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Multiplicative Square Functions

Maŕıa José González and Artur Nicolau

Abstract

We study regularity properties of a positive measure in the eu-
clidean space in terms of two square functions which are the multi-
plicative analogues of the usual martingale square function and of the
Lusin area function of a harmonic function. The size of these square
functions is related to the rate at which the measure doubles at small
scales and determines several regularity properties of the measure.
We consider the non-tangential maximal function of the logarithm of
the densities of the measure in the dyadic setting, and of the loga-
rithm of the harmonic extension of the measure, in the continuous
setting. We relate the size of these maximal functions to the size
of the corresponding square functions. Fatou type results, Lp esti-
mates and versions of the Law of the Iterated Logarithm are proved.
As applications we introduce a hyperbolic version of the Lusin Area
function of an analytic mapping from the unit disc into itself, and use
it to characterize inner functions. Another application to the theory
of quasiconformal mappings is given showing that our methods can
also be applied to prove a result by Din’kyn’s on the smoothness of
quasiconformal mappings of the disc.

1. Introduction

A positive measure µ in RN is called doubling if there exists a positive
constant C = C(µ) such that

µ(2Q) ≤ Cµ(Q) ,

for any cube Q ⊂ R
N , where 2Q denotes the cube which the same center

as Q and twice the sidelength. Lebesgue measure dm is doubling and, as a
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matter of fact, it is the only doubling measure for which the constant C
can be taken C = 2N . However, classical constructions ([7, 13]) provide
examples of doubling measures which are singular with respect to Lebesgue
measure. See also [2], [12], [24], [33].

Our main purpose is to describe regularity properties of a measure, such
as being singular, in terms of two different square functions. The first square
function is related to the rate at which the measure doubles at small scales,
while the second one is connected to the logarithm of the harmonic extension
of the measure. An important result in this direction, stated below in a
different way, was proved by L. Carleson ([13]) for N = 1, when studying
regularity properties of quasiconformal mappings. See also [27, p. 5], and [16]
for the extension to RN .

Theorem A. (a) Let µ be a doubling measure in R
N . Consider

w(t) = sup

∣∣∣∣µ(Q)2N

µ(2Q)
− 1

∣∣∣∣ ,

where the supremum is taken over all cubes Q in R
N of sidelength smaller

than t. Assume ∫
0

w2(t)
dt

t
< ∞ .

Then, the measure µ is absolutely continuous and its density f satisfies∫
Q

exp(Cf 2)dm < ∞ ,

for any cube Q ⊂ R
N and any C > 0.

(b) Let w : [0, 1] → [0,∞] be an increasing function with w(0) = 0. As-
sume that for some 0 < ε < 1, the function w(t)/t1−ε is non-decreasing.
Assume also ∫

0

w2(t)
dt

t
= ∞ .

Then, there exists a singular doubling measure µ on R
N such that∣∣∣∣µ(Q)2N

µ(2Q)
− 1

∣∣∣∣ ≤ w(l(Q)) ,

for any cube Q ⊂ R
N .

So, the quadratic condition∫
0

w2(t)
dt

t
= ∞

governs the existence of singular measures that double at rate w(t). However,
this is a global result because the function w(t) controls the error done by
the measure when doubling at all cubes of sidelength t.
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We are interested in local versions of this result. In the additive setting,
local results of this sort were proved by Stein and Zygmund [35, p. 262].
They showed that a real valued function f on RN has an ordinary derivative
at almost every point of a set E if and only if both

f(x + t) + f(x − t) − 2f(x) = O(|t|) , t → 0 ,∫
|t|≤δ

|f(x + t) + f(x − t) − 2f(x)|2 dt

|t|N+2
< ∞

for almost every x ∈ E.

Both our results and methods are better explained in the dyadic setting.
Let Q0 be the unit cube in R

N . Let us consider the dyadic decomposition
of Q0, that is, for k = 1, 2, . . . , we consider the collection Fk of the 2kN

pairwise disjoint subcubes of Q0 of the form

Q = [j12
−k, (j1 + 1)2−k) × · · · × [jN2−k, (jN + 1)2−k) ,

where j1, . . . , jN are integers between 0 and 2k − 1. So

m(Q) = |Q| = 2−kN .

A positive measure µ on Q0 is called dyadic doubling if there exists a constant
C = C(µ) > 0 such that

µ(Q̃) ≤ Cµ(Q) ,

for any dyadic subcube Q of Q0, where Q̃ is the smallest dyadic subcube of Q0

which properly contains Q. These measures were completely characterized
in terms of their Haar coefficients by Fefferman, Kenig and Pipher ([17]).
Results on null sets of (dyadic) doubling measures can be found in [25],
[39], [40].

A dyadic martingale on Q0 is a sequence of functions {Sn} from Q0

to R such that Sn is Fn-measurable and the conditional expectation of Sn+1

on Fn is Sn, n = 0, 1, 2, . . . . These two conditions may be rephrased as:
Sn is constant (which we denote Sn(Q̃)) in each cube Q̃ of Fn and

Sn(Q̃) =
1

2N

∑
Sn+1(Q) ,

where the sum is taken over all cubes Q of Fn+1 contained in Q̃. Note that
Sn(x) represents the value of the martingale on the cube Qn(x), where Qn(x)
denotes the unique dyadic cube of sidelenght 2−n containing x.
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The (truncated) maximal function of the martingale {Sn} is

S∗
m(x) = sup

0≤n≤m
|Sn(x)| , m = 0, 1, 2, . . .

If m = ∞, we simply write S∗(x). The (truncated) martingale square func-
tion of {Sn} is defined as

〈S〉m(x) =

( m∑
k=1

∥∥(Sk − Sk−1)χQk−1(x)

∥∥2

∞

)1/2

, x ∈ Q0 .

In dimension one, this is the more traditional square function

〈S〉m(x) =

( m∑
k=1

(Sk(x) − Sk−1(x))2

)1/2

.

If m = ∞, we simply write 〈S〉(x). It is well known that many properties of
the martingale {Sn} can be described using its square function. Burckholder
and Gundy proved that the sets

{x ∈ Q0 : lim
n→∞

Sn(x) exists} and {x ∈ Q0 : 〈S〉(x) < ∞}

can only differ on a set of Lebesgue measure 0. Also, for 0 < p < ∞, the
maximal function

S∗(x) = sup
n

|Sn(x)|

is in Lp(Q0) if and only if 〈S〉 ∈ Lp(Q0). See [9] and [10]. These results
give comparisons between S∗ and 〈S〉 on the set where they are finite. In its
complement, the following Law of the Iterated Logarithm holds:

lim sup
n→∞

|Sn(x)|
〈S〉n(x)

√
2 log log〈S〉n(x)

≤ 1 ,

at almost every point x ∈ {x ∈ Q0 : supn |Sn(x)| = ∞} ([35, 6]). An impor-
tant result in this direction is the following good-λ inequality established by
Chang, Wilson and Wolff,

|{x ∈ Q0 : S∗(x) > 2λ , 〈S〉(x) < ελ}| ≤

≤ C exp

(
− 1

2

(
1 − ε

ε

)2)∣∣{x ∈ Q0 : S∗(x) > λ}∣∣ .(1.1)

Here ε is any number in (0, 1) and C is a universal constant ([14]).
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Given a positive measure µ on Q0, one may consider the dyadic martingale

Sk =
∑
Q∈Fk

µ(Q)

|Q| χQ , k = 1, 2, . . . .

Thus, many properties of the martingale {Sk} and hence of the measure µ,
can be described in terms of its quadratic variation,

〈S〉2(x) =
∞∑

k=1

max
{µ(Q)

|Q| − µ(Qk−1(x))

|Qk−1(x)|
}2

,

where the maximum is taken over all cubes Q ∈ Fk contained in Qk−1(x).
For instance, it is easy to show that, for 1 < p < ∞, µ has a density
(with respect to Lebesgue measure) in Lp(Q0) if and only if the square
function of the martingale is in Lp(Q0). Because of the additive nature of
these expressions, the martingale {Sk} is very well suited to study additive
properties of the measure µ. See [2], [16], [27], [26]. When dealing with
multiplicative properties of a measure, such as doubling conditions, it is
natural to consider, somehow, the logarithm of Sn. This point of view has
already been used by other authors. For instance, we mention the work of
Fefferman, Kenig and Phiper [17] in connection with the theory of weights
(see also [11], [37]) and the work of P. MacManus ([29]) on quasiconformal
mappings.

Next we introduce a square function of a positive measure which is,
in some sense, a multiplicative analogue of the square function which arises
from the martingale. Given a dyadic doubling measure µ on Q0, we consider
the dyadic square function

A2(µ)(x) =

∞∑
k=1

d2
k(x) , x ∈ Q0

where

dk(x) = max

{∣∣∣∣1 − 2Nµ(Q)

µ(Qk−1(x))

∣∣∣∣ : Q ∈ Fk , Q ⊂ Qk−1(x)

}
.

So, the function A2(µ)(x) measures the error done by µ when doubling on
all dyadic cubes containing x ∈ Q0. In dimension 1, this is

A2(µ)(x) =

∞∑
k=1

(
1 − 2µ(Ik(x))

µ(Ik−1(x))

)2

,

where Ij(x), j = 1, 2, . . . , is the unique dyadic interval of length 2−j which
contains x ∈ I0. Our first result is the following.
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Theorem 1.1. Let µ be a dyadic doubling measure in Q0 and A2(µ) its
dyadic square function. Let Qn(x) be the unique dyadic cube in Fn which
contains x ∈ Q0. Then,

(a) The sets{
x ∈ Q0 : lim

n→∞
µ(Qn(x))

|Qn(x)| > 0
}

and {x ∈ Q0 : A2(µ)(x) < ∞}

can only differ in a set of Lebesgue measure 0.

(b) Consider the maximal function

M(log µ)(x) = sup
n

∣∣∣∣log
µ(Qn(x))

|Qn(x)|
∣∣∣∣ , x ∈ Q0 .

Then, for 0 < p < ∞, M(log µ) ∈ Lp(Q0) if and only if A2(µ) ∈ Lp(Q0).

(c) Let f be the density of µ respect Lebesgue measure. Then, for 1<p <∞,
log f ∈ Lp(Q0) if and only if A2(µ) ∈ Lp(Q0).

(d) There exists a constant C = C(N), only depending on the dimension,
such that exp(CA2(µ)) ∈ L1(Q0) implies that µ and Lebesgue measure
are mutually absolutely continuous.

(e) There exists a constant c = c(N), only depending on the dimension, such
that if A2(µ)(x) < 1 for any x ∈ Q0, then exp(cM 2(log µ)) ∈ L1(Q0).

The statements in (a), (b) and (c) are the analogues, in our setting, of the
classical results by Burkholder and Gundy cited above, while (d) and (e) are
consequences of certain good-λ inequalities relating the growth of M(log u)
and A2(µ) and which are the analogues of the subgaussian estimates of
Chang, Wilson and Wolff. As a consequence of (a) we obtain

Corollary 1.2. Let µ be a dyadic doubling measure in Q0 and let A2(µ)
be its dyadic square function. Then, µ is singular with respect to Lebesgue
measure if and only if

A2(µ)(x) = ∞ ,

at almost (dm) every point x ∈ Q0.

The main idea in the proof is to consider the logarithmic transformation
of the martingale {Sn}. More concretely, given a dyadic doubling measure µ
on Q0, we consider the dyadic martingale

Sn =
∑

Q∈Fn

µ(Q)

|Q| χQ .
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It is easy to see that there exists a unique (except for adding constants)
process Xn verifying the following two conditions:

(a) Xn is Fn−1-measurable, that is, Xn is constant on any cube of Fn−1,

(b) Tn = log Sn + Xn is a dyadic martingale.

It turns out that the martingale {Tn} is the inverse of the exponential trans-
formation of {Sn} (see [27, p. 27], [6, p. 47]). Actually the process Xn can
be given explicitly by

Xn =
∑

Q∈Fn

Xn(Q)χQ ,

where

(1.2) Xn(Q) = −
∑

log
g.m.(Qj)

a.m.(Qj)
.

Here the sum is taken over all dyadic cubes {Qj} which properly contain Q.
Also, if Q ∈ Fl and Q1, . . . , Q2N are the dyadic cubes in Fl+1 contained in Q,
then g.m. (Q) (a.m. (Q)) denotes the geometric (arithmetic) mean of the
density of µ over Q1, . . . , Q2N , that is

g.m.(Q) =

2N∏
i=1

(
µ(Qi)

|Qi|
)1/2N

, a.m.(Q) =
µ(Q)

|Q| =
1

2N

2N∑
i=1

µ(Qi)

|Qi| .

Now, the main observations are that, under the doubling hypothesis, the
quadratic variation 〈T 〉2(x) is pointwise comparable to A2(µ)(x), and Xn(x)
is pointwise comparable to the truncated area function A2

n(µ)(x), that is

Xn(x) �
n∑

k=1

d2
k(x) = A2

n(µ)(x) .

Let

T ∗(x) = sup
n

|Tn(x)| = sup
n

∣∣∣∣log
µ(Qn(x))

|Qn(x)| + Xn(x)

∣∣∣∣ .

Now, since 〈T 〉 is comparable to A(µ), the usual stopping time arguments
which go back to Burkholder and Gundy (see [9, 10]) used to compare the
distribution functions of T ∗(x) and 〈T 〉(x) can be used to compare M(log µ)
and A2(µ) and obtain (a) and (b) in Theorem 1.1. However the proof of (d)
and (e) uses the deeper subgaussian estimates proved by Chang, Wilson
and Wolff mentioned above ([14]). These subgaussian estimates are also
very closely related to the law of the iterated logarithm. In our case we
get that the logarithm of the density of µ behaves very closely to Xn(x) on

the set {x ∈ Q0 : limn→∞
µ(Qn(x))
|Qn(x)| = 0} , which coincides, except for a set of

Lebesgue measure 0, with {x ∈ Q0 : X(x) = ∞} = {x ∈ Q0 : A(µ)(x) = ∞}.
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Theorem 1.3. Let µ be a dyadic doubling measure on Q0 and let Xn be
given by (1.2). Then there exists a constant C depending on the dimension
and on the doubling constant of µ, such that at almost every point x ∈ {x ∈
Q0 : limn→∞

µ(Qn(x))
|Qn(x)| = 0}, one has

C−1 ≤ lim sup
n→∞

∣∣∣log µ(Qn(x))
|Qn(x)| + Xn(x)

∣∣∣√
Xn(x) log log Xn(x)

≤ C .

Since, as mentioned before, Xn(x) is comparable to A2
n(µ)(x), we deduce

Corollary 1.4. Let µ be a dyadic doubling measure on Q0, let A2(µ) be its
square function and let Xn be given by (1.2). Then at almost every point

x∈{x∈Q0 : limn→∞
µ(Qn(x))
|Qn(x)| =0},

lim
n→∞

∣∣∣log µ(Qn(x))
|Qn(x)|

∣∣∣
Xn(x)

= 1 .

Also, there exists a constant C depending on the dimension and on the dou-
bling constant of µ such that

C−1 <

∣∣∣log µ(Qn(x))
|Qn(x)|

∣∣∣
A2

n(µ)(x)
< C ,

at almost every point x ∈ {x ∈ Q0 : limn→∞
µ(Qn(x))
|Qn(x)| = 0}, for n suffi-

ciently large.

It should be observed that

log
µ(Qn(x))

|Qn(x)| ≤ C(µ)
n∑

k=1

dk(x)

is the best possible pointwise estimate. However, the last result shows that
this inequality can be substantially improved at almost every point on the
set {x ∈ Q0 : limn→∞

µ(Qn(x))
|Qn(x)| = 0}.

The second part of our work is devoted to study the relation between
singularity, as well as other regularity properties of a measure, and an square
function which arises from the harmonic extension of the measure. Let u be a
harmonic function in the upper-half space R

N+1
+ = {(x, y) : x ∈ RN , y > 0}.

Given α > 0 and x0 ∈ RN , we denote by Γ(x0) = Γα(x0) the (truncated)
cone with vertex at x0 of aperture α, that is

Γα(x0) = {(x, y) ∈ R
N+1
+ : |x − x0| < αy , 0 < y < 1} .
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Given t ≥ 0, the (doubly) truncated cone Γα(x0, t) with vertex at x0 ∈ R
N is

Γα(x0, t) = {(x, y) ∈ R
N+1
+ : |x − x0| < αy , t < y < 1}

and the (doubly) truncated maximal function of u is

Mα(u)(x0, t) = sup{|u(x, y) : (x, y) ∈ Γα(x0, t)}
and when t = 0, we simply write Mα(u)(x0).

The (doubly) truncated area function of u is defined by

A2
α(u)(x0, t) =

∫
Γα(x0,t)

|∇u(x, y)|2y1−N dx dy

and when t = 0, we simply write A2
α(u)(x0).

The size of the area function and the non tangential maximal function are
intimately related. For instance, a series of results by Marcinkiewicz, Zyg-
mund, Spencer, Calderón and Stein assert that for any α > 0, the following
two sets

{x ∈ R
N : u has non-tangential limit at x} , {x ∈ R

N : Aα(u)(x) < ∞} ,

can only differ in a set of Lebesgue measure 0. Also, C. Fefferman and
E. Stein ([18]) proved that for any 0 < p < ∞, there exists a constant
C = C(p,N) > 0 such that for any harmonic function u on R

N+1
+ with

limt→∞ u(x, t) = 0, one has

C−1‖Aα(u)‖p ≤ ‖Mα(u)‖p ≤ C‖Aα(u)‖p .

So that, the distribution functions of M(u) and A(u) have, roughly speaking,
the same rate of growth. Many authors have proved good-λ inequalities for
M(u) and A(u), which are direct comparisons of their distribution functions
([10, 18]). Muray and Uchiyama ([31]) proved that given 0 < β < α, there
exists a constant K > 1 and positive numbers C1, C2 such that for any
0 < ε < 1 and any λ > 0 one has

|{x ∈ R
N : Aβ(u)(x) > Kλ ,Mα(u) < ελ}|

≤ C1e
−C2/ε2|{x ∈ R

N : Aβ(u)(x) > λ}|
and

|{x ∈ R
N : Mβ(u)(x) > Kλ ,Aα(u)(x) < ελ}|

≤ C1e
−C2/ε|{x ∈ R

N : Mβ(u)(x) > λ}| .
Here C1, C2 are two absolute constants only depending on the dimension N
and on α, β.
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The proof followed the traditional method of using Green’s formula on
sawtooth regions. Notice, however, that the second inequality gives a worst
decay than the first one. Bañuelos, Klemes and Moore ([3]) improved this
estimate and proved the subgaussian estimate

|{x ∈ R
N : Mβ(u)(x) > Kλ ,Aα(u)(x) < ελ}|

≤ C3e
−C4/ε2|{x ∈ R

N : Mβ(u)(x) > λ}| .

Their proof was based on reducing the estimate to an analogous estimate in
the dyadic-martingale setting. This scheme was first used by Chang, Wilson
and Wolff in ([14]).

These results give comparisons between Aα(u) and Mβ(u) on the set
where these functions are finite. In its complement, Bañuelos, Klemes and
Moore ([3]) proved a law of the iterated logarithm. This may be stated
as follows: given 0 < β < α and 0 < γ < 1, there exists a constant
C = C(α, β, γ,N) > 0 such that for any harmonic function u on R

N+1
+ ,

one has

lim sup
(y,t)→(x,0)
(y,t)∈Γβ(x)

|u(y, t)|√
A2

α(u)(x, γt) log log Aα(u)(x, γt)
≤ C ,

for almost every x ∈ {x ∈ R
N : Aα(u)(x) = ∞}. The opposite inequality

also holds if certain regularity properties of the function u are required ([4]).
It is especially interesting to us that if u satisfies the Bloch condition

y|∇u(x, y)| ≤ C1 , (x, y) ∈ R
N+1
+ ,

for some fixed constant C1, then

lim sup
(y,t)→(x,0)
(y,t)∈Γα(x)

|u(y, t)|√
A2

α(u)(x, t) log log A2
α(u)(x, t)

≥ C2 ,

for almost every x ∈ {x ∈ R
N : Aα(u)(x) = ∞}.

Given a positive measure µ on Q0, let u be its harmonic extension. As
in the martingale setting, the results mentioned above are very well suited
to treat additive properties of the measure µ. In our situation it is more
natural to consider the function log u and its area function

(1.3) A2
α(log u)(x) =

∫
Γα(x)

|∇u(w, y)|2
u(w, y)2

y1−N dwdy , x ∈ R
N .

This square function was first considered by J. Brossard [8], who gave a
probabilistic proof of part (a) in the following result.
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Theorem 1.5. Let µ be a positive measure on R
N such that∫

RN

dµ(x)

1 + |x|N+1
< ∞ .

Let f be the density of µ with respect to Lebesgue measure. Fix α > 0. Let
u be the harmonic extension of µ and Aα(log u)(x) its area function. Then

(a) The sets

{x ∈ R
N : f(x) > 0} and {x ∈ R

N : Aα(log u)(x) < ∞}
can only differ in a set of Lebesgue measure 0.

(b) Consider the maximal function

Mα(log u)(x) = sup{| log u(w, y)| : (w, y) ∈ Γα(x)} .

Let Q be a cube in R
N . Then, for 0 < p < ∞, Mα(log u) ∈ Lp(Q) if

and only if A2
α(log u) ∈ Lp(Q).

(c) Let Q be a cube in R
N . Then, for 1 < p < ∞, log f ∈ Lp(Q) if and only

if A2
α(log u) ∈ Lp(Q).

(d) There exists a constant c = c(N,α) such that exp(cA2
α(log u)) ∈ L1

loc

implies that µ and Lebesgue measure are mutually absolutely continuous.

(e) There exists a constant C = C(N,α) such that if A2
α(log u)(x) < 1 for

any x ∈ Q, then exp(CM2
α(log u)) ∈ L1(Q).

Corollary 1.6. With the notations above, µ is singular if and only if

A2
α(log u)(x) = ∞ a.e.(dx)x ∈ R

N .

Observe that in this result the measure µ does not need to be doubling.
Let us explain why. Given a positive measure µ in RN we may consider
two extensions to R

N+1
+ : on one hand its harmonic extension that we denote

by u(x, y), and on the other hand the average of the measure on the cube
Q(x, y) centered at x ∈ R

N and sidelength y > 0 that we denote by ũ(x, y).
So ũ(x, y) = µ(Q(x, y))/yN . The reason why we do not need to assume any
doubling hypothesis on µ in Theorem 1.5 is that Harnack’s inequality holds
for u but not for ũ unless µ is doubling.

A proof of (a) and (b) can be given using the identity

∆(log u) = −|∇u|2
u2

,

Green’s Theorem and the traditional techniques of “sawtooth regions” (see,
for instance, [35, Chapter VII]). However, (d) and (e) are harder because
they really depend on the martingale subgaussian estimate of [14].
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As it was mentioned before, Bañuelos and Moore ([6]) proved subgaussian
estimates between the distribution functions of the non-tangential maximal
function of a harmonic function and its area function. Their method was
based on using a truncated version of a Calderón-type reproducing formula,
to approximate a harmonic function by dyadic martingales, up to an error
controled by its area function. To obtain the good λ-inequalities which are
needed in our setting, we apply their scheme to the logarithm of a positive
harmonic function. Then, a new term, Q(log u), which is analogue to the
process Xn in the martingale setting, arises but it can be estimated by the
square of the area function. This is sufficient to prove (d) and (e). In our
analysis it is crucial that the logarithm of a positive harmonic function shares
some properties with harmonic functions, such as a submean property for its
gradient. As in the martingale setting, the subgaussian estimate also leads
to a Law of the Iterated Logarithm.

We need some notation. Given y ≥ 0, the (doubly) truncated cone
Γα(x, y) with vertex at x ∈ R

N is

Γα(x, y) = {(w, t) ∈ R
N+1
+ : |w − x| < αt , y < t < 1}

and the (doubly) truncated area function of log u is defined by

A2
α(log u)(x, y) =

∫
Γα(x,y)

t1−N |∇u(w, t)|2
u(w, t)2

dw dt .

Given a smooth, positive, radial function K supported on {x ∈ RN : ‖x‖<ρ},
with integral 1, consider

(1.4) Q(x, ε) =

∫ 1

ε

∫
RN

t1−NK((x − w)/t)
|∇u(w, t)|2

u(w, t)2
dw dt , x ∈ R

N .

Observe that the integral is really over the cone Γρ(x) ⊂ R
N+1
+ . So, Q(x, ε)

is a smooth version of the truncated area function defined above. Actually,
if 0 < β < ρ < α, then

C−1A2
β(log u)(x, y) < Q(x, y) < CA2

α(log u)(x, y),

where C is a numerical constant depending on α, β, N and the function K.
Our result shows that log u(x, y) behaves very closely to Q(x, y) at the set
x ∈ {x ∈ R

N : limy→0 u(x, y) = 0}, which coincides, except for a set of
Lebesgue measure 0, with {x ∈ RN : limy→0 Aα(log u)(x, y) = ∞} and with
{x ∈ RN : limy→0 Q(x, y) = ∞}.
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Theorem 1.7. Let u be a positive harmonic function on R
N+1
+ and define Q

by (1.4). Then, there exists a constant C = C(N,K) such that

lim sup
y→0

| log u(x, y) + Q(x, y)|√
Q(x, y) log log Q(x, y)

≤ C ,

at almost every point x ∈ {x ∈ R
N : limy→0 u(x, y) = 0}.

Hence,

Corollary 1.8. Let u be a positive harmonic function in R
N+1
+ . Then,

lim
y→0

| log u(x, y)|
Q(x, y)

= 1

at almost every point x ∈ {x ∈ R
N : limy→0 u(x, y) = 0} .

Also, given α > 0, there exists a constant C = C(α,N) such that

C−1 < lim sup
y→0

| log u(x, y)|
A2

α(log u)(x, y)
< C ,

at almost every point x ∈ {x ∈ RN : limy→0 u(x, y) = 0} .

It is worth mentioning that there is no pointwise estimate between

| log u(x, y)| and Q(x, y) or A2
α(log u)(x, y).

Finally, we will apply these results to two different settings, the first
one is related to Schwarz’s Lemma and the second one to quasiconformal
mappings. The problem on Schwarz’s Lemma which we now describe was in
fact the first motivation for our work. Let I be a holomorphic mapping from
the unit disc into itself. Schwarz’s Lemma states that I decreases hyperbolic
distances, or infinitesimally that its derivative with respect to the hyperbolic
metric is bounded by 1, that is,

D(I)(z) =
(1 − |z|2)|I ′(z)|

1 − |I(z)|2 ≤ 1 ,

for any z ∈ D. We would like to describe the best decay of the hyperbolic
derivative of such non constant holomorphic functions. It is clear that a
normalization of the image domain is needed. A holomorphic mapping from
the unit disc onto itself is called inner if∣∣∣ lim

r→1
I(reiθ)

∣∣∣ = 1 , a.e. eiθ ∈ ∂D.

For such mappings, W. Smith ([34], see also [1]) showed that the best radial
decay of the hyperbolic derivative is governed by a quadratic condition.
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Theorem B. (a) Let w be an increasing function on [0, 1], w(0) = 0. As-
sume ∫

0

w2(t)
dt

t
< ∞ .

Then, there exists no non-constant inner function I such that

(1 − |z|2)|I ′(z)|
1 − |I(z)|2 ≤ w(1 − |z|)) , for any z ∈ D.

(b) Let w be an increasing function on [0, 1], w(0) = 0, such that w(t)/t1−ε

decreases for some ε > 0. Assume∫
0

w2(t)
dt

t
= ∞ .

Then, there exists an inner function I such that

(1 − |z|2)|I ′(z)|
1 − |I(z)|2 ≤ w(1 − |z|) , for any z ∈ D.

We will apply Theorem 1.5 to find a non-radial version of this result. As it
was noticed in [1], this is really a problem on positive harmonic functions.
Actually, let

τ(z) =
1 + z

1 − z

be a conformal mapping from the unit disc onto the right half plane. Given
a holomorphic function I : D → D, let u be the real part of τ ◦ I. So, u is a
positive harmonic function and therefore the Poisson integral of a positive
measure µ on ∂D. It is clear that I is inner if and only if µ is a singular
measure. Also, a simple calculation shows

2
|I ′(z)|

1 − |I(z)|2 =
|∇u(z)|

u(z)
, z ∈ D .

Given θ ∈ [0, 2π] and α > 1 we denote by Γα(θ) the Stölz angle with vertex
at eiθ, that is

Γα(θ) = {z ∈ D : |z − eiθ| ≤ α(1 − |z|)} .

We consider the following hyperbolic version of the area function

A2
α(I)(eiθ) =

∫
Γα(θ)

|I ′(z)|2
(1 − |I(z)|2)2

dm(z) ,

which corresponds to the usual area function once one has replaced the
euclidean derivative and the Lebesgue measure by the hyperbolic derivative
D(I)(z) and the hyperbolic density dm(z)/(1 − |z|2)2.
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Geometrically, A2
α(I)(eiθ) is the hyperbolic area (in the disc), counting

multiplicities, of I(Γα(θ)). With the previous notation A2
α(I)(eiθ) coincides

with 4−1A2
α(log u)(eiθ). Part (a) of our next result can be understood as the

hyperbolic analogous of the classical result by Calderón on the existence of
radial limits at almost every point where the usual area function is finite.
More concretely, since the function I is bounded, Fatou’s Theorem asserts
that I has finite radial limits at almost every point of the unit circle. How-
ever, having limits of modulus 1 means going to infinity in the hyperbolic
metric of the disc. So, (a) states that the set where this occurs coincides,
modulo sets of Lebesgue measure 0, with the set where the hyperbolic area
function is infinite.

Theorem 1.9. (a) Let I be a holomorphic mapping from the unit disc into
itself. Fix α > 0. Then, the sets

{eiθ ∈ ∂D : | lim
r→1

I(reiθ)| < 1} and {eiθ ∈ ∂D : A2
α(I)(eiθ) < ∞}

can only differ in a set of Lebesgue measure 0.

(b) Let h be a positive function h : D → (0,∞) for which

(99/100)h(w) ≤ h(z) ≤ (101/100)h(w) ,

for any pair of points z, w such that |z − w|/|1 − wz| ≤ 1/2. Given α > 0,
assume that ∫

Γα(θ)

h2(z) dm(z) = ∞ ,

at almost every θ ∈ [0, 2π). Assume also that, for any 0 ≤ θ < 2π, the
function h(reiθ) increases in r ∈ [0, 1). Then, there exists a non constant
inner function I such that

|I ′(z)|
1 − |I(z)|2 ≤ h(z) , for any z ∈ D.

Observe that (a) implies part (a) in Theorem B. Actually if

(1 − |z|2)|I ′(z)|
1 − |I(z)|2 ≤ w(1 − |z|) , z ∈ D ,

one would deduce that for any θ ∈ [0, 2π],∫
Γα(θ)

( |I ′(z)|
1 − |I(z)|2

)2

dm(z) ≤
∫

Γα(θ)

w2(1 − |z|)
(1 − |z|)2

dm(z) ≤ C(α)

∫ 1

0

w2(t)
dt

t
.

Also, part (b) of Theorem B corresponds to the case

h(z) = w(1 − |z|)/(1 − |z|)
and the crucial integral assumption on h follows from the corresponding one
on w(t).
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As in the preceding situations, Lp estimates between the hyperbolic area
function of I and the non-tangential maximal function of log(1−|I|) can be
proved. Also, a Law of the Iterated Logarithm is obtained. Given a smooth,
positive, radial function K supported on (−ρ, ρ), with integral 1, consider

(1.5) Q(reiθ) =

∫
Γρ(θ,r)

K((Arg z − θ)/ρ)
|I ′(z)|2

(1 − |I(z)|2)2
dm(z) ,

where Γα(θ, r) = Γα(θ) ∩ {|z| < r} is the truncated Stölz angle with vertex
at eiθ. This is a smooth version of the truncated hyperbolic area function
given by

Aρ(I)(reiθ) =

∫
Γρ(θ,r)

|I ′(z)|2
(1 − |I(z)|2)2

dm(z) .

Our result is the following.

Theorem 1.10. Let I be a holomorphic mapping from the unit disc into it-
self and let Q be defined by (1.5). Then, there exists a constant C = C(α,K)
such that

lim sup
r→1

| log(1 − |I(reiθ)|2) + Q(reiθ)|√Q(reiθ) log logQ(reiθ)
≤ C ,

at almost every point eiθ ∈ {eiθ : limr→1 |I(reiθ)| = 1}.
The other application of Theorem 1.5 is related to the theory of quasi-

conformal mappings of the upper half plane R
+
2 onto itself. Let ρ : R

+
2 → R

+
2

denote a quasiconformal mapping, ρ(∞) = ∞, with complex dilatation
σ = ∂ρ/∂ρ. Then classical results show that ρ extends quasiconformally
to R

2, in particular its restriction to the boundary F = ρ|R defines a homeo-
morphism on R which is quasisymmetric, that is its derivative is a doubling
measure. The converse is also true: any quasisymmetric map F : R → R can
be extended quasiconformally to R2. There is also a one to one correspon-
dence between such quasisymmetric mappings F and conformal weldings of
quasicircles, that is

F (x) = Φ[Ψ(x)] ; x ∈ R

where Ψ is a normalized conformal mapping of R
−
2 onto a quasidisc Ω which

admits a quasiconformal extension to R
+
2 with complex dilatation σ, and Φ

is a conformal mapping of C \ Ω onto R
+
2 . A very well studied problem is

to investigate the smoothness properties of the boundary correspondence F
in terms of the complex dilatation σ. In [13], Carleson studies this prob-
lem obtaining the conclusions of Theorem A stated at the beginning of the
introduction, where w(t) is, in this case, defined by

w(t) = sup
0<Imz<t

|σ(z)|
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We are interested in a result [15, Th. 4] proved by Dyn’kin, which we state
below and that can be thought as a pointwise version of Carleson’s result.

Theorem C. Let σ(z) be the dilatation coefficient of a quasiconformal self-
mapping Ψ of C \ D, with Ψ(∞) = ∞ and let

g(σ)(eiθ) =

(∫
C\D

|σ(ξ)|2
|ξ − eiθ|2 dm(ξ)

)1/2

.

Then there exists a > 0 such that if

exp(ag2(σ)) ∈ L1(∂D)

then Ψ is absolutely continuous on ∂D.

Dyn’kin’s proof uses the representation of Ψ|R as the welding of a quasi-
circle Γ and shows that under the hypothesis of the theorem, Γ is rectifiable.
His main tool is the pointwise estimate

(1.6) S(eiθ) ≤ const g(σ)(eiθ), ∀eiθ ∈ ∂D

where

S(eiθ) =

( ∫
Γα(θ)

∣∣∣∣f ′′(ξ)
f ′(ξ)

∣∣∣∣2 )1/2

and where f represents the conformal mapping from D onto the inner domain
bounded by Γ.

We will consider instead of S, the area function A2
α(log u); where u is the

harmonic extension of a doubling measure µ, and prove an inequality similar
to (1.6), which does not involve conformal techniques, and which will alow
us to recover Dyn’kin’s Theorem. Since we state our result on the real line,
we need to impose some control on the doubling constant of µ to guarantee
the convergence of its Poisson integral. More precisely we obtain:

Theorem 1.11. Let µ be a doubling measure on R, with doubling constant
C < 2

√
2, that is µ(2I) ≤ Cµ(I), for all intervals I ⊂ R. Denote by

u = P [µ] the harmonic extension of µ to R2
+ and let ρ : R2 → R2 be a

quasiconformal extension of ρ(x) = µ[0, x]. Then∫
Γα(x)

|∇u(z)|2
u2(z)

dm(z) ≤ c

∫
R
−
2

|σ(w)|2
|w − x|2 dm(w)

where σ is the complex dilatation of ρ and c = c(α,C) is a constant depending
on α and C.
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As a consequence of this theorem and Theorem 1.5, we obtain

Theorem 1.12. With the same notation as in Theorem 1.11, the following
holds:

(a) There exists a constant a > 0 such that if

exp

(
a

∫
R
−
2

|σ(w)|2
|w − x|2 dm(w)

)
∈ L1

loc ,

then µ and Lebesgue measure are mutually absolutely continuous.

(b) If µ is singular, then ∫
R2
−

|σ(w)|2
|w − x|2 dm(w) = ∞ ,

a.e. (dx)x ∈ R.

(c) Let 0 < p < ∞. If ∫
R
−
2

|σ(w)|2
|w − x|2 dm(w) ∈ Lp

loc ,

then Mα(log u) ∈ Lp
loc.

The paper is organized as follows. Section 2 contains the results on
dyadic doubling measures. Also an example of a positive, singular, dyadic
doubling measure µ, for which the square functions Xn, A2

n(µ) can be given
explicitely, is presented.

Section 3 is devoted to the results on positive harmonic functions. A class
of positive harmonic functions, for which the square function has maximal
growth, is also introduced.

Section 4 contains the proof of Theorems 1.9 and 1.10 as well as an
analogous result for inner functions into hyperbolic domains in the complex
plane.

In Section 5, we prove the results related to quasiconformal mapppings,
in particular Theorems 1.11 and 1.12.

Finally, in Section 6 a non-dyadic square function of a doubling measure
is introduced. This section also contains some questions.

We would like to thank R. Bañuelos, J. L. Fernández and P. MacManus
for several helpful conversations.
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2. Dyadic doubling measures

The logarithmic transform of a dyadic martingale

There is a correspondence between positive dyadic martingales and positive
measures. Given a positive measure µ in Q0, we may consider the positive
dyadic martingale defined by

Sn =
∑ µ(Q)

|Q| χQ ,

where the sum is taken over all dyadic subcubes Q of Q0 of generation n.
Conversely, given a positive dyadic martingale {Sn} we may define a positive
measure µ on Q0 by first defining it on dyadic subcubes Q as

µ(Q) = Sn(Q)|Q| ,

if Q is of generation n, and extending it by standard methods. As it was
mentioned at the Introduction, the martingale Sn defined above does not
seem to be well suited to study multiplicative properties of the measure µ
and roughly speaking, one should consider instead its logarithm.

Let Sn be a positive dyadic martingale on a cube Q0 in RN . Then log Sn

is a supermartingale. We will show that there exists a unique (except for
adding constants) process Xn such that

(a) log Sn + Xn is a dyadic martingale.

(b) Xn is Fn−1-measurable, that is, Xn is constant on each cube of genera-
tion n − 1.

Let us first show the unicity. Assume that {Yn} is a dyadic martin-
gale such that Yn is constant on cubes of generation n − 1, n = 1, 2, . . . .
Let Q,Q′ be two cubes of generation n− 1 which are contained in the same
cube Q̃ of generation n − 2. Since Yn−1(Q) is the arithmetic mean of Yn

on the cubes of generation n contained in Q, we have Yn(Q) = Yn−1(Q).
Similarly Yn(Q′) = Yn−1(Q

′). So, Yn(Q) = Yn(Q′). Hence, Yn is constant on
cubes of generation n − 2. Repeating the argument on cubes of generation
n − 2, . . . , 1, one shows that Yn is constant.

As the following lemma asserts, the process Xn satisfying (a) and (b)
can be given explicitely. We recall the notation given in the introduction.
Given a positive martingale {Sn} in Q0 and a dyadic subcube Q of Q0 of
generation n, we denote by a.m.(Q), (g.m. (Q)) the arithmetic (geometric)
mean of the values of Sn in the cubes of generation (n + 1) contained in Q.
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More explicitely, if Q is of generation n, then

a.m.(Q) = Sn(Q) =
1

2N

∑
Sn+1(Q

′) ,

g.m.(Q) =
∏

Sn+1(Q
′)1/2N

where both the sum and the product are taken over the 2N cubes Q′ of
generation (n + 1) contained in Q. Consider

(2.1) Xn =
∑

k

Xn(Q
(n)
k )χ

Q
(n)
k

, n = 1, 2, . . . ,

where {Q(n)
k : k = 1, . . . , 2Nn} are the dyadic subcubes of Q0 of genera-

tion n and

Xn(Q
(n)
k ) = −

∑
j

log

(
g.m.(Qj)

a.m.(Qj)

)
,

where the sum is taken over all dyadic subcubes Qj of Q0 which properly

contain Q
(n)
k . It is clear that Xn is positive, increasing process satisfying

property (b). Also, Xn(Q) measures, roughly speaking, the error the mar-
tingale does when doubling at the dyadic cubes containing Q.

Lemma 2.1. Let {Sn} be a positive dyadic martingale in a cube Q0. Let Xn,
n = 1, 2, . . . , be the functions given by (2.1). Then

Tn =
∑

(log Sn + Xn)χQ ,

where the sum is taken over all dyadic subcubes {Q} of Q0 of generation n,
is a dyadic martingale.

Proof. Let Q be a dyadic subcube of Q0 of generation n and let us denote
by {Qk} the 2N dyadic cubes of generation n + 1 contained in Q. We have
to show

(2.2) Tn(Q) =
1

2N

∑
k

Tn+1(Qk) .

Since Xn+1(Qk) = Xn+1(Qj), for any k, j = 1, . . . , 2N and

Xn(Q) − Xn+1(Qk) = log
g.m.(Q)

a.m.(Q)
,

the equation (2.2) is equivalent to

log Sn(Q) =
1

2N

∑
k

log Sn+1(Qk) − log
g.m.(Q)

a.m.(Q)
.

Since a.m.(Q) = Sn(Q), this is an identity and the lemma is proved. �
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The results mentioned at the introduction relate the behaviour of Tn =
log Sn +Xn with the size of the square function of the martingale. The main
observations, which will be proved below, are that when {Sn} is a doubling
martingale, Xn is pointwise comparable to 〈T 〉2n and that 〈T 〉(x) behaves as( ∑

n

‖(log Sn/Sn−1)XQn−1(x)‖2
∞

)1/2

, x ∈ Q0 .

Comparing Xn and 〈T 〉2
n for doubling martingales

A positive dyadic martingale {Sn} is called doubling if there exists a constant
M ≥ 1 such that

M−1 ≤ Sn+1/Sn ≤ M , n = 1, 2, . . . .

The main estimate is given in the following result.

Lemma 2.2. Let {Sn} be a dyadic doubling martingale in Q0. Let Xn be
the process given by (2.1) and Tn = log Sn + Xn be the logarithm transform
of the martingale. Then, there exists a constant C > 0, which depends on
the doubling constant of the martingale, such that

C−1 ≤ 〈T 〉2n(x)∑n
k=1 ‖ log(Sk/Sk−1)χQk−1(x)‖2∞

≤ C ,

C−1 ≤ Xn(x)∑n
k=1 ‖ log(Sk/Sk−1)χQk−1(x)‖2∞

≤ C ,

for any x ∈ Q0, n = 1, 2, . . . .

Proof. We will show that in the corresponding sums, the terms are compa-
rable, that is,

C−1 ≤ ‖(Tj+1 − Tj)χQj(x)‖2
∞

‖ log(Sj+1/Sj)χQj(x)‖2∞
≤ C ,

C−1 ≤ − log(g.m.(Qj)/a.m.(Qj))

‖ log(Sj+1/Sj)χQj(x)‖2∞
≤ C ,

To prove the first estimate note that ‖(Tn−Tn−1)χQn−1(x)‖∞ is comparable
to max |Tn(Qj)− Tn(Qk)|, where the maximum is taken over the 2N dyadic
cubes of generation n contained in Qn−1(x). Since Xn is predictible, this
quantity is max | log(Sn(Qj)/ Sn(Qk))|. The estimate follows now from the
fact that Sn is a doubling martingale.
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To prove the second one we will show that given L = 2N positive numbers
a1, . . . , aL, with M−1 ≤ ak/aj ≤ M , k, j = 1, . . . , L, there exists a constant
C = C(M,L) > 0 such that

C−1 ≤
− log

((∏
a

1/L
k

)
/ 1

L

∑
ak

)
maxj

(
log(aj/

1
L

∑
ak)

)2 ≤ C .

We may assume that
∑

ak = L, then we have to show that

C−1 ≤
− log

(∏
k a

1/L
k

)
maxk(log ak)2

≤ C .

Writing ak = 1 + xk, this follows from the following observation. �

Lemma 2.3. Let m > −1, M > 0 and xk ∈ [m,M ], k = 1, . . . , L, so that

L∑
k=1

xk = 0 .

Then, there exists a constant C = C(m,M) > 0 such that

C−1 ≤ −∑L
k=1 log(1 + xk)∑L

k=1 x2
k

≤ C .

Observe that
∑L

k=1 log(1 + xk) ≤ 0, because the arithmetic mean of
x1, . . . , xL vanishes. So, Lemma 2.3 shows that the trivial estimate

−
L∑

k=1

log(1 + xk) ≤ C

L∑
k=1

|xk| ,

can be substantially improved when
∑L

k=1 xk = 0.

Proof of Lemma 2.3. One may assume that xk, k = 1, . . . , L, are close
to 0, because otherwise the geometric mean of 1 + xk is bounded away from
one and then there exists C1 < 0 such that∑

log(1 + xk) ≤ C1 < 0

and the result follows in this case. So, we assume xk, k = 1, . . . , L are close
to 0. Using that − log t = 1 − t + O((1 − t)2) for t close to 1, one gets

− log
N∏

k=1

(1 + xk) � 1 −
N∏

k=1

(1 + xk) .
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Now, since
∑N

k=1 xk = 0, one has

1 −
N∏

k=1

(1 + xk) = −
∑
i<j

xixj + O(

N∑
i=1

x3
i ) =

1

2

N∑
i=1

x2
i + O(

N∑
i=1

x3
i ) ,

because

0 =

( N∑
i=1

xi

)2

=

N∑
i=1

x2
i + 2

∑
i<j

xixj .

This finishes the proof. �

Dyadic doubling measures

Recall that a positive measure µ in Q0 is called dyadic doubling if there exists
a constant C = C(µ) > 0 such that µ(Q̃) ≤ Cµ(Q) for all dyadic subcubes Q

of Q0, where Q̃ is the smallest dyadic cube properly containing Q.
It is clear that dyadic doubling martingales correspond to dyadic dou-

bling measures. In particular, given a dyadic doubling measure µ in Q0

one may consider its corresponding martingale {Sn}, Sn(Q) = µ(Q)/|Q|
where Q is of generation n. Then we consider the martingale {Tn} given by
Tn = log Sn + Xn, where Xn is given in (2.1). As stated in Lemma 2.2, the
square function of Tn is comparable to

〈T 〉2(x) ∼=
∞∑

k=1

s2
k(x) ,

where

sk(x) = max
j=1,...,2N

∣∣∣∣log

(
µ(Qj)

|Qj| /
µ(Qk−1(x))

|Qk−1(x)|
)∣∣∣∣ .

Here Qk−1(x) is the unique cube of generation k − 1 which contains x and
{Qj : j = 1, . . . , 2N} are the cubes of generation k contained in Qk−1(x).

Now, given a dyadic doubling measure µ, define A2(µ)(x) =
∑∞

k=1 d2
k(x),

where

dk(x) = max
j=1,...,2N

{∣∣∣∣1 − µ(Qj)2
N

µ(Qk−1(x))

∣∣∣∣} .

It is clear that A2(µ)(x) is (pointwise) comparable to 〈T 〉2(x). Note that in
dimension 1, A2(µ)(x) is comparable to

∞∑
k=1

(
1 − µ(Ik(x))

µ(I ′
k(x))

)2

where I ′
k(x) is the unique dyadic interval of length 2−k, such that Ik(x)∪I ′

k(x)
is also dyadic.
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Given a dyadic doubling measure µ on Q0 and a dyadic subcube Q1

of Q0, we consider the maximal function

M(log µ,Q1)(x) = sup

∣∣∣∣log
µ(Q)

|Q| − log
µ(Q1)

µ(Q1)

∣∣∣∣ , x ∈ Q1 ,

where the supremum is taken over all dyadic subcubes Q of Q1 which con-
tain x. Also, let us consider

A2(µ,Q1)(x) =
∑
k>k0

d2
k(x) , x ∈ Q1 ,

where k0 is determined by the fact that Q1 is a dyadic subcube of Q0 of gen-
eration k0. The following result will follow from the sharp good-λ inequality
proved by Chang, Wilson and Wolff, mentioned in the introduction.

Theorem 2.4. Let µ be a dyadic doubling measure in Q0. Let A(µ) be its
square function, that is,

A2(µ)(x) =
∑

k

d2
k(x) , x ∈ Q0 .

Then, there exist λ0 = λ0(µ) and three universal constants C1, C2, C3 > 0
such that for any λ > λ0, any k ≥ C3 and any dyadic subcube Q1 of Q0, the
following holds

(a) |{x ∈ Q1 : M(log µ,Q1)(x) > kλ ,A2(µ,Q1)(x) < λ}|
≤ C1 exp(−C2k

2λ)|{x ∈ Q1 : M(log µ,Q1)(x) > λ}|
(b) |{x ∈ Q1 : A2(µ,Q1)(x) > kλ ,M(log µ,Q1)(x) < λ}|

≤ C1 exp(−C2kλ)|{x ∈ Q1 : A2(µ,Q1)(x) > λ}|
Proof. The letters C1, C2, . . . will denote different constants whose value
may change from line to line. Let {Tn} be the dyadic martingale given
in Lemma 2.1. Let Q be a dyadic subcube of Q0. We will first show the
following estimate:

(2.3) |{x ∈ Q : M(log µ,Q)(x) > kλ ,A2(µ)(x) < λ}| ≤ C1 exp(−C2λk2)|Q| .
We may assume that Q = Q0, then by the subgaussian estimate (1.1)

|{x ∈ Q : sup
n

| log Sn(x) + Xn(x)| > kλ , 〈T 〉(x) < λ}| ≤ C1 exp(−C2k
2)|Q| ,

for any k > 1. Recall that Xn is pointwise comparable to 〈T 〉2n. So, if k is
sufficiently large, one deduces

|{x ∈ Q : sup
n

| log Sn(x)| > kλ , 〈T 〉(x) < λ1/2}| ≤ C1 exp(−C2λk2)|Q| .

Now, since 〈T 〉(x) is comparable to A(µ)(x), (2.3) holds.
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Next we prove (a). Given the cube Q1, let {Qj : j = 2, . . .} be the
maximal dyadic subcubes of Q1 which satisfy∣∣∣∣ log

µ(Qj)

|Qj| − log
µ(Q1)

|Q1|
∣∣∣∣ > λ .

Since µ is doubling, the maximality implies∣∣∣∣log
µ(Qj)

|Qj| − log
µ(Q1)

|Q1|
∣∣∣∣ ≤ λ + C ,

where C = C(µ,N) is a constant depending on the doubling constant of µ
and on the dimension. Observe that

{x ∈ Q1 : M(log µ,Q1)(x) > λ} =
⋃
j

Qj .

Now, if λ and k are sufficiently large, we have

{x ∈ Q1 : M(log µ,Q1)(x) > kλ , A2(µ,Q1)(x) < λ} ⊆
⊆

⋃
j

{x ∈ Qj : M(log µ,Qj)(x) > (k − 2)λ , A2(µ,Qj)(x) < λ} .

So, applying estimate (2.3) in each Qj, one has

|{x ∈ Q1 : M(log µ,Q1)(x) > kλ , A2(µ,Q1)(x) < λ}|
≤ C3e

−C4k2λ
∑

j

|Qj| = C3e
−C4k2λ|{x ∈ Q1 : M(log µ,Q1)(x) > λ}| ,

which is (a).
Given two dyadic cubes Q2 ⊂ Q1, consider

A2(µ,Q2, Q1) =
∑

max
j

(
1 − 2Nµ(Qj)

µ(Q)

)2

,

where the sum is taken over all dyadic cubes Q such that Q2 ⊂ Q ⊂ Q1 and
the maximum is over the dyadic cubes Qj of Q with l(Qj) = l(Q)/2. Fix
the cube Q1 and consider the maximal dyadic subcubes of Q1 which satisfy

A2(µ,Qj , Q1) > λ .

It is clear that the maximality implies

A2(µ,Qj , Q1) ≤ λ + C ,

where C is a constant depending on the doubling constant of µ and on the
dimension. Also

{x ∈ Q1 : A2(µ,Q1)(x) > λ} =
⋃

Qj .
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Next for each Qj we consider the maximal dyadic subcubes {Qj,l}l such that

A2(µ,Qj,l, Q1) > kλ .

and consider the subfamily G1 of {Qj,l}j,l composed by those cubes satisfying∣∣∣ log
µ(Qj,l)

|Qj,l| − log
µ(Q1)

|Q1|
∣∣∣ < λ .

Observe now that

{x ∈ Q1 : A2(µ,Q1)(x) > kλ ,M(log µ,Q1)(x) < λ} ⊂
⋃

Qj,l

where the union is taken over all cubes in the family G1, and that on these
cubes Qj,l ∈ G1 we have

| log Sn + Xn| > C1(k − 1)λ

and
〈T 〉 ≤ C2(kλ + C)1/2 ,

since 〈T 〉2n and Xn are pointwise comparable to A2
n. Hence, the estimate (1.1)

of Chang, Wilson and Wolff applied to the cubes Qj,l ∈ G1 give∑
l

|Qj,l| ≤ C1e
−C2kλ|Qj| .

So,

|{x ∈ Q1 : A2(µ,Q1)(x) > kλ , M(log µ,Q1)(x) < λ}|
≤ C1e

−C2kλ
∑

|Qj| = C1e
−C2kλ|{x ∈ Q1 : A2(µ)(x,Q1) > λ}| �

Next result is deduced from the good-λ inequalities given in Theorem 2.4.

Theorem 2.5. Let µ be a dyadic doubling measure in Q0. Let µ = fdx+µs,
where fdx, µs are its absolutely continuous and singular part with respect to
Lebesgue measure. Then,

(a) The sets {x ∈ Q0 : f(x) > 0} and {x ∈ Q0 : A2(µ)(x) < ∞} can only
differ in a set of Lebesgue measure 0.

(b) µ is singular if and only if A2(µ)(x) = ∞, a.e. (dx)x ∈ Q0.

(c) For 0 < p < ∞, M(log µ) ∈ Lp(Q0) if and only if A2(µ) ∈ Lp(Q0).

(d) For 1 < p < ∞, log f ∈ Lp(Q0) if and only if A2(µ) ∈ Lp(Q0).

(e) There exists a constant C = C(N) > 0 such that exp(CA2(µ)) ∈ L1(Q0)
implies that µ and Lebesgue measure are mutually absolutely continuous.

(f) There exists a constant c = c(N) > 0 such that if A(µ)(x) ≤ 1 for any
x ∈ Q0, then exp(cM 2(log µ)) ∈ L1(Q0).
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The two following elementary results, whose proof is omitted, will be
used in the proof of Theorem 2.5.

Lemma 2.6. Let f, g be two measurable functions in Q0. Assume that there
exist constants C < 1 and K > 1 such that for any dyadic subcube Q of Q0

and for any λ > λ0(C,K,Q), one has

|{x ∈ Q : f(x) > Kλ , g(x) < λ}| ≤ C|{x ∈ Q : f(x) > λ}| .
Then f(x) < ∞ at almost every point x ∈ {x ∈ Q0 : g(x) < ∞}
Lemma 2.7. Let f, g be two measurable positive functions on Q0. Assume
that there exist constants C < 1 and K > 1 such that for any λ > λ0(C,K),
one has

|{x ∈ Q0 : f(x) > Kλ , g(x) < λ}| ≤ C|{x ∈ Q0 : f(x) > λ}| .
Let 0 < p < ∞. Then there exists a constant M = M(C,K) > 0 such that

‖f‖p
p < M(‖g‖p

p + 1) .

Proof of Theorem 2.5. Note that

{x ∈ Q0 : f(x) > 0} a.e.
=

{
x ∈ Q0 : lim

|Q|→0

µ(Q)

|Q| > 0
}

.

where the limit is taken over dyadic cubes Q which contain x. Also the
symbol

a.e.
= means that the two sets differ on a set of Lebesgue measure 0.

Now, we apply Lemma 2.6 to the functions

f(x) = M(log µ,Q0)(x)

g(x) = A2(µ)(x) .

The hypothesis in Lemma 2.6 follows from (a) and (b) in Theorem 2.4. This
finishes the proof of (a). Part (b) follows from (a). Part (c) follows from
the estimates in Theorem 2.4 and Lemma 2.7. Part (d) follows from (c).
Actually, it is clear that sup{log+(µ(Q)/|Q|) : x ∈ Q} is in Lp(Q0). Since
µ(Q)/|Q| ≥ (1/|Q|) ∫

Q
f , Jensen’s inequality gives

− log
(µ(Q)

|Q|
)
≤ − 1

|Q|
∫

Q

log f .

Hence, sup{log−(µ(Q)/|Q|) : x ∈ Q} is bounded by the Hardy-Littlewood
maximal function of | log f |. This gives one implication. To prove the con-
verse, observe that log+ f is in Lp(Q0) and at almost every point x where
f(x) < 1, one has − log f(x) ≤ sup{| log(µ(Q)/|Q|)| : x ∈ Q}.
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We now prove (e). It is sufficient to show that

N(x) = sup

{
µ(Q)

|Q| ,

(
µ(Q)

|Q|
)−1 }

∈ L1(Q0)

where the supremum is taken over all dyadic cubes which contain x. Let

M(x) = sup

∣∣∣∣ log
µ(Q)

|Q|
∣∣∣∣ .

Since eM = N , we will show that eM ∈ L1(Q0). Observe that∫
Q0

(eM − 1) dx =

=

∫ ∞

0

eλ|{M > λ}| dλ = 3

∫ ∞

0

e3λ|{M > 3λ}| dλ ≤

≤ 3

∫ ∞

0

e3λ|{M > 3λ , A < ε1λ
1/2}| dλ + 3

∫ ∞

0

e3λ|{A > ε1λ
1/2}| dλ ,

where 0 < ε1 < 1 is a constant to be fixed later. Using the estimate (a) in
Theorem 2.4 we bound the first term by

3C1

∫ ∞

0

exp((3 − C2/ε
2
1)λ)|{M > λ}| dλ ≤ 3C1

∫
Q0

M ,

if ε1 is chosen small enough to guarantee 3−C2/ε
2
1 < 0. The second term is

3

∫ ∞

0

e3λ|{A2 > ε2
1λ}| dλ =

∫
Q0

exp(3A2/ε2
1) dx .

So, the result follows taking C = 3/ε2. The proof of (f) is similar and we
omit it. �

It should be observed that part (e) of Theorem 2.5 implies part (a) of
Theorem A mentioned in the introduction. Recall that w(t) was defined as

w(t) = sup max

∣∣∣∣µ(Q̃)2N

µ(Q)
− 1

∣∣∣∣ ,

where the supremum is taken over all dyadic cubes Q of sidelength smaller
than t and the maximum is over the 2N dyadic subcubes Q̃ contained in Q
of sidelength l(Q)/2. Then

A2(µ)(x) ≤
∞∑

n=1

w2(2−n) ≤
∫ 1

0

w2(t)
dt

t
.

So, if the last integral converges, the square function A2(µ) is bounded and
it follows from (e) that µ must be absolutely continuous.
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The hypothesis in part (e) of Theorem 2.5 is closely related to the
space BMO. Let Q0 be a cube in RN . The space dyadic BMO(Q0) con-
sists on the integrable functions H defined on Q0 for which

‖H‖BMO = sup
1

|Q|
∫

Q

|H − HQ| < ∞ ,

where

HQ =
1

|Q|
∫

Q

H

and the supremum is taken over all dyadic subcubes Q of Q0. Chebyshev’s
inequality gives that

|{x ∈ Q : |H(x) − HQ| > λ}| ≤ 1

λ
|Q| .

However, the fact that the BMO condition is given at all scales, implies
a stronger estimate. This is the John-Nirenberg Theorem that states that
there exist constants C1, C2 > 0 such that for any dyadic cube Q and any H
in dyadic BMO, one has

|{x ∈ Q : |H(x) − HQ| > λ}| ≤ C1 exp(−C2λ/‖H‖BMO)|Q| .
Given a measurable function H defined on Q0, let ε(H) be the infimum
of ε > 0 for which

sup
1

|Q|
∫

Q

exp(ε−1|H(x) − HQ|) < ∞ ,

where the supremum is taken over all dyadic subcubes Q of Q0. The John-
Nirenberg Theorem implies that H ∈ BMO if and only if ε(H) < ∞. Gar-
nett and Jones ([20, 21]) proved that there exists a constant C = C(N) > 0
such that

C−1ε(H) < distBMO(H,L∞) =(2.4)

= inf{‖H − G‖BMO : G ∈ L∞} < Cε(H).

Corollary 2.8. There exists a constant ε0 = ε0(N) such that if µ is a
dyadic doubling measure on Q0 and ε(A2(µ)(x)) ≤ ε0, then µ is absolutely
continuous. Moreover µ = fdx with f, 1/f ∈ L1(Q0).

Proof. Applying (2.4), we have

A2(µ) = H1 + H2,

where H1 ∈ L∞ and ‖H2‖BMO is small if ε0 is chosen sufficiently small.
Thus, the John-Nirenberg Theorem tells eCH2 ∈ L1(Q0) if C < C(ε0) → 0
as ε → 0. Then the corollary follows from part (e) of Theorem 2.5. �
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The quadratic condition given in (b) of Theorem 2.5 characterizing sin-
gular measures is also sharp in the following sense.

Proposition 2.9. Let h : R
2
+ → (0,∞) be a positive function such that if

B ⊂ R
2
+ is a disc with 2B ⊂ R

2
+, then

sup
B

h ≤ 101

100
inf
B

h .

Fixed α > 0, assume ∫
Γα(x)

h2(z)
dm(z)

(Imz)2
= ∞ ,

at almost every x ∈ R. Then, there exists a positive, doubling, singular
measure µ such that

(2.5)

∣∣∣∣ µ(I)

µ(I ′)
− 1

∣∣∣∣ ≤ C h(xI + i|I|) ,

for any interval I ⊂ R, |I| ≤ 1. Here I ′ is an interval adjacent to I of the
same sidelength and xI is the center of I.

Proof. The construction of the measure follows the ideas in [13] and [24].
We will define µ by giving its mass on intervals of the form

(2.6) J
(n)
k = [k4−n , (k + 1)4−n) ,

where k ∈ Z and n = 0, 1, 2, . . . The intervals {J (n)
k : k ∈ Z} are called of

generation n. We may assume that h ≤ 1/8. Set µ(J
(0)
k ) = 1, k ∈ Z, and,

by induction, assume µ(J
(n)
k ) has been defined satisfying

(1 + h(J
(n)
k ))−1 ≤ µ(J

(n)
k )

µ(J
(n)
k+1)

≤ 1 + h(J
(n)
k ) , k ∈ Z ,

where h(J
(n)
k ) = h(k4−n + i4−n). We now proceed to define µ(J

(n+1)
k ), k ∈ Z.

Let J, J ′ be two consecutive intervals of generation n. We divide J into
four intervals J1, . . . , J4 of generation n + 1 and similarly J ′ into J ′

1, . . . , J
′
4.

Let J ′ be to the right of J and let the numbering be from the left to the
right. Let h̃(J) = min{h(J3), h(J4), h(J ′

1), h(J ′
2)} and α(J) = (4 + h̃(J))−1

so that

(2.7)
1 + α(J)h̃(J)

1 − α(J)h̃(J)
= 1 + h̃(J)/2 .
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Assume µ(J) ≤ µ(J ′). Then, set

µ(J3) = (1 − α(J)h̃(J))
µ(J)

4
,

µ(J4) = (1 + α(J)h̃(J))
µ(J)

4
,

µ(J ′
1) = (1 − α(J)h̃(J))

µ(J ′)
4

,

µ(J ′
2) = (1 + α(J)h̃(J))

µ(J ′)
4

.

If µ(J) > µ(J ′), we change all signes in the above formula. This formula
defines the mass of µ over intervals of generation n + 1. Next we show that

(2.8) (1 + h(I))−1 ≤ µ(I)

µ(I ′)
≤ 1 + h(I) ,

for any pair of consecutive intervals I, I ′ of generation n + 1. The iden-
tity (2.7) gives (2.8) when I, I ′ are J3, J4 or J ′

1, J
′
2. If I = J4 and I ′ = J ′

1,
we have to show

(1 + h̃(J))−1 ≤ (1 + α(J)h̃(J))µ(J)

(1 − α(J)h̃(J))µ(J ′)
≤ 1 + h̃(J) .

Since µ(J) ≤ µ(J ′), the right-hand inequality follows from (2.7). To prove
the left-hand inequality, observe that, by induction, µ(J ′) ≤ (1+h(J))µ(J).
Thus, it is sufficient to prove

1 + h(J)

1 + h̃(J)
≤ 1 +

1

2
h̃(J) ,

which follows from the regularity assumption on the function h. Finally, we
need to show that

1 + α(J)h̃(J)

1 − α(J ′)h̃(J ′)
≤ 1 + min{h̃(J), h̃(J ′)} .

Since α(J), α(J ′) are close to 1/4, this follows from the regularity as-
sumption on h.

So by induction we have defined the mass of µ over all intervals of the
form (2.6) and it satisfies (2.8) for such intervals. Next, we will show that
it also holds for any interval, that is,

(2.9) 1 + C−1h(x − t + it) ≤ µ(x − t, x)

µ(x, x + t)
≤ 1 + C h(x − t + it) .

Assume x = 0 and let 4−n−1 ≤ t < 4−n. Let (0, t) = ∪Ik, where {Ik}
are pairwise disjoint intervals of the form (2.6) with decreasing length.
Hence |I1| = 4−n−1.
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Now
µ(Ik) = µ(I1)4

n+1−m(k)(1 + O(h(I1)))
m(k)−n−1 ,

where Ik is of generation m(k). Since t =
∑

4−m(k), we have

µ(0, t) − tµ(I1)4
n+1 = µ(I1)4

n+1tO(h(I1)) .

The same argument applies to µ(−t, 0) and (2.9) follows.

To show that µ is singular, let x ∈ R and In(x) be the unique interval of
generation n containing x. The assumption on h gives that

(2.10)
∑

n

h2(In(x)) = ∞ , a.e. x ∈ R .

Observe that

µ(In(x)) = 4−n

n∏
k=1

(1 ± αk(Ik(x))h(Ik(x))) .

The signes + and − occur in equal number in the construction. Since
αk(Ik(x)) is close to 1/4, the law of large numbers and (2.10) give that
at almost every point x ∈ R, one has

lim
n→∞

µ(In(x))

4−n
= 0 .

Hence the measure µ is singular. This finishes the proof. �

Law of the iterated logarithm for dyadic doubling measures

The subgaussian estimate (1.1) of Chang, Wilson and Wolff implies the law
of the iterated logarithm for dyadic martingales, that is, if {Tn} is a dyadic
martingale and 〈T 〉n is its (truncated) square function, one has

lim sup
n→∞

|Tn(x)|
〈T 〉n(x)

√
2 log log〈T 〉n(x)

≤ 1

a.e. x ∈ {x ∈ Q0 : supn |Tn(x)| = ∞}.
We will apply it to the dyadic martingale Tn = log Sn + Xn, given in

Lemma 2.1. When the measure is doubling, {Tn} has bounded increments
and it is known that, in this situation, we also have

lim sup
n→∞

|Tn(x)|
〈T 〉n(x)

√
2 log log〈T 〉n(x)

≥ C > 0 ,

a.e. x ∈ {x ∈ Q0 : supn |Tn(x)| = ∞} . See [4]. Using Lemma 2.2 to esti-
mate 〈T 〉n(x), we deduce Theorem 1.3 and therefore Corollary 1.4. Also,
the rate of convergence in the last two results can not be improved. To show
this, let us introduce in dimension 1 a well known dyadic doubling measure.
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An example

Let I0 = [0, 1] be the unit interval in the real line. We will define a measure µ
by specifying its mass on dyadic intervals. Let 0 ≤ λ < 1 and let µ(I0) = 1.
Assume µ(I) has been defined on the dyadic intervals of generation k.

We now proceed to define it on the intervals of the next generation.
Given a dyadic subinterval I of I0 of generation k, let I+ (I−) be its right
(left) half, that is, I+ I− are the two intervals of generation k + 1 contained
in I. Then set

µ(I+) =
1 + λ

2
µ(I) ,

µ(I−) =
1 − λ

2
µ(I) .

It is clear that if I is a dyadic interval of generation n,

µ(I)

|I| = (1 + λ)k(1 − λ)n−k ,

where k is the number of dyadic intervals containing I which are at right-
hand position.

Actually, this is a well known example. Let us consider a biassed coin,
that is, a sequence of equally distributed and independent random vari-
ables {Xn} such that

p{Xn = 0} =
(1 − λ)

2
and p{Xn = 1} =

(1 + λ)

2
.

Now, consider the random variable

X =
∞∑

n=1

2−nXn .

If I is a dyadic interval of generation n, we have

µ(I) = p{X ∈ I} .

Equivalently, if the left end of I is

a =

∞∑
k=1

tk
2k

where tk = 0 or 1, then µ(I) = p{X1 = t1, . . . , Xn = tn}.
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By construction,
µ(I+)

µ(I−)
=

1 + λ

1 − λ
,

for any pair of dyadic intervals I+, I− of the same generation contained in a
interval of the previous one. Hence µ is a dyadic doubling measure. Also,
when 0 < λ < 1, µ is singular. Actually, the measure µ is concentrated in a
set of Haussdorff dimension

γ =
(1 + λ) log 2

1+λ
+ (1 − λ) log 2

1−λ

2 log 2
,

that satisfies γ < 1 if 0 < λ < 1. See [22] for a more general result.

Let I be a dyadic interval of length 2−n. Then, an easy calculation shows

Xn(I) = −n

2
log(1 − λ2) ,

A2
n(µ)(I) = nλ2 .

So, Theorem 1.3 and Corollary 1.4 state that at almost (dx) every
point x ∈ [0, 1], one has

C−1(λ) ≤ lim sup
n→∞

∣∣∣log(µ(In(x))
|In(x)| ) − n

2
log(1 − λ2)

∣∣∣
√

n log log n
≤ C(λ) ,(2.11)

lim
n→∞

log µ(In(x))
|In(x)|

n
2

log(1 − λ2)
= 1(2.12)

Next, we show that these estimates are best possible. By the law of large
numbers

(2.13) lim
n→∞

An(x)

n
= 1/2 , a.e. (dx)x ∈ [0, 1]

and

(2.14) lim sup
n→∞

|An(x) − n/2|√
n log log n

= 1 , a.e. (dx)x ∈ [0, 1] .

Now,

log
µ(In(x))

|In(x)| = An(x) log(1 + λ) + (n − An(x)) log(1 − λ) .

So, (2.11) and (2.12) are equivalent to (2.13) and (2.14), except for the value
of the constant C(λ).
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3. Positive harmonic functions

Logarithms of positive harmonic functions

Let u be the Poisson extension of a positive measure µ. As it was explained
in the Introduction, the area function associated to the harmonic function u
is not well suited to treat the doubling properties of the measure, and one
should consider instead the subharmonic function − log u.

The natural area function associated to a subharmonic function v in RN is

A2
α(v)(x0) =

∫
Γα(x0)

∆v(x, y)y1−N dx dy .

Observe that if v = u2, where u is harmonic, one obtains the usual area
function of u. Uchiyama ([38]), extending previous work of McConnell ([30]),
showed that for any 1 < p < ∞,

‖Aα(v)‖p ≤ C(p,N, α, β) ‖Nβ(v)‖p .

Let u be a positive harmonic function in R
N+1
+ . In our case a simple

calculation shows

|∇(log u)|2 = −∆(log u) =
|∇u|2

u2
.

So, the natural square function for log u is

A2
α(log u)(x0) =

∫
Γα(x0)

|∇u(x, y)|2
u(x, y)2

y1−N dx dy .

We consider the non-tangential maximal function of log u,

Mα(log u)(x0) = sup{| log u(x, y)| : (x, y) ∈ Γα(x0)} .

We now define the local versions of the functions above. Given a cube
Q ⊂ R

N centered at xQ and x0 ∈ Q, define

Mα(log u,Q)(x0) = sup{| log u(x, y) − log u(xQ, l(Q))| :
(x, y) ∈ Γα(x0) , 0 < y < l(Q)} ,

A2
α(log u,Q)(x0) =

∫
Γα(x0)∩Q

|∇u(x, y)|2
u(x, y)2

y1−N dx dy .

Now, the good λ-inequalities relating these two functions are described
in the following result, whose proof will be given after the next section.
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Theorem 3.1. Let u be a positive harmonic function in the upper half
space R

N+1
+ . Then there exists a constant K0 > 1 and positive constants

C1, C2 such that for any cube Q ⊂ RN , for all K > K0 and λ > 1, one has

(a) |{x ∈ Q : Mα(log u,Q)(x) > Kλ ,A2
α(log u,Q)(x) < λ}|

≤ C1 exp(−C2λK2)|{x ∈ Q : Mα(log u,Q)(x) > λ}|
(b) |{x ∈ Q : A2

α(log u,Q)(x) > Kλ ,Mα(log u,Q)(x) < λ}|
≤ C1 exp(−C2Kλ)|{x ∈ Q : A2

α(log u,Q)(x) > λ}|
The proof follows the Bañuelos-Moore scheme of approximating a har-

monic function by a dyadic martingale (see [6, Chapter 2]). In our case the
function log u is not harmonic. However, the approximation scheme is flex-
ible enough to deal with it. As in the martingale case, Theorem 1.5 stated
in the Introduction will follow easily from the result above. However Theo-
rem 1.5 (a) and therefore Corollary 1.6 can be proved in a more elementary
way, as presented in the next paragraph.

Characterization of singular measures

Let u be a positive harmonic function in the upper half space R
N+1
+ . Har-

nack’s inequality states that there exists a constant C = C(N) such that

C−1u(w, t) ≤ u(x, y) ≤ Cu(w, t) ,

for any pair of points (x, y), (w, t) ∈ R
N+1
+ such that

‖(w, t) − (x, y)‖ ≤ y/2 .

The infinitessimal version of Harnack’s inequality is the following estimate

y|∇u(x, y)|
u(x, y)

≤ N ,

which holds for any (x, y) ∈ R
N+1
+ . So, the function log u satisfies the Lips-

chitz condition
| log u(z) − log u(w)| ≤ Cρ(z, w) ,

where ρ(z, w) is the hyperbolic distance in R
N+1
+ . By Harnack’s inequality

and the submean property of gradient of u, we obtain

Lemma 3.2. Let u be a positive harmonic function in R
N+1
+ . Let B be a ball

centered at z ∈ R
N+1
+ such that 2B ⊂ R

N+1
+ . Then, there exists a constant

C = C(N) such that∣∣∣∣∇u(z)

u(z)

∣∣∣∣ ≤ C

|B|
∫

B

|∇u(w)|
u(w)

dm(w) .
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Recall that a positive harmonic function u in R
N+1
+ has a finite non-tan-

gential limit at almost every point x ∈ RN . However, the limit may be 0 at
a large set. The result we prove next is the following:

Theorem 3.3. Let u be a positive harmonic function in the upper half
space R

N+1
+ . Fix α > 0. Then, the sets

{x ∈ R
N : lim

y→0
u(x, y) > 0} and {x ∈ R

N :

∫
Γα(x)

|∇u(w, y)|2
u(w, y)2

y1−N dw dy < ∞}

can only differ in a set of Lebesgue measure 0.

As a consequence we get

Corollary 3.4. Let µ be a positive measure and let u be its harmonic ex-
tension. Fix α > 0. Then µ is singular if and only if∫

Γα(x)

|∇u(w, y)|2
u(w, y)2

y1−N dwdy = ∞ , a.e. x ∈ R
N

Proof of Theorem 3.3.The proof is based on well known arguments using
Green’s formula on saw-tooth regions (see, for instance [35, Chap.VII]). Set

A = {x ∈ R
N : lim

y→0
u(x, y) > 0} and B = {x ∈ R

N : Aα(u)(x) < ∞} .

We first show that almost every point of A is in B. So, let E be a compact
set and ε > 0 such that

ε−1 > lim
y→0

u(x, y) > ε .

Fix β > α, Harnack’s inequality provides constants C = C(β, ε), K = K(β, ε)
such that

inf
(w,y)∈Γβ(x)

u(w, y) > C , sup
(w,y)∈Γβ(x)

u(w, y) < K ,

for any x ∈ E. Renormalizing, we may assume

inf
(w,y)∈Γβ(x)

u(w, y) > ε , sup
(w,y)∈Γβ(x)

u(w, y) < ε−1 ,

for any x ∈ E. Now, let
R = ∪x∈EΓα(x)

and note that ε−1 > u > ε on R. Fubini’s theorem gives∫
E

A2
α(log u)(x)dx ≤ C

∫
R

y
|∇u(x, y)|2

u(x, y)2
dx dy .
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Since ∆(log u) = −|∇u|2/u2, Green’s formula applied to the functions log u
and y on the domain R yields∫

R

y
|∇u(x, y)|2

u(x, y)2
dx dy =

∫
∂R

(log u)∂	ny −
∫

∂R

y∂	n(log u) .

The first integral on the right side is bounded by | log ε| |∂R| and the sec-
ond one by N |∂R| because by Harnack’s inequality y|∇(log u)(x, y)| ≤ N .
Hence, ∫

E

A2
α(log u)(x) dx < ∞

and the proof is finished.
Now, we want to show that almost every point of B is in A. We argue

by contradiction. So, we may assume

|{x ∈ R
N : A2

α(log u)(x) ≤ 1 , lim
y→0

u(x, y) = 0}| > 0 .

Then one may find a compact set E of positive measure such that u is
non-tangentially bounded on E and

A2
α(log u)(x) ≤ 1 , lim

y→0
u(x, y) = 0 ,

for any x ∈ E. Observe that Harnack’s inequality implies that

u(w, t) → 0 ,

whenever (w, t) tends non-tangentially to a point x ∈ E. Considering a
subset of E if necessary, one can assume that log u is bounded from above
on the set

R = ∪x∈EΓα(x) .

Now applying Green’s formula as above we get∫
R

y
|∇u(x, y)|2

u(x, y)2
dx dy =

∫
∂R

(log u)∂	ny −
∫

∂R

y∂	n(log u) .

By Fubini, the volume integral is bounded by a multiple of∫
E

A2
α(log u)(x) dx ≤ |E|

and by Harnack’s inequality∣∣∣∣ ∫
∂R

y∂	n(log u)

∣∣∣∣ ≤ N |∂R| .

However, since ∂	ny ≥ 1/2 at ∂R∩{y = 1} and log u is bounded from above,
we deduce ∫

∂R

(log u)∂	ny = −∞ ,

which gives the contradiction. �
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Last proof combined with stopping time arguments give versions of the
estimates in Theorem 3.1 with constants having worst decay. Next we
present a proof of the good-λ-inequalities stated in that Theorem. As ex-
plained before, the idea is to adapt the Bañuelos-Moore method to reduce
the result to the martingale setting.

Approximating log u by a dyadic martingale.

The idea of approximating a function by a dyadic martingale using Calderón
reproducing formula goes back to Chang, Wilson and Wolff [14]. Later,
Bañuelos and Moore [6] related a harmonic function in the upper half space
to a truncated version of a Calderón-type integral formula. Let us explain
briefly their idea.

Let u be a harmonic function in R
N+1
+ . Given ρ > 0, fix a positive, smooth,

radial function K supported on B(0, ρ) ⊂ RN , with integral 1. Then write

P (x) = −
N∑

i=1

xi
∂K

∂xi

(x) − (N − 1)K(x) ,(3.1)

q(x) = (−x1P (x) +
∂K

∂x1

(x), . . . ,−xNP (x) +
∂K

∂xN

(x)) .(3.2)

Finally write qt(x) = t−Nq(x/t) and a similar definition for Kt(x). Define

v(x, t) =

∫
RN

Pt(x − y)u(y, t) dy .

The Bañuelos-Moore approach may be divided into the following steps.
Let εm = 2−m−2/4ρ and recall that Aα(u)(x, t) denotes the truncated area
function of u.

(I) Given α > 0, one can choose ρ sufficiently small such that for m =
1, 2, . . . if εm+1 < t0 ≤ εm,

|u(x, t0) − v(x, εm)| ≤ CAα(u)(x, γt0) ,

where 0 < γ < 1 is a constant depending on ρ. See [6, p. 72].

(II) For 0 < ε < ε̃ ≤ 1/4,

v(x, ε̃) − v(x, ε) =

∫ ε̃

ε

∫
RN

qt(x − w)∇wu(w, t)dw dt + A(x)

where

A(x) =

∫
RN

ε̃Kε̃(x − w)
∂u

∂t
(w, ε̃)dw −

∫
RN

εKε(x − w)
∂u

∂t
(w, ε) dw .

Moreover, if ρ is chosen sufficiently small with respect to α, A(x) is
bounded by a fixed multiple of Aα(u)(x, γε). Here 0 < γ < 1 is a
constant depending on ρ. See [6, p. 56, p. 70].
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(III) Consider the function

V (x, εm) =

∫ 1/4

εm

∫
RN

qt(x − w)∇wu(w, t) dw dt .

If ρ is taken sufficiently small with respect to α, there exist a pos-
itive number L = L(N) and martingales (with respect to different

translates of the usual dyadic filtration), {S(1)
n }, . . . , {S(L)

n }, such that∣∣∣∣V (x, εm) −
L∑

k=1

S(k)
m (x)

∣∣∣∣ ≤ C + CAα(u)(x, γεm) ,

L∑
k=1

〈S(k)〉m(x) ≤ CAα(u)(x, γεm) .

See [6, p. 50].

So, if ρ is taken sufficiently small, combining (I), (II) and (III) we get
that for m = 1, 2, . . . and εm+1 < t < εm,∣∣∣∣u(x, t) −

L∑
k=1

Sk
m(x)

∣∣∣∣ ≤ C + CAα(u)(x, γt) ,

L∑
k=1

〈Sk〉m(x) ≤ CAα(u)(x, γt) ,

where γ is a fixed constant. These estimates allow us to transfer problems
on the growth of the harmonic function u on regions where its (truncated)
area function is bounded to the martingale setting, that is, to problems
on growth of martingales on regions where its quadratic variation remains
bounded, since in this context the subgaussian estimate is available. In this
scheme, the harmonicity of u is used in different ways. The steps (I) and (III)
only depend on the submean property of |∇u|, that is,

|∇u(x0, y0)| ≤ 1

|B|
∫

B

|∇u(x, y)| dx dy ,

where B is a ball centered at (x0, y0) contained in R
N+1
+ . However the

identity in (II) uses the whole information ∆u = 0.
Now, given a positive harmonic function u, our strategy consists on re-

placing u by log u in the previous scheme. So we consider

v∗(x, t) =

∫
RN

Pt(x − w) log u(w, t) dw .
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Recall that by Lemma 3.2 the submean value property for |∇(log u)|
holds. So the proof of (I) and (III) by Bañuelos and Moore applies in our
situation, that is,

(I∗) Given α > 0, one can choose ρ sufficiently small such that for m =
1, 2, . . . if εm+1 < t0 ≤ εm,

| log u(x, t0) − v∗(x, εm)| ≤ CAα(log u)(x, γt0) .

(III∗) Consider the function

V∗(x, εm) =

∫ 1/4

εm

∫
RN

qt(x − w)∇w log u(w, t) dw dt .

If ρ is chosen sufficiently small with respect to α, there exists a positive
number L = L(N) and martingales (with respect to different translates

of the usual dyadic filtration), {S(1)
n }, . . . , {S(L)

n } such that∣∣∣∣V∗(x, εm) −
L∑

k=1

S(k)
m (x)

∣∣∣∣ ≤ C + CAα(log u)(x, γεm) ,

L∑
k=1

〈Sk〉m(x) ≤ CAα(log u)(x, γεm) .

The analogue of (II) for log u is harder to establish and it is the main
content of the two following results.

Lemma 3.5. Let u be a positive harmonic function in R
N+1
+ . Given a

positive, smooth, radial function K supported on {x ∈ R
N : ‖x‖ < ρ}, with

integral 1, consider the functions P, q given in (3.1) and (3.2). Define

v∗(x, t) =

∫
RN

Pt(x − w) log u(w, t) dw .

Then, for 0 < ε < 1/4,

v∗(x, 1/4) − v∗(x, ε) = V∗(x, ε) + Q(x, ε) + R(x, ε) ,

where

V∗(x, ε) =

∫ 1/4

ε

∫
RN

qt(x − w)∇w(log u)(w, t) dw dt ,

Q(x, ε) =

∫ 1/4

ε

∫
RN

tKt(x − w)
|∇u(w, t)|2

u(w, t)2
dw dt ,

R(x, ε) =

∫
RN

1

4
K1/4(x − w)

∂ log u

∂t
(w, 1/4) dw

−
∫

RN

εKε(x − w)
∂ log u

∂t
(w, ε) dw .
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Proof. We follow the proof of (II) by Bañuelos and Moore (see [6, p. 56]).
Let 0 < ε < ε̃. Applying the fundamental Theorem of Calculus, we get

v∗(x, ε̃) − v∗(x, ε) =

∫ ε̃

ε

∫
RN

∂

∂t

(
t−NP ((x − w)/t))

)
log u(w, t) dw dt

+

∫ ε̃

ε

∫
RN

t−NP ((x − w)/t)∂t(log u)(w, t) dw dt .

Using that

∂

∂t
(t−NP ((x − w)/t)) =

N∑
i=1

∂

∂wi

(
xi − wi

tN+1
P ((x − w)/t)

)
and integrating by parts, the first integral becomes

−
∫ ε̃

ε

∫
RN

N∑
i=1

xi − wi

tN+1
P ((x − w)/t)

∂ log u

∂wi

(w, t) dw dt .

Using that

t−NP ((x − w)/t) =
∂

∂t
(t−N+1K((x − w)/t)) ,

and an integration by parts, the second integral becomes

−
∫ ε̃

ε

∫
RN

t−N+1K((x − w)/t)
∂2

∂t2
(log u)(w, t) dw dt

+

∫
RN

ε̃Kε̃(x − w)
∂ log u

∂t
(w, ε̃) dw −

∫
Rn

εKε(x − w)
∂ log u

∂t
(w, ε) dw

= A + B + C .

Since
∂2 log u

∂t2
= −

N∑
i=1

∂2 log u

∂w2
i

− |∇u|2
u2

,

we get

A =

∫ ε̃

ε

∫
RN

t−N+1K((x − w)/t)

N∑
i=1

∂2 log u

∂w2
i

(w, t) dw dt

+

∫ ε̃

ε

∫
RN

t−N+1K((x − w)/t)
|∇u(w, t)|2

u(w, t)2
dw dt .

Another integration by parts shows that the first term can be written as

−
∫ ε̃

ε

∫
RN

t−N+1

N∑
i=1

(
∂K

∂wi

((x − w)/t)

)(−1

t

∂ log u

∂wi

(w, t)

)
dw dt .
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So, collecting all the identities, one gets

v(x, ε̃) − v(x, ε) =

∫ ε̃

ε

∫
RN

qt(x − w)∇w(log u)(w, t) dw

+

∫ ε̃

ε

∫
RN

t−N+1K((x − w)/t)
|∇u(w, t)|2

u(w, t)2
dw dt

+

∫
RN

ε̃Kε̃(x − w)
∂ log u

∂t
(w, ε̃) dw

−
∫

RN

εKε(x − w)
∂ log u

∂t
(w, ε) dw .

(3.3)

This finishes the proof. �

Theorem 3.6. Let u be a positive harmonic function on R
N+1
+ . Fix α > 0.

Let K be a smooth, positive, radial function supported on {x ∈ RN : ‖x‖ < ρ}
with integral 1. Consider the function

Q(x, ε) =

∫ 1/4

ε

∫
RN

tKt(x − w)
|∇u(w, t)|2

u(w, t)2
dw dt .

If ρ/α is small enough, there exists a positive number L = L(N) and mar-
tingales (with respect to different translates of the dyadic filtration)

{S(1)
n }, . . . , {S(L)

n }

such that for m = 1, 2, . . . , and εm+1 < y ≤ εm,

| log u(x, y) + Q(x, εm) −
L∑

k=1

S(k)
m (x)| ≤ C + CAα(log u)(x, γy) ,

L∑
k=1

〈S(k)〉m(x) ≤ Aα(log u)(x, γy) ,

where εm = 2−m−2/4ρ and 0 < γ < 1 is a constant depending on ρ. Here C
is a constant depending on α and N .

Proof. Observe that Harnack’s inequality and (I)∗ assert that

| log u(x, y) − v∗(x, εm)| ≤ CAα(log u)(x, γεm) + C .

By Lemma 3.5,

v∗(x, 1/4) − v∗(x, εm) = V∗(x, εm) + Q(x, εm) + R(x, εm) .
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Now, (III)∗ provides the martingales which approximate V∗(x, εm). Hence,
it only remains to show that

R(x, εm) ≤ C + CAα(log u)(x, γεm) .

It is enough to prove∣∣∣∣∫
RN

εKε(x − w)
∂ log u

∂t
(w, ε)dw

∣∣∣∣ ≤ CAα(log u)(x, γε) .

Observe that the integral is over all the w contained in the ball centered at x
of radius ρε. By the submean property of the gradient∣∣∣∣∂ log u

∂t
(w, ε)

∣∣∣∣ ≤ (
1

|B(w)|
∫

B(w)

∣∣∣∣∇u

u

∣∣∣∣2 )1/2

,

where B(w) is a ball centered at (w, ε) of radius ηε. Now if η and ρ are
sufficiently small, there exists δ < 1 such that

Bw ⊂ Bε = {z ∈ R
N+1
+ : ‖z − (x, ε)‖ < δε} ⊂ Γα(x)

for any w such that ‖w − x‖ < ρε. Then∣∣∣∣∂ log u

∂t
(w, ε)

∣∣∣∣ ≤ C

(
1

εN+1

∫
Bε

|∇u|2
u2

)1/2

.

So, ∣∣∣∣∫
RN

εKε(x − w)
∂ log u

∂t
(w, ε) dw

∣∣∣∣ ≤ C

(∫
Bε

ε−N+1 |∇u|2
u2

)1/2

≤ Aα(log u)(x, γε) .

This finishes the proof. �
Next we will show that given 0 < β < α, one can choose ρ in such a

way that the resulting quantity Q(x, ε) is, roughly speaking, intermediate
between A2

α(log u)(x, ε) and A2
β(log u)(x, ε).

Lemma 3.7. Let u,K,Q be as in Theorem 3.6. Let {x ∈ RN : ‖x‖ ≤ ρ} be
the closed support of K. Let 0 < β < α.

(a) If ρ < α,
Q(x, ε) ≤ CA2

α(log u)(x, ε) .

(b) If ρ > β,

Q(x, ε) ≥ C−1

∫
Γβ(x,ε)∩{t<1/4}

t−N+1 |∇u(w, t)|2
u(w, t)2

dw dt .

Here C is a constant depending on the function K, α and β.
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Proof. Since K is supported in {x ∈ R
N : ‖x‖ < ρ}, the integral over w in

the definition of Q(x, ε), is really over w in the ball of center x and radius ρt.
So, letting C = sup |K|, if ρ < α, Q(x, ε) is bounded by

C

∫ 1/4

ε

t−N+1

∫
‖w−x‖<ρt

|∇u(w, t)|2
u(w, t)2

dw dt ≤ C

∫
Γα(x)∩{t≥ε}

t−N+1 |∇u(w, t)|2
u(w, t)2

dw dt

This gives the first estimate.

Given β < ρ, we choose 0 < δ < 1 such that

Γβ(x) ⊂ {(w, t) : ‖w − x‖ < (1 − δ)ρt} .

Now let m = min{K(x) : ‖x‖ < ρ(1 − δ)}. Thus

Q(x, ε) ≥ m

∫ 1/4

ε

t1−N

∫
{w : ‖w−x‖<(1−δ)ρt}

|∇u(w, t)|2
u(w, t)2

dw dt

≥ m

∫
Γβ(x)∩{t≤1/4}

t1−N |∇u(w, t)|2
u(w, t)2

dw dt .
�

The sets {x ∈ R
N : Aα(log u)(x) < ∞} do not depend on α, except for

sets of Lebesgue measure 0. In their complement, next result shows that the
order of growth of Aα(log u)(x, y) does not depend on α.

Lemma 3.8. Let u be a positive harmonic function in R
N+1
+ . Let 0 < β < α.

Then, there exists a constant C = C(α, β,N) > 0 such that

lim sup
t→0

Aα(log u)(x, t)

Aβ(log u)(x, t)
≤ C ,

at almost every point x ∈ {x ∈ R
N : Aα(log u)(x) = ∞}.

Proof. By contradiction, assume that for any positive constant C there
exists a compact set F = F (C) of positive Lebesgue measure such that

lim sup
t→0

Aα(log u)(x, t)

Aβ(log u)(x, t)
> C,

lim
t→0

Aα(log u)(x, t) = ∞ ,

for any x ∈ F . Considering a point of density of F , one can assume that F
is contained in a cube Q and |F ∩ Q| ≥ (1 − ε)|Q|. Thus, for arbitrarily
large λ > 0, one can find a set Fλ ⊂ Q, |Fλ| ≥ (1 − 2ε)|Q|, such that for
any x ∈ Fλ there exists t = t(x, λ) > 0 for which Aα(log u)(x, t) = λ and
Aβ(log u)(x, t) < C−1λ.
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Next we run a stopping time argument. Let {Qj} be the maximal dyadic
subcubes of Q for which there exists x ∈ Qj satisfying

Aα(log u)(x, l(Qj)) ≥ λ .

Since Fλ ⊂ ∪Qj, we have ∑
|Qj| ≥ (1 − 2ε)|Q| .

Observe that Harnack’s inequality yields that whenever |x − w| < y,

|Aα(log u)(x, y) − Aα(log u)(w, y)| ≤ C(N,α) .

Thus, for any x ∈ Qj one has

Aα(log u)(x, l(Qj)) ≥ λ − C(N,α) .

Given a cube Q in RN we denote by Q̂ the set {(x, y) : x ∈ Q, 0 < y < l(Q)}.
Let Ω = Q̂ \ ∪Q̂j. Then Fubini gives∫

Ω

y
|∇u(w, y)|2

u(w, y)2
dw dy ≥ C(α)

∫
Q

(∫
Γα(x)∩Ω

y1−N |∇u(w, y)|2
u(w, y)2

dw dy

)
dx

≥ C1(α)λ2(1 − 2ε)|Q| .
On the other hand, by Fubini again∫

Ω

y
|∇u(w, y)|2

u(w, y)2
dw dy ≤ C(β)

∫
Q

(∫
Γβ(x)∩Ω

y1−N |∇u(w, y)|2
u(w, y)2

dw dy

)
dx

and applying Txebicheff’s inequality one can find a set G ⊂ Q, |G| ≥
C(α, β)|Q| such that∫

Γβ(x)∩Ω

y1−N |∇u(w, y)|2
u(w, y)2

dw dy ≥ C(α, β)λ2 .

Let B be the family of the cubes {Qj} for which

Aβ(log u)(x, l(Qj)) > 2C−1λ

for some x ∈ Qj. Then ∑
B

|Qj| < 2ε|Q| .

If C is large enough this gives the contradiction and finishes the proof. �
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We are now ready to prove Theorem 3.1

Proof of Theorem 3.1. Given a cube Q of center xQ and sidelength l(Q),
let us denote zQ = (xQ, l(Q)) and

T (Q) = {(x, y) ∈ R
N+1
+ : x ∈ Q, l(Q)/2 < y < l(Q)}.

To prove (a), we consider {Qj} the maximal dyadic subcubes of Q such that

sup
z∈T (Qj)

| log u(z) − log u(zQ)| > λ + C(α) ,

where C(α) is a constant depending on α (and independent on λ) to be
chosen later. It follows from Harnack’s inequality that if C(α) is chosen
conveniently, then

{x ∈ Q : Mα(log u,Q)(x) > λ} ⊃
⋃
j

Qj .

Also, by maximality and Harnack’s inequality, we have

| log u(zQj
) − log u(zQ)| ≤ λ + C1(α) ,

where C1(α) is another positive constant depending on α. Now, in each Qj

we will use the martingales S
(i)
m given in Theorem 3.6. Let

Sm =

L∑
i=1

(S(i)
m − S(i)

m (Qj))χQj
.

Then, the estimates in Theorem 3.6 and Lemma 3.7 give

{x ∈ Qj : Mα(log u,Qj)(x) > (K − 1)λ ,A2
α(log u,Qj)(x) < λ}

⊆ {x ∈ Qj : sup
m

|Sm(x)| > (K − 2C)λ − C, 〈S〉2(x) < C + λC} .

The subgaussian estimate (1.1) applied to S
(i)
m , i = 1, . . . , L, implies that

the measure of this set is bounded by

C1 exp(−C2λK2)|Qj| .
Adding up, we deduce that

|{x ∈ Q : Mα(log u,Q)(x) > Kλ ,A2
α(log u,Q)(x) < ελ}|

≤ C1 exp(−C2K
2λ)

∑
|Qj|

≤ C1 exp(−C2K
2λ)|{x ∈ Q : Mα(log u,Q)(x) > λ}| ,

which is (a).
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The proof of (b) is similar. Let {Qj} be the maximal dyadic subcubes
of Q such that

A2
α(log u,Q)(x, l(Qj)) ≥ λ + C1,

for some x ∈ Qj, where C1 = C1(α) is a constant depending on α (and
independent on λ) to be chosen later. It follows from Harnack’s inequality
and the maximality that if C is chosen conveniently, then

λ ≤ A2
α(log u,Q)(x, l(Qj)) ≤ λ + 2C1 ,

for any x ∈ Qj. So,

{x ∈ Q : A2
α(log u,Q)(x) > λ} ⊃ ∪jQj.

Now, in each Qj we will run a stopping time argument to find cubes where
A2(log u,Q) has increased kλ units. More concretely, for j = 1, 2, . . . , let
{Qj,l : l = 1, 2, . . . } be the maximal dyadic subcubes of Qj such that

A2
α(log u,Qj)(x, l(Qj,l)) ≥ (k − 1)λ − C2

for some x ∈ Qj,l. By Harnack’s inequality

(k − 1)λ − C3 ≤ A2
α(log u,Qj)(x, l(Qj,l)) ≤ (k − 1)λ + C3,

for any x∈Qj,l, where C3 is a constant depending on α,C2 and the dimension.
If the constants are chosen conveniently the set {x : A2

α(log u,Q)(x) > kλ} is
contained in ∪j,lQj,l. Let A be the subfamily of {Qj,l, j = 1, 2 . . . , l = 1, 2 . . . }
for which Mα(log u,Q)(x) ≤ λ, for any x ∈ Qj,l. Now in each Qj we will use

the martingale S
(i)
m given in Theorem 3.6. Let

Sm =
L∑

i=1

(S(i)
m − S(i)

m (Qj))χQj
.

The estimates in Theorem 3.6 and Lemma 3.7 give that for any Qj,l in A,
if 2−m−2/4ρ = l(Qj,l),

Sm(x) ≥ C4kλ,

〈S〉m(x) ≤ C5

√
kλ,

for any x ∈ Qj,l. Hence, the subgaussian estimate (1.1) implies that∑
l

|Qj,l| ≤ C6 exp(−C7kλ)|Qj| .

Adding up, we obtain (b).
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It is worth noticing that if one tries to adapt the proof of the correspond-
ing subgaussian estimate for harmonic functions to our setting, a worst decay
on the constants is obtained, as we show next. Let β > α > 0 and set

E = {x ∈ Q : Mα(log u,Q)(x) < λ}
and

R =
⋃
x∈E

Γβ(x) .

Thus, R is a Lipschitz domain say R = {(x, y) : y > φ(x)}, where φ is a
Lipschitz function. Observe that

| log u(x, y)| < λ + C(α, β) , (x, y) ∈ R ,

where C(α, β) is a constant depending on α, β.

Claim. Let

A2
α(log u)(x, φ(x)) =

∫
ΓR((x,φ(x)),α)

|∇u(w, y)|2
u(w, y)2

(y − φ(x))1−N dw dy ,

where ΓR((x, φ(x)), α) is a vertical cone with vertex at (x, φ(x)) of aper-
ture α. Then

‖A2
α(log u)(x, φ(x))‖BMO(Q) ≤ C1λ .

This is the main step in Uchiyama’s proof [38]. Then, the John-Niremberg
Theorem implies

|{x ∈ Q : A2
α(log u,Q)(x) > Kλ ,Mα(log u,Q)(x) < λ}|

= |{x ∈ Q : A2
α(log u)(x, φ(x)) > Kλ}|

≤ C1 exp(−C2K)|{x ∈ Q : A2
α(log u,Q)(x) > λ}| . �

As in the martingale setting, the good-λ-inequalities have a number of
consequences.

Theorem 3.9. Let µ be a positive measure on RN such that∫
RN

dµ(x)

1 + |x|N+1
< ∞ .

Let µ = f dx + µs, where f dx and µs are its absolutely continuous and
singular part with respect to Lebesgue measure. Fix α > 0. Let u = P [µ] be
the harmonic extension of µ and

A2
α(log u)(x) =

∫
Γα(x)

|∇u(w, y)|2
u(w, y)2

y1−N dw dy

its square function. Then,
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(a) The sets

{x ∈ R
N : f(x) > 0} and {x ∈ R

N : A2
α(log u)(x) < ∞}

can only differ in a set of Lebesgue measure 0.

(b) µ is a singular measure if and only if

A2
α(log u)(x) = ∞ , a.e. x ∈ R

N .

(c) Consider the non-tangential maximal function of log u,

Mα(log u)(x) = sup
Γα(x)

| log u| .

Let Q be a cube in R
N . Then, for 0 < p < ∞ and any α > 0,

Mα(log u) ∈ Lp(Q) if and only if A2
α(log u) ∈ Lp(Q). Also, for 1 <

p < ∞, log f ∈ Lp(Q) if and only if A2
α(log u) ∈ Lp(Q).

(d) There exists a constant C = C(N,α) such that exp(CA2
α(log u)) ∈ L1

loc

implies that µ and Lebesgue measure are mutually absolutely continuous.

(e) There exists a constant c = c(N,α) such that if A2
α(log u)(x) < 1 for

any x ∈ Q, then
exp(cM 2

α(log u)) ∈ L1(Q).

The proof is identical to the one in the dyadic martingale setting and we
omit it.

Law of the iterated logarithm

Let u be a positive harmonic function on R
N+1
+ . Given a positive, smooth,

radial function K supported on B(0, ρ) ⊂ RN , recall that Q(x, ε) was de-
fined as

Q(x, ε) =

∫ 1/4

ε

∫
RN

tKt(x − w)

∣∣∣∣∇u(w, t)

u(w, t)

∣∣∣∣2 dw dt .

Observe that the integral is really over the (w, t) in the cone Γρ(x, ε) in R
N+1
+ .

So, Q(x, ε) is a smooth version of the truncated area function A2
ρ(log u)(x, ε).

Hence, the sets

{x ∈ R
N : lim

y→0
u(x, y) = 0} and {x ∈ R

N : lim
y→0

Q(x, y) = ∞}

can only differ in a set of Lebesgue measure 0.
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Next result is an analogous of the LIL for dyadic measures given in
Theorem 1.3.

Theorem 3.10. With the notations above

lim sup
y→0

| log u(x, y) + Q(x, y)|√
Q(x, y) log log Q(x, y)

≤ C

at almost every point

x ∈ {x ∈ R
N : lim

y→0
u(x, y) = 0}.

Here C is a constant depending on N and K.

Proof. We use Theorem 3.6 to get a collection of L dyadic martingales
{S(j)

m }L
j=1 such that

∣∣∣∣ log u(x, y) + Q(x, y) −
L∑

j=1

S(j)
m (x)

∣∣∣∣ ≤ C + CAα(log u)(x, γy) ,

L∑
j=1

〈Sj〉m(x) ≤ CAα(log u)(x, γy) .

(3.4)

Here m is chosen such that εm+1 < y ≤ εm, where εm = 2−m−2/4ρ, 0 < γ < 1
is a constant depending on ρ, and ρ/α is sufficiently small. Now, the LIL
for martingales states

lim sup
m→∞

S
(j)
m (x)√

〈S(j)〉2m(x) log log〈S(j)〉m(x)
≤ C1 ,

at a.e. x ∈ {x : 〈S(j)〉(x) = ∞}. Hence, for any j = 1, . . . , L

lim sup
m→∞

S
(j)
m (x)√

A2
α(log u, εm)(x) log log Aα(log u, εm)(x)

≤ C1 ,

for a.e. x ∈ {x ∈ RN : Aα(log u)(x) = ∞}. Then the result follows from (3.4)
and Lemmas 3.7 and 3.8. �

Applying the Theorem above and Lemmas 3.7 and 3.8, we deduce Corol-
lary 1.8.
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An example

There is a class of positive harmonic functions for which these LIL’s give
sharp results. Let u be a positive harmonic function on R

N+1
+ . Harnack’s

inequality asserts

y|∇u(x, y)| ≤ Nu(x, y) , (x, y) ∈ R
N+1
+ .

Now given ε > 0 and R < 1, let M(ε,R) be the class of positive harmonic
functions u for which

sup

{
y
|∇u(x, y)|

u(x, y)
: ‖(x, y) − (x0, y0)‖ ≤ Ry0

}
> ε

for any (x0, y0) ∈ R
N+1
+ . This is analogous to a class of holomorphic functions

considered by P. Jones ([23]). For ε > 0 small and R close to 1, the class
M(ε,R) is non trivial. For instance, if one considers the measure µ given in
Proposition 2.9 and u its Poisson extension, then u ∈ M(ε,R) for some ε
and R. Now, if u ∈ M(ε,R), the submean property given in Lemma 3.2,
gives that

Q(x, y) ≥ C(ε,R) log 1/y ,

while Harnack’s inequality gives

Q(x, y) ≤ C log 1/y .

Similarly
c(α) log 1/y ≤ A2

α(log u)(x, y) ≤ C(α) log 1/y .

So if u ∈ M(ε,R), then Aα(log u)(x) = ∞ at almost every x ∈ RN , that is,
limy→0 u(x, y) = 0 a.e. x ∈ RN , or equivalently u is the Poisson integral of a
positive singular measure. Moreover, since

lim sup
y→0

| log u(x, y) + Q(x, y)|√
log 1/y log log log 1/y

≤ C , a.e. x ∈ R
N ,

and
C(ε,R) log 1/y ≤ Q(x, y) ≤ C log 1/y ,

we deduce that for a.e. x ∈ R
N , one has

lim sup
y→0

| log u(x, y)|
log 1/y

≤ C

and

lim inf
y→0

| log u(x, y)|
log 1/y

> C(ε,R) .
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4. Hyperbolic derivatives of holomorphic mappings

Decay in Schwarz’s lemma

This subsection is devoted to the proof of Theorem 1.9. As explained in the
introduction, (a) of Theorem 1.9 follows from Theorem 1.5 (a). To prove (b)
it is more convenient to consider the upper half plane. An analytic function I
from the upper-half plane R

2
+ to the unit disc is called inner if

lim
y→0

I(x + iy)

has modulus 1 at almost every x ∈ R.

We apply Proposition 2.9 to obtain a positive, singular, doubling mea-
sure µ such that

(4.1)

∣∣∣∣µ(Iz)

µ(I ′
z)

− 1

∣∣∣∣ ≤ Ch(z) Im z , 1 ≥ Im z > 0 ,

where Iz is the interval of the real line centered at Re(z) of length Im z. Let u
be the harmonic extension of µ to the upper half plane and H = u + iũ
where ũ is the unique harmonic function in R2

+ with ũ(i) = 0 such that
H = u+ iũ is analytic in R2

+. Finally I = τ−1 ◦H, where τ is a Möbius map
from the unit disc to the right- half plane. Since µ is singular, the function I
is inner. Also,

2
|I ′(z)|

1 − |I(z)|2 =
|∇u(z)|

u(z)
, Im z > 0.

So, we have to show that

|∇u(z)|
u(z)

≤ Ch(z) ,

for any z = x + iy ∈ R2
+. An integration by parts shows

∂u

∂y
(x, y) = −1

2

∫
R

∂2Py(t)

∂y∂t
sign(t)[µ(x, x + t) − µ(x − t, x)] dt

and
∂u

∂x
(x, y) =

1

2

∫
R

∂2Py(t)

∂t2
sign(t)[µ(x, x + t) − µ(x − t, x)] dt

(see Lemma 2.2 in [16]). Here Py(t) = π−1y(t2 + y2)−1 is the Poisson kernel
in the upper-half plane. We split these integrals dyadically, that is, over
the intervals Ik \ Ik−1, k = 1, 2, . . . , where Ik is the interval associated to
x + i2ky. Using the estimate∣∣∣∣∂2Py(t)

∂t2

∣∣∣∣ +

∣∣∣∣∂2Py(t)

∂y∂t

∣∣∣∣ ≤ C1

24ky3
, if |t| < 2ky ,
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and (4.1), one deduces

|∇u(x, y)| ≤ C2

∞∑
k=0

1

24ky3
µ(x, x + 2ky)h(x + i2ky)(2ky)2

= C2

∞∑
k=0

1

22ky
µ(x, x + 2ky)h(x + i2ky) .

Since we are now working in the upper-half plane, the function h(x + iy) is
decreasing for y ∈ (0, 1/2]. Therefore

|∇u(x, y)| ≤ C2h(x + iy)

∞∑
k=0

1

22ky
µ(x, x + 2ky) ≤ C3h(x + iy)u(x, y) ,

because Py(x − t) is comparable to 1/22ky for t ∈ Ik \ Ik−1. This finishes
the proof.

Law of the iterated logarithm

For 0 ≤ γ < 2π, let τγ(z) = (eiγ + z)(eiγ − z)−1 be a Möbius transformation
from the unit disc onto the right-half plane. Given a holomorphic mapping I
from the unit disc into itself, let uγ be the real part of τγ ◦ I. Thus

uγ(z) =
1 − |I(z)|2
|eiγ − I(z)|2 , z ∈ D ,

and a simple calculation shows that

2
|I ′(z)|

1 − |I(z)|2 =
|∇uγ(z)|

uγ(z)
, z ∈ D ,

which is independent of γ. So, moving the notation from the upper-half
plane to the disc, the truncated area function A2

α(I)(reiθ) coincides with
4−1A2

α(log uγ)(re
iθ) and Q(reiθ) is 4−1Qα(log uγ)(re

iθ). Thus by Theorem 1.7

lim sup
r→1

| log(uγ(re
iθ)) + Q(reiθ)|√Q(reiθ) log logQ(reiθ)

≤ C , .

Now, since for any z ∈ D, one has∫ 2π

o

log |eiγ − z|2dγ = 0 ,

Theorem 1.10 follows integrating on γ.
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Inner functions in complex domains

Let Ω be a hyperbolic domain in the complex plane, that is, Ω ⊂ C such
that C \ Ω contains at least two points. Let λD(z)|dz| = (1 − |z|2)−1 |dz|
be the Poincaré (or hyperbolic) metric in D and Π: D → Ω a holomorphic
covering map onto Ω. Then λD(z) projects to the Poincaré metric in the
domain Ω, λΩ(z)|dz|, that is,

λΩ(Π(z))|Π′(z)| = λD(z) , z ∈ D .

Let f be a holomorphic mapping from D into Ω. Then, Schwarz’s lemma
asserts that

λΩ(f(z))|f ′(z)| ≤ λD(z) , z ∈ D ,

that is,
(1 − |z|2)|f ′(z)|λΩ(f(z)) ≤ 1 , z ∈ D .

A holomorphic mapping I from the unit disc into Ω is called inner into Ω
if the set

{eiθ ∈ ∂D : lim
r→1

I(reiθ) exists and belongs to Ω}
has length 0. R. Nevanlinna proved that a holomorphic mapping from the
unit disc into a domain whose complement has positive logarithmic capacity,
has radial limit along almost every radius. (see [32, p. 209]). So, given such
a domain Ω ⊂ C, a holomorphic mapping I from D into Ω is inner into Ω if
and only if

lim
r→1

I(reiθ) ∈ ∂Ω

for almost every eiθ ∈ ∂D.
The functions which are inner into D are the usual inner functions. A cov-

ering map Π from D onto a domain Ω is inner into Ω and, as a matter of fact,
if f is a holomorphic mapping from D into Ω which factorizes as f = Π ◦ b,
where b : D → D, then f is inner into Ω if and only if b is an inner function
(see [19]). Also,

λΩ(f(z))|f ′(z)| = λΩ(Π(b(z)))|Π′(b(z))||b′(z)| = λD(b(z))|b′(z)| .
Thus, Theorem 1.9 gives the following result.

Corollary 4.1. Let Ω be a hyperbolic domain in the complex plane. Fix
α > 0. Let f be a holomorphic mapping from the unit disc into Ω. Then f
is inner into Ω if and only if∫

Γα(θ)

λ2
Ω(f(z))|f ′(z)|2 dm(z) = ∞

for almost every θ ∈ [0, 2π].
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5. Quasiconformal Mappings

This section is devoted to the proof of Theorem 1.11. We start by proving
some auxiliary results.

Lemma 5.1. With the notation of Theorem 1.11, the following identity
holds:

|∂u(z)| =

∣∣∣∣ ∫
R2
−

∂ρ(w)

(w − z)3
dm(w)

∣∣∣∣ , for any z ∈ R2
+.

Proof. Since u(z) = Re
(
i
∫

R

dµ(t)
z−t

)
, one has

|∂u(z)| =

∣∣∣∣∂z

∫
R

dµ(t)

z − t

∣∣∣∣ =

∣∣∣∣∫
R

dµ(t)

(z − t)2

∣∣∣∣ .

Approximating ρ by smooth functions with compact support, we can assume
that dµ(t) = ρ′(t)dt. Therefore the above integral is equal to∣∣∣∣∫

R

ρ(t)

(t − z)3
dt

∣∣∣∣ .

Now, Green’s Theorem is applied to get

|∂u(z)| =

∣∣∣∣ ∫
R2
−

∂w

(
ρ(w)

(w − z)3

)
dm(w)

∣∣∣∣ =

∣∣∣∣ ∫
R2
−

∂ρ(w)

(w − z)3
dm(w)

∣∣∣∣ . �

Note that the lemma above holds under weaker assumptions: ρ does not
need to be quasiconformal.

Lemma 5.2. With the same notation as in Theorem 1.11,

|∂u(z)|
u(z)

≤ C

y1/2

(∫ ∞

y

ω2(z, t)
dt

t2

)1/2

, for all z = x + iy ∈ R
2
+,

where

ω2(z, t) =
1

t2

∫
B(z,t)∩R

−
2

|σ(w)|2 dm(w) ,

and B(z, t) denotes the ball centered at z and radius t.

Proof. Since ∂ρ = σ∂ρ, by Lemma 5.1 we get

|∂u(z)| ≤
∫

R
−
2

|σ(w)| |∂ρ(w)|
|w − z|3 dm(w) .
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Consider now the balls Bk centered at z of radius 2ky, and define

Dk = Bk ∩ R
−
2 .

Denote by Jρ(w) the Jacobian of the quasiconformal mapping ρ, then

|∂u(z)| �
∞∑

k=1

1

23ky3

∫
Dk

|σ(w)| |Jρ(w)|1/2 dm(w)

∼=
∞∑

k=1

1

2ky

∫
Dk

|σ(w)| |Jρ(w)|1/2 dm(w)

≤
∞∑

k=1

1

2ky

(∫
Dk

|σ(w)|2
)1/2 (∫

Dk

|Jρ(w)|
)1/2

,

where the symbol
∫

D
g represents the mean of the function g over D. Now,

by the circular distortion theorem the quantity Area (ρ(Dk)) =
∫

Dk
|Jρ(w)|

is comparable to the square of the diameter of the interval ρ(Ik), where Ik

is the interval centered at x = Rez and length 2ky. Therefore

|∂u(z)| �
∞∑

k=1

1

2ky

(∫
Dk

|σ(w)|2
)1/2

µ(Ik)

|Ik| ,

with all comparison constants depending only on the quasiconformal con-
stant of the mapping ρ. Since µ is doubling, µ(Ik) ≤ Ckµ(Iz) where Iz

denotes the interval centered at x = Rez and length y, and C is the dou-
bling constant. Writing C = 21+ε, we get

µ(Ik)

|Ik| ≤ 2kε µ(Iz)

|Iz| .

Hence if ε < 1/2

|∂u(z)| ≤
∑

k

1

2ky

(∫
Dk

|σ(w)|2
)1/2

2kε µ(Iz)

|Iz|

≤ u(z)
∑

k

1

2k(1−ε)y

(∫
Dk

|σ(w)|2
)1/2

=
u(z)

y1/2

∑
k

1

2k(1/2−ε)

(
1

2ky

∫
Dk

|σ(w)|2
)1/2

≤ u(z)

y1/2

( ∑
k

1

2k(1−2ε)

)1/2(∑
k

1

2ky

∫
Dk

|σ|2
)1/2

� K(C)
u(z)

y1/2

(∫ ∞

y

ω2(z, t)
dt

t2

)1/2

.
�
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We finally proceed to prove Theorem 1.11.

Proof of Theorem 1.11. We have to show that∫
Γα(x)

(
1

y

∫ ∞

y

ω2(z, t)
dt

t2

)
dm(z) ≤ C

∫
R
−
2

|σ(w)|2
|w − x|2 dm(w) .

By Fubini, the left term can be expressed as:∫
R
−
2

|σ(w)|2
(∫

Γα(x)

1

y

(∫ ∞

y

1

t4
χB(z,t)(w) dt

)
dm(z)

)
dm(w) .

On the other hand∫ ∞

y

1

t4
χB(z,t)(w) dt �

∫ ∞

|z−w|

dt

t4
� 1

|z − w|3

and ∫
Γα(x)

1

y

dm(z)

|z − w|3 � 1

|x − w|2
which ends the proof of the theorem. �

6. Concluding remarks

Centered square function

Let µ be a doubling measure in Q0. It is natural to consider analogues of the
square function in Section 1 which do not use the dyadic filtration. Given a
point (w, y) ∈ R

N+1
+ , let us consider

d(w, y) = max
k

∣∣∣∣2Nµ(Qk)

µ(Q)
− 1

∣∣∣∣ ,

where Q is the cube in R
N centered at w of sidelength y and {Qk : k =

1, . . . , 2N} are the 2N disjoint subcubes of Q of sidelength y/2. So, d(w, y)
measures the error done by µ when doubling at a cube centered at w of
sidelength y. Define

A2
α(µ)(x) =

∫
Γα(x)

d2(w, y)
dw dy

yN+1
, x ∈ R

N .

Again, doubling measures which are singular can be characterized in terms
of this square function.
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Theorem 6.1. Let µ be a doubling measure in Q0. Fix α > 0. Then µ is
singular if and only if

A2
α(µ)(x) = ∞ ,

at almost every x ∈ Q0.

Proof of Theorem 6.1. Given 0 < ε < η, let us consider the (doubly)
truncated square function

A2
α,ε,η(µ)(x) =

∫
Γα(x)∩{ε<y<η}

d2(w, y)
dw dy

yN+1
.

The main step is to prove the following comparison estimate between inte-
grals of the logarithm of the density of µ and the truncated square func-
tion A2

α,ε,η. More concretely, there exists a constant C = C(µ, α) > 0 such
that for any cube Q ⊂ Q0 and 0 < y < l(Q)/2, one has

C−1(1 +
1

|Q|
∫

Q

A2
α,y,l(Q)(µ)(x) dx)

≤ 1

|Q|
∫

Q

log
µ(Q(x, y))

yN
dx − log

µ(Q)

|Q|
≤ C(1 +

1

|Q|
∫

Q

A2
α,y,l(Q)(µ)(x) dx) .

(6.1)

To show this, first note that, as in Lemma 2.2,

d2(w, y) � − log
g.m.(Q(w, y))

a.m.(Q(w, y))
,

where g.m. and a.m. are defined as in the martingale setting. By Fubini’s
Theorem∫

Q

A2
α,y,l(Q)(µ)(x) dx � −

∫
w∈Q

∫ l(Q)

y

log
g.m.(Q(w, t))

a.m.(Q(w, t))

dt

t
dw =

∫ l(Q)

y

Φ(t)
dt

t
,

where

Φ(t) = −
∫

Q

log
g.m.(Q(w, t))

a.m.(Q(w, t))
dw .

Then, splitting the integral of Φ(t) dyadically and using the following can-
cellation property,∣∣∣∣ ∫

Q

log
( g.m. Q(w, t)

µ(Q(w, t/2))
|Q(w, t/2)|

)
dw

∣∣∣∣ ≤ C(µ)tN .

we obtain (6.1). Now Theorem 6.1 follows from standard stopping time
arguments. We omit the details. �
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Given a doubling measure µ, let us consider the maximal function

Mα(log µ)(x) = sup

∣∣∣∣ log
(µ(Q(w, y))

yN

)∣∣∣∣ ,

where the supremum is taken over the points (w, y) in the cone Γα(x). Again,
using (6.1), standard methods also give the analogue of part (b) in Theo-
rem 1.1, that is, for 0 < p < ∞,

Mα(log µ) ∈ Lp(Q0) if and only if A2
α(µ) ∈ Lp(Q0).

However, we have not explored the analogues of (d) and (e) in Theorem 1.1
and the LIL of Theorem 1.3 for the square function A. For this, it seems
necessary to prove the analogue of the good λ-inequality, given in Theo-
rem 2.4 (a).

Sharp control of A by M

Theorem 2.4 and Theorem 3.1 establish comparisons between the distribu-
tion function of a non-tangential maximal function and a square function
in two different settings: dyadic doubling measures and positive harmonic
functions. Part (a) in both results provide the same subgaussian decay.
However the estimate in part (b) in both results gives a worst decay and it
probably could be improved. This is particularly convenient if one is inter-
ested on LIL’s relating the growth of the (truncated) square function with
the non-tangential maximal function. For harmonic functions, such LIL’s
were considered by Bañuelos and Moore (see [6, Chapter 4]).

Non-harmonic extensions

It is natural to consider the non-harmonic version of the results in Section 2.
Let ϕ : R

N → R be a smooth function with integral 1. Let µ be a positive
measure on R

N such that ∫
RN

|ϕ(x)| dµ(x) < ∞ .

Consider

u(x, t) = (ϕt ∗ dµ)(x),

where

ϕt(x) = t−Nϕ
(x

t

)
, x ∈ R

N , t > 0.
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Under some additional restrictions on the function ϕ, it is known that,
for 0 < p < ∞, the non-tangential maximal function of u is in Lp if and only
if the square function

A2
α(µ, ϕ)(x) =

∫
Γα(x)

|∇u(w, t)|2t1−N dw dt

is in Lp (see [18]). In our setting, the natural square function to be consid-
ered is

A2
α(log µ, ϕ)(x) =

∫
Γα(x)

∣∣∣∇u(w, t)

u(w, t)

∣∣∣2t1−N dw dt .

We have not explored the square function in this generality. It is worth
mentioning that in this generality, even the analogue of the subgaussian
estimates of Chang, Wilson and Wolff is open (see [6, p. 113] and [36]). So,
proving sharp estimates for A2(log µ, ϕ) seems to be a difficult problem.

One could also ask for results analogous to the ones in Section 2, with
the area function replaced by the g-function

g2(log u)(x) =

∫ 1

0

y
|∇u(x, y)|2

u(x, y)2
dx .

Again the main difficulty is the subgaussian estimate of Theorem 3.1, which
is open in the context of harmonic functions (see [6, p. 114])
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734 M.J. González and A. Nicolau
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[8] Brossard, J.: Intégrale d’aire et support d’une mesure positive.
C.R. Acad. Sci. Paris Sér I. Math. 296 (1983), 231-232.

[9] Burkholder, D. L. and Gundy, R. F.: Extrapolation and interpolation
of quasi–linear operators on martingales. Acta Math. 124 (1970), 249–304.

[10] Burkholder, D. L. and Gundy, R. F.: Distribution function inequali-
ties for the area integral. Studia Math. 44 (1972), 527–544.

[11] Buckley, S.M.: Estimates for operator norms on weighted spaces and
reverse Jensen inequalities. Trans. Amer. Math. Soc. 340 (1993), 253–272.

[12] Cantón, A.: Singular measures and the little Bloch space. Publ. Mat. 42
(1998), 211–222.

[13] Carleson, L.: On mappings, conformal at the boundary. J. Analyse Math.
19 (1967), 1–13.

[14] Chang, S.-Y.A., Wilson, J.M. and Wolff, T.H.: Some weighted
norm inequalities concerning the Schrödinger operator. Comment. Math.
Helv. 60 (1985), 217–246.

[15] Dyn’kin, E.: Estimates for asymptotically conformal mappings. Ann.
Acad. Sci. Fenn. Math. 22 (1997), 275–304.

[16] Doubtsov, E. and Nicolau, A.: Symmetric and Zygmund measures in
several variables. Ann. Inst. Fourier (Grenoble) 52 (2002), no. 1, 153–177.

[17] Fefferman, R.A. Kenig, C. E. and Pipher, J.: The theory of weights
and the Dirichlet problem for elliptic equations. Ann. of Math. (2) 134
(1991), 65–124.

[18] Fefferman, C. and Stein, E.M.: Hp spaces of several variables. Acta
Math. 129 (1972), 137–193.

[19] Fernández, J. L. and Nicolau, A.: Boundary behaviour of inner func-
tions and holomorphic mappings. Math. Ann. 310 (1998), 423–445.

[20] Garnett, J. B. and Jones, P.W.: The distance in BMO to L∞. Ann.
of Math. (2) 108 (1978), 373–393.

[21] Garnett, J. B. and Jones, P.W.: BMO from dyadic BMO. Pacific J.
Math. 99 (1982), 351–371.

[22] Heurteaux, Y.: Sur la comparaison des mesures avec les mesures de
Hausdorff. C. R. Acad. Sci. Paris Sér I Math. 321 (1995), 61–65.



Multiplicative Square Functions 735

[23] Jones, P.W.: Square functions, Cauchy integrals, analytic capacity and
harmonic measure. In Harmonic analysis and partial differential equa-
tions (El Escorial, 1987), 24–68. Lecture Notes in Math. 1384. Springer,
Berlin, 1989.

[24] Kahane, J. P.: Trois notes sur les ensembles parfaits linéaires. Enseigne-
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Universitat Autònoma de Barcelona
08193 Bellaterra, Barcelona (Spain)

artur@mat.uab.es

The authors are partially supported by the grants BFM2002-00571 and 2001SGR00431.


