.1 There exists a constant Ky = K1(K,d) such that for ty < a <
b<RAK;' (R is the stopping time from Lemma 2.1 and K is the constant
from (4.2)

)
b
/ P(r)] dr < 3|X(a) — X(B)| + K1(b — a),
where
(4.7) X(1) = X(7,to, 0, P0), P(7) = P(7,t9, %0, Po)-

Proof. Step 1. From the system (4.1) we find

pre) oy = [V g [

a ox x

Since X (t), OV (X(t))/0x and dc(X (t))/Ox are continuous BV-processes, we
find by integration by parts

@8) P@)—Pa)= LRy O
_ / (s — T)WP@) ds + / T PeX (‘22258 =) () ds.
Here p
(3’20()((2762 =S 0%ci(X W@ s~ 8ia) o paxa

=1
We know from Lemma 2.1 that

|£T_€a‘ X Qosup |£s X 22 sup |§zs ﬁt <1

<s<T 1 0<s<T

for 7 < R and so

(4.9) |P(T)|<|P(a)|+01+01/ |P(s)] ds,
where
62 820i
= e, s (o 5z +a 5] )v(valan] vl )

Integrating (4.9) we have for b < R

(4.10) /|P(7’)|d7’<|P(a)|(b—a)+01(b—a)+01//T|P(s)|dsd7'.
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Since for b —a < (3C;) ™!
b
// |P(s)|dsdt = C4y(b—a) |P \ds—C’l/(T—a)]P( )| dr
(4.11) < / |P(s)| ds,
we deduce from (4.10) that
b 3
(4.12) / |P(7)|dT < §(|P(a)| + Ch)(b—a).
Step 2. Similarly, we find from (4.8)
(4.13) |P(1) — P(a)| < C; + 01/ |P(s)]ds.
We integrate (4.13) to get
b T
/ |P(T) a)ldr < Ci(b—a) +C'1/ / |P(s)| dsdr
< Ci(b—a) / |P(s)|ds,

where we used (4.11) and so, by (4.12)

/\P @) dr < 3 (1P(a)] +3C))(b ~ )
Thus
/abP(T)dT > P(a)|(b - a) /yP 0)| dr
(4.14) > (|P( )| =3C1)(b—a).

Combining (4.12) and (4.14) we arrive at
b
/ P(r)] dr < 6C1(b—a) + 3

/abp(f)dT |

The assertion follows with K; = 6C. |
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Corollary 4.1 Let f : R = R, f € C! and
fP@) =0 if || >K
(K is the constant from (4.2)). Then for 0 <to <t < RAK;*
(4.15) Varg, 4 [(X () < Ko,
where Ko = Ko(K,d, f) is some constant.

Proof. Let B = {7 € [to,t] : | X(7)| < K}. If B =0 then the left-hand side
of (4.15) vanishes and the assertion of the corollary is clear. Otherwise we

set a = inf{r : 7 € B}, b=sup{r: 7 € B}.
Since the first derivative f() has compact support, supp f) c{z : |z| < K},

b
Vari, X)) = [ 170X () P(s) | ds
b
<sup (@) [ 1P| dr

zER? a

and (4.15) follows from Lemma 4.1. [
We introduce a new stopping time
T=RAK;",

where K, = max ng(K, d,0c;/0x;) and K, is defined in Corollary 4.1.

i5=1,...,

Proof of Theorem 4.1. Step 1. Since (X, P) can be differentiated with
respect to the initial data (xo,pg), we find that the matrix-valued process

o 9X.P) 0X/0xy 0X/0po
(0, po) OP/dxy OP/dp,

satisfies the formally differentiated system (4.1) (cf. also [Pro|, proof of
Theorem 39, p.250):

d
E, 0
(4.16) dG =Wy, Gdt+ Y W;,Gdsy, G|, =Go= ( 0 E, ) ,

=1

where E; € R%*? is the identity matrix and

(4.17) Wo,t:< ! Ed), Wj,t:< ’ 0).
0PV (X(t)/0z* 0O —d%c;(X(t))/0z* 0
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A solution of the system (4.16) can be given by the following (formal) series
expansion,

(4.18) G = Z G},
k=0

with Go = G‘t:to’

d t d t
G = Z/ W;-Godn;, and Gy = Z/ WirGr1dnjr (k€ N)
§=0 to 7=0 to

where 1. = Moy Mrs--sNar) = (7€, -+, &ar) Is a (d + 1)-dimensional
semimartingale.
Indeed, it is immediate that

d t
Z/ Wj,T(G0+G1+"'+Gk)d77j7T:G1+"'+Gk+1,
=0 “to

so (4.18) will give a solution of (4.16) whenever it converges uniformly (on
compact intervals) in ¢.
Since the terms of series (4.18) are k-fold integrals, we get

o d - ~ A A
(4.19) G = FEyg+ Z Z L. gt = Fag + 1oy + )

k=1 j1,j&=0 Axr A
where A;; € R4 are suitable (series of) block-matrices and

. t Tk — To—
(420) Ij17---7jk7t = [ ijﬁk (/ . (/t leﬂ'l d’f}j17ﬁ> e dnjk—lffk—l) dnjkﬂ'k‘
0 0

to
Because of the particular form of the W, ’s in (4.17), we know more about
the structure of A;; in (4.19). Let

J1=A01,---,Jk) - kK €N, noneof ji,...,J; equals to 0}
(i.e. all integrators in (4.20) are Lévy processes) and
Jo ={(j1,---,Jk) : k=2 at most one jy,...,J equals to 0}

(i.e. at most one dr integration happens). If (ji,...,75) € Ji, then the
iterated integrals have the form

~ 0 0
Ijl,m,jk,t = ( 0 ) s re RdXd

and if (ji,...,Jk) € Jo, they are of the form

T i 0 dxd
]jlv---vjkat = ( , T1,T21,722 €R .
21 Ta2
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Thus
(4.21) [A11loos [A22]loc < oo L
(J155dK) €T\ o
(4.22) [Ar2]lee < oo L

(J15-3K)ET\T2
where J = U {0,...,d}"

Step 2. Let us now verify the conditions needed in Proposition 3.1.
Lemma 2.1 and condition (4.4) imply that n, = (¢,&) satisfies (3.6) for
0<ty<t<R.

Condition (4.2) implies that for some constant K > 1

||Wj,tHOO<K7 jZO,,d
and, by (4.17), we find
Wj,TWi’T =0= Wi,TVVj,T 2,] = 1, L 7d.

Definition (3.8) (with M=2d) and formula (4.15) with f = (J¢;/0x;),
1,7 =1,....d, give

Dy < 2d*(Ky + 29, 4 20,,) < 2d*(Ky + 49,),
where 9, ¥, are given by formula (2.4), and Lemma 2.1 shows
(4.23) D, <2d*(Ky+4) =0(1), 0<to<t<T.
Step 3. For any
(424)  MF=MPxooox ME ME={1,.. . d} or MF={0}
an application of Proposition 3.1 to the matrices KW, € R*®¥2d 5 =

1,...,d, shows (note that Iy, = Es4 is the identity!)

< K*bp DM 2d(t — o)} ™,

o0

where by, are given by (3.11). One readily sees

Consequently, using the fact that the set {0,...,d}* is the disjoint union of
2 subsets of type (4.24), we find from (4.21)

)
o0

o0
| A11 | oo | A22]l0e < ZQk max
k=2

: : Ijl 77777 Jkst

(G150 dk ) EMPE

where the maximum is taken over all M* such that m < k — 1.
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Hence

(4.26) | Aulloos [A22lloo < D 25K (D + 2d(t — 1)) (2d) (¢ — to),
k=2

where we used that, by (4.25), m < k — 1, and so
DM2d(t — to) Y™ < (Dy + 2d(t — 1)) 1 (2d) (¢ — to).

Since the coefficients by, from (3.11) are rapidly decreasing, it is clear that
the series ®(x) = > o, 2"K*bz*~! converges for all © € R; by (4.23),
Oy (Dy +2d(t — tp)) = O(1). Then we deduce from (4.26) that

Similarly, using (4.22) and (4.25) we have

Azl <3 2°KF0u(Dy + 2d(t — t0))"2(2d)*(t — t)?

< (2:d)2<1>2(Dt +2d(t — to))(t — to)?
(4.28) = O((t—t)?),

where ®y(z) = Y 77, 2V K* by x*2.  Substituting estimates (4.27), (4.28)
into (4.19) we arrive at (4.5), (4.6).

Step 4. From (4.6), we conclude (using the implicit function theorem)
that the map ® : pg — X(t,p0) = X (t,to,x0,p0) is a local diffeomorphism.
Let us prove that it is injective. Since

Lox
X(t,pa) — X(t.pr) = / (4 7l — ) (52— 1)
0

we have

X (t,p2) — X(t,p1)]* = /01 /01 (P2 _pl)T<g—;Z(t,p1 + s(ps —pl))>T><

0X
X (a—(t,m + 7(p2 —p1))) (p2 — p1) drds
Po

(4.29) > C||p2 —p1|!2,

for some constant C' = C(t,ty) > 0. The last inequality comes from (4.6).
This shows that ® is injective and so @ : R — D(R?) C R? is a global
diffeomorphism. Since, by (4.29), @ is open and closed, then D(R?) C R?
is open and closed. As D(R?) # () we have D(R?) = R?. This finishes the
proof of Theorem 4.1. [ |
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We assume that for all multi-indices I € N4, 2 < |I| < g + 2 the partial
derivatives

(4.30)

ozl | =

oy
‘ oxl |

I
’a le;
)

are bounded and continuous.

Lemma 4.2 If the coefficients V', ¢; satisfy the above mentioned assump-
tions, we have for all 0 <ty <t <T

a‘ﬂX(t, th x(]?p())

(131) Dt t) g(p— )1,
(132) PRIt (st

where I € N¢, 2 < |I| < q and O(+) is uniform with respect to xo and po.

For notational convenience we set ¢y(X) = —V(X). Let us first prove a
technical lemma.

Lemma 4.3 Forr € N, iy,...,i, € {1,...,d}, i € {0....,d} and p,p,...,
>\7 L € Ng; |P|7 |/1“|7 RIS |L| < q, we deﬁne ZZ(T) = Zi,il,...,i,-,p,u,...,)\,L(7—) by

X, () ONX, (r) APl (X (7)) (OIH 9X
039z = g S e SO ()

where &2 (z) = (8%¢;(x)/02%) € R4 Then

d s
Z/zmmf
i=0 Y to

S S
<C/ 7‘../
to to

fortyg < s <T and some constant C' > 0.

oM p(r)
oply

oLl op

ONP(T)
oxL Opy

op)

dr /
to

Remark. By definition, Z;(7) is a continuous process, so we can write Z;(7)
instead of Z;(7—).

o0

Proof. The first equation in the system (4.1) implies

( )v (vrnny) < [
su V | Varp, —— | <
toSTI;s tos] apOJ to

for any J € Ng.

oM X (1)
opd

oM P(r)
op
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By (4.3), (0c/0x) =0 for |x| > K. An application of Corollary 4.1 with

f= (8|'° 01(2 (x )/Gx"’)nj, n,j = ,d, and condition (4. 30) imply
alpl (2 a\pl
o Vit

for some constant C; > 0 and all ] p| < K. Using the formula

42 r+2 r+2
sup H al(T)‘ V Varpy, 4 ( H al> < (r+2) H (tosigs lai (1) V Var[tO,S]al> :

EESAS =1 =1
where a; R — R, [ =1,...,r+ 2, we find

(4.34)  sup |Zi(7)| V ||Vary,.qZilleo
1o P(r) oM P(r) ot op

toT<S
<(T+2)C’1/ T / dT/ —
to apg to apé\ to axL 8p0 %)

Since X (7) is a continuous process, so is Z(7) and (4.34) shows that Z(7)
is a BV-process. Using integration by parts gives

T.

S

/ Zi(1)dnir = Zi($)0is — Zi(to)Nize — / Nir— dZ;(T),

to to

hence for s < T

(4.35) H/ ) dnis

< 2 sup |m,r| sup (| Zi(7)llee + sup |mi| [[Vary, o Zilloo-

to<T<S to<T<S to<T<S

<

~

Recall that 7; s is a Lévy process. Therefore by Lemma 2.1 we have

d
2> (sup |nisl) <0+t <2
i—0 to<T<S
for 0 <tp < s <T < R. Summing (4.35) over ¢ = 0,...,d, and using (4.34)
completes the proof. [ |

Proof of Lemma 4.2.

Step 1. Let us choose and (in this step) fix a sequence (ji,72,...) €
{1,...,d}N. Write

~0X(7) ~ 0P(7) B O Ay (1) B 1By (1)
A= g BT = Ty o An(T) = e A
Ao(7), Bo(T), A (7), B (7) € R¥*? where

JI(jla'-w.jm) and poz(p0,17-~-,p0,d)€Rd-
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From equation (4.16) we get

o a(30)- S (4 e

Differentiating (4.36) with respect to poj,,-..,Poj, we get the following
system of SDE’s

ama (50) - B (5) e i

i=0
Am<t0) - Bm(to) — O’
where me € R%*d i5 given by the following recurrence relation
~ ~ Wi [ Am- A i
Ao’iﬂ' =0, Am,i,‘r == ° 7 ( 1<T> ) u
05 \ Bus(r) ) O,

The interchange of stochastic and ordinary differentials (with respect to the
initial conditions) is possible since the coefficients of the system (4.36) are
smooth enough cf. Protter [Pro, p.245, Theorem 40]. Using (4.17) gives

m > 0.

(438) Avm,i,T = ( A O ) ) P = 07 cee 7d7 Am,i,‘r S RdXda
where

e (X Ay 1ir
(439) AO,i,‘r = 0, Am,i,‘r = MAmfl(T) + L mo LA m > 0.

AP0, jum
Recall that ¢\? (z) = (8%¢;(z)/822) € R%. From (4.39) we find by induction

mtl m+1—k ) o
k=2 pO,]m e va]k po,jk_l ]9()7]k_2 e poJl

A solution of (4.37) is given by the following (formal) series expansion

dpo Jm

(4.41) G = Z G
k=1
with

d t d t
Gy = — Z/t Amizo- iy, G = Z/t WirGerdnir k= 2.
i=0 * 'O i=0 "0

This can be seen as in the proof of Theorem 4.1 and (4.41) is a solution
of (4.37) whenever it converges uniformly (on compact intervals) in ¢.
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Thus

A (1)
(5 ) - z/ ERPIIS DD Dl

k=1 i1,...,i,=0

where

To— d - rm—
11, ikt T / 1Tk / Wilm ( E :/ Am,i,m— d77iﬁo>d77i1,n s dnikﬂ'k‘
to i=0 to

Since Wil,TAm,i,T =0 fori; =1,...,d, it follows that

I =0 for 4; >0,

1550k,

i.e. the first integration in f i iy 18 trivial, which means ¢, > 0. Therefore

[e%S) d

m
E E [il,...,’bk, z : : : : : U1 ymeeslst
k k=

=1 21,...,0=0 Li=011=1

Nm
: : ]ilz"'7ik7t

(Zlvvlk)eMk

where M* = MF x - x Mf, MY = {1,...,d} or M} = {0} for j > 1
and the maximum is taken over all M* such that M% = {0}. Also observe
that formula (3.10) still holds if Iy, is not a square M x M matrix, but
rectangular of the form lp; € RM*Y and any N € N. An application of
Proposition 3. 1 to the matrices K—'W,, € R 5 = 1 ... d, with

2dxd
z 0 ft ™M,i,T0— d77z 70 R *

Tm
> Il

(il,...,ik)GMk
where the b’s are given by (3.11). Thus for ¢t < T

[ Am ()0 v HB ()]l

Z / m,'L,’TO— dnl sTO
to

o0

o0
2% max

=1

Y
[e.o]

o

shows

< KFb.DM{2d(t — to)}’f*mufi

[e.9]

=0 00
d s
+Z2kKkkam{2d(t—t )™ sup / Ao d1iz,
=1 t0§s<t —0 to 00
d s
< sup / Appim || B(Ds + 2d(t — 1)),
t0<3<t i=0 to o

where ®(z) = 1+ Sore 28 K*bpa®, D, and by, are given by (3.8) and (3.11)
respectively.
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By (4.23), ®(D; + 2d(t — to)) < ®(2d?(Ks + 4) + 2d) = O(1) for t < T,
so we get from (4.38) arrive at

s Haﬂ&)(t) Hw :

S =B @ =0 sup ™| [ A i
Po to

to<s<t i—0

e}

Step 2. Now we apply induction in m to prove
(4_43) A, = O((t _ t0>m+2)7 B, = O((t — t0>m+1)
for any J € N{*, which is equivalent the assertion of the lemma.
Let us first check the claim for m = 1. From (4.40) we find
d 2
Z dc;”/ (X (7)) 0X;(r) 0X (1)

Al i“T
H (9.1’]' ap(]m 8p0

J=1

An application of Lemma 4.3 with r = 1, iy = j, p = e, p = e;, (see
definition (3.36)) and L = 0 shows

5 9.(2) s 2
22 B | (2]
By (4.5) we know ||0P/0py|sc = O(1). Hence

d s
tosgspgt; /to Ay dn;, . = O((t — t)?).

Combining this and (4.42) gives By = O((t — to)?). Using (4.1) we obtain
Ay = O((t — t9)?).

We now assume that (4.43) holds for 1,...,m — 1. From (4.40) we find
that A,, ;. is a linear combination of the Z;(7) = Z;;, i, pp..AL(T) given
by (4.33) with

(4.44) ol =r<m, ful+... +[A[+[L] =m.
By the induction assumption and by (4.5) we have HG‘”BO(T)/axL”OO =
O((t — to)!*) and

=O((t — to)qb(lul)), =O((t - t0)¢(w)),

‘ oM p(r)

(9"\|P(T)
ot L

app
where ¢ : N — N such that ¢(1) = 0, ¢(n) = n for all n > 1. (Note that the

choice of ¢ allows us to combine the formulae (4.5) and (4.32), which show
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different behaviour for |u| = 1 resp. |u| > 1.) An application of Lemma 4.3

shows
d s
(4.45) Z / Amir—dniz|| = O((t —10)7),
i=0 V1o 00
where

v=o(ul) +1+...+d(A)+1+ L]+ 1.
Since 1+ ¢(n) > n we conclude from (4.44) that
y=pl+. o F A+ +1=m+ 1.

Combining this, (4.45) and (4.42) we have B,, = O((t — to)™"'). The asser-
tion for A,, follows again from the first equation in (4.1). |

5. The method of stochastic characteristics

As before we denote by (X, P) = (X (¢, to, o, po), P(t, to, xo, po)) the solution
of the Hamilton system

oOH

de = — dt
0
51) gH %,
c
dp = oz dt — oz d&;,

with initial condition (zg,py) € R?? at t = ¢, where
H:RYx R R, c: R — R4
We shall say that H and c satisfy property (D1) if

There exists a stopping time 7" > 0 a.s. such that
(D1) for any 0 <ty <t < T, Vxy € R? the map

@1 : Rd —>Rd, Po l—>X(t,t0,£L'0,p0)

is a diffeomorphism.

Next we shall say that H, c and Sy : R? — R satisfy property (D2) if

There exists a stopping time 7" > 0 a.s. such that
(D2) for any 0 <ty <t < T the map

Dy RT— RE, 29— X(t, 1, 0, VSoy(0))

is a diffeomorphism.

Remark. In the literature on Burgers turbulence, the map ®, is called
Lagrangian function, and its inverse @, "' is called the inverse Lagrangian
function [Ber2].
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In the following statement we summarise the main results of the previous
section.

Theorem 5.1 Let Sy : R? — R be a twice differentiable function such that
0?Sy(x)
Ox?

H(x,p) = (1/2)p*> — V(x) and the conditions of the Theorem 4.1 hold.
Then (D1) and (D2) are satisfied.

(5.2) > A for some symmetric A € R Vo € RY,

Proof. Theorem 4.1 immediately implies (D1).
Using formulae (4.5), (4.6) we deduce from

OX (t,to, x0, VSo(x0))

6:50
_ 0X(t,ty, w0, po) OX (t,to, x0, VSo(z0)) 0°So(wo)
= + 5
(9330 po=V.So(x0) 8p0 8:1:0
that
0X (t,tg, xo, VS, 025
Oz oxg

and so there exist a constant C; > 0 such that

OX(t,t S 1
( ) Oag(;?v 0('170)) > §Ed for 0 < tO <t< T/\Cl
0

Therefore the map D, : xg — X (¢, to, o, V.So(z0)) is a local diffeomorphism.
Along the same lines as in the proof of Theorem 4.1 we conclude that O, is
a global diffeomorphism. [ |

Recall that the notations X (7), P(7) were introduced in (4.7). To each
pair (X(7), P(7)) of solutions of (5.1) there corresponds the action function
defined by the formula

(5.3) o(t, to, zo,po) :/t |:P(7‘)a);7(_7-) —H(X(T),P(T)):| dr —/ttC(X(T)) dé.

to 0

If (D1) holds, the inverse map py = po(t, to, z,zo) to D; exists, i.e.
(54) X(t,to,l‘o,po(t,to,ﬂf,l’o)) =x, t>1y, x€ Rn,
and we can define locally (for 0 <ty <t < T') the two-point function

(55) S(ta tOv z, ‘TO) = O-(tv th xOvpﬂ(ta th z, ZE()))
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Notation. We set

(56) p(t,to,fﬁ,l‘o) = P(t,to,l‘o,po(f,to,l‘,l‘g))

and

(57) LL’(T) = X(Ta to,%g,po(t,to,&:,xo)), p(T) = P(Tv to,l’o,pg(t,to,x,xo)).

FinaHY7 we put X(Ta anPO) = X<7—707:C07p0)7 P(Ta anp()) = P(T,O,.]ﬁo,po),

p0<7—7 07 x07p0> = p0<7—7 ‘TOJPO)J U<t7 x(]?p(]) = O-(ta 07 Io,po) and S(tv x, Io) =

S(t,0,x,x0). We will use this notation throughout the rest of this paper.
The following results (and their proofs) are stochastic versions of the well

known method of characteristics for solving the Hamilton-Jacobi equation
(see e.g. [K3]).

Theorem 5.2 Let H(x,p) and c(x) satisfy (D1). The function (t,x) —
S(t,to, x, ), as a function of the variables (t,x), satisfies the Hamilton-
Jacobi equation

(5.8) dS+H (:c, g—i) dt + c(z)dé =0
in the domain (to,T) x RY for the stopping time T with P(T > 0) = 1.
Moreover, we have

oS oS

5.9) —(t,t =p(t,t —(7,1 = —polt,t .
( ) a$(7 073:7560) p(a Oaxny)a 81‘0(’ O,IE,ZE()) p0(7 073:7560)

Proof. Without loss of generality we may assume that ¢y = 0.

Step 1. We start with the proof of the first relation in (5.9). This equality
can be rewritten as

oS
a—(ta X(ta l‘o,po), l’o) = P(ta 550,2?0)
X
which is, by (5.5),

do 8p0

(5.10) a—po(t,xovpo)%(@)((@%,po),ﬂ?o) = P(t,20,p0).

Due to (5.4),
) ). ¢

(5-11) (%(t,X(t,mo,po),xo)) = 8_}?0(75,9507170)-

It follows that the first equation in (5.9), using (5.10), has the form
Oo 0X

(512) a—po(tax(bp()) = P(t,l’o,po) a—p(](t’ x07p0)'
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Since X (t), 0X (t)/0Opo are continuous and of bounded variation, we get
from It0’s formula that
0X 0X 0X
(5.13) dP — = Pd— + — dP.
Ipo Opo dpo
The left-hand side of (5.12) can be expressed using (5.3). Together with (5.13)
we calculate that its Ito differential gives

) 0X de(X) 0X 00X
P _g)d— d¢, = Pd=—= + 2= dP.
o < ot ) Apo &= dpo | Opo

Notice that we need the fact that

0 ( Pei(X
6—290 / dé-T Z / 8p0 am §Z T

which is justified by a special case of Theorem 36.9 [M], p. 258. Since
by (4.1) dP = (0H/0x) dt + (0c/0x) d&;, we find

oP 09X X OHOX  OHOP . 09X dc
J2 YA g Y 7c
ape ot e M o M By ape U By B
X 0X (0H . dc
W)= P (S Sode )
(5.14) oot dpo (ax &)

As 0X /0t = P we find that (5.14) holds for all t < T'(w), and the first part
of (5.9) is established.

Step 2. Using (5.5) we get

95 _ 9o, 90 Ipolt,z, o)
8:60 N 8%0 apo al'o

and so, by (5.4), we rewrite the second formula in (5.9) as

do  Oo <0X)1 0X
= —Do-

1 _—— — (= —_—
(5 5) dro  Opo \ Opo Oxg

The relation

5o ([P0 257 - x| ar - ex o e, ) = . (P 257

o or

where a = xg or o = py, and definition (5.3) imply
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Using (5.16) and the fact that

0X (1) 0X (1)
8x0 7=0 8p0 7=0

gives (5.15).
Step 3. To prove (5.8), let us first rewrite it as
do
do(t,xo, po) + o dpo + H(z,p(t, xg, z))dt + c(z) d&§ = 0.
0

Because of (5.3) we find
0X

P(t7 x();pO)E(tv .T(),p()) dt — H(X(ta IO,pO), P(ta 'I()?p(])) dt

- C<X(t7 x()apO)) d&t +

9o

o dpo + H(x,p(t,x,x0)) dt + c(x) d& = 0.
0

By construction, X (7,zq,p0) = x, P(t,x0,po) = p and expressing do /dpg
by (5.12) gives

0X 0X
(5.17) P(t, xo,po)g(txo,po) dt + P(t,%,po)a—m(twoapo) dpy = 0.

Differentiating (5.4) with respect to ¢t we get

0X 0X
dX(tJ x07p0(t7 Zo, SE)) = E(u x()ap()) dt + 8—(t7 x07p0> de = 0.
Po

Thus (5.17) is always satisfied and (5.8) follows. [

Corollary 5.1 Under the assumption of the Theorem 5.2 we have for 0 <
to<t<T

82S<t7 t07 x, IO)

(5.18) (Eq+ O(t —tg)),

022 Tt
823<t,t0,$,l’0) _
(5.19) o iy (Eyg+ O(t — ty)),
82S<t,to,$,l‘0) N 1
(5.20) St =~ (Bat Ot~ to)),

where O(+) is uniform with respect to g, x.
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Proof. Assume again that ¢y = 0. From (5.9) and (5.11) we deduce the
equality

0?S(t,x,xg) OP 0X -1
A (¢ .
D2 8]?0( 7513071)0) apo( 7$07p0)
Now (4.5), (4.6) imply the first formula in Corollary 5.1. The same argument
can be used to prove the remaining formulae. [ |

Theorem 5.3 We assume that H(x,p), c(x) and So(x) satisfy conditions
(D1), (D2). Then for 0 <ty <t < T(w) the formula

t

(5.21) S(t,to,z) = 50(5170)+/ (ﬁ(T) df(T)—H(f(T),ﬁ(T))dT—C(f(T))dé})
to

(where the integral is taken along the trajectory (1) = X (7, to, xo, VS0 (0)),

p(7) = P(7,t0,x0, VSo(x0)) and x¢ = xo(t,t9,x) is the inverse map of Ds)

gives the unique classical solution of the Cauchy problem for the equation

oS
with initial function Sp(x). One can rewrite formula (5.21) in the equivalent
form

(5.23) S(t,to, ) = (So(wo) + S(t. to, x, 70)) |

xzo=xo(t,to,x)"

Proof. The definition of the two-point function (5.5) implies the equivalence
of (5.21) and (5.23). From the system (5.1) we see that X (t,to, zo,po) is
continuous in ¢ and, using the implicit function theorem, we obtain from (D2)
that zg = xo(t, to, ) is continuous in t. So, [z, 2] = 0 and [t6’s formula for
this equation gives

dt5<t, to, .fl?)
 USo(ao)diz(t to, 3) + Dol T 20) 4 O5(E Lo 2, 0)
at aiCO

_ 33(1&, to, Z, CL’()) dt
ot

In the last equality we used VSy(xo) = pp in conjunction with (5.9). From

Theorem 5.2 we know that

aS(ta tO? Z, *TO)
ot

dtxO (ta th l')

" 8S(t, to, xZ, .To)

dt = diS(t, to, x,x9) = —H ( , e ) dt — c(x) d&,,

and the theorem follows. [ |



MULTIPLE STOCHASTIC INTEGRALS AND HAMILTON-JACOBI EQUATIONS 375

Appendix
In the proof of Proposition 3.1 we used some technical estimates which are
not directly related to the arguments of Section 3.

Lemma A.1 Fory,...,y, =1 one has

RS ) (F (W + 1))

Proof. Since y; +---+y; > [ — 1 we easily see

n

+- + +i—1
(A1) [T+ +w) Hy1 g .

=1

We are going to prove by induction that

(A2) Hy1+ +yl+l—1/HHyl+s_1

1<i<n s=1
i >0

for some 41,...,%, > 0 such that i + --- + 4, = n. Indeed, for n = 1 we
take iy = 1. Assume that (A.2) is true for n — 1 and let B = min{y; +
i1y yYn1+n_1,Yn}t. Then

n n

> B.

If B=y,+1i, forsomel <r<n-—1wetake j, =1, +1, j, =i, for s £ r
and 7, = 0. Otherwise we put Jn=1 745 =15 s=1,...,n — 1. Then the
inequality (A.2) holds for (j1,..., /), and all n.

Combining (A.1) and (A.2) we get

|| + -+ y)l >—||F + ).
l:1(y1 y)T (wr) on 11 (yi + 1)

The Lemma follows since the Gamma-function is log-convex, cf. [A]. |

Lemma A.2 We define g, by the following recursion formula

k-1
3
(A.3) q =1, qr = ZO m Qk—m—1, ke N.
Then
26 k
(A.4) r < (2) , k € N.

ST

(In(k + 1))
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Proof. With ax; =3/[(l 4+ 1)(k — [ — 1)!] formula (A.3) reads

Clearly,

(A.5) qr = Z Gigiy -+ Qi1 in-

Notice that
3

n—1
( ) 0,21 n—1,tn g (ZS—H 4 l)F(zs o Zs—&—l)

Lemma A.1 implies that for by,...,b, > 1

n—1

I I'(n+1 b+ +0by "
r(bn>H<bl+---+bl>r<bl>>2—n—bl+<_'_+>b (r(— . +1)).
=1 n

If bl :Z'n,l —Z'n,lJrl, = 2,...,n, b1 :Z'n,1 —’in—i- 1, then
and it follows that

n—1

BF:H%—¢QIRg+1W@y—gHﬁ>ig&ktg(F<k+1+1))a

2 k+1 n

s=1

Recall that n < k — 1. Because of the inequalities T'(b+ 1) > b2 for b > 2,
ro+1)> 271b3 for 1 < b < 2 and n"Fkk > 27k (In(k + 1))* we have

n k
1 n2 k\? 1 1 1 k
B> — ) >— ("M > — (In(k+1))2.
r et (5) 2 o 00 > g (s )
Consequently, the right-hand side of (A.6) does not exceed 3"B~! and so
k(48)k
g < 2F max gy - - - Qi (48)

k=ip>...>i,=0 h (hl(k + 1))

where we used that the number of terms in (A.5) is equal to

S (5= i

I

NIk

n=1
Lemma A.3 For any m,k,aq,...,q, € N with
(A.7) o+ -+ o, +m =k, m>=n-—1

we have
(A.8)  {ln(eq + 1)}2 .. {In(a, + D} Fm! > 2% {In(In(k + 2))} 5.



MULTIPLE STOCHASTIC INTEGRALS AND HAMILTON-JACOBI EQUATIONS 377

Proof. Denote the left-hand side of (A.8) by I and observe that
I>(VIn2)" > 275

Since .
{In(In(k +2))}s <1 for k£ < 10,

(A.8) holds for k£ < 10. If £ > 10 we get from (A.7)

041+-~-+Ozn>k:—m
n T m+1

and so, using the log-convexity of f(z) = {In(z + 1)},

aj+-tan k=—m

2 k_ 2
12{1n(u+1)} m!>{1n —m+1)} ml
n m—+1

Applying Lemma A.4, completes the proof. [

Lemma A.4 For1<m <k, k>10, m,k € N one has

k+1 k.

(A.9) {m (Tﬂ) }k_m D(m+1) > 27" {In (In(k +2))} 7 .

Proof. We write I for the left-hand side of (A.9) and set g = (Ink)~'k.

Case 1. xg < m < k. We split the proof into three steps. Take xq < x < k,
x eR.

Step 1. Since (k+1)/(x +1) < k/z <Ink we get

k+1 k k
n <In|—-)<Ihnhlhk < — <z,
r+1 T Ink
and so

1 1 k1
A.10 “lnz>=In(l .
(A.10) 8nx>8n(n<x+1))

Step 2. Using the elementary inequality

1
In(1+a) > ab for 0<b<1 and O<a<g—1

witha = (k—z)/(x +1),b=1/(2Inz), and

k—z k- 1
Oca=""2 70 k-1 <2lnmy—1<2lma—1=-—1.
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we find that
k+1 — —
2Inz In + =2lnx In 1—|—k * >k 1:7
r+1 r+1 r+1
and therefore,
1 k—x 1 1
A1l —lnx > )
(A1) 17 TR mE) Ty

Step 3. Set

Clearly,

f’(m):—% ln(ln(k—i_l))—k_gv ! = +%(lnx+1).

z+1 8 ln(’;—i})x%—l

Adding (A.10) and (A.11) we see f'(x) > 0 and so

(A.12) I > exp{f(x)} > exp{f(x0)}.

Since (k + 1)(zo +1)7' > (3/4) Ink, we find

D=

k+1 3lnk 1
(A.13) n<x0+1) n( 1 ) 5 (Inln(k +2)) k> 10
and so

1 1 1
f(zo) = g(k—xo) (5 1n1n1n(k+2)—1)+§:1701nx0

k
(A.14) = 1—61nlnln(k+2)+Z,
where
2 1 Inlnln(k +2) 1 3 Inlnk _ 3 9lnlnk
2,1 LB L L TS
k 8 Ink +41nk:+4 In & 4 8 Ink 0 0

Combining (A.12) and (A.14) gives (A.9).

Case 2. Let 1 <z < (k/Ink). Using (A.13) we have

k—x 1
Er1\\ 2z (I-&%)
1> <1n ( i )) > (W) > 2% (InIn(k + 2))

z+1

INEN
oo|
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