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Application of accretive operators theory
to evolutive combined conduction,

convection and radiation

Maria Michaela Porzio and Óscar López-Pouso

Abstract
The accretive operators theory is employed for proving an exis-

tence theorem for the evolutive energy equations involving simultane-
ously conduction, stationary convection (in the sense that the velocity
field is assumed to be time independent), and radiation. In doing that
we need to use new existence results for elliptic linear problems with
mixed boundary conditions and irregular data.

1. Introduction

Radiation heat transfer may have a great importance in processes at high
temperatures. In those cases temperatures are affected by variations in the
intensity of radiation, which is the solution of a transfer equation like the
neutron transport equation, which also depends on the temperature. This
means that one has to solve a coupled system for the temperature (T ) and
the intensity (i). Transient solutions for the conduction-radiation problem,
i.e., when both conduction and radiation affect the evolution of tempera-
tures, are necessary to examine heat transfer and thermal stress behavior
for many practical applications. This includes “heat transfer in ceramic
components for high temperature use, thermal protection coatings, glass
forming for manufacturing, tempering of glass windows, glass envelopes for
high intensity lamps, porous burners and insulation systems, liquid-drop
and liquid-sheet space radiators, ceramic insulation for atmospheric reentry
of spacecraft, and some high temperature components in advanced aircraft
engines” [19].
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Existence results for the steady conduction-radiation problem have been
proved [11], [12], while the evolutive problem including only radiation has
been object of several studies [10], [16], [14] and references therein. Regard-
ing the evolutive convection-radiation problem, it has been proved to be
solvable when the velocity field is regular, steady and incompressible [14].
The result of existence given in this paper is, to the authors’ knowledge, the
first one for the evolutive problem including combined conduction, convec-
tion, and radiation.

The use of accretive operators theory in L1 spaces makes this work be the
natural continuation of Mercier’s paper [16]. The inclusion of convection and
conduction leads to the difficulty, pointed out in [14], of proving existence
and uniqueness in L1 for T +v ·∇T −∆T = T̂ , where T̂ is given in L1. This
is an interesting problem by itself. In the case of Dirichlet homogeneous
boundary conditions the existence of distributional solutions is proved in
[8], [9], [2], [3] and in [4]. In the general case of mixed boundary conditions,
the existence of weak solutions was not proved even with regular data (that
is T̂ ∈ L2(Ω)). Moreover, for what concerns uniqueness results, in [3] (see
also [5]) it is also proved that the solution of the homogeneous Dirichlet
problem that the authors have constructed satisfies some further regularity
conditions (i.e., it is a renormalized solution) and that there is uniqueness in
the set of the renormalized solutions. Unfortunately this is insufficient for us
because what we need is uniqueness in W1,1(Ω). Anyway we have solved this
problem in [15] under (also nonhomogeneous) Dirichlet boundary conditions
or under suitable boundary mixed conditions (see subsection 4.1.2 below).

The paper is organized as follows. In Section 2 we present the equations,
under the name the convection-conduction-radiation problem. Section 3 con-
tains the statement of the main theorem (Theorem 3.1), and Section 4 is
devoted to its proof. The paper ends with the conclusions in Section 5, and
the proofs of some technical lemmas in Section 6 (Appendix).

2. The mathematical model

2.1. Notations

• a: absorption coefficient [units: 1/m].

• c: speed of light in the medium [m/s].

• cv: specific heat at constant volume [J/(kg K)].

• dω: surface measure on the unit sphere S2.

• F : internal heat source [W/m3].
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• i: intensity of radiation [J/(m2sr)] (here sr stands for steradian, the
unit of solid angle).

• ib: intensity of radiation emitted from a blackbody [J/(m2 sr)]. The
function ib obeys Planck’s law:

(2.1) ib(ν, T ) =
2hn2ν3

c2
0(e

hν/kT − 1)

for a frequency ν and a temperature T , where h = 6.6262 × 10−34

[J · s] is Planck’s constant, k = 1.3806 × 10−23 [J/K] is Boltzmann’s
constant, n is the refractive index of the medium and c0 = 2.9979×108

[m/s] is the speed of light in the vacuum.

• k̄: thermal conductivity [W/(m K)].

• qc: conductive flux vector [W/m2].

• qr: radiant flux vector [W/m2].

• T : temperature [K].

• v: velocity field [m/s].

• ρ: density [kg/m3].

• σs: scattering coefficient [1/m].

• φ: scattering phase function [dimensionless]. This function must sat-
isfy the equality

(2.2)

∫
S2

φ(ω�,ω) dω = 4π ∀ω� ∈ S2.

2.2. Mathematical model

Let us consider a bounded, open and connected set Ω ⊂ R
3 with regular C∞-

boundary Γ, and a bounded time interval (0, τ). Let us call Q = Ω × (0, τ)
and Σ = (0,∞) × Ω × S2 × (0, τ). For the sake of brevity, we will use the
notation i(ω) = i(ν,x,ω, t).

A gas is called participating when it scatters, absorbs, and emits thermal
radiation. The following system models the thermal evolution of a partici-
pating incompressible gas with given velocity field v [6], [17], which is being
heated by an internal source F (x, t):

ρcv

(∂T

∂t
+ v · ∇xT

)
+ ∇x · (qr + qc) = F in Q.(2.3)

1

c

∂i

∂t
+ ω · ∇xi + a(i − ib) = L(i) in Σ,(2.4)

where

L(i) =
σs

4π

∫
S2

[φ(ω�,ω)i(ω�) − φ(ω,ω�)i(ω)] dω�.
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The conductive flux vector is given by Fourier’s law:

(2.5) qc = −k̄∇xT,

and the radiant flux vector is given by

(2.6) qr =

∫ ∞

0

∫
S2

iω dωdν.

If the transient term (1/c)(∂i/∂t) is removed, then (2.4) and (2.6) imply,

formally,

(2.7) ∇x · qr =

∫ ∞

0

∫
S2

a(ib − i) dωdν.

Thus, we have the following system, which is expected to be a good model

in case that (1/c)(∂i/∂t) is negligible (this is really the case in many appli-
cations [17], not in astrophysics neither in short pulsar lasers):

ρcv

(
∂T

∂t
+ v · ∇xT

)
− k̄∆xT +

∫ ∞

0

∫
S2

a(ib − i) dωdν = F in Q.(2.8)

1

c

∂i

∂t
+ ω · ∇xi + a(i − ib) = L(i) in Σ.(2.9)

The system (2.8)-(2.9) has been proved to be solvable in the purely ra-
diant case (v ≡ 0, k̄ = 0) [16], [13], [14], and in the convective-radiative
case (k̄ = 0) [14]. Here we assume that conduction is always present to-
gether with radiation, but the convective term may appear or not; in other
words, k̄ is strictly positive but v may be 0. We will call this problem, to-
gether with the initial and boundary conditions, the convection-conduction-
radiation problem.

2.2.1. Initial Conditions

We require that

T (x, 0) = T0(x) in Ω,(2.10)

i(ν,x,ω, 0) = i0(ν,x,ω) in (0,∞) × Ω × S2.(2.11)

2.2.2. Boundary Conditions (from now on, b.c.)

Recall that Γ is the boundary of Ω. We use the notations:

• Din = {(x,ω) ∈ Γ × S2 : n(x) · ω < 0}, where n(x) is the outward
unit normal at x ∈ Γ.

• Γ1 is a measurable subset of Γ.

• Γ−
v = {x ∈ Γ : n(x) · v(x) < 0}.
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For i the b.c. is

(2.12) i|(0,∞)×Din×(0,τ)(ν,x,ω, t) = h̄(ν,x,ω),

which means that the inflow of radiant intensity is known and independent
of t.

For T we consider the mixed b.c.

T|Γ1×(0,τ)(x, t) = ḡ(x),(2.13)

(∇xT · n)|(Γ\Γ1)×(0,τ)(x, t) = 0,(2.14)

where Γ1 is such that Γ−
v ⊆ Γ1.

Remark 2.1 Note that the Dirichlet b.c. T|Γ×(0,τ) = ḡ is obtained for the
choice Γ1 = Γ in the mixed b.c. (2.13)-(2.14). Moreover, if v · n ≥ 0 on Γ
(in particular if v ≡ 0, which corresponds to the case of a motionless gas),
Γ1 may be an arbitrary measurable subset of Γ; in that case, the mixed b.c.
(2.13)-(2.14) with the choice Γ1 = ∅ becomes homogeneous Neumann b.c.

3. Main result

The density ρ, the specific heat cv and the conductivity k̄ are assumed to
be constant and positive. The velocity field v is assumed to be independent
of t, and with regularity

(3.1) v ∈ (W1,∞(Ω))3, divv = 0.

We assume also the following dependences: a = a(ν, T (x, t)), σs = σs(ν,x),
being the second one different from the first only due to technical reasons.
Lastly, let us assume that

(3.2)

F ∈ L∞(Ω × [0, τ ]);

σs and φ are measurable, essentially bounded and nonnegative;

φ is symmetric, i.e., φ(ω,ω�) = φ(ω�,ω);

T0 ∈ L1(Ω); i0 ∈ L1((0,∞) × Ω × S2);

h̄ ∈ L1((0,∞) × Din, |ω · n|dνdγdω);

with ḡ we denote both ψ|Γ1
or ψ|Γ, where ψ ∈ D(Ω̄);

and that, for certain real numbers m and M with 0 < m < M ,

(3.3) a|(0,∞)×[m,M ] is continuous

and there exist positive constants C1 and C2 such that

(3.4)
0 ≤ a(ν, T ) ≤ C1, ∀(ν, T ) ∈ (0,∞) × [m,M ];

|a(ν, T1) − a(ν, T2)| ≤ C2|T1 − T2|, ∀(ν, Ti) ∈ (0,∞) × [m,M ].
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Let us set

X = L1(Ω) × L1((0,∞) × Ω × S2),

‖(T, i)‖X = ‖T‖L1(Ω) + ‖i‖L1((0,∞)×Ω×S2),

f =
F

ρcv

, and

‖f‖∞ = ‖f‖L∞(Ω×[0,τ ]).

Then we have the following theorem, where the concept of solution is
weak in the sense of the nonlinear semigroup theory (mild solution in [1]
and [7], C0-solution in [18]).

Theorem 3.1 Under the previous hypotheses, the convection-conduction-
radiation problem has a unique solution {T, i} ∈ C([0, τ ];X) satisfying

m ≤ T ≤ M and ib(ν,m) ≤ i ≤ ib(ν,M),

provided that

• m + τ‖f‖∞ ≤ T0 ≤ M − τ‖f‖∞ a.e. in Ω,

• m + τ‖f‖∞ ≤ ḡ ≤ M − τ‖f‖∞ a.e. on Γ1,

• ib(ν,m + τ‖f‖∞) ≤ i0 ≤ ib(ν,M − τ‖f‖∞) a.e. in (0,∞) × Ω × S2,

• ib(ν,m + τ‖f‖∞) ≤ h̄ ≤ ib(ν,M − τ‖f‖∞) a.e. in (0,∞) × Din.

Remark 3.1 The assumption divv = 0 in Theorem 3.1 can be weakened
in the hypothesis divv ≤ 0, although it is not clear the physical meaning of
divv < 0 in the energy equation (2.3).

Remark 3.2 Theorem 3.1 is valid in the particular case of the conduction-
radiation problem, which corresponds to the choice v ≡ 0, for the problem
with no internal heating (f ≡ 0), and for the combination of both of them.

Remark 3.3 When f ≡ 0, the solution exists in the time interval [0,∞).

Remark 3.4 When the internal heat source F is nonnegative (f nonnega-
tive) then the same result holds if we replace m+τ‖f‖∞ by m. This fact has
the physical explanation that the temperature can only increase with time,
and not decrease, due to the effect of a nonnegative heat source.
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4. Application of the accretive operators theory

The basic result that we use is a perturbed version of Crandall-Liggett gen-
eration theorem [1], [7], [18], which states that, if X is a Banach space, the
initial value problem (du/dt)+Au+Bu = f̄ , u(0) = u0, has a unique (mild)
solution provided that A : D(A) ⊂ X → X is m-accretive, B : X → X is
Lipschitz, f̄ ∈ L1(0, τ ;X), and u0 ∈ D(A).

We can write the problem (2.8)-(2.11) in the abstract form

(4.1)
du

dt
+ Au + Bu = f̄ , u(0) = {T0, i0},

where u = {T, i}, f̄ = {f, 0}, and the operators A and B are defined as
follows:

Au = {v · ∇T − k̄

ρcv

∆T, c ω · ∇xi − c L(i)}.(4.2)

Bu = {− 1

ρcv

∫ ∞

0

∫
S2

q(u) dνdω, c q(u)},(4.3)

with

(4.4) q(u)(ν,x,ω) = a(ν, T (x))[i(ν,x,ω) − ib(ν, T (x))]

and

(4.5) X = L1(Ω) × L1((0,∞) × Ω × S2).

The domain of A is

D(A) = {u = {T, i} ∈ X : ω · ∇xi ∈ L1((0,∞) × Ω × S2),(4.6)

T ∈ W1,1(Ω), ∆T ∈ L1(Ω), i and T satisfy the b.c.}.

The proof of the following lemma is given in the appendix.

Lemma 4.1 D(A) is dense in X.

Lemma 4.1 guarantees that the initial condition {T0, i0} can be chosen
an arbitrary element of X.

When Γ\Γ1 
= ∅, we have to give sense to the b.c.

(4.7) ∇T · n = 0 on Γ\Γ1.

This is done in the following definition.
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Definition 4.1 Given T ∈ W1,1(Ω) such that ∆T ∈ L1(Ω), we say that T
satisfies the b.c. (4.7) if

(4.8)

∫
Ω

∆Tϕ dx = −
∫

Ω

∇T · ∇ϕ dx

for all ϕ ∈ H1(Ω) ∩ W1,∞(Ω) such that ϕ|Γ1
= 0.

Remark 4.1 Note that, if T ∈ W2,1(Ω), (4.8) implies∫
Γ\Γ1

(∇T · n)ϕ dγ = 0

for all ϕ ∈ H1(Ω) ∩ W1,∞(Ω) such that ϕ|Γ1 = 0.

The operator B is not well defined from X into X; instead, we consider
a “truncation” BM

m which is well defined and Lipschitz, if the hypotheses
described in Section 3 are fulfilled. Before defining BM

m , we need some other
definitions. Recall that m and M are two real numbers such that 0 < m < M .
In the following definition ζ may be a or ib:

(4.9) ΘM
m (ζ)(ν, T ) =




0 if T < 0

(ζ(ν,m)/m)T if 0 ≤ T < m

ζ(ν, T ) if m ≤ T ≤ M

ζ(ν,M) if T > M.

Remark 4.2 Since m > 0, ΘM
m (a) maintains us away from the singularity

of the absorption coefficient a at T = 0 [10].

Let us define also

(4.10) ϕM (i)(ν,x,ω) =




0 if i(ν,x,ω) < 0

i(ν,x,ω) if 0 ≤ i(ν,x,ω) ≤ ib(ν,M)

ib(ν,M) if i(ν,x,ω) > ib(ν,M).

Now BM
m is given, for all u ∈ X, by

(4.11) BM
m u = {− 1

ρcv

∫ ∞

0

∫
S2

qM
m (u) dωdν, c qM

m (u)},

where

(4.12) qM
m (u)(ν,x,ω) = ΘM

m (a)(ν, T (x))[ϕM (i)(ν,x,ω)−ΘM
m (ib)(ν, T (x))].

Clearly, it results BM
m u = Bu whenever

m ≤ T ≤ M and 0 ≤ i ≤ ib(ν,M).
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Let us call the truncated problem the one obtained by replacing in (4.1)
B by BM

m . The plan of the paper is the following:

(1) Prove that A is m-accretive (that is, accretive and R(I + λA) = X for
λ > 0, where R(I + λA) is the range of I + λA).

(2) Prove that BM
m is Lipschitz.

(3) Give conditions on the initial and boundary data in order that the
unique solution of the truncated problem satisfies m ≤ T ≤ M and
ib(ν,m) ≤ i ≤ ib(ν,M), which implies that it is also solution of (4.1).

Once we know the results in [16], basically we have to deal only with the
convective and conductive terms (see also [14]).

In what concerns the proof of accretivity, some integral estimates are
needed, the proofs of which are given in this paper; the key for proving that
R(I + λA) = X for λ > 0 is the existence (uniqueness is always guaranteed
by the accretivity) for the elliptic linear problem

(4.13) T + λv · ∇T − λC∆T = T̂ ,

with mixed (T = ḡ on Γ1, ∇T · n = 0 on Γ\Γ1) b.c., where C is a positive
constant and T̂ ∈ L1(Ω); we have proved in [15] that this result holds.
Item (2) is known from [14]. To solve item (3) we adapt the techniques
of [16] and use analogous arguments to those used to prove accretivity.

4.1. m-accretivity of A

Recall the definition of the sign function:

(4.14) sgn(t) =




−1 if t < 0
0 if t = 0
1 if t > 0.

4.1.1. Accretivity

The operator A is accretive if, and only if, the following inequality is satisfied
for all {T, i} and {T̂ , ı̂} in D(A):∫

Ω

[v · ∇(T − T̂ ) − k̄

ρcv

∆(T − T̂ )] sgn(T − T̂ ) dx+(4.15) ∫
{T=T̂}

|v · ∇(T − T̂ ) − k̄

ρcv

∆(T − T̂ )| dx+∫ ∞

0

∫
Ω

∫
S2

[c ω · ∇x(i − ı̂) − c L(i − ı̂)] sgn(i − ı̂) dωdxdν +∫
{i=ı̂}

|c ω · ∇x(i − ı̂) − c L(i − ı̂)| dωdxdν ≥ 0.
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In fact, we show that every term in the sum in nonnegative. Obviously, the
second and fourth integrals are nonnegative. Moreover, we know from [16]
that the third one is nonnegative. To prove that the first one is nonnegative
note that, since divv = 0,

∫
Ω

v · ∇(T − T̂ ) sgn(T − T̂ ) dx =

∫
Ω

v · ∇(|T − T̂ |) dx

=

∫
Γ

|T − T̂ | v · n dγ =

∫
Γ\Γ1

|T − T̂ | v · n dγ ≥ 0,

where we have used the facts that T = T̂ = ḡ on Γ1 and that Γ−
v ⊆ Γ1.

The proof of the accretivity of A ends by proving that

(4.16) −
∫

Ω

∆(T − T̂ ) sgn(T − T̂ ) dx ≥ 0,

which is a consequence of the following lemma, the proof of which is given
in the appendix.

Lemma 4.2 Let us take β ∈ C1(R)∩L∞(R) such that β(0) = 0 and β ′ ≥ 0,
and let Γ1 be an arbitrary measurable subset of Γ. Then, for all T ∈ W1,1(Ω)
such that ∆T ∈ L1(Ω), T = 0 on Γ1 and ∇T · n = 0 on Γ\Γ1 (in the sense
of Definition 4.1),

(4.17) −
∫

Ω

∆Tβ(T ) dx ≥ 0.

Now (4.16) holds in virtue of the following corollary.

Corollary 4.1 Let Γ1 and T be as in the Lemma 4.2. Then

(4.18) −
∫

Ω

∆T sgn(T ) dx ≥ 0.

Proof. Let us consider {βn} ⊂ C1(R)∩L∞(R) such that {βn} → sgn point-
wise, βn(0) = 0, β ′

n ≥ 0 and ‖βn‖L∞(R) ≤ C for all n, with C independent
of n. According to Lemma 4.2,

(4.19) −
∫

Ω

∆T βn(T ) dx ≥ 0,

and the result follows by taking the limit as n → ∞. �
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4.1.2. m-accretivity

The m-accretivity means, first, accretivity, and, second, that if

(4.20) û = {T̂ , ı̂} ∈ X and λ > 0,

then the problem u + λAu = û has some solution u ∈ D(A) (this solu-
tion is necessarily unique in virtue of accretivity). Since the operator A is
m-accretive when v ≡ 0 and k̄ = 0 [16], it suffices to prove that, for T̂ given
in L1(Ω) and λ > 0, the problem

(4.21) T + λv · ∇T − λ
k̄

ρcv

∆T = T̂

has a unique distributional solution T ∈ W1,1(Ω) with the mixed b.c.

T = ḡ on Γ1,(4.22)

∇T · n = 0 on Γ\Γ1,(4.23)

where Γ1 is a measurable subset of Γ. This is indeed the case, and the reader
can find the proof in [15, Theorem 2.3].

4.2. Boundedness of the solution of the truncated problem

The functions s± : R → R are defined by:

(4.24) s+ (t) =

{
1 if t > 0
0 if t ≤ 0,

s− (t) =

{ −1 if t < 0
0 if t ≥ 0.

If H is a real function, set H± = H · s± (H).

We assume that the hypotheses described in Section 3 are satisfied. Recall
that f = F/(ρcv) and f̄ = {f, 0}. Let u = {T, i} ∈ C0([0, τ ];X) be the
unique (mild) solution of the truncated problem.

We can choose [1], [13, Lemma 2.2.2] a family of partitions of [0, τ ]

(4.25) 0 = tn0 < · · · < tn
P (n) = τ (n ∈ N)

and a family of finite sequences in X

(4.26) f̄n
1 = {fn

1 , 0}, . . . , f̄n
P (n) = {fn

P (n), 0}
such that

(4.27) lim
n→∞

max
1≤j≤P (n)

λn
j = lim

n→∞
‖f̄ − f̄n‖L1(0,τ ;X) = 0,

where λn
j = tnj − tnj−1 and f̄n(t) = f̄n

j ∀t ∈ (tnj−1, t
n
j ], for j = 1, . . . , P (n).
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Set un
0 = {T n

0 , in0} = u0 = {T0, i0} ∀n ∈ N, and let un
j = {T n

j , inj } be the
unique solution of

(4.28)
un

j − un
j−1

λn
j

+ Aun
j + BM

m un
j = f̄n

j ,

for j = 1, . . . , P (n).

Then u is the uniform limit on [0, τ ] of the sequence {un}, piecewise
defined as follows:

un(0) = u0,(4.29)

un(t) = un
j if t ∈ (tnj−1, t

n
j ].(4.30)

Remark 4.3 Since A is m-accretive and BM
m is Lipschitz with domain X,

the problem (4.28) has a unique solution in D(A) for small values of λn
j , to

be precise for 0 < λn
j < 1/M�, where M� is a Lipschitz constant for BM

m .
See [14, Theorem 2.3]; a proof can be done by using the Banach fixed point
theorem.

At this point it must be clear that it results

(4.31) m ≤ T ≤ M and ib(ν,m) ≤ i ≤ ib(ν,M)

if, for every n ∈ N,

(4.32) m ≤ T n
j (x) ≤ M and ib(ν,m) ≤ inj (ν,x,ω) ≤ ib(ν,M)

∀j ∈ {0, 1, . . . , P (n)}. We need the following lemma to obtain bounds for
the stationary problem (4.28).

Lemma 4.3 Let us take: f � ∈ L1(Ω), M� a Lipschitz constant for BM
m ,

λ ∈ R such that 0 < λ < 1/M�, and û = {T̂ , ı̂} ∈ X. Let u = {T, i} ∈ D(A)
be the unique solution of

u + λ(Au + BM
m u) = û + {λf �, 0}.

If N ′ and N are constants such that m ≤ N ′ ≤ N ≤ M , then

N ′ ≤ T ≤ N a.e. in Ω,(4.33)

ib(ν,N
′) ≤ i ≤ ib(ν,N) a.e. in (0,∞) × Ω × S2(4.34)

provided that

• N ′ ≤ T̂ + λf � ≤ N a.e. in Ω,

• N ′ ≤ ḡ ≤ N a.e. on Γ1,

• ib(ν,N
′) ≤ ı̂ ≤ ib(ν,N) a.e. in (0,∞) × Ω × S2, and

• ib(ν,N
′) ≤ h̄ ≤ ib(ν,N) a.e. in (0,∞) × Din.
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Proof. We prove T ≤ N and i ≤ ib(N), and what is left can be proved
analogously. In this proof we use the shortened notation ib(N) = ib(ν,N).
From the equation u + λ(Au + BM

m u) = û + {λf �, 0} it follows

(4.35) ρcv‖(T − N)+‖L1(Ω) +
1

c
‖(i − ib(N))+‖L1((0,∞)×Ω×S2)+

+ λ

∫
Ω

ρcvv · ∇(T − N) s+ (T − N) dx

+ λ

∫ ∞

0

∫
Ω

∫
S2

ω · ∇xi s+ (i − ib(N)) dωdxdν

+ λ

∫ ∞

0

∫
Ω

∫
S2

ΘM
m (a)[ΘM

m (ib) − ib(N)][ s+ (T−N) − s+ (i − ib(N))] dωdxdν

+ λ

∫ ∞

0

∫
Ω

∫
S2

ΘM
m (a)[ϕM (i) − ib(N)][ s+ (i − ib(N)) − s+ (T−N)] dωdxdν

=

∫
Ω

ρcv(T̂ + λf ∗ − N) s+ (T − M) dx

+
1

c

∫ ∞

0

∫
Ω

∫
S2

(̂ı − ib(N)) s+ (i − ib(N)) dωdxdν

+ λ

∫
Ω

k̄∆T s+ (T − N) dx + λ

∫ ∞

0

∫
Ω

∫
S2

L(i) s+ (i − ib(N)) dωdxdν.

The idea is to prove that all the terms in the left-hand side are nonnegative
and all the terms in the right-hand side are nonpositive, since this implies

(4.36) ρcv‖(T − N)+‖ + (1/c)‖(i − ib(N))+‖ ≤ 0,

as desired. Taking into account that the case with v ≡ 0 and k̄ = 0 has
already be studied [16], [13] and [14], it suffices to prove

(4.37)

∫
Ω

v · ∇(T − N) s+ (T − N) dx ≥ 0

and

(4.38) −
∫

Ω

∆T s+ (T − N) dx ≥ 0.

The proof becomes now similar to that of accretivity: since divv = 0,∫
Ω

v · ∇(T − N) s+ (T − N) dx =

∫
Γ

(T − N)+v · n dγ

=

∫
Γ\Γ1

(T − N)+v · n dγ ≥ 0,(4.39)

where we have taken into account that T = ḡ ≤ N on Γ1 and that Γ−
v ⊆ Γ1.
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The inequality (4.38) is a consequence of the following lemma, the proof
of which is given in the appendix.

Lemma 4.4 Let Γ1 be an arbitrary measurable subset of Γ, and let us sup-
pose that g is such that g = ψ|Γ1

for certain ψ ∈ D(Ω̄) and that g ≤ 0 on Γ1.
Let us take β ∈ C1(R)∩L∞(R) such that β(s) = 0 ∀s ≤ 0 and β ′ ≥ 0. Then,
for all T ∈ W1,1(Ω) such that ∆T ∈ L1(Ω), T = g on Γ1 and ∇T · n = 0 on
Γ\Γ1 (in the sense of Definition 4.1),

(4.40) −
∫

Ω

∆Tβ(T ) dx ≥ 0.

Now (4.38) holds in virtue of the following corollary, since

(4.41) ∆T = ∆(T − N),

and T − N = ḡ − N ≤ 0 on Γ1.

Corollary 4.2 Let Γ1, g and T be as in the Lemma 4.4. Then

(4.42) −
∫

Ω

∆T s+ (T ) dx ≥ 0.

The proof of the Corollary 4.2 follows closely the arguments used to prove
Corollary 4.1. This ends the proof of Lemma 4.3. �

Finally, the following theorem gives Theorem 3.1 simply by taking N ′=m
and N = M . Note that a new restriction arises for m and M , since they
must satisfy m + 2τ‖f‖∞ ≤ M . Recall that ‖f‖∞ = ‖f‖L∞(Ω×[0,τ ]).

Theorem 4.1 Let N ′ and N be constants such that

(4.43) m ≤ N ′, N ′ + τ‖f‖∞ ≤ N − τ‖f‖∞, and N ≤ M.

Let u = {T, i} be the solution of the truncated problem. Then u satisfies

N ′ ≤ T ≤ N a.e. in Ω,(4.44)
ib(ν,N

′) ≤ i ≤ ib(ν,N) a.e. in (0,∞) × Ω × S2(4.45)

for all t ∈ [0, τ ], provided that

• N ′ + τ‖f‖∞ ≤ T0 ≤ N − τ‖f‖∞ a.e. in Ω,

• N ′ + τ‖f‖∞ ≤ ḡ ≤ N − τ‖f‖∞ a.e. on Γ1,

• ib(ν,N
′ + τ‖f‖∞) ≤ i0 ≤ ib(ν,N − τ‖f‖∞) a.e. in (0,∞) × Ω × S2,

• ib(ν,N
′ + τ‖f‖∞) ≤ h̄ ≤ ib(ν,N − τ‖f‖∞) a.e. in (0,∞) × Din.
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Proof. In this proof ‖f‖ is ‖f‖∞. By previous discussion it suffices to
prove (4.32) replacing m and M by N ′ and N , respectively. Note that

(4.46) N ′ + τ‖f‖ ≤ T n
0 = T0 ≤ N − τ‖f‖

and

(4.47) ib(ν,N
′ + τ‖f‖) ≤ in0 = i0 ≤ ib(ν,N − τ‖f‖).

By succesive application of Lemma 4.3 for j = 1, . . . , P (n) we obtain

N ′ + (τ −
j∑

α=1

λn
α)‖f‖ ≤ T n

j ≤ N − (τ −
j∑

α=1

λn
α)‖f‖,(4.48)

ib(ν,N
′ + (τ −

j∑
α=1

λn
α)‖f‖) ≤ inj ≤ ib(ν,N − (τ −

j∑
α=1

λn
α)‖f‖),(4.49)

which proves (4.32), since ib(ν, ·) is increasing and
∑P (n)

α=1 λn
α = τ . �

5. Conclusions

We have proved solvability of the transient radiative transfer equations for a
participating and incompressible gas in the presence of conduction and the
possible presence of convection. There are some clear limits in this work,
perhaps the more important one is that the velocity field and the boundary
data must be stationary, due (in principle) only to technical reasons, since
otherwise our operator A would depend on time, making more difficult the
treatment of the problem.

6. Appendix

In this appendix we give the proofs of Lemmas 4.1, 4.2 and 4.4. Let us recall
that Ω is a bounded, open and connected subset of R

3, with C∞-boundary Γ.

Proof of Lemma 4.1. Here Γ1 is an arbitrary measurable subset of Γ.
Note that, once we know [14, Corollary 1], it suffices to prove that, given
f ∈ L1(Ω), there exists a sequence {Tn} ⊂ W1,1(Ω) converging to f in L1(Ω)
such that ∆Tn ∈ L1(Ω), Tn = ḡ on Γ1, and ∇Tn · n = 0 on Γ\Γ1.

Let u be the unique solution of the following elliptic problem:

(6.1)




u − ∆u = 0,
u = ḡ on Γ1,
∇u · n = 0 on Γ\Γ1.
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Since f − u ∈ L1(Ω) and D(Ω) is dense in L1(Ω), there exists a sequence

(6.2) {ϕn} ⊂ D(Ω) such that {ϕn} → f − u in L1(Ω).

Now

(6.3) Tn = ϕn + u

defines the desired sequence converging to f . �
To prove Lemma 4.2 and Lemma 4.4 we use the following result, which

is a direct consequence of [15, Theorem 6.1, Remark 6.1].

Lemma 6.1 Let Γ1 be an arbitrary measurable subset of Γ. Given T̂ ∈
L1(Ω), the problem

(6.4)




T − ∆T = T̂ ,
T = 0 on Γ1,

∇T · n = 0 on Γ\Γ1,

has a unique distributional solution, i.e., there exists a unique T ∈ W1,1(Ω)
such that T|Γ1

= 0 and

(6.5)

∫
Ω

Tϕ dx +

∫
Ω

∇T · ∇ϕ dx =

∫
Ω

T̂ϕ dx

for every test function ϕ ∈ W1,∞(Ω) satisfying ϕ|Γ1 = 0. Moreover, this
solution satisfies

(6.6) ‖T‖L1(Ω) ≤ c‖T̂‖L1(Ω),

where c is a constant which depends only on |Ω|.

The following result contains as particular cases both Lemma 4.2 and
Lemma 4.4.

Lemma 6.2 Let Γ1 be an arbitrary measurable subset of Γ, and let us
suppose that g is such that g = ψ|Γ1 for certain ψ ∈ D(Ω̄). Let us take
β ∈ C1(R) ∩ L∞(R) such that β ◦ g = 0 on Γ1 and β ′ ≥ 0. Then, for all
T ∈ W1,1(Ω) such that ∆T ∈ L1(Ω), T = g on Γ1 and ∇T · n = 0 on Γ\Γ1

(in the sense of Definition 4.1),

(6.7) −
∫

Ω

∆Tβ(T ) dx ≥ 0.
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Proof. Set f = T − ∆T . Note that f ∈ L1(Ω), and thus there exists a
sequence

(6.8) {fn} ⊂ D(Ω) such that {fn} → f in L1(Ω).

Denote by Tn the unique solution of the following problem:

(6.9)




Tn − ∆Tn = fn,
Tn = g on Γ1,
∇Tn · n = 0 on Γ\Γ1.

Then Tn is regular, and we can integrate by parts to obtain

(6.10) −
∫

Ω

∆Tnβ(Tn)dx =

∫
Ω

|∇Tn|2β ′(Tn) dx −
∫

Γ

β(Tn)∇Tn · n dγ,

which proves that

(6.11) −
∫

Ω

∆Tnβ(Tn)dx ≥ 0,

since β(Tn) = β(g) = 0 on Γ1 and ∇Tn · n = 0 on Γ\Γ1. The proof ends by
noting that, in virtue of Lemma 6.1,

(6.12) ‖T − Tn‖L1(Ω) ≤ c‖f − fn‖L1(Ω),

which implies

(6.13) {Tn} → T in L1(Ω),

and consequently, at least for a certain subsequence {Tnk
} of {Tn} (which

converges also a.e. to T ),

(6.14) −
∫

Ω

∆Tβ(T ) dx = − lim
k→∞

∫
Ω

∆Tnk
β(Tnk

)dx ≥ 0,

as desired. �
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Facultad de Matemáticas
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