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On some permutable products
of supersoluble groups

Manuel J. Alejandre, A. Ballester-Bolinches,
John Cossey and M. C. Pedraza-Aguilera

Abstract

It is well known that a group G = AB which is the product of
two supersoluble subgroups A and B is not supersoluble in general.
Under suitable permutability conditions on A and B, we show that for
any minimal normal subgroup N both AN and BN are supersoluble.
We then exploit this to establish some sufficient conditions for G to
be supersoluble.

1. Introduction

All groups considered in this paper will be finite. It is well known that, even
for a saturated formation F , a group that is the product of two subgroups in
F need not to be in F . The structure of such products and conditions which
ensure that the product is in F have been widely studied for the classes N
of nilpotent groups and U of supersoluble groups.

The behaviour of minimal normal subgroups of factorized groups has
been an important source of information about their structure. Our interest
is in extending the following theorem of Stonehewer [12]:

Let G be a finite group which can be written as the product G = AB of
two nilpotent subgroups A and B. If N is a minimal normal subgroup of G,
then either AN or BN is nilpotent.

Unfortunately, this result is not true if we replace nilpotent by super-
soluble in the statement (PSL(2, 7) can be written as the product of two
supersoluble subgroups). One of the main purposes of this paper is to
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find conditions which allow us to establish a supersoluble version of Stone-
hewer’s Theorem. We then exploit these results to obtain the supersolubility
of some products of supersoluble groups.

Much recent work on products of groups and supersolubility has fo-
cussed on products when the factors satisfy extra permutability conditions.
The first step in this direction was taken by Baer [4].

Let G = AB be the product of the supersoluble normal subgroups A and
B of G. If the derived subgroup G′ of G is nilpotent, then G is supersoluble.

Many generalizations of this theorem have been obtained. The aim of
most of them has been to weaken the normality hypotheses, replacing them
by permutability conditions instead. Following Carocca [7], we will say that:

A group G is said to be the totally permutable product (t.p.p.) of the
subgroups A and B if G = AB and every subgroup of A permutes with every
subgroup of B.

The product G = AB is said to be mutually permutable (m.p.p.) if A
permutes with every subgroup of B and B permutes with every subgroup of A.

Every totally permutable product is clearly mutually permutable, but
the converse does not hold. It is true, however, for mutually permutable
products G = AB such that A ∩ B = 1 [7, Proposition 3.5].

Asaad and Shaalan obtained in [3] results about totally and mutually per-
mutable products of supersoluble groups. For totally permutable products,
they obtained the following:

If G is the totally permutable product of two supersoluble subgroups A
and B, then G is supersoluble.

Moreover they proved that this result is not valid for mutually per-
mutable products, but the following generalization [3, Theorem 3.1] of Baer’s
result is true:

If G is the mutually permutable product of two supersoluble subgroups A
and B, and the derived subgroup G′ of G is nilpotent, then G is supersoluble.

Finally, this last result remains valid if the nilpotency of G′ is replaced
by the nilpotency of one of the factors [3, Theorem 3.2].

In the last part of this paper some generalizations of these results will
be naturally obtained from our study.

In recent years, some weaker versions of the concepts of totally and
mutually permutable products have been introduced. Permutability of each
factor with some specific families of subgroups of the other has often been
analyzed. In this context, we study the structure of mutually sn-permutable
products:
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Definition Let A and B be two subgroups of a group G such that G = AB.

a) We say that G = AB is the totally sn-permutable product of A and B if
every subnormal subgroup of A permutes with every subnormal subgroup
of B.

b) We say that G = AB is the mutually sn-permutable product of A and B
if A permutes with every subnormal subgroup of B and B permutes with
every subnormal subgroup of A.

Carocca showed [8, Theorem 6] that every group which can be factorized
as a mutually sn-permutable product of two soluble groups is soluble as
well. In the study of factorized groups in which each factor permutes with a
specific family of subgroups of the other, the embedding of the intersection
of the factors plays a very important role. In Section 2 we analyze this
embedding and apply it to obtain an alternative proof of Carocca’s result.

Since the purpose of this paper is to investigate the structure of a group
G = AB which is either a totally sn-permutable product or a mutually
sn-permutable product of two supersoluble subgroups A and B, we shall
assume in the sequel that all groups are not only finite but also soluble,
except of course in the statement and proof of Carocca’s Theorem.

We obtain a supersoluble version of Stonehewer’s Theorem by assuming
that the product is mutually sn-permutable. In fact, we have the following
stronger result:

Theorem A Let G = AB be the mutually sn-permutable product of the
supersoluble subgroups A and B. If N is a minimal normal subgroup of G,
then both AN and BN are supersoluble.

This theorem turns out to be useful in the study of the supersolubility
of sn-permutable products of supersoluble groups. It also allowed us to
prove an important structural theorem for mutually permutable products of
supersoluble groups (see [1]).

It is not true in general that a group which is the totally sn-permutable
product of two supersoluble subgroups is supersoluble, as we shall see in
the last section of this paper. However this result of Beidleman, Galoppo,
Heineken and Manfredino ([6]) gives a sufficient condition for this property
to be satisfied:

Theorem 1 Let G = AB be a finite group which is the totally sn-permutable
product of the subgroups A and B. If A is supersoluble and B is nilpotent,
then G is supersoluble.

Note that the proof in [6] does not require the finiteness of G. On the other
hand, this last Theorem confirms that the result of Asaad and Shaalan
holds in the case of a totally sn-permutable product (instead of a totally
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permutable product) if we assume the nilpotency of one of the factors. We
will see that a proof of this result in the finite case follows easily from
Theorem A, as does the following Theorem:

Theorem B. Let G = AB be the mutually sn-permutable product of the sub-
groups A and B, where A is supersoluble and B is nilpotent. If B permutes
with each Sylow subgroup of A, then the group G is supersoluble.

The hypothesis on B in the above theorem is essential in order to get
supersolubility as we will show by means of an example in the last section
of this paper.

Moreover, we prove that the second theorem of Asaad and Shaalan re-
mains true if G is a mutually sn-permutable product without any aditional
requirement.

Theorem C. Let G = AB be the mutually sn-permutable product of the
supersoluble subgroups A and B. If the derived subgroup G′ of G is nilpotent,
then G is supersoluble.

Notice that the group in Theorem C is nilpotent-by-abelian. Hence a nat-
ural question is whether or not a metanilpotent group which is the mutually
sn-permutable product of two supersoluble subgroups is supersoluble. The
second example in Section 5 answers that question negatively, but additional
assumptions allow us to get supersolubility:

Theorem D. Let G = AB be the mutually sn-permutable product of the
supersoluble subgroups A and B. Assume that G is metanilpotent. If

(|A/AN |, |B/BN |) = 1

then G is supersoluble.

2. Some properties of mutually sn-permutable products

Lemma 1 Let G = AB be a mutually sn-permutable product. Let I = A∩B
and let L be a subnormal subgroup of A such that I ≤ L. Then LB is again
a mutually sn-permutable product.

Proof. It is obvious that B permutes with every subnormal subgroup of L.
On the other hand, if we take R a subnormal subgroup of B, then we have
that LR = LIR = L(A ∩ B)R = (A ∩ LB)R = AR ∩ LB = RA ∩ BL =
R(A ∩BL) = R(A ∩ B)L = RL. Therefore, we have that LB is a mutually
sn-permutable product. �
Corollary 1 If G = AB is a mutually sn-permutable product such that
A ∩ B = 1, then G = AB is a totally sn-permutable product.

Proof. This is a straightforward consequence of the previous lemma. �
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Lemma 2 Let G = AB be a mutually sn-permutable product of the sub-
groups A and B. If N is a minimal normal subgroup of G, then either
A ∩ N = B ∩ N = 1 or N = (A ∩ N)(B ∩ N). In this second situation, the
product (A ∩ N)(B ∩ N) is mutually sn-permutable.

Proof. Clearly A∩N is a normal subgroup of A and hence X = (A∩N)B is a
subgroup of G such that N∩X = N∩(A∩N)B = (A∩N)(B∩N). Now since
N ∩X is a normal subgroup of X, B normalizes N ∩X = (A∩N)(B ∩N).

Arguing similarly, Y = A(B ∩N) is a subgroup of G such that Y ∩N =
A(B ∩ N) ∩ N = (A ∩ N)(B ∩ N)

As before, Y (and hence A) normalizes Y ∩N = (A∩N)(B∩N). We can
conclude that (A∩N)(B∩N) is a normal subgroup of G, and the minimality
of N implies that either A ∩ N = B ∩ N = 1 or N = (A ∩ N)(B ∩ N).

If this last situation holds, then given any subnormal subgroup A0 of
A ∩ N we have that A0 is subnormal in A as well and thus A0B ≤ G. But
then A0(B ∩ N) = A0B ∩ N ≤ G. A similar argument shows that A ∩ N
permutes with every subnormal subgroup of B ∩ N , and consequently the
product (A ∩ N)(B ∩ N) is mutually sn-permutable. �

Following the notation used in [9, III.4 and IV.5], we define:

Definition. Let G be a group, and let X be a class of groups. We say that
a maximal subgroup M is X -normal in G if G/CoreG(M) ∈ X .

If F is a saturated formation, a subgroup H of G is said to be F-
subnormal in G if H = G or there exists a chain of subgroups

H = H0 < H1 < · · · < Hn = G

such that Hi−1 is a maximal F-normal subgroup of Hi, for each i = 1, 2, . . . , n.

U -subnormality will appear in our context. An interesting connection
which will link this embedding property with subnormal permutability can
be stated in the following terms:

Theorem 2 Let G be a group. If H is a subgroup of G such that H permutes
with every subnormal subgroup of G, then H is U-subnormal in G.

Proof. We assume that the theorem is false and let G be a minimal
counterexample. There exists a subgroup H of G which permutes with
every subnormal subgroup of G but is not U -subnormal in G. Let N be
a minimal normal subgroup of G. Clearly HN/N permutes with every
subnormal subgroup of G/N . The minimality of G yields that HN/N is
U -subnormal in G/N and therefore HN is U -subnormal in G as a conse-
quence of [10, Lemma 1.1].
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Since N is a minimal normal subgroup of the soluble group G, then N
must be an elementary abelian p-group, for some prime p. But H permutes
with every subnormal subgroup of G and consequently also with every sub-
group of N . In particular, there exists a series

H < HN1 < · · · < HNr < HN

such that |HN : HNr| = |HNj+1 : HNj| = |HN1 : H| = p, for each
j = 1, . . . , r − 1. This clearly implies that H is a U -subnormal subgroup of
HN . Hence we have that H is U -subnormal in G, a contradiction. �

As a consequence of the above Theorem and [5, Lemma 3.1], we have
that if H permutes with every subnormal subgroup of a group G, then the
supersoluble residual of H is subnormal in G.

Theorem 3 [8, Theorem 6] Let G = AB be the mutually sn-permutable
product of the subgroups A and B of G. If both A and B are soluble, then G
is also soluble.

Proof. Let us assume that the theorem is false and choose a minimal
counterexample, G say. Arguing by induction, we know that G must have
a unique minimal normal subgroup, which is non-abelian, N say. Using
Lemma 2, we know that either N = (A∩N)(B∩N) or A∩N = B∩N = 1.
On the other hand, applying Theorem 2, A∩B is an U -subnormal subgroup
of A and B.

Take now a minimal normal subgroup N1 of A and a minimal normal
subgroup N2 of B, respectively. Then it is clear that N ≤ NG

1 ∩ NG
2 ≤

N1B∩AN2 = [N1(A∩B)]N2. Moreover we can suppose that CoreA(A∩B) =
CoreB(A ∩ B) = 1, otherwise we would take N1 or N2 contained in A ∩ B
and N would be contained in A or B, a contradiction.

Let us assume firstly that N = (A ∩ N)(B ∩ N). If N �= G, then the
solubility of G/N follows from the minimality of G. But N is again a mu-
tually sn-permutable product of two soluble subgroups by Lemma 2, and
therefore N itself is soluble. It follows that G is soluble, a contradiction.
Consequently we can assume that N = G and hence G must be a simple
group. Furthermore by the above arguments N ≤ N1(A ∩ B)N2. Conse-
quently G = N1(A ∩ B)N2 and hence A = N1(A ∩ B). Notice that N1 is a
minimal normal subgroup of A. Hence A ∩ B is an U -subnormal maximal
subgroup of A with CoreA(A ∩ B) = 1. Therefore A is supersoluble and
N1 is a cyclic group of prime order, p say. Arguing in an analogous way we
can assume also that B is supersoluble and N2 is a cyclic group of prime
order, q say. Since CoreG(A) = CoreG(B) = 1, we have that G is isomor-
phic to subgroups of the symmetric groups of degree p and q respectively.
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Consequently p = q. Moreover, | N1N2 |= p2, that is, N1N2 is an abelian
subgroup of G. Recall that G = N1(A ∩ B)N2. This means that N1 is a
normal subgroup of G, a contradiction.

Therefore we may assume for the rest of the proof that A∩N = B∩N = 1.
Take, as above, minimal normal subgroups N1 of A and N2 of B. It is clear
that N1 and N2 are a p-group and a q-group, respectively, for primes p
and q. Now if there exists a prime r �= p, r �= q such that r divides |N |,
then every Sylow r-subgroup of A∩B, say H, will be a Sylow r-subgroup of
N1(A∩B)N2 as well. But therefore H ∩N is a Sylow r-subgroup of N . We
reach a contradiction if we note that H ∩ N ≤ A ∩ B ∩ N = 1. Hence N is
a {p, q}-group, and this implies the solubility of N by Burnside’s Theorem
[9, Theorem I.2]. This fact leads to our final contradiction since G/N is also
soluble by induction. �

3. The “supersoluble version” of Stonehewer’s theorem

Proof of Theorem A

Assume the result is not true and let G be a minimal counterexample.
Let N be a minimal normal subgroup of G such that either AN or BN is not
supersoluble. We know by Theorem 3 that G must be soluble, and thus N
is an elementary abelian p-group for some prime p. We prove that N is the
unique normal minimal subgroup of G.

Let M denote a minimal normal subgroup of G with N �= M . First
the group G/M satisfies the hypotheses of the theorem and hence the mini-
mal choice of G implies that both ANM/M and BNM/M are supersoluble.
Therefore, the supersoluble residual (AN)U of AN is contained in M . More-
over, AN/N is supersoluble. Hence (AN)U ≤ N . Consequently (AN)U ≤
M ∩ N = 1, and AN is supersoluble. Analogously, since BNM/M is su-
persoluble, we can deduce that BN is supersoluble, a contradiction. Con-
sequently we may assume that N = Soc(G) is the unique minimal normal
subgroup of G. Suppose that N ≤ A. Then every subgroup of N/(B ∩ N)
is normal in BN/(B ∩ N). This implies that BN is supersoluble, a contra-
diction. Consequently N is neither contained in A nor in B.

We shall see next that p must be the largest prime dividing |G|. Let q
be this largest prime, and assume q �= p. We can assume that q divides |B|.
In such case, B has a unique Sylow q-subgroup, Bq say. Note that ABq is a
subgroup of G. Now 1 �= BG

q = BBA
q = BA

q ≤ ABq and thus N is contained
in BG

q . This clearly implies that N ≤ A, a contradiction.

Using Lemma 2, we know that either N = (A ∩ N)(B ∩ N) or A ∩ N =
B ∩ N = 1. We consider these two possible situations separately.
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Let us assume first that N = (A∩N)(B ∩N). Note that we can assume
that both A ∩ N and B ∩ N are non-trivial proper subgroups of N .

We know that either AN or BN is not supersoluble. We assume without
loss of generality that Z = AN is not supersoluble. Let A1 be a supersoluble
projector of Z containing A (see [9; III, 3]). Note that Z = A1Z

U and
1 = (A1 ∩ ZU) �= ZU ≤ N (see [9; IV, 5.18]). Let x be a non-trivial element
of ZU . We can find elements n1 of N ∩ A and n2 of N ∩ B such that
x = n1n2 and o(ni) = p for i = 1, 2. If 〈n2〉 ∩ A1 �= 1 then n2 ∈ A1 and thus
x ∈ ZU ∩ A1 = 1, a contradiction. Consequently 〈n2〉 ∩ A1 = 1. Moreover,
A1 = A(N ∩ A1) . Since 〈n2〉 permutes with both A and N ∩ A1, it follows
that 〈n2〉 permutes with A1. Therefore X = A1〈n2〉 is a subgroup of G.
Note that

N ∩ X = N ∩ A1〈n2〉 = 〈n2〉(N ∩ A1)

is a normal subgroup of X as is N ∩ A1. If we consider the series N ∩
A1 � 〈n2〉(N ∩ A1) � X, we can deduce that X/N ∩ A1 is a supersoluble
group. Hence XU is contained in A1 ∩ ZU = 1 and consequently X is
supersoluble. This is impossible since A1 is a supersoluble projector of X.

Hence we can assume that A ∩ N = B ∩ N = 1. We now prove:

Given any non-trivial element x of N , there must exist a subgroup Nx

of N such that x ∈ Nx, Nx � ANx and ANx is supersoluble.

In order to prove this statement, note that if Ap and Bp denote the
Sylow p-subgroups of A and B respectively, then N ≤ ApBp applying
[2; Corollary 1.3.3]. Consequently we can write x = ab where a ∈ Ap and
b ∈ Bp. Note that 〈b〉 is a subnormal subgroup of B and therefore it per-
mutes with A. Let Y = A〈b〉, and write Nx = N ∩ Y . Clearly x ∈ Nx ≤ N
and Nx is a normal subgroup of Y = A(N ∩ Y ) = ANx. We shall be done
if Y is supersoluble. Assume on the contrary that Y is not supersoluble
and take a supersoluble projector A1 of Y with A ≤ A1 (see [9; III, 3]).
Let now β be the smallest non-negative integer such that bpβ ∈ A1. Since
Y = A〈b〉 = A1〈b〉 and Y is not supersoluble, we have that β > 0. Moreover,
A1 ∩ 〈b〉 = 〈bpβ〉. Write T = A1〈bpβ−1〉 = A1T

U . Note that A1 is a supersol-
uble projector of T , and that T U is an abelian group since T U ≤ Y U , and
T U ∩ A1 = 1. Now

|T U | = |T : A1| = |〈bpβ−1〉 : 〈bpβ〉| = p

and therefore T is supersoluble, a contradiction. Hence we have proved the
above statement.

Assume now that AN is not supersoluble. There must exist, in such case,
a non-cyclic chief factor K/L of AN , with K ≤ N . Let x ∈ K \L. Following
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the above claim, we know that there must exist a subgroup Nx of N in the
described situation. Note that Nx is in fact a normal subgroup of AN . Now
NxL/L is a normal subgroup of AN/L and K/L is a minimal normal of
AN/L. Consequently 1 �= xL ∈ NxL/L ∩ K/L. Thus NxL/L ∩ K/L �= 1
and hence K/L ≤ NxL/L ≤ ANx/L which is supersoluble. We conclude
that K/L is a cyclic group, our final contradiction. �

4. Main consequences

The following lemma will be used in the proofs of this section.

Lemma 3 Let G be a primitive group and let N be its unique minimal
normal subgroup. Assume that G/N is supersoluble. If N is a p-group,
where p is the largest prime dividing |G|, then N = F (G) = Op(G) is a
Sylow p-subgroup of G.

Proof. It is well known that N = F (G) = Op(G) since Oq(G) = 1 for every
prime q �= p. Therefore we only need to show that N is a Sylow p-subgroup
of G.

Since G is a primitive soluble group, we can write G = NM , where M
is a maximal subgroup of G, N ∩ M = 1 and CG(N) = N .

Note that Op(M) = 1 by [9, Theorem A.15.6.b]. Clearly M ∼= G/N
is supersoluble. On the other hand, a Sylow p-subgroup of M is normal
in M and consequently p does not divide the order of M . This completes
the proof. �

We begin by studying a minimal counterexample to claim the following:

“If G = AB is the mutually sn-permutable product of the supersoluble
subgroups A and B, then G is supersoluble.”

Let G = AB be a minimal counterexample to the above property. G must be
a primitive soluble group, and hence there exists a unique minimal normal
subgroup N of G, such that N = CG(N). Let p be the prime dividing |N |.
By using Theorem A, we know that both AN and BN are supersoluble.

We show that p must be the largest prime dividing |G|. Let q be this
largest prime, and assume q �= p. We can assume without loss of generality
that q divides |AN |. The supersoluble group AN must have a unique Sylow
q-subgroup, (AN)q say, and clearly (AN)q centralizes N . This implies that
(AN)q = 1 since CG(N) = N , a contradiction. Thus p must be the largest
prime dividing |G| and so we have the structure given by Lemma 3.

Next we consider a minimal counterexample to the following claim:

“Let G = AB be the mutually sn-permutable product of the subgroups A
and B, where A is supersoluble and B is nilpotent. Then G is supersoluble.”
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Consider such a minimal counterexample, G say. As before, G = AB is a
primitive soluble group with a unique minimal normal subgroup N . N is
a self-centralizing p-group for a prime p. By the argument above and by
Lemma 3, p must be the largest prime dividing G, N is the unique Sylow
p-subgroup of G and by Theorem A both AN and BN are supersoluble.

We shall see now that N must be contained in A. Note that if N ≤ B,
then the nilpotency of B implies that B is a p-group. In such case G = AN
and G is supersoluble, a contradiction. Consequently we can assume that N
is not contained in B. Consider now a Hall p′-subgroup Bp′ of B. Since Bp′

is a normal subgroup of B, it permutes with A and thus ABp′ is a subgroup
of G. If Bp′ �= 1 then 1 �= BG

p′ ≤ ABp′ and hence N ≤ A, as desired. Hence
Bp′ = 1 and thus B must be a p-group. In such case B ≤ N and hence
G = AB = AN and G is supersoluble, a contradiction. Thus A ∩ N = N
and therefore N ≤ A, as we wanted to prove.

At this point we easily obtain the following consequences:

Proof of Theorem 1 [6, Theorem 2]

From the argument above, we can assume that N ≤ A, where N denotes
the unique minimal normal subgroup of G, N an elementary abelian Sylow
p-subgroup of G. Denote by N1 a minimal normal subgroup of A such that
N1 ≤ N . Then N1 permutes with Bp′ and is centralized by Bp. Hence
N ≤ NG

1 ≤ N1Bp′ and so N ≤ N1. Consequently N = N1 and N is a cyclic
group of prime order, the final contradiction. �
Proof of Theorem B

As B permutes with every Sylow subgroup of A, we can consider the
subgroup of G, Ap′B, where Ap′ denotes a Hall p′-subgroup of A. Notice
that if Ap′ = 1, we would have A = N , and G = BN is supersoluble by
Theorem A, a contradiction. If G = Ap′B, then N ≤ B and B is a p-group,
a contradiction. Hence Ap′B < G and G = NAp′B. On the other hand,
N ∩Ap′B = N ∩B is a normal subgroup of Ap′B. Hence N ∩B is a normal
subgroup of G, N = N ∩B ≤ B and consequently N ∩B = 1. Therefore B
is a p′-group. Take now N1 a minimal normal subgroup of A with N1 ≤ N .
Then N ≤ NG

1 ≤ N1B ≤ G. Thus N = N1, a cyclic group of prime order,
the final contradiction. �
Proof of Theorem C

Assume the result is not true and let G be a minimal counterexample.
It is clear that G′ �= 1 and that G is a primitive group. Let N be the
unique minimal normal subgroup. By Lemma 3, we have N = F (G) and
so G′ ≤ F (G) = N . From AN and BN are supersoluble (by Theorem A)
and normal (G′ ≤ AN , G′ ≤ BN) we can apply Baer’s Theorem to give G
supersoluble, a contradiction. �
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Proof of Theorem D

Assume that the Theorem is false and take a minimal counterexample
G = AB. We have that G is a primitive soluble group. Write, as usual,
G = NM , where N is the unique minimal normal subgroup of G, M is a
maximal subgroup of G, N ∩ M = 1 and CG(N) = N . We also know that
N is a p-group for some prime p, and by Lemma 3 and the metanilpotence
of G we have N = F (G) = Op(G) = GN and N is a Sylow p-subgroup of
G. Consequently we may assume that M ∼= G/N is nilpotent. Note that
Op(M) = 1 by [9, Theorem A.15.6.b].

Let now Ap′ and Bp′ be Hall p′-subgroups of A and B, respectively, such
that Ap′Bp′ is a Hall p′-subgroup of G (see [2, Theorem 1.3.2]). Replacing M
by some conjugate if necessary, we can assume Ap′Bp′ = M . The nilpotency
of M and the fact that π(|A|)∩π(|B|) ⊆ {p} allows us to write M = Ap′×Bp′ .

Take now the subgroup T = BN of G. Note that T is supersoluble
according to Theorem A. Using the local definition of the class of super-
soluble groups, we obtain that T/Op′p(T ) is an abelian group of exponent
dividing p − 1.

Now N is self-centralizing in T and hence Op′(T ) = 1. It follows that
Op′p(T ) = Op(T ) = Op(BN) = N . This implies that BN/N ∼= B/B ∩ N ∼=
Bp′ is an abelian group of exponent dividing p− 1. We could reproduce the
same argument for A and obtain thus that both Ap′ and Bp′ are abelian
groups of exponent dividing p − 1.

But M = Ap′ × Bp′ , and hence M is also abelian of exponent dividing
p− 1. But N is an irreducible and faithful module for M , and consequently
its dimension must equal one. We conclude that N is cyclic, the final con-
tradiction. �

5. Some counterexamples and remarks

It is not true in general that a group which is the totally sn-permutable prod-
uct of two supersoluble subgroups is supersoluble, as the following example
shows.

Example. Let V be a faithful irreducible module for S, the symmetric
group of degree 3, over the field of 7 elements. It is easy to check that V has
dimension 2. Let G be the semidirect product of V and S, and let A = V S3,
B = V S2, where Sp is a Sylow p-subgroup of S. It is again easy to check
that A and B are supersoluble, G is the totally sn-permutable product of A
and B, but G is not supersoluble.



424 M.J. Alejandre, A. Ballester, J. Cossey and M.C. Pedraza

Note that the hypothesis on B in Theorem B is essential in order to get
the supersolubility of G as the following example illustrates.

Example. Consider X = 〈a, b : a4 = 1 = b2, ab = a−1〉, the dihedral group
of order 8, and let V = 〈v1, v2〉 be a GF (5)-space of dimension 2. Then V
can be considered as an X-module with the following action:

va
1 = 3v1 vb

1 = v2

va
2 = 2v2 vb

2 = v1

Take now G = [V ]X, the corresponding semidirect product, and consider
the following subgroups of G:

A = V 〈a〉 ; B = 〈v1v2〉 × 〈b〉
Note that G = AB. It is clear that A is supersoluble, B is nilpotent and
the nilpotent residual of G is precisely V , which is abelian. It is easy to see
that G is the mutually sn-permutable product of the subgroups A and B,
but G is not supersoluble.
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Adolfo.Ballester@uv.es

John Cossey
Mathematics Department

School of Mathematical Sciences
Australian National University

0200 Canberra (Australia)
John.Cossey@maths.anu.edu.au

M. C. Pedraza-Aguilera
Escuela Universitaria de Informática
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