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The Magic Square and Symmetric
Compositions

Alberto Elduque

Abstract

The new construction given by Barton and Sudbery of the Freu-
denthal–Tits magic square, which includes the exceptional classical
simple Lie algebras, will be interpreted and extended by using a pair
of symmetric composition algebras, instead of the standard unital
composition algebras.

1. Introduction

The exceptional simple Lie algebras were constructed in a unified way by
Tits [18] (see also [17, 11]), who used composition algebras and simple Jordan
algebras of degree 3 to build a Magic Square containing all these simple Lie
algebras. A more symmetric approach was taken by Vinberg [19, 16]. Re-
cently, these approaches have been interpreted by Barton and Sudbery [3, 4]
as a construction depending on two composition algebras and closely related
to the triality principle. A similar construction has been given by Landsberg
and Manivel [14, 15], inspired by previous work of Allison and Faulkner [2].

In most known constructions of the exceptional simple Lie algebras from
simpler constituents, the difficult task is to check that the construction gives
indeed a Lie algebra. The aim of this paper is to reinterpret, and extend,
the beautiful approach by Barton and Sudbery from a different perspective.
A Lie algebra will be defined from scratch out of two symmetric composi-
tion algebras. These are nonunital (unless the dimension is 1) composition
algebras which provide very simple formulas for triality (see [13, Ch. VIII]).
The simplicity of these formulas leads to a very easy proof that the new
algebra constructed here is indeed a Lie algebra.
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The next section will review the definition and basic properties needed
about symmetric composition algebras over fields of characteristic �= 2. Then,
in Section 3, given two such algebras S and S′, a Lie algebra g = g(S, S′) will
be constructed. With a few exceptions in characteristic three, g will be either
simple or semisimple and the Magic Square of Lie algebras will be obtained
by varying S and S′. The symmetry of the construction shows a natural auto-
morphism of order 3 of g. The different possibilities for symmetric composi-
tion algebras of dimension 8 give different nonconjugate such automorphisms
for the exceptional Lie algebras. All this will be considered in Section 4. In the
final section, the approach here will be related to the ones by Barton and
Sudbery, which has been the inspiration for this work, by Allison and Faulk-
ner and by Landsberg and Manivel. It will turn out that the constructions
given by these authors give, up to isomorphism, the Lie algebras g = g(S, S ′),
with S and S′ para-Hurwitz algebras. Any four dimensional (and essentially
any two dimensional) symmetric composition algebra is a para-Hurwitz alge-
bra, but this is no longer true for eight-dimensional symmetric composition
algebras, due to the existence of the so called Okubo algebras.

The existence of these Okubo algebras gives more interest to our con-
struction. Thus, for instance, over an algebraically closed field F of charac-
teristic �= 2, 3, there is an eight dimensional para-Hurwitz algebra P and an
Okubo algebra S. This gives three different constructions of the simple Lie
algebra of type E8: g(P, P ), g(P, S) and g(S, S). Each such construction
highlights a different order 3 automorphism of E8 (Section 4). While g(P, P )
is closely related to the classical Tits construction of E8 by means of the
Cayley algebra and the simple exceptional Jordan algebra (see Section 5
and [3, 4]), both g(P, S) and g(S, S) provide new constructions of E8 with
nice properties. Moreover, the underlying space of S is sl3(F ) and, as a con-
sequence, g(S, S) may be interpreted as a construction of E8 in terms of A2.

2. Symmetric composition algebras

A symmetric composition algebra is a triple (S, ∗, q), where (S, ∗) is a (nonas-
sociative) algebra over a field F with multiplication denoted by x ∗ y for
x, y ∈ S, and where q : S → F is a regular quadratic form satisfying

q(x ∗ y) = q(x)q(y) ,(2.1)

q(x ∗ y, z) = q(x, y ∗ z) ,(2.2)

for any x, y, z ∈ S, where q(x, y) = q(x + y)− q(x)− q(y) is the polar of q.
Throughout the paper, the notations and conventions in [13, Ch. VIII] will be
followed. If no confusion arises, we will speak of the symmetric composition
algebra S, with ∗ and q tacitly assumed.
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In the presence of (2.1), equation (2.2) is equivalent to

(2.3) (x ∗ y) ∗ x = x ∗ (y ∗ x) = q(x)y

for any x, y ∈ S ([13, (34.1)]).

The classification of the symmetric composition algebras was obtained
in [8] (for characteristic �= 3, although the results can be slightly changed to
cover characteristic 2, see also [13, Ch. VIII]) and in [5] (for characteristic 3).

Given any unital composition algebra (or Hurwitz algebra, or Cayley-
Dickson algebra) C with norm q and standard involution x �→ x̄, the new
algebra defined on C but with multiplication

x ∗ y = x̄ȳ,

is a symmetric composition algebra, called the associated para-Hurwitz al-
gebra. In dimensions 1, 2 or 4, any symmetric composition algebra is a
para-Hurwitz algebra, with a few exceptions in dimension 2 which are, nev-
ertheless, forms of para-Hurwitz algebras; while in dimension 8, apart from
the para-Hurwitz algebras, there is a new family of symmetric composition
algebras termed Okubo algebras.

If (S, ∗, q) is any symmetric composition algebra, consider the corre-
sponding orthogonal Lie algebra o(S, q) = {d ∈ EndF (S) : q

(
d(x), y

)
+

q
(
x, d(y)

)
= 0 ∀x, y ∈ S}, and the subalgebra of o(S, q)3 defined by

tri(S, ∗, q) =

= {(d0, d1, d2) ∈ o(S, q)3 : d0(x ∗ y) = d1(x) ∗ y + x ∗ d2(y)∀x, y ∈ S}
={(d0, d1, d2)∈ o(S, q)3 : 〈d0(x), y, z〉 + 〈x, d1(y), z〉 + 〈x, y, d2(z)〉

∀x, y, z ∈ S},

where 〈x, y, z〉 = q(x, y ∗ z). By (2.2), 〈x, y, z〉 = 〈z, x, y〉 = 〈y, z, x〉. Hence
the map

(2.4)
θ : tri(S, ∗, q) → tri(S, ∗, q)

(d0, d1, d2) �→ (d2, d0, d1)

is an automorphism of (S, ∗, q) of order 3. Its fixed subalgebra is (isomor-
phic to) the derivation algebra of (S, ∗) which, if the dimension is 8 and the
characteristic of the ground field is �= 2, 3, is a simple Lie algebra of type G2

in the para-Hurwitz case and a simple Lie algebra of type A2 (a form of sl3)
in the Okubo case.

Assume from now on that the characteristic of the ground field is �= 2.
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A straightforward computation (see [9] for a more general setting) us-
ing (2.3) shows that for any x, y ∈ S, the triple

(2.5) tx,y =

(
σx,y,

1

2
q(x, y)I − rxly,

1

2
q(x, y)I − lxry

)

is in tri(S, ∗, q), where σx,y(z) = q(x, z)y − q(y, z)x, rx(z) = z ∗ x, and
lx(z) = x ∗ z for any x, y, z ∈ S.

Lemma 2.1 Let (S, ∗, q) be an eight-dimensional symmetric composition
algebra. Then:

(i) (Principle of Local Triality) The projection π0 : tri(S, ∗, q) → o(S, q),
(d0, d1, d2) �→ d0 is an isomorphism.

(ii) tri(S, ∗, q) = tS,S (:= span 〈tx,y : x, y ∈ S〉).
(iii) For any a, b, x, y ∈ S, [ta,b, tx,y] = tσa,b(x),y + tx,σa,b(y).

Proof. (i) is proved in [13, (45.5)] (see also [7]); (ii) follows immediately
from it; and (iii) follows from (i) too, since the zero component of [ta,b, tx,y]
and of tσa,b(x),y + tx,σa,b(y) coincide. �

Corollary 2.2 Let (S, ∗, q) be a symmetric composition algebra. Then for
any a, b, x, y ∈ S:

(2.6) [ta,b, tx,y] = tσa,b(x),y + tx,σa,b(y).

Proof. (S, ∗, q) can be embedded in an eight-dimensional symmetric compo-
sition algebra and then Lemma 2.1 applies. Alternatively, one can use (2.1-3)
to check (2.6) directly. �

Lemma 2.3 Let (S, ∗, q) be a symmetric composition algebra, then for any
a, b, x, y ∈ S:

(2.7)
(a ∗ x) ∗ (y ∗ b) + (a ∗ y) ∗ (x ∗ b)

= q(b ∗ a, x)y + q(b ∗ a, y)x − q(x, y)b ∗ a.

Proof. Use the linearized form of (2.3) twice to get

(a ∗ x) ∗ (x ∗ b) = q(a ∗ x, b)x − b ∗ (x ∗ (a ∗ x))

= q(b ∗ a, x)x − q(x)b ∗ a,

and linearizing this, one gets (2.7). �
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3. Construction of Lie algebras from pairs of symmetric
composition algebras

Let (S, ∗, q) and (S′, ∗, q′) be two symmetric composition algebras and define
g = g(S, S′) to be the Z2 × Z2-graded anticommutative algebra such that

g(0̄,0̄) = tri(S, ∗, q) ⊕ tri(S′, ∗, q′),
g(1̄,0̄) = g(0̄,1̄) = g(1̄,1̄) = S ⊗ S′.

(Unadorned tensor products are considered over the ground field F .) For any
a ∈ S and x ∈ S′, denote by ιi(a⊗x) the element a⊗x in g(1̄,0̄) (respectively
g(0̄,1̄), g(1̄,1̄)) if i = 0 (respectively, i = 1, 2).

The anticommutative multiplication of g is defined by means of:

• g(0̄,0̄) is a Lie subalgebra of g,

• [(d0, d1, d2), ιi(a ⊗ x)] = ιi
(
di(a) ⊗ x

)
, [(d′

0, d
′
1, d

′
2), ιi(a ⊗ x)] = ιi

(
a ⊗

d′
i(x)

)
, for any (d0, d1, d2) ∈ tri(S, ∗, q), (d′

0, d
′
1, d

′
2) ∈ tri(S′, ∗, q′), a ∈ S

and x ∈ S′.

• [ιi(a ⊗ x), ιi+1(b ⊗ y)] = ιi+2

(
(a ∗ b) ⊗ (x ∗ y)

)
(indices modulo 3), for

any a, b ∈ S, x, y ∈ S′.

• [ιi(a⊗x), ιi(b⊗y)] = q′(x, y)θi(ta,b)+ q(a, b)θ′i(t′x,y), for any i = 0, 1, 2,
a, b ∈ S and x, y ∈ S′, where ta,b ∈ tri(S, ∗, q) (respectively t′x,y ∈
tri(S′, ∗, q′)) is the element in (2.5) for a, b ∈ S (resp. x, y ∈ S′) and θ
(resp. θ′) is the automorphism of tri(S, ∗, q) (resp. tri(S′, ∗, q′)) given
in (2.4).

Theorem 3.1 With this multiplication, g = g(S, S′) is a Lie algebra.

Proof. The linear maps o(S, q) ⊗ S → S: d ⊗ a �→ d(a); S ⊗ S → o(S, q):
a ⊗ b �→ σa,b; and S ⊗ S → F : a ⊗ b �→ q(a, b) are o(S, q)-invariant, and
similarly for S′. This, together with the cyclic symmetry of the definition
of tri(S, ∗, q), tri(S′, ∗, q′) and of g, and with (2.5), shows that the only
instances of the Jacobi identity that have to be checked are:

i) J(ι0(a0 ⊗ x0), ι1(a1 ⊗ x1), ι2(a2 ⊗ x2)) = 0,

ii) J(ι0(a0 ⊗ x0), ι0(a1 ⊗ x1), ι0(a2 ⊗ x2)) = 0, and

iii) J(ι0(a1 ⊗ x1), ι0(a2 ⊗ x2), ι1(b ⊗ y)) = 0,

for any a0, a1, a2, b ∈ S and x0, x1, x2, y ∈ S′.
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For i), since q(x0 ∗ x1, x2) is invariant under cyclic permutations, the
component in tri(S, ∗, q) of

J(ι0(a0 ⊗ x0), ι1(a1 ⊗ x1), ι2(a2 ⊗ x2))

is q(x0 ∗ x1, x2) times

θ2 (ta0∗a1,a2) + ta1∗a2,a0 + θ (ta2∗a0,a1) .

The three components of this element of tri(S, ∗, q) present the form

(3.1) σb0∗b1,b2+

(
1

2
q(b1 ∗ b2, b0)I − lb1∗b2rb0

)
+

(
1

2
q(b2 ∗ b0, b1)I − rb2∗b0lb1

)
,

where (b0, b1, b2) is a cyclic permutation of (a0, a1, a2). But (2.7) gives

(
lb1∗b2rb0 + rb2∗b0lb1

)
(c) = q(b0 ∗ b1, b2)c + q(b0 ∗ b1, c)b2 − q(c, b2)b0 ∗ b1

= σb0∗b1,b2(c) − q(b0 ∗ b1, b2)c,

for any b0, b1, b2, c ∈ S and this shows that (3.1) is identically zero, thus
proving i).

For ii), just note that

[[ι0(a0 ⊗ x0), ι0(a1 ⊗ x1)], ι0(a2 ⊗ x2)] =

= σa0, a1(a2) ⊗ q′(x0, x1)x2 + q(a0, a1)a2 ⊗ σ′
x0,x1

(x2),

and the cyclic sum of this latter expression is trivial.

Finally, using (2.3)

[[ι0(a1⊗x1), ι0(a2 ⊗ x2)], ι1(b ⊗ y)] =

= ι1

((1

2
q(a1, a2)b − (a2 ∗ b) ∗ a1

)
⊗ q′(x1, x2)y

+q(a1, a2)b ⊗
(1

2
q′(x1, x2)y − (x2 ∗ y) ∗ x1

))

= ι1

(
q(a1, a2)b ⊗ q′(x1, x2)y − (

(a2 ∗ b) ∗ a1

) ⊗ q′(x1, x2)y

− q(a1, a2)b ⊗
(
(x2 ∗ y) ∗ x1

))
= ι1

((
(a1 ∗ b) ∗ a2

) ⊗ q′(x1, x2)y − q(a1, a2)b ⊗
(
(x2 ∗ y) ∗ x1

))
,
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while

[[ι0(a1 ⊗ x1), ι1(b ⊗ y)], ι0(a2 ⊗ x2)] + [ι0(a1 ⊗ x1), [ι0(a2 ⊗ x2), ι1(b ⊗ y)]]

= [ι2
(
(a1 ∗ b)⊗(x1 ∗ y)

)
, ι0(a2 ⊗ x2)]+[ι0(a1 ⊗ x1), ι2

(
(a2 ∗ b)⊗(x2 ∗ y)

)
]

= ι1

(
((a1 ∗ b) ∗ a2) ⊗ ((x1 ∗ y) ∗ x2) − ((a2 ∗ b) ∗ a1) ⊗ ((x2 ∗ y) ∗ x1)

)
= ι1

(
((a1 ∗ b) ∗ a2) ⊗

(
q′(x1, x2)y − (x2 ∗ y) ∗ x1

)
− ((a2 ∗ b) ∗ a1) ⊗ ((x2 ∗ y) ∗ x1)

)
= ι1

(
((a1 ∗ b) ∗ a2) ⊗ q′(x1, x2)y − q(a1, a2)b ⊗ ((x2 ∗ y) ∗ x1)

)
. �

Remark 3.2 The definition of g = g(S, S ′) can be generalized by taking
three nonzero scalars 0 �= αi ∈ F (i = 0, 1, 2) and modifying the multiplica-
tion of elements in g(1̄,0̄) ⊕ g(0̄,1̄) ⊕ g(1̄,1̄) as follows:

[ιi(a ⊗ x), ιi+1(b ⊗ y)] = αi+2ιi+2

(
(a ∗ b) ⊗ (x ∗ y)

)
,

[ιi(a ⊗ x), ιi(b ⊗ y)] = αi+1αi+2

(
q′(x, y)θi(ta,b) + q(a, b)θ′i(t′x,y)

)
,

(indices modulo 3) for any a, b ∈ S, x, y ∈ S′. Denote the resulting Lie
algebra by gα(S, S′), with α = (α0, α1, α2). If F is quadratically closed,
then the new algebra thus obtained is isomorphic to the original one g(S, S ′).
More specifically, by scaling the elements ιi(a⊗x) by nonzero scalars µi ∈ F
(i = 0, 1, 2), it is checked that gα(S, S′) is isomorphic to gνα(S, S′), where
να = (ν0α0, ν1α1, ν2α2) and νi = µ−1

i µi+1µi+2, indices modulo 3 (which
implies that µ2

i = νi+1νi+2 ∀i and µ0µ1µ2 = ν0ν1ν2).

In order to study some properties of the Lie algebras g(S, S ′), the next
result is useful.

Lemma 3.3 Let (S, ∗, q) be a symmetric composition algebra. Then

tri(S, ∗, q) = ker π0 ⊕ tS,S (direct sum of ideals)

and tS,S is isomorphic to o(S, q) (by means of π0).

Proof. It is clear that π0 : tri(S, ∗, q) → o(S, q) takes the subalgebra tS,S of
tri(S, ∗, q) isomorphically onto o(S, q) = σS,S . Moreover, inside g = g(S, F ),

[ker π0, tS,S ] = [ker π0, [g(1̄,0̄), g(1̄,0̄)]] ⊆ [[ker π0, g(1̄,0̄)], g(1̄,0̄)] = 0. �
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Recall ([10, Lemma 3.3]) that any four-dimensional symmetric compo-
sition algebra (S, ∗, q) is a para-Hurwitz algebra. If e is the unit of the
corresponding Hurwitz algebra (it is called the para-unit of (S, ∗, q)), then
S = Fe ⊕ (Fe)⊥ = Fe ⊕ [S, S], where [S, S] = span 〈a ∗ b − b ∗ a : a, b ∈ S〉
is a three dimensional simple Lie algebra under the commutator in S (or in
the associative Hurwitz algebra –an algebra of quaternions–). Actually, any
three dimensional simple Lie algebra appears in this way.

The Principle of Local Triality (Lemma 2.1) asserts that kerπ0 = 0 for
eight dimensional symmetric composition algebras. However:

Corollary 3.4 Let (S, ∗, q) be a symmetric composition algebra.

(i) If dim S = 1, then tri(S, ∗, q) = 0.

(ii) If dim S = 2, then o(S, q) is one dimensional. If d spans o(S, q), then
tri(S, ∗, q) = {(αd, βd, γd) : α, β, γ ∈ F, α + β + γ = 0}.

(iii) If dim S = 4, then tri(S, ∗, q) = ker π0 ⊕ ker π1 ⊕ kerπ2 and

ker π0 = {(0, laτ,−raτ) : a ∈ [S, S]} ∼= [S, S],

where τ is the reflection through the para unit e of S (τ(e) = e, τ(a) =
−a for any a ∈ (Fe)⊥). Moreover, tS,S = kerπ1 ⊕ kerπ2. (Note that
ker πi = θi(ker π0), i = 0, 1, 2.)

Proof. Item (i) is clear since o(S, q) = 0 if dimS = 1.

Let us consider next the four dimensional case. We have a ∗ b = āb̄ for
any a, b ∈ S for a suitable product on S that makes it a quaternion (four
dimensional Hurwitz) algebra. Moreover, τ(a) = ā for any a ∈ S. Then

kerπ0 = {(0, d1, d2) : d1(x) ∗ y + x ∗ d2(y) = 0 ∀x, y ∈ S}.
With x = e and then y = e (the para-unit) one obtains that d1 = laτ and
d2 = −raτ for some a ∈ S. Since d1 ∈ o(S, q), it follows that a ∈ [S, S] =
(Fe)⊥. Lemma 3.3 shows here that dim tri(S, ∗, q) is 9 and the simple ideals
kerπi (i = 0, 1, 2) are different and of dimension 3. This proves (iii).

Finally, if dim S = 2, we may extend scalars and then assume that S is
para-Hurwitz. The argument above shows then that kerπ0 = {(0, laτ,−raτ) :
a ∈ (Fe)⊥} = {(0, laτ,−laτ) : a ∈ (Fe)⊥}, by commutativity. But (Fe)⊥ =
Fa for some a and o(S, q) = F (laτ). Lemma 3.3 then shows that tri(S, ∗, q)
is two dimensional and hence

tri(S, ∗, q) = ker π0 + kerπ1 = {(αd, βd, γd) : α, β, γ ∈ F, α + β + γ = 0}
for any d spanning o(S, q). �
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The Z2 × Z2-grading of the Lie algebra g = g(S, S′) constructed above
induces a Z2 gradation given by g0̄ = g(0̄,0̄) ⊕ g(1̄,0̄) and g1̄ = g(0̄,1̄) ⊕ g(1̄,1̄).
The structure of g0̄ is given by:

Corollary 3.5 Let (S, ∗, q) and (S′, ∗, q′) be two symmetric composition al-
gebras and let g = g(S, S′) and g0̄ as above. Then g0̄ is the direct sum of the
ideals ker π0, ker π′

0 and an ideal isomorphic to the orthogonal Lie algebra
o(S ⊕ S′, q ⊥ q′).

Proof. From Lemma 3.3, tri(S, ∗, q) = tS,S ⊕ ker π0
∼= o(S, q) ⊕ ker π0, and

tri(S′, ∗, q′) = tS′,S′ ⊕ ker π′
0
∼= o(S′, q′) ⊕ ker π′

0. Both kerπ0 and ker π′
0 are

trivially ideals of g0̄ and

g0̄ = kerπ0 ⊕ ker π′
0 ⊕

(
tS,S ⊕ tS′,S′ ⊕ S ⊗ S′)

(direct sum of three ideals). Now the linear map:

tS,S ⊕ tS′,S′ ⊕ S ⊗ S′ → o(S ⊕ S′, q ⊥ q′)

ta,b �→ γa,b

t′x,y �→ γx,y

a ⊗ x �→ γa,x

where γu,v = Q(u,−)v − Q(v,−)u for any u, v ∈ S ⊕ S′ and Q = q ⊥ q′, is
an isomorphism of Lie algebras. �

Note that the same result with the same proof applies to g(0̄,0̄) ⊕ g(0̄,1̄)

(respectively, g(0̄,0̄) ⊕ g(1̄,1̄)), with kerπ1 and ker π′
1 (resp. kerπ2 and ker π′

2)
replacing ker π0 and kerπ′

0, because of the cyclic symmetry of g.

If the characteristic of the ground field is �= 2, 3, then g = g(S, S ′) =
g0̄ ⊕ g1̄ and Corollary 3.5 gives the structure of g0̄. From here it is easy
to check that g is simple as a Z2-graded algebra, since any nonzero ideal I
of g0̄ satisfies [I, g1̄] = g1̄, unless dim S = dim S′ = 2. This leads quickly
to the conclusion that g is simple with the possible exception of dim S =
dim S′ = 2. The type of the Lie algebra obtained is summarized in the next
table (the Magic Square):

dim S′

dim S
1 2 4 8

1 A1 A2 C3 F4

2 A2 A2 ⊕ A2 A5 E6

4 C3 A5 D6 E7

8 F4 E6 E7 E8
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Let us check a couple of instances of this table:

• Assume dim S′ = 1, dim S = 4. Then after a scalar extension if necessary,
S′ = F and S is the para-Hurwitz algebra associated to the split quaternion
algebra Mat2(F ). By Corollary 3.4,

tri(S′, ∗, q′) = 0 and tri(S, ∗, q) ∼= sl2 ⊕ sl2 ⊕ sl2 ,

where the three copies of sl2 correspond to kerπi (i = 0, 1, 2). Take hi a
Cartan subalgebra of ker πi and h = h0⊕h1⊕h2. Let εi ∈ h∗

i (identified as a
subspace of h∗) such that the roots of h on g(0̄,0̄) are ±2εi (i = 0, 1, 2). The
weights of h on ιi(S ⊗ S′) are ±εi+1 ± εi+2 (indices modulo 3). Hence h is a
Cartan subalgebra of g and the set of roots is

{±εi ± εj : 0 ≤ i < j ≤ 2} ∪ {±2εi : i = 0, 1, 2}.

This is the root system of type C3. A set of simple roots is given by
Π = {ε0 − ε1, ε1 − ε2, 2ε2}.

• Assume now that dimS′ = 2, dim S = 8. Then after a scalar extension if
necessary, q and q′ have maximal Witt index, so

tri(S, ∗, q) ∼= o(4, 4) =

{(
a b
c −at

)
: a, b, c ∈ Mat4(F ), b = −bt, c = −ct

}
.

Also tri(S′, ∗, q′) = Fk1 ⊕ Fk2, where k1 = (d,−d, 0) and k2 = (d, 0,−d),

d =

(
1 0
0 −1

)
∈ o(1, 1) ∼= o(S′, q′) .

The diagonal matrices in o(4, 4) form a Cartan subalgebra of o(4, 4) with
roots ±εi ± εj, 1 ≤ i < j ≤ 4 (where εi

(
diag(α1, . . . , α4,−α1, . . . ,−α4)

)
=

αi) and system of simple roots {ε1 − ε2, ε2 − ε3, ε3 − ε4, ε3 + ε4}.
Also consider {δ1, δ2} the dual basis in (Fk1 ⊕Fk2)

∗ of {k1, k2}. The di-
rect sum h of the given Cartan subalgebra in tri(S, ∗, q) and of tri(S′, ∗, q′)
is a Cartan subalgebra in g = g(S, S′). The roots in g(0̄,0̄) are ±εi ± εj,
1 ≤ i < j ≤ 4. Since g(1̄,0̄) = S ⊗ S′ with the natural action of o(4, 4) ∼=
tri(S, ∗, q) on S; the roots in g(1̄,0̄) are ±εi ± (δ1 + δ2), 1 ≤ i ≤ 4, and the
roots in g(0̄,1̄) and in g(1̄,1̄) are obtained by applying to the roots in g(1̄,0̄) the
triality automorphisms on the Dynkin diagram of D4 that fixes ε2 − ε3 and
permutes cyclically ε1 − ε2, ε3 − ε4 and ε3 + ε4, while substituting δ1 + δ2

by δ1 and δ2. As a consequence, the roots in g(0̄,1̄) (respectively g(1̄,1̄)) are
1
2
(±ε1 ± ε2 ± ε3 ± ε4) ± δ1 (resp. 1

2
(±ε1 ± ε2 ± ε3 ± ε4) ± δ2) with an odd
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(resp. even) number of minus signs in the ε’s. A system of simple roots is
given by{

δ2− 1

2
(ε1+ε2+ε3+ε4), ε1−ε2, ε3+ε4, ε2−ε3, ε3−ε4, δ1− 1

2
(ε1+ε2+ε3−ε4)

}
which is a system of type E6.

In characteristic 3, the algebra obtained by means of tensoring the Z-span
of a Chevalley basis of the complex simple Lie algebras of type A2 or E6 with
the ground field are no longer simple, but have a one-dimensional center such
that the quotients modulo this center are simple. This is reflected on our Lie
algebras g = g(S, S′) as follows. Let (S, ∗, q) be a symmetric composition
algebra of dimension 2. After a scalar extension we may assume that S
has a basis {e1, e2} with q(e1) = q(e2) = 0, q(e1, e2) = 1 and e1 ∗ e1 = e2,
e2 ∗ e2 = e1 and e1 ∗ e2 = e2 ∗ e1 = 0 (the para-Hurwitz algebra associated
to the Hurwitz algebra F × F ). Then tej ,ej

= 0, j = 1, 2, while

te1,e2 =

(
σe1,e2 ,

1

2
I − re1le2 ,

1

2
I − le1re2

)

∼=
(( −1 0

0 1

)
,

(
1/2 0
0 −1/2

)
,

(
1/2 0
0 −1/2

))

=

(( −1 0
0 1

)
,

( −1 0
0 1

)
,

( −1 0
0 1

))
so that θ(te1,e2) = te1,e2 and hence, for any other symmetric composition
algebra (S′, ∗, q′),

[ιi(S ⊗ S′), ιi(S ⊗ S′)] ∈ tS,S ⊕ tri(S′, ∗, q′)
for any i = 0, 1, 2. Thus [g, g] has codimension 1 if dim S = 2 �= dim S′ and
codimension 2 if dim S = dim S′ = 2. All the other entries of the Magic
Square remain unchanged.

4. Related finite order automorphisms

Given two symmetric composition algebras (S, ∗, q) and (S′, ∗, q′), the tri-
ality automorphisms θ of tri(S, ∗, q) and θ′ of tri(S′, ∗, q′), given in (2.4),
immediately define an automorphism Θ of order 3 of the Lie algebra

g = g(S, S′) =
(
tri(S, ∗, q) ⊕ tri(S′, ∗, q′)

)
⊕

(
⊕2

i=0ιi(S ⊗ S′)
)
,

defined by means of{
a) Θ|tri(S,∗,q) = θ, Θ|tri(S′,∗,q′) = θ′,

b) Θ
(
ιi(a ⊗ x)

)
= ιi+1(a ⊗ x) ∀a ∈ S, x ∈ S′ (indices modulo 3)
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The fixed subalgebra of Θ is

g̃ =
(
Der(S, ∗) ⊕ Der(S′, ∗)

)
⊕ ι(S ⊗ S′) , where ι = ι0 + ι1 + ι2.

If the characteristic of the ground field is �= 2, 3, Der(S, ∗) is trivial if
dim S = 1 or 2, a simple three dimensional Lie algebra if dimS = 4, a central
simple Lie algebra of type A2 if (S, ∗, q) is an Okubo algebra, and a central
simple Lie algebra of type G2 if (S, ∗, q) is an eight-dimensional para-Hurwitz
algebra. (In characteristic 3 this is no longer true [6, 1].)

For the exceptional Lie algebras that appear in the Magic Square, the
possibilities are summarized in the next table, where pHn stands for a para-
Hurwitz algebra of dimension n and Ok for an Okubo algebra (eight di-
mensional). The right most column represents the corresponding extended

Dynkin diagram X
(1)
N with marked nodes, where XN is the entry in the third

column. Recall that over an algebraically closed field of characteristic 0, any
order three automorphism of a simple Lie algebra of type XN is determined,
up to conjugation, by some marked nodes in X

(1)
N such that the sum of the

labels of the nodes is 3 [12, Theorem 8.6]. A Z in the third column means
a one-dimensional central ideal.

In case the two symmetric composition algebras coincide, there is a
natural order 2 automorphism Ψ of g = g(S, S), defined by means of:{

a) Ψ interchanges the two copies of tri(S, ∗, q) in g(0̄,0̄),

b) Ψ
(
ιi(a ⊗ x)

)
= ιi(x ⊗ a) ∀i = 0, 1, 2, ∀a, x ∈ S.

For the most interesting case of an eight-dimensional S, the fixed subalgebra
is a direct sum of a three-dimensional simple Lie algebra and a simple Lie
algebra of type E7.

5. Relationship with previous constructions

Let C be a Hurwitz algebra with norm q and define a new multiplication
on C by means of

(5.1) x ∗ y = ȳx̄ = xy

for any x, y ∈ C. Then Ĉ = (C, ∗, q) is the para-Hurwitz algebra associated
to the opposite algebra of C.

To relate our construction to Barton and Sudbery’s construction, we will
deal with these para-Hurwitz algebras Ĉ = (C, ∗, q).
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Order 3 automorphisms

S S′ g g̃ Dynkin diagram

pH1 pH8 F4 B3 ⊕ Z 1 2 3 4 2• ◦ ◦ ◦ •
pH1 Ok F4 A2 ⊕ A2

1 2 3 4 2◦ ◦ • ◦ ◦

pH2 pH8 E6 D4 ⊕ Z ⊕ Z

1 2 3 2 1• ◦ ◦ ◦ •
◦ 2
• 1

pH2 Ok E6 A2 ⊕ A2 ⊕ A2

1 2 3 2 1◦ ◦ • ◦ ◦
◦ 2
◦ 1

pH4 pH8 E7 A6 ⊕ Z
1 2 3 4 3 2 1• ◦ ◦ ◦ ◦ ◦ ◦

• 2

pH4 Ok E7 A5 ⊕ A2

1 2 3 4 3 2 1◦ ◦ • ◦ ◦ ◦ ◦
◦ 2

pH8 pH8 E8 D7 ⊕ Z
1 2 3 4 5 6 4 2• ◦ ◦ ◦ ◦ ◦ ◦ •

◦ 3

pH8 Ok E8 E6 ⊕ A2

1 2 3 4 5 6 4 2◦ ◦ • ◦ ◦ ◦ ◦ ◦
◦ 3

Ok Ok E8 A8

1 2 3 4 5 6 4 2◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
• 3

Now, for d0, d1, d2 ∈ o(C, q), d0(x ∗ y) = d1(x) ∗ y + x ∗ d2(y) for any
x, y ∈ C if and only if d0(ȳx̄) = ȳd1(x) + d2(y)x̄ for any x, y ∈ C, which is
equivalent to any of the next two conditions

(5.2)
d0(xy) = d̄2(x)y + xd̄1(y)

d̄0(xy) = d1(x)y + xd2(y)

for any x, y ∈ C, where d̄(x) = d(x̄).

>

>

Barton and Sudbery [4, (4.1)] consider the Lie algebra

Tri C = {(f, g, h) ∈ o(C, q)3 : f(xy) = xg(y) + h(x)y ∀x, y ∈ C} ,

while Allison and Faulkner [2, Section 3] consider

t(C) = {(f, g, h) ∈ o(C, q)3 : f̄(xy) = g(x)y + xh(y) ∀x, y ∈ C} .
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Hence (5.2) shows that t(C) = tri(C, ∗, q), while the the linear map

(5.3)
Φ : tri(C, ∗, q) → Tri C

(d0, d1, d2) �→ (d0, d̄1, d̄2)

is an isomorphism of Lie algebras. Besides, for any (d0, d1, d2) ∈ tri(C, ∗, q),
Φθ(d0, d1, d2)=Φ(d2, d0, d1)=(d2, d̄0, d̄1)=θ2

BS(d0, d̄1, d̄2)=θ2
BSΦ(d0, d1, d2),

where θBS is the order 3 automorphism

θBS : Tri C → Tri C

(f, g, h) �→ (ḡ, h, f̄)

given in [4, Lemma 4.3].

Now for any x, y ∈ C, Barton and Sudbery consider the element

Tx,y =
(
4Sx,y, RyRx̄ − RxRȳ, LyLx̄ − LxLȳ

)
∈ TriC,

where Sx,y(z) = 〈x, z〉y − 〈y, z〉x, with 〈x, y〉 = 1
2
q(x, y), and Lx (resp. Rx)

denote the left (resp. right) multiplication by x in C. Thus, 4Sx,y = 2σx,y.
Also, from (2.3),

RyRx̄ − RxRȳ(z) = (z̄x̄)y − (z̄ȳ)x

= (x ∗ z)y − (y ∗ z)x

= (x ∗ z) ∗ y − (y ∗ z) ∗ x

= q(x, y)z − 2rxly(z),

and similarly LyLx̄ − LxLȳ = q(x, y)I − 2lxry for any x, y ∈ C. Therefore,
for any x, y ∈ C,

(5.4) Tx,y = 2Φ(tx,y).

Now if C and C ′ are two Hurwitz algebras and L3(C,C ′) is the Lie algebra
defined in [4, Theorem 4.4], the linear map

Λ : g(Ĉ, Ĉ ′) → L3(C,C ′)

such that

i) Λ(d0, d1, d2) = Φ(d0, d1, d2) and Λ(d′
0, d

′
1, d

′
2) = Φ′(d′

0, d
′
1, d

′
2) for any

(d0, d1, d2) in tri(Ĉ, ∗, q) (resp. (d′
0, d

′
1, d

′
2) ∈ tri(Ĉ ′, ∗, q′)), where Φ

(resp. Φ′) is defined by (5.3),

ii) Λ
(
ιi(a ⊗ x)

)
= Fi+1(a ⊗ x), for any i = 0, 1, 2, a ∈ C and x ∈ C ′,

takes the multiplication in g(Ĉ, Ĉ ′) into the multiplication in L3(C,C ′) given
in [4, (4.23)-(4.26)], so that it is an isomorphism.
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Therefore, since any para-Hurwitz algebra can be obtained as the Ĉ =
(C, ∗, q) of some Hurwitz algebra, the Lie algebras L3(C,C ′) are exactly, up
to isomorphism, the Lie algebras g(S, S′) for para-Hurwitz algebras S and S′.

On the other hand, Allison and Faulkner give, in [2, Section 4], a general
construction of Lie algebras starting with structurable algebras. Important
examples of these algebras are the tensor products C ⊗ C ′ of two Hurwitz
algebras. In this case, one checks easily that the operators in [2, eq. (I)] take
the following form:

T1 = Lb̄⊗ȳLa⊗x − Lā⊗x̄Lb⊗y

=
1

2
(Lb̄La − LāLb) ⊗ q′(x, y)I + q(a, b)I ⊗ 1

2
(LȳLx − Lx̄Ly) ,

T2 = Rb̄⊗ȳRa⊗x − Rā⊗x̄Rb⊗y

=
1

2
(Rb̄Ra − RāRb) ⊗ q′(x, y)I + q(a, b)I ⊗ 1

2
(RȳRx − Rx̄Ry) ,

T0 = R(
(ā⊗x̄)(b⊗y)−(b̄⊗ȳ)(a⊗x)

) + Lb⊗yLā⊗x̄ − La⊗xLb̄⊗ȳ

= σa,b ⊗ q′(x, y)I + q(a, b)I ⊗ σ′
x,y.

Therefore, the “ inner triple” (T0, T1, T2) is exactly

q′(x, y)T̂a,b + q(a, b)T̂ ′
x,y ∈ t(C) ⊕ t(C ′),

where

T̂a,b =

(
σa,b,

1

2
(Lb̄La − LāLb) ,

1

2
(Rb̄Ra − RāRb)

)
.

But
Lb̄La − LāLb = RbRā − RaRb̄

and
Rb̄Ra − RāRb = LbLā − LaLb̄.

Thus, the argument leading to (5.4) gives that the inner triple (T0, T1, T2) is
exactly

(5.5) q′(x, y)ta,b + q(a, b)t′x,y.

Now, with V = t(C) ⊕ t(C ′) and 0 �= γ0, γ1, γ2 ∈ F , Allison and Faulkner
construct the Lie algebra (the direct sum of V and three copies of C ⊗ C ′)

K(C ⊗ C ′; γ0, γ1, γ2) = V ⊕ (C ⊗ C ′)[01] ⊕ (C ⊗ C ′)[12] ⊕ (C ⊗ C ′)[20],
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where (a⊗x)[ij] = −γiγ
−1
j (ā⊗x̄)[ji], with multiplication given by extending

the Lie product in V by setting[
(a ⊗ x)[ij], (b ⊗ y)[jk]

]
= (ab ⊗ xy)[ik] = −γiγ

−1
j (ab ⊗ xy)[ki],[

(d0, d1, d2), (a ⊗ x)[ij]
]

= (dk(a) ⊗ x)[ij],[
(d′

0, d
′
1, d

′
2), (a ⊗ x)[ij]

]
= (a ⊗ d′

k(x))[ij],[
(a ⊗ x)[ij], (b ⊗ y)[ij]

]
= γiγ

−1
j

(
q′(x, y)θk(ta,b) + q(a, b)θ′k(t′x,y)

)
,

where (i, j, k) is a cyclic permutation of (0, 1, 2), for any a, b ∈ C, x, y ∈ C ′,
(d0, d1, d2) ∈ t(C) and (d′

0, d
′
1, d

′
2) ∈ t(C ′). Note that the numbering of the

indices in [2] and here are slightly different.

With αi = γ−1
i+1γi+2 (indices modulo 3), and using the construction in

Remark 3.2, it is straightforward to check that the linear map

Γ : gα(Ĉ, Ĉ ′) → K(C ⊗ C ′; γ0, γ1, γ2)

such that

i) Γ is the identity on tri(C, ∗, q) ⊕ tri(C ′, ∗, q) = t(C) ⊕ t(C ′),

ii) Γ
(
ιi(a⊗x)

)
= −(a⊗x)[i+ 1, i+ 2] for any a ∈ C and x ∈ C ′ (indices

modulo 3),

is an isomorphism of Lie algebras.

Finally, the construction given by Landsberg and Manivel is (isomorphic
to) the construction K(C ⊗ C ′; 1, 1, 1). This is seen by identifying, in [14,
Theorem 2.1], u1 ⊗ v1 with (u⊗ v)[01], u2 ⊗ v2 with (u⊗ v)[12] and u3 ⊗ v3

with (u ⊗ v)[02] = −(ū ⊗ v̄)[20]. Therefore, this construction gives again
exactly the Lie algebras g(S, S′) for para-Hurwitz algebras S and S′.
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Navarro Márquez, F. J.: On the Cartan-Jacobson Theorem. J. Algebra
250 (2002), no. 2, 397–407.

[2] Allison, B.N. and Faulkner, J. R.: Nonassociative Coefficient Alge-
bras for Steinberg Unitary Lie Algebras. J. Algebra 161 (1993), no. 1, 1–19.

[3] Barton, C.H. and Sudbery, A.: Magic squares of Lie algebras. Preprint
arXiv:math.RA/0001083.

[4] Barton, C.H. and Sudbery, A.: Magic squares and matrix models of
Lie algebras. Adv. Math. 180 (2003), no. 2, 596–647.

[5] Elduque, A.: Symmetric composition algebras. J. Algebra 196 (1997),
no. 1, 282–300.



The Magic Square and Symmetric Compositions 491

[6] Elduque, A.: Okubo algebras in characteristic 3 and their automorphisms.
Comm. Algebra 27 (1999), no. 6, 3009–3030.

[7] Elduque, A.: On triality and automorphisms and derivations of compo-
sition algebras. Linear Algebra Appl. 314 (2000), no. 1-3, 49–74.

[8] Elduque, A. and Myung, H.C.: On flexible composition algebras.
Comm. Algebra 21 (1993), no. 7, 2481–2505.

[9] Elduque, A. and Okubo, S.: Local triality and some related algebras.
J. Algebra 244 (2001), no. 2, 828–844.
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