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(n, 2)-sets have full Hausdorff dimension

Themis Mitsis

Abstract

We prove that a set containing translates of every 2-plane must
have full Hausdorff dimension.

1. Introduction

This is a continuation of [4] where a partial result on the problem under
investigation was obtained. Since that paper is unpublished work, we will
reproduce certain parts of it for the sake of completeness.

An (n, 2)-set in R
n is a subset E ⊂ R

n containing a translate of every
2-dimensional plane.

The natural question that arises is whether E must have positive Lebesgue
measure. This turns out to be true in low dimensions. Marstrand [3] proved
that (3, 2)-sets have positive measure. Bourgain [1] showed the same for
(4, 2)-sets and made a connection with the Kakeya conjecture.

In higher dimensions the question is open. However, it has been known
for some time that if n > 4 then dimH(E) ≥ (2n + 2)/3, where dimH

denotes Hausdorff dimension. This follows from the estimates for the 2-plane
transform due to Christ [2]. Recent work by the author [4] has led to the
mild improvement dimH(E) ≥ (2n + 3)/3. In the present paper we modify
the argument in [4], which in turn is based on geometric-combinatorial ideas
very much in the spirit of Wolff [6], to obtain full dimension.

Namely we prove the following.

Theorem 1.1 Suppose n > 4 and let E ⊂ R
n be an (n, 2)-set. Then

dimH(E) = n .
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2. Terminology and notation

Sn−1 ⊂ R
n is the (n − 1)-dimensional unit sphere.

B(a, r) is the closed ball of radius r centered at the point a.

For X ⊂ R
n, X⊥ denotes its orthogonal complement.

If e ∈ Sn−1, a ∈ R
n then Le(a) = {a+te : t ∈ R} is the line in the e-direction

passing through the point a.

If e ∈ Sn−1, a ∈ R
n, β > 0 then T β

e (a) = {x ∈ R
n : dist(x, Le(a)) ≤ β} is

the infinite tube with axis Le(a) and cross-section radius β.

Lk denotes k-dimensional Lebesgue measure and L0 counting measure. When
the context is clear we will use the notation | · | for all these measures.

Let Gn be the Grassmannian manifold of all 2-dimensional linear sub-
spaces of R

n equipped with the unique probability measure γn,2 which is
invariant under the action of the orthogonal group. The elements of Gn will
be refered to as direction planes.

If P1, P2 ∈ Gn, then their distance is defined by

d(P1, P2) = ‖projP1
− projP2

‖
where projP : R

n → P is the orthogonal projection onto P .

A set of points or direction planes is called ρ-separated if the distance
between any two of its elements is at least ρ.

If P ∈ Gn, 1 ≤ l ≤ 4, δ > 0 then P l,δ is a rectangle of dimensions

l × l × δ × · · · × δ︸ ︷︷ ︸
n−2

,

that is, the image of [0, l]× [0, l]× [0, δ]× · · · × [0, δ] under a rotation and a
translation, such that its faces with dimensions l× l are parallel to P . Such
a set will be referred to as a δ-plate or simply as a plate. When l = 1 the
superscript l will be suppressed.

If P l,δ
1 ∩ P l,δ

2 �= ∅ and d(P1, P2) = r we will say that the plates intersect
at angle arcsin r.

The letter C will denote various positive constants whose values may
change from line to line. Similarly, Cε will denote constants depending on ε.
If we need to keep track of the value of a constant through a calculation
we will use subscripted letters C1, C2, . . . or the notation C̃. x � y means
x ≤ Cx and x 
 y means (x � y & y � x).

Finally, note that

γn,2({P ∈ Gn : d(P, P0) ≤ δ}) 
 δ2(n−2) for all P0 ∈ Gn, δ ≤ 1.
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So if A ⊂ Gn and B is a maximal δ-separated subset of A then

γn,2(A) � |B|δ2(n−2).

Further, if A ⊂ Gn is δ-separated and B is a maximal η-separated subset of
A with η ≥ δ then

|B| � |A|(δ/η)2(n−2).

3. Auxiliary Lemmas

The following technical lemma allows us to control the intersection of two
plates (the author is grateful to the referee for suggesting the simple proof
below).

Lemma 3.1 Let P l,η
1 , P l,η

2 be two plates such that d(P1, P2) ≤ 1/2. Then
there exists a tube T β

e (a) with β = Cη/d(P1, P2) such that

(3.1) P l,η
1 ∩ P l,η

2 ⊂ T β
e (a).

In particular

|P l,η
1 ∩ P l,η

2 | � ηn−1

d(P1, P2)
.

Proof. After a suitable rotation, P l,η
1 ∩ P l,η

2 is contained in the set (R1 ∩
R2) × R, where R1 and R2 are 2-dimensional rectangles of dimensions l ×
η intersecting at angle arcsin(d(P1, P2)), and R is an (n − 2)-dimensional
rectangle of volume lηn−3. By elementary geometry,

diam(R1 ∩ R2) � η

d(P1, P2)
, L2(R1 ∩ R2) � η2

d(P1, P2)

and the lemma follows. �
The proof of Theorem 1.1 will be, essentially, a reduction to the 3-dimen-

sional case via the Radon transform. We give the definitions.
For a function f : R

3 → R satisfying the appropriate integrability con-
ditions, the Radon transform

Rf : S2 × R → R

is defined by

Rf(e, t) =

∫
〈e,x〉=t

f(x) dL2(x).

It is proved in Oberlin and Stein [5] that for any measurable set E ⊂ R
3 one

has the following estimate.

‖RχE‖3,∞ � ‖χE‖3/2
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where

‖RχE‖3,∞ =

(∫
S2

(sup
t

RχE(e, t))3dσ(e)

)1/3

and dσ is surface measure.

We can discretize this result as follows.

Lemma 3.2 Suppose E is a set in R
3, λ ≤ 1 and let {Pk}M

k=1 be a δ-
separated set in G3 such that for each k there is plate P l,Cδ

k satisfying

|P l,Cδ
k ∩ E| � λδ.

Then
|E| � λ3/2M1/2δ.

Proof. For each e ∈ S2 let Q(e) be the plane with normal e passing through
the origin. Then there is a δ-separated set {ek}M

k=1 on S2 such that Pk =
Q(ek). Note that since 1 ≤ l ≤ 4, for each e ∈ B(ek, δ/2) ∩ S2 we have

λδ � |P l,Cδ
k ∩ E| ≤

∫
Ie

L2((Q(e) + x) ∩ E)dL1(x) ,

where Ie is an interval on Q(e)⊥ with L1(Ie) � δ. Therefore there exists
xe ∈ Ie such that

λ � L2((Q(e) + xe) ∩ E).

Hence
λ � sup

t
RχE(e, t).

We conclude that

λ3δ2M �
∑

k

∫
B(ek,δ/2)∩S2

(sup
t

RχE(e, t))3dσ(e)

≤
∫

S2

(sup
t

RχE(e, t))3dσ(e) = ‖RχE‖3
3,∞ � ‖χE‖3

3/2 = |E|2.
�

This, in turn, gives rise to the following higher dimensional analogue.

Lemma 3.3 Suppose E is a set in R
n, λ ≤ 1, Π ⊂ R

n is a 3-plane and
{Pk}M

k=1 is a δ-separated set in Gn such that for each k the plate P δ
k satisfies

P δ
k ⊂ ΠC̃δ and |P δ

k ∩ E| ≥ λ|P δ
k |

where ΠC̃δ = {x ∈ R
n : dist(x, Π) ≤ C̃δ} is the C̃δ-neighborhood of Π. Then

|E ∩ ΠC̃δ| � λ3M1/2δn−2.
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Proof. Whithout loss of generality we may asssume that Π is the x1x2x3-
plane. Since P δ

k ⊂ ΠC̃δ there is a direction plane Qk ⊂ Π such that
d(Pk, Qk) � δ. Therefore we can find a plate Q2,C1δ

k with P δ
k ⊂ Q2,C1δ

k .
It follows that

|Q2,C1δ
k ∩ E ∩ ΠC̃δ| � λδn−2.

Let B be a maximal C2δ-separated subset of {Pk}M
k=1 and put B′ = {Qk :

Pk ∈ B}. Then for Qj, Qk ∈ B′, j �= k, we have

d(Qj, Qk) ≥ d(Pj , Pk) − d(Pj , Qj) − d(Pk, Qk) ≥ (C2 − C)δ ≥ δ

for C2 sufficiently large.

Now for each Qk ∈ B′ let

Lk =
{
x ∈ B(0, C̃δ) ∩ Π⊥ : L3(Q2,C1δ

k ∩ E ∩ (Π + x)) ≤ λδ

C3

}
,

Hk =
{

x ∈ B(0, C̃δ) ∩ Π⊥ : L3(Q2,C1δ
k ∩ E ∩ (Π + x)) ≥ λδ

C3

}
.

Note that

L3(Q2,C1δ
k ∩ E ∩ (Π + x)) � δ, for all x ∈ B(0, C̃δ) ∩ Π⊥.

Hence

λδn−2 � |Q2,C1δ
k ∩ E ∩ ΠC̃δ|

=

∫
B(0,C̃δ)∩Π⊥

L3(Q2,C1δ
k ∩ E ∩ (Π + x))dLn−3(x)

=

∫
Lk

L3(Q2,C1δ
k ∩ E ∩ (Π + x))dLn−3(x)

+

∫
Hk

L3(Q2,C1δ
k ∩ E ∩ (Π + x))dLn−3(x)

≤ λδ

C3

Cδn−3 + CδLn−3(Hk).

Therefore, Ln−3(Hk) � λδn−3 for C3 sufficiently large.

Next, notice that |B′| 
 M and define

L =
{

x ∈ B(0, C̃δ) ∩ Π⊥ : |{k : x ∈ Hk}| <
λM

C4

}
,

H =
{

x ∈ B(0, C̃δ) ∩ Π⊥ : |{k : x ∈ Hk}| ≥ λM

C4

}
.
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Then

λδn−3M �
∑

k

∫
χHk

=

∫
H

∑
k

χHk
+

∫
L

∑
k

χHk

≤ MLn−3(H) +
λM

C4

Ln−3(L) ≤ MLn−3(H) +
λM

C4

Cδn−3.

Therefore Ln−3(H) � λδn−3 for C4 sufficiently large.

Note that for each x ∈ H there are at least λM/C4 plates in Π + x, that
is, plates in a copy of R

3, with δ-separated direction planes and such that
the 3-dimensional measure of their intersection with E ∩ (Π + x) is at least
C−1λδ. Hence, by Lemma 3.2

L3(E ∩ (Π + x)) � λ3/2(λM)1/2δ.

We conclude that

|E∩ΠC̃δ| ≥
∫

H

L3(E∩(Π+x))dLn−3(x) � λδn−3λ3/2(λM)1/2δ = λ3M1/2δn−2.

�

4. The main argument

Theorem 1.1 will be a consequence of the following.

Proposition 4.1 Suppose E is a set in R
n, λ ≤ 1 and {Pj}M

j=1 is a δ−sep-
arated set in Gn with diam({Pj}M

j=1) ≤ 1/2, such that for each j there is
plate P δ

j satisfying

|P δ
j ∩ E| ≥ λ|P δ

j |.
Then

|E| ≥ Cεδ
ελ(n+2)/2M1/2δn−2

Proof. We say that a point x ∈ E has multiplicity µ if it belongs to exactly µ
plates P δ

j . We claim that there exists a set P δ
j0
∩ E such that the measure

of the set of its points with multiplicity at least 1
2
Mλδn−2/|E| is at least

1
2
|P δ

j ∩ E|, because otherwise we would have

|E| ≥ |
M⋃

j=1

P δ
j ∩ E| >

2|E|
Mλδn−2

M∑
j=1

1

2
|P δ

j ∩ E| ≥ |E|.

So letting

(4.1) µ0 =
1

2

M

|E|λδn−2,
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we see that there is a plate P δ := P δ
j0

such that

|{x ∈ P δ ∩ E : |{k : x ∈ P δ
k}| ≥ µ0}| ≥ λ

2
δn−2.

Note that for each x ∈ P δ ∩ E with |{k : x ∈ P δ
k}| ≥ µ0 we have

{k : x ∈ P δ
k} =

log(C/δ)⋃
i=1

{k : x ∈ P δ
k and δ2i−1 ≤ d(Pk, P ) < δ2i}.

Therefore, by the pigeonhole principle, there is an integer i(x) with 1 ≤
i(x) ≤ log(C/δ) such that

|{k : x ∈ P δ
k and δ2i(x)−1 ≤ d(Pk, P ) < δ2i(x)}| ≥ (log(C/δ))−1µ0.

And so,

{x ∈ P δ ∩ E : |{k : x ∈ P δ
k}| ≥ µ0}

⊂
log(C/δ)⋃

i=1

{
x ∈ P δ ∩ E : |{k : x ∈ P δ

k and δ2i−1 ≤ d(Pk, P ) < δ2i}|

≥ (log(C/δ))−1µ0

}
.

Applying the pigeonhole principle again, we see that there exists a number
ρ := δ2i0−1 and a set A ⊂ P δ ∩ E of measure

(4.2) |A| � | log δ|−1λδn−2

such that for every x ∈ A

(4.3) |{k : x ∈ P δ
k and ρ ≤ d(Pk, P ) < 2ρ}| � | log δ|−1µ0.

Heuristically, (4.2) and (4.3) tell us that a large number of plates intersect P δ

at approximately the same angle. We are going to estimate this number
using the bound for the measure of their pairwise intersections. To do this,
define

D = {P δ
k : P δ

k ∩ P δ �= ∅ and ρ ≤ d(Pk, P ) < 2ρ}.
Then, by Lemma 3.1, we have

|D| �
∑

P δ
k∈D

|P δ
k ∩ P δ| ρ

δn−1
=

ρ

δn−1

∫
P δ

∑
P δ

k∈D
χP δ

k
≥ ρ

δn−1

∫
A

∑
P δ

k∈D
χP δ

k

� ρ

δn−1
|A|| log δ|−1µ0 � | log δ|−2λ2 ρ

δ

M

|E|δ
n−2.(4.4)

Where the last inequality follows from (4.1) and (4.2) and the one before
last from (4.3).
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We are now in a position to carry out a geometric construction, in the
spirit of [6], which will allow us to use Lemma 3.3. In order to help the
reader understand our strategy, we first give an informal description.

We know that the Radon transform estimate due to Oberlin and Stein is
sharp in R

3. So, we would like to slice our set with a number of thin neigh-
borhoods of R

3 and then apply the higher dimensional discretized version
of that estimate (as given by Lemma 3.3) to each of these neighborhoods.
To this end, we pass (ρ/δ)n−3 3-dimensional planes (these are the sets Πi to
be defined below) through the 2-dimensional plane which is parallel to the
direction plane P and passes through the center c of the plate P δ. We do
that in a “radial”, so to speak, fashion (see Figure 1).

Figure 1: In this picture, the planes represent the 3-planes Πi and the
line represents the 2-plane c + P .

That is, each 3-plane Πi is the translate of a 3-dimensional subspace
spanned by P and a certain vector in the orthogonal complement of P . This
ensures that every plate in D belongs to some ΠC̃δ

i , where ΠC̃δ
i is the C̃δ-

neighborhood of Πi. Our goal is to use Lemma 3.3 to estimate the measure
of ΠC̃δ

i ∩E, and then sum up these individual estimates to get a lower bound
on the measure of our set. However, in order to do this efficiently, we have
to take into account the overlap of the sets ΠC̃δ

i . If there are “too many”

ΠC̃δ
i ’s, that is, if ρ/δ ≥ λ−1| log δ| (this is case I below), we observe that their

overlap increases as we approach the plane c + P . So we choose a suitable
neighborhood X of c + P in such a way that:

• The overlap of the sets ΠC̃δ
i ∩ X � is smaller.

• The measure of the intersection of every plate in D with the reduced
set E ∩ X � is still large.
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Then, we work with this reduced set E ∩ X �. On the other hand, if there
are not “too many” ΠC̃δ

i ’s, that is, if ρ/δ ≤ λ−1| log δ| (this is case II below),
we just estimate their overlap with their number (ρ/δ)n−3.

We now proceed with the formal argument.

Let {ei}i be a maximal δ/ρ-separated set of points on the (n − 3)-
dimensional unit sphere Sn−1 ∩ P⊥ and let

Πi = c + Π′
i

where c is the center of P δ and Π′
i is the 3-dimensional space spanned by ei

and P . Then for each P δ
k ∈ D there exists an i such that

P δ
k ⊂ ΠC̃δ

i , where ΠC̃δ
i is the C̃δ-neighborhood of Πi.

To see this, let y ∈ P δ
k , and pick w ∈ P δ

k ∩ P δ. Then |y − w| is bounded by
the diameter of P δ

k and belongs to a Cδ-neighborhood of the direction plane
Pk. So, there exists a point z ∈ Pk (just take z to be the projection of y−w
onto Pk) with |z| � 1 and |y − w − z| � δ. Now write

z = z1 + z2 ∈ P ⊕ P⊥,

c − w = w1 + w2 ∈ P ⊕ P⊥.

Since d(P, Pk) 
 ρ, we have |z2| � ρ, and since c−w belongs to a Cδ-neigh-
borhood of the direction plane P we get |w2| � δ. Now z2/|z2| belongs to
the unit sphere of P⊥, so we can find an ei such that |z2/|z2| − ei| ≤ δ/ρ.
Therefore,

|z2 − |z2|ei| ≤ δ

ρ
|z2| � δ.

Finally, notice that

y = [(y − w − z) + (z2 − |z2|ei) − w2] + [z1 − w1 + |z2|ei] + c,

where the vector in the first square bracket has length at most Cδ and the
vector in the second square bracket belongs to Π′

i. We conclude that y ∈ ΠC̃δ
i .

Therefore, if we let

Di =
{

P δ
k ∈ D : P δ

k ⊂ ΠC̃δ
i

}
then

D =
⋃
i

Di.

Now let γ = λ| log δ|−1 and consider two cases.
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CASE I. δ ≤ γρ.

Let
X = {x ∈ R

n : dist(x, c + P ) ≤ γρ} .

First, we show that each P δ
k ∈ D has large intersection with E∩X �. Indeed,

notice that
P δ

k ∩ X ⊂ P 2γρ
k ∩ X .

Hence, by (3.1) in Lemma 3.1, P 2γρ
k ∩ X is contained in a tube of cross-

section radius Cγ. Now, the intersection of a tube of cross-section radius
Cγ with the plate P δ

k is contained in the intersection of two rectangles of
dimensions ∞ × Cγ × Cγ · · · × Cγ and 1 × 1 × δ × · · · × δ, and therefore
has volume at most Cγδn−2 (recall that δ ≤ γρ ≤ γ). We conclude that the
volume of P δ

k ∩ X is at most Cλ| log δ|−1δn−2. Consequently

|P δ
k ∩ (E ∩ X �)| = |P δ

k ∩ E| − |P δ
k ∩ E ∩ X| ≥ |P δ

k ∩ E| − |P δ
k ∩ X|

≥ λδn−2 − Cλ| log δ|−1δn−2 ≥ λ

2
δn−2

for δ sufficiently small.
Next, we show that the sets ΠC̃δ

i ∩ X � have small overlap. Namely, we

claim that if dist(x, c+P ) ≥ γρ, then x belongs to at most Cγ−(n−3) sets ΠC̃δ
i .

To see this, we can clearly assume that c = 0. Now suppose that x ∈ ΠC̃δ
i

and write x = u + w ∈ P ⊕ P⊥. Then |w − 〈w, ei〉ei| � δ. Therefore, by
simple algebra, either |w − |w|ei| � δ, or |w + |w|ei| � δ. On the other
hand, dist(x, P ) ≥ γρ implies that |w| ≥ γρ. Consequently we have either
|ei − w/|w|| � δ/(γρ), or |ei + w/|w|| � δ/(γρ). It follows that

{ei : x ∈ ΠC̃δ
i } ⊂ B(w/|w|, Cδ/(γρ)) ∪ B(−w/|w|, Cδ/(γρ)).

Since the ei’s are δ/ρ-separated points on an (n−3)-dimensional unit sphere,
we conclude that

card({ei : x ∈ ΠC̃δ
i }) �

(
δ/(γρ)

δ/ρ

)n−3

= γ−(n−3).

Hence

|E| ≥
∣∣∣⋃

i

(E∩X �)∩ΠC̃δ
i

∣∣∣ � γn−3
∑

i

∣∣(E∩X �)∩ΠC̃δ
i

∣∣ � γn−3λ3δn−2
∑

i

|Di|1/2

where the last inequality follows from Lemma 3.3 applied, for each i, to the
set E ∩ X �, the plates in Di and the 3-plane Πi.
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CASE II. δ ≥ γρ.

Since |{Πi}i| � (ρ/δ)n−3, we have

|E| ≥
∣∣∣⋃

i

E ∩ ΠC̃δ
i

∣∣∣ � (δ/ρ)n−3
∑

i

∣∣E ∩ ΠC̃δ
i

∣∣
≥ γn−3

∑
i

∣∣E ∩ ΠC̃δ
i

∣∣ � γn−3λ3δn−2
∑

i

|Di|1/2

with the last inequality true by Lemma 3.3 applied, for each i, to the set E,
the plates in Di and the 3-plane Πi.

We conclude that in either case

(4.5) |E| � γn−3λ3δn−2
∑

i

|Di|1/2.

To estimate the sum above, note that ΠC̃δ
i , being the C̃δ-neighborhood of a

copy of R
3, can contain at most C(ρ/δ)2 plates whose direction planes are

δ-separated and at distance approximately ρ from P . Therefore

(4.6) |D| ≤
∑

i

|Di| � ρ

δ

∑
i

|Di|1/2.

Combining (4.4), (4.5) and (4.6) we obtain

|E| ≥ Cεδ
2ελn+2 M

|E|δ
2(n−2)

where the logarithmic factors have been absorbed into Cεδ
2ε. Consequently

|E| ≥ Cεδ
ελ(n+2)/2M1/2δn−2

proving the proposition. �

5. Proof of Theorem 1.1

This follows by a standard argument in [1]. We give a sketch for the con-
venience of the reader. Let E be an (n, 2)-set, and A ⊂ Gn any set with
diam(A) < 1/2 and γn,2(A) > 0. Then for every P ∈ A there is a square
SP of unit area such that SP ⊂ E. Fix a covering (not necessarily finite)
{B(xi, ri)} of E. For every ε > 0, we will bound

∑
i r

n−2ε
i from below by a

constant depending only on ε. Let

Ik =
{
i : 2−k ≤ ri ≤ 2−(k−1)

}
,

Ek = E ∩ ⋃
i∈Ik

B(xi, ri), Ẽk =
⋃

i∈Ik

B(xi, 2ri).
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We can assume that all the sets Ik are finite, otherwise
∑

i r
n−2ε
i = ∞ and

we are done. So let νk = |Ik|. Note that for every P ∈ A there exists a kP

such that

L2(SP ∩ EkP
) ≥ 1

4k2
P

,

because otherwise

1 = L2(SP ∩ E) ≤
∑

k

L2(SP ∩ Ek) ≤
∑

k

1

4k2
<

1

2
.

Now, let

Ak = {P ∈ A : L2(SP ∩ Ek) ≥ 1

4k2
}.

Since
⋃

k Ak = A, there exists a k0 such that

γn,2(Ak0) ≥
γn,2(A)

2k2
0

,

or else

γn,2(A) ≤
∑

k

γn,2(Ak) ≤
∑

k

γn,2(A)

2k2
< γn,2(A).

Put B = Ak0 . Then

L2(SP ∩ Ek0) � k−2
0 , for all P ∈ B.

Let {Pj}M
j=1 be a maximal 2−k0-separated set in B. Then

M � k−2
0 22k0(n−2)

and for each Pj there is a plate P 2−k0

j such that

|P 2−k0

j ∩ Ẽk0| � k−2
0 |P 2−k0

j |.
So, by Proposition 4.1

|Ẽk0| ≥ Cεk
−α
0 2−k0ε

where α = n + 3. On the other hand

|Ẽk0| � νk02
−k0n.

Therefore
νk0 ≥ Cεk

−α
0 2k0(n−ε).

Consequently ∑
i

rn−2ε
i � νk02

−k0(n−2ε) ≥ Cεk
−α
0 2k0ε ≥ C̃ε.

We conclude that dimH(F ) = n.
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