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Focusing of spherical nonlinear
pulses in R

1+3, II. Nonlinear caustic

Rémi Carles and Jeffrey Rauch

Abstract

We study spherical pulse like families of solutions to semilinear
wave equations in space time of dimension 1+3 as the pulses focus
at a point and emerge outgoing. We emphasize the scales for which
the incoming and outgoing waves behave linearly but the nonlinearity
has a strong effect at the focus. The focus crossing is described by a
scattering operator for the semilinear equation, which broadens the
pulses. The relative errors in our approximate solutions are small in
the L∞ norm.

1. Introduction

Consider the asymptotic behavior as ε → 0 of solutions of the initial value
problem

(1.1)




�uε + a|∂tu
ε|p−1∂tu

ε = 0, (t, x) ∈ [0, T ] × R3,

uε
∣∣
t=0

= εJ+1U0

(
r ,

r − r0

ε

)
,

∂tu
ε
∣∣
t=0

= εJU1

(
r ,

r − r0

ε

)
,

where � := ∂2
t −∆x, a is a complex number, r = |x|, r0 > 0, and, 1 < p < ∞.

The functions U0 and U1 are infinitely differentiable, bounded, and, there is
a z0 > 0 so that for all r ≥ 0,

(1.2) supp Uj(r, .) ⊂ [−z0, z0].
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The last assumption implies that at time t = 0 the solutions are families of
spherical pulses supported in a O(ε) neighborhood of r = r0. Precisely the
support is contained in the interval |r− r0| ≤ εz0, and only the values of the
profiles Uj(r, z) for these r play a role.

For a purely imaginary, the initial value problem is conservative in the
sense that the wave equation energy is conserved, while for a with positive
real part the problem is dissipative. The case of a positive real the non-
linear term is monotone and the evolution is contractive in the wave equa-
tion energy.

There are at least three reasons why the study of the nonlinear behavior
of short pulses is of interest. First is the importance of short pulses in radar
and in the technology of ultrashort lasers. Second is the fact that the Fourier
Transform of pulses is very broad, O(1/ε), in the codirections normal to the
fronts and so the analysis forces one to deal with this bandwidth of scales
which grows infinitely large in the limit of short wavelengths. In the case of
wave trains, the band of frequencies that are important stays bounded but
tends to infinity. Finally, when pulses focus they spend of time O(ε) near
the caustic, which makes the analysis of nonlinear caustics easier than the
case of wave trains.

1.1. Linear spherical pulse families in R
1+3

Consider first spherically symmetric solutions of the linear wave equation

�u = 0 .

With the usual abuse of notation, u = u(t, r) where u is a smooth even
function of r ∈ R. Then

w(t, r) := r u(t, r)

is a smooth odd function of r. In three space dimensions, the wave equation
is equivalent to

wtt − wrr = 0 .

The general odd solution w is

w = g(t + r) − g(t − r) .

This yields

u =
g(t + r) − g(t − r)

r
when r �= 0 , u(t, 0) = 2g′(t) .

For a smooth compactly supported f , the family with

gε(r) := f
(r − r0

ε

)



Focusing of Spherical Nonlinear Pulses in R1+3, II. Nonlinear caustic 817

yields

uε :=
1

r

[
f
(t + r − r0

ε

)
− f

(t − r − r0

ε

)]
,

a family which near t = 0 are incoming spherical pulses supported on a O(ε)
neighborhood of |x| = r0.

To understand the heuristics in the next section it is important to note
the following things. For r bounded away from the origin, 0 < δ ≤ r one has
(ε∂)kuε = O(1). As the pulse approaches the origin it grows like 1/r until
it gets to r = O(ε). There the cancellation of the incoming and outgoing
pulses regularizes the growth. One has uε = O(min{1/ε, 1/r}). Thus the
pulse is larger by a factor of order 1/ε in a small neighborhood of the focus.
The ε∂ derivatives are also amplified by 1/ε in this region.

One could think that since the singular behavior is restricted to a set which
the wave passes in time O(ε) that the singular behavior is negligible. However
the small time is compensated by the amplification and the caustic crossing
has the finite effect that the outgoing pulse family has profile equal to the
negative of the incoming profile. The change in the solution is precisely 200%.

1.2. Two parameters

In the nonlinear case, there are two key parameters. The exponent J controls
the amplitude of the solutions as a function of ε while p gives the rate of
growth of the nonlinearity at infinity. We will see that to leading order
the nonlinearity is negligible in r ≥ δ > 0 if and only if J > 0. Similarly
it is negligible near r = 0 if and only if J > (p − 2)/(p − 1). There are
two critical values. The critical value J = 0 is the amplitude at which the
nonlinear geometric optics is needed to describe the propagation away from
the focus. For J > 0 linear geometric optics suffices.

A similar situation occurs at the focus. In this paper we treat the case
of critically nonlinear focus, namely J = (p − 2)/(p − 1). In that case, the
leading order behavior of the pulse is affected by the nonlinear term as the
pulse passes through the focus. We next present rough estimates which yield
the critical values.

For short time, one finds two spherical pulses, one expanding outward
and the other focusing inward. It is the inward propagating pulse and its
behavior as it approaches and passes through the focal point at time t ≈ r0

that interests us.
When J ≥ 0 and even for data which depend on the angular variables, the

analysis of Alterman and Rauch [1] shows that before the focus the incoming
pulse satisfies u ∼ εJ+1U(t, r, (t+r)/ε) so ∇t,xu

ε = O(εJ), and �uε = O(εJ).
Note that the latter is one power of ε smaller than one might guess thanks
to the fact that t + r satisfies the eikonal equation.



818 R. Carles and J. Rauch

The nonlinear term is O(εpJ) so is negligible compared to �u precisely
when J > 0. When J = 0, U is determined by a nonlinear transport
equation, while when J > 0 the transport equation is linear. In the first
case we say that there is nonlinear propagation. In the second case, there is
linear propagation. In this classification, p plays no role.

Near r = 0 and in the linear case the explicit solutions have first (respec-
tively second) derivative larger by a factor 1/ε (respectively 1/ε2) than they
are for r bounded away from 0. Assuming that the “eikonal cancellation”
continues to hold for our nonlinear problem one would have |∇t,xu

ε|p =
O(εp(J−1)), and �uε = O(εJ−2). Comparing these two terms suggests that
for p(J − 1) > J − 2 the nonlinear term can be neglected at the focus. The
value J = (p−2)/(p−1) is the critical case for which the nonlinearity cannot
be neglected. In the latter case, one expects that there is nonlinear behavior
at the caustic. In the former there is a linear caustic. Powers J smaller than
the critical power, J < (p−2)/(p−1), are called supercritical caustic. These
expectations are summarized in the following table.

J > p−2
p−1 J = p−2

p−1 J < p−2
p−1

J > 0 linear caustic nonlinear caustic supercritical caustic
linear propagation linear propagation linear propagation

J = 0 linear caustic nonlinear caustic supercritical caustic
nonlinear propagation nonlinear propagation nonlinear propagation

In addition to this sixfold classification, there is an additional doubling
because each class can be considered for pulses and for wave trains. The
latter correspond to profiles Uj which are periodic in z. To avoid this com-
pounding of cases, in this paper we will treat exclusively the case of pulses
with critically nonlinear caustic and linear propagation.

Distinctions as in the table were computed formally in [10]. For nonlinear
Schrödinger equations, they were justified in [4], [3], [5]. The present paper is
an analogous treatment for the nonlinear wave equation (1.1) with a critically
nonlinear focus and linear propagation. As far as we know, there is nothing
known about the corresponding problem for the wave train case.

The paper [8] shows that the entries described as linear caustic are cor-
rect. That is, to leading order as ε → 0, the nonlinear term can be neglected
in the asymptotics at the caustic {r = 0}.

Other papers study the same circle of questions for wave trains as op-
posed to pulses. The emphasis has been on the case J = 0. When 1 < p < 2,
the nonlinearity is negligible at the caustic crossing. This has been proved
in ([12], [15], [13], [2]). Though the nonlinear effects at the focus are negli-
gible to leading order they alter the corrector terms.
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The case of nonlinear caustic crossing by wave trains with J = 0, p ≥ 2
which is supercritical is studied in ([11], [14]) in the very special cases a > 0
and a < 0 respectively. In either the accretive or dissipative cases, the effects
on approaching the focus are so strong that the crossing is not important.
In the accretive case, the solution blows up before reaching the caustic, and
in the dissipative case the absorption is so effective that oscillations do not
cross the caustic ([11]). In the dissipative case, not only are oscillations
absorbed, but also singularities leading to a smoothing effect ([14]). We
will treat the analogous cases for spherical pulses, announced in [6], in a
subsequent paper.

1.3. Two parameters rescaled

Introduce ε−Juε =: uε instead of uε so that the solutions have derivatives of
order O(1) away from the caustic. Define

α := (p − 1)J.

The initial value problem is transformed to

(1.3)




�uε + a εα|∂tu
ε|p−1 ∂tu

ε = 0, (t, x) ∈ [0, T ] × R
3,

uε
∣∣
t=0

= εU0

(
r,

r − r0

ε

)
, ∂tu

ε
∣∣
t=0

= U1

(
r,

r − r0

ε

)
.

Translating the previous table yields

α + 2 > p α + 2 = p α + 2 < p

α > 0 linear caustic, nonlinear caustic, supercritical caustic,
linear propagation linear propagation linear propagation

α = 0 linear caustic, nonlinear caustic, supercritical caustic,
nonlinear propagation nonlinear propagation nonlinear propagation

1.4. An inner problem predicts the answer

As the pulse width is O(ε) and is carried by the incoming characteristic
t + r = r0 the interesting focusing is expected to occur in an O(ε) neigh-
borhood of the point t = r0 , r = 0 . This suggests looking at the scaled
functions u(t, x) defined by

u(t, r) = u
(t − r0

ε
,
r

ε

)
, u(τ, ρ) := u(ετ + r0 , ερ) ,

associated with the change of variables

τ =
t − r0

ε
, ρ =

r

ε
, t = ετ + r0, r = ερ .
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Equation (1.3) transforms to

1

ε2
�τ,ρ u + a εα

∣∣∣1
ε

uτ

∣∣∣p−1(1

ε
uτ

)
= 0 .

The ε dependence disappears exactly in the critical case α + 2 = p to yield

(1.4) �u + a |uτ |p−1uτ = 0 .

This is identical to the starting equation. That invariance under scaling is
a second notion of criticality. The fact that the descaled equation capturing
the focusing behavior is nonlinear is another expression of the fact that the
focus is nonlinear. For any higher power of α the descaled equation would
have had a nonlinear term with a positive power of ε as prefactor.

The initial data for u are taken at time t = 0 and that translates to time
τ = −r0/ε for u. In the limit ε → 0 this yields for u an initial value problem
with initial data taken at τ = −∞.

The values of uε observed t = r0 + O(1) are read from the values of u at
time τ = O(1/ε) → +∞. Thus the fact that the caustic crossing is described
by a scattering operator for the nonlinear equation (1.4) is reasonable. The
existence of such a scattering operator is one of the problems we address.

1.5. Characteristic coordinates

Since the initial data are spherical, so is the solution. With the usual abuse
of notation,

uε(t, x) = uε(t, |x|), uε(t, |x|) ∈ C∞
even in r(Rt × Rr) .

Introduce vε := (vε
−, vε

+) where

(1.5) ũε(t, r) := ruε(t, r), vε
∓ := (∂t ± ∂r)ũ

ε , vε
∓ ∈ C∞(Rt × Rr) .

Then (1.1) becomes

(1.6)

{
(∂t ± ∂r)v

ε
± = εαr1−pg(vε

− + vε
+), g(y) := b|y|p−1y , b := −a2−p ,

(vε
− + vε

+)
∣∣
r=0

= 0 ,

with initial data given by

(1.7) vε
∓
∣∣
t=0

= P∓

(
r,

r − r0

ε

)
± εP1

(
r,

r − r0

ε

)
,

where

P∓(r, z) := rU1(r, z) ± r∂zU0(r, z) ,

P1(r, z) := U0(r, z) + r∂rU0(r, z) .
(1.8)

Our interest is in analyzing the case 0 < α = p − 2 which has linear propa-
gation and nonlinear caustic.
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The linear propagation is clear in both (1.3) and (1.6) since the nonlinear
term has a prefactor εα → 0. Before the focus one sees an essentially linear
incoming pulse family and after the focus essentially linear outgoing pulses.
The subtlety is that the profile of the outgoing family is determined from
the profile of the incoming family by solving a scattering problem for (1.4).

The first thing to do is to prove that the solutions vε = (vε
+, vε

−) exist
for times 0 ≤ t ≤ t with t > r0 so that one can talk about the caustic
crossing. We prove this if the initial data are suitably small, or in the case
of dissipative nonlinearity, a > 0 without smallness assumption.

Even local existence on an ε dependent time interval is not obvious since
the nonlinear term is quite singular at r = 0 because of the r1−p factor.
This singularity is compensated by the fact that vε

+ + vε
− vanishes at r = 0.

So, when uε is C2 one has vε ∈ C1 and g(vε
+ + vε

−) = O(rp) which suffices
to compensate for the singularity. In the differentiated equation for first
derivatives ∂tv

ε, the nonlinearity is precisely O(1) near r = 0.
In all that follows, virtually all estimates are pointwise. This is one of

the key benefits of the radial case. Reducing to essentially one space variable
yields a variety L∞ estimates proved either by the method of characteristics
or multipliers of Kruzkov type.

The proof of Theorem 1 is given in § 2.

Theorem 1 i. If a > 0, ε > 0, and vε
0,±(r) are uniformly Lipschitzean

functions on [0,∞[ in the following sense,

∃C > 0, ∀ε ∈]0, 1], ‖ε∂rv
ε
0,±‖L∞ ≤ C,

and satisfying the compatibility conditions

vε
0,+(0) + vε

0,−(0) = 0 , ∂rv
ε
0,+(0) − ∂rv

ε
0,−(0) = 0 ,

then there is a unique uniformly Lipschitzean solution vε ∈ C1([0,∞[×[0,∞[)
to (1.6) satisfying the initial condition vε

±(0, r) = vε
0,±(r). In addition,∥∥vε , ε∂tv

ε‖L∞([0,∞[×[0,∞[) ≤ ∥∥vε(0) , ε∂tv
ε(0)

∥∥
L∞([0,∞[)

.

ii. For any a ∈ C there is are positive constants K1(a) and K2(a) so that if
0 < ε < 1 and the initial data satisfy in addition∥∥vε(0) , ε∂tv

ε(0)‖L∞([0,∞[) ≤ K1(a)

then there is a unique uniformly Lipschitzean C1([0,∞[×[0,∞[) solution to
the initial value problem and∥∥vε , ε∂tv

ε‖L∞([0,∞[×[0,∞[) ≤ K2(a)
∥∥vε(0) , ε∂tv

ε(0)
∥∥

L∞([0,∞[)
.

In both case, vε(t, r) and ∂tv
ε(t, r) tend to zero as r → ∞ provided that this

is true at t = 0.
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1.6. Linear geometric optics region

The description of the solution involves three overlapping regions which cover
all of space time. The first is the region where linear propagation is all that
needs to be considered.

Perform three approximations. First drop the εα nonlinear term. Next
drop the O(ε) terms in the initial conditions and replace P±(r, (r − r0)/ε)
by P±(r0, (r − r0)/ε). These modifications are expected to change the solu-
tion by O(εα) and O(ε) respectively. Solve the resulting linear initial value
problem explicitly.

One finds three waves; an outgoing pulse (P+(r0, (t − r + r0)/ε), 0), an
incoming pulse (0, P−(r0, (t + r − r0)/ε)), and an outgoing reflected pulse.
Thanks to (1.2), for any δ > 0 and for ε small there will be no reflected wave
in the region (1.9) sketched in Figure 1. The proof of the next result which
expresses these facts is given in § 3.

t

r

T

r0 − δ
r0

Figure 1: Region ΩL
δ,T for linear geometric optics without reflection

Theorem 2 For any δ > 0 and T ∈ [r0,∞[ define

(1.9) ΩL
δ,T :=

{
(t, r) : 0 ≤ r < ∞ , 0 ≤ t ≤ min{t − r + r0 − δ , T} .

Define vε from (1.5, 1.6, 1.7, 1.8) and an approximate solution

vε
app(t, r) :=

(
P+

(
r0,

t − r + r0

ε

)
, P−

(
r0,

t + r − r0

ε

))
.

Then if a > 0 or the smallness hypothesis of part ii. of Theorem 1 are
satisfied one has∥∥vε − vε

app , ε∂t,r(v
ε − vε

app)
∥∥

L∞(ΩL
δ,T )

= O
(
εmin{1,p−2}) .
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1.7. The three key players

To describe the behavior near the focal point and after the focus involves
three key functions ψL, ψ and Ψout that we now describe. Introducing the
blown up coordinates in the characteristic form (1.6) yields

vε
±(t, r) := ψε

±
(t − r0

ε
,
r

ε

)
, ψε

±(τ, ρ) := vε
±(ετ + r0, ερ) ,

(1.10) (∂τ ±∂ρ)ψ
ε
± = ρ1−pg(ψε

−+ψε
+) for ρ > 0, ψε

−(t, 0)+ψε
+(t, 0) = 0 ,

ψε
∓
∣∣
τ=− r0

ε

= P∓
(
ερ, ρ − r0

ε

)
± εP1

(
ερ, ρ − r0

ε

)
.

The initial value of ψ− differs by O(ε) from P−(r0, ρ − r0

ε
). Define

ψL(τ, ρ) :=
( − G(τ − ρ), G(τ + ρ)

)
, G(σ) := P−(r0, σ) .

Then ψL is a linear solution whose incoming component differs by O(ε) at
time τ = −r0/ε from the incoming wave ψε

−. Note that

‖ψL(τ) , ∂τψ
L(τ)‖L∞([0,∞[)

is independent of τ ∈ R. Note also that hypothesis 1.2 guarantees that ψL

has compact support in ρ for each τ .

Theorem 3 i. There is a constant K3(a) > 0 so that if

a > 0 or ‖ψL(τ) , ∂τψ
L(τ)‖L∞([0,∞[) < K3(a) ,

then there is one and only one uniformly Lipschitzean solution ψ∈C1(R × R+)
to (1.10) which satisfies the Cauchy condition as τ → −∞∥∥ψ(τ) − ψL(τ) , ∂τ,ρ

(
ψ(τ) − ψL(τ)

)∥∥
L∞([0,∞[)

= o(1) .

ii. There is a uniformly Lipschitzean C1 linear solution

Ψout(τ, ρ) := (F (τ − ρ) , −F (τ + ρ))

with |F (σ)| = o(1) as |σ| → ∞ so that as τ → +∞,

‖ψ(τ) − Ψout(τ)‖L∞([0,∞[) = o(1) .

For any γ > 0 one has

(1.11)
∥∥ψ(τ) − Ψout(τ) , ∂τ,ρ

(
ψ(τ) − Ψout(τ)

)∥∥
L∞([γτ,∞[)

= O(1/τ p−2) .

In the case of small initial data one has

(1.12)
∥∥ψ(τ) − Ψout(τ) , ∂τ,ρ

(
ψ(τ) − Ψout(τ)

)∥∥
L∞([0,∞[)

= O(1/τ p−2) .
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Remarks.

1. The two key players introduced here are ψ and Ψout.

2. The mapping taking G to F is the scattering operator for (1.6).

3. The proofs of parts i and ii are in § 4.2 and § 4.1 respectively.

In a final section, the scattering operator is studied in the limit of small
incoming states. This reveals a phenomenon of pulse broadening. Compactly
supported incoming profiles G yield outgoing profiles F which are O(σ1−p)
as σ → ∞ (see Corollary 6.2).

1.8. Description at and beyond the focus

The next theorem asserts that vε(t, r) ≈ ψ((t − r0)/ε, r/ε) in the left hand
region of Figure 2 and vε(t, r) ≈ Ψout((t − r0)/ε, r/ε) in the right hand
region. In the latter region the solution takes the form of an outgoing linearly
propagating pulse whose profile is given by the scattering operator applied
to the incoming profile. Note that the regions overlap and overlap with the
region in Figure 1.

t

r

t

r

Ωfocus

Ωout
γ

r0 − γ

r0

r0 + γ

t = r0 + γr

t = r − r0 + γ

Figure 2: Regions Ωfocus and Ωout where ψ and Ψout are good approximations.

Theorem 4 For any small γ > 0 define

Ωfocus :=
{
(t, r) : t ≥ r

}
,

Ωout
γ :=

{
(t, r) : min{r0 + γ, r − r0 + γ} ≤ t ≤ r0 + γr

}
.

i. In Ωfocus one has vε(t, r) ≈ ψ((t − r0)/ε, r/ε) in the sense that∥∥∥∥vε(t, r) − ψ

(
t − r0

ε
,
r

ε

)∥∥∥∥
L∞(Ωfocus)

= O(εmin(1,p−2)) .

In the case of small data one has in addition,∥∥∥∥ε∂t,r

(
vε(t, r) − ψ

(
t − r0

ε
,
r

ε

))∥∥∥∥
L∞(Ωfocus)

= O(εmin(1,p−2)) .
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ii. In Ωout
γ one has vε(t, r) ≈ Ψout((t − r0)/ε, r/ε) in the sense that∥∥∥∥vε(t, r) − Ψout

(
t − r0

ε
,
r

ε

)
, ε∂t,r

(
vε(t, r) − Ψout

(
t − r0

ε
,
r

ε

))∥∥∥∥
L∞(Ωout

γ )

= O(εmin(1,p−2)) .

Part i is proved in Proposition 5.1. Part ii then follows from i and Proposi-
tion 4.1.

Using (1.5), we can deduce from the above results the asymptotic behavior
of ∂tu

ε. Indeed,

∂tu
ε(t, r) =

vε
− + vε

+

2r
,

when r is not so small, the asymptotic behavior of ∂tu
ε is given by that of vε,

which is stated in Th. 2 and 4. When r is small, the boundary condition (1.6)
actually prevents ∂tu

ε from being singular. In the region r = O(ε), write

(vε
− + vε

+)(t, r) = r∂r(v
ε
− + vε

+)(t, r) + o(r).

From (1.6), we also have

∂r(v
ε
− + vε

+) = ∂t(v
ε
− − vε

+).

Therefore, when we know the asymptotic behavior of ∂tv
ε near r = 0, we

can describe ∂tu
ε outside the focus and near the focus. This is so when the

initial data are small, as stated in Th. 4.

Corollary 1.1 Assume that the equation is dissipative (a > 0) or that the
initial data are small. Linear geometric optics is valid (in L∞) before the
focus, and after. Before the focus, ∂tu

ε is asymptotic to the superposition of
an outgoing wave and an incoming wave, solving the linear wave equation;
if 0 ≤ t < r0,

∂tu
ε(t, r) =

1

2r

(
ψL
−

(
r + t − r0

ε

)
+ P+

(
r0,

r − t − r0

ε

)
+ O

(
εmin(1,p−2)

))
,

and beyond the caustic, ∂tu
ε is asymptotic to the superposition of a wave

leaving the focus and of the same outgoing wave; if t > r0,

∂tu
ε(t, r) =

1

2r

(
Ψout

+

(
t − r − r0

ε

)
+ P+

(
r0,

r − t − r0

ε

)
+ O

(
εmin(1,p−2)

))
.

The matching between these two régimes is described by the nonlinear scat-
tering operator, mapping ψL to Ψout. Moreover, in the small data case, ψ is
a “caustic profile”: near the focus (for r ≤ Cε for any C > 0),

∂tu
ε(t, r) =

1

2ε

(
(∂τψ− − ∂τψ+)

(
t − r0

ε
,
r

ε

)
+ O

(
εmin(1,p−2)

))
.
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Notice that since the scattering operator G �→ F has some broadening prop-
erties (stated in Cor. 6.2), the wave ∂tu

ε is broadened when crossing the
focal point (t, r) = (r0, 0).

In Section 2, we address the question of the existence of solutions, and
deduce Theorem 2 in Section 3. Section 4 is devoted to scattering theory
for (1.10), and we go back to pulses in Section 5, to prove Theorem 4.
Finally, in Section 6, we analyze the broadening effect of the scattering
operator constructed in Section 4.

A preliminary version of these results was announced in [7].

2. Existence results

In this section we prove Theorem 1. There are two difficulties. The first
is that the equations are singular at r = 0. This singularity is exactly the
result of the focusing effects. One needs to manage this singularity to prove
even a local existence result. The second difficulty is to bound the total
accumulated effect of the nonlinear terms over long time intervals in order
to prove global existence and scattering results.

Consider the mixed problem


(∂t ± ∂r)v
ε
± = εαr1−pg(vε

− + vε
+),

vε
− + vε

+|r=0 = 0 ,

vε
∓|t=0 = vε

0∓(r).

In the critical case, p−2 = α, a scaling gets rid of ε. Introduce ψε
± defined by

ψε
±(t, r) := vε

±(εt, εr) , vε
±(t, r) = ψε

±

(
t

ε
,
r

ε

)
.

Then ψε solves the mixed problem,


(∂t ± ∂r)ψ
ε
± = r1−pg(ψε

− + ψε
+) ,

ψε
−(t, 0) + ψε

+(t, 0) = 0 ,

ψε
∓|t=0 = vε

0∓(εr).

Consider the general problem,

(2.1)




(∂t ± ∂r)ψ± = r1−pg(ψ− + ψ+),

ψ−(t, 0) + ψ+(t, 0) = 0 ,

ψ∓|t=0 = ψ0∓.

The differential equation is quite singular at r = 0. Since p > 2, the fac-
tor r1−p is not even locally integrable in r. This is handled by the fact that
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ψ+ +ψ−, the argument of g, vanishes at r = 0 so one expects that it is O(r).
In that case, g(ψ+ +ψ−) = O(rp) which compensates the singular factor. In
order to take advantage of this we construct solutions ψ with bounded first
derivatives. Note that first derivatives of ψ are second derivatives of u.

2.1. Easy linear estimate

All of our estimates begin with the following linear result.

Lemma 2.1 Suppose that w and f = (f+, f−) are bounded continuous func-
tions on [0, T ] × [0,∞[ satisfying in the sense of distributions

(∂t ± ∂r)w± = f± , w+(t, 0) + w−(t, 0) = 0 , for 0 ≤ t ≤ T .

Denote by
M±(t) := ‖w±(t)‖L∞([0,∞[) .

Then for 0 ≤ t ≤ T one has

M±(t) ≤ max{M+(0),M−(0)} + max
characteristics Γ

∫
Γ

max{|f+|, |f−|} dt ,

where the last maximum is over leftward, rightward, and reflected character-
istics connecting points on the initial line {t = 0} to points at time t.

r

t

r

t

A

B

A

B

Γ+Γ−

Figure 3: Leftward and rightward characteristics.

Proof. Estimate for w−. Referring to the left part of Figure 3, the value
of w−(B) is given by

w−(B) = w−(A) +

∫
Γ−

f−(t, r) dt ,

where Γ− is the leftward characteristic from A to B.
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Taking the supremum over |w−(B)| yields

M−(t) ≤ M−(0) + max
Γ−

∫
Γ−

|f−(t, r)| dt ,

where the maximum is over all leftward characteristics.

Estimate for w+ in t ≤ r. Referring to the right part of Figure 3, one has

w+(B) = w+(A) +

∫
Γ+

f+(t, r) dt ,

where Γ+ is the rightward characteristic connecting A to B. Estimating as
above yields

max
r≥t

|w+(t, r)| ≤ M+(0) + max
Γ+

∫
Γ+

|f+(t, r)| dt ,

where the maximum is over rightward characteristics.

t

rA

Γin

C

Γout

B

Figure 4: Reflected characteristics Γ showing Γin and Γout.

Estimate for w+ in t ≥ r. Refer to Figure 4. Use three identities

w+(B) = w+(C) +

∫
Γout

f+(t, r) dt ,

w+(C) = −w−(C) , from the boundary condition ,

and

w−(C) = w−(A) +

∫
Γin

f−(t, r) dt .

Combining yields

max
r≤t

|w+(t, r)| ≤ M−(0) + max
Γreflected

∫
max{|f+(t, r)| , |f−(t, r)|} dt ,

where the maximum is over reflected characteristics.

Combining the above three estimates proves the Lemma. �
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2.2. Local estimates for the nonlinear term

To handle the r1−p singularity in the nonlinear term we use the following
estimates.

Proposition 2.2 There is a constant C independent of 0 ≤ t ≤ T and T
so that if ψ ∈ Lip([0, T ] × [0,∞[) satisfies (2.1), then

‖ψ+(t, r) + ψ−(t, r)‖L∞(R+) ≤ 2r ‖∂tψ(t)‖L∞(R+)(2.2) ∥∥r1−p g(ψ+(t) + ψ−(t))
∥∥

L∞(R+)
≤ C ‖∂tψ(t)‖p−1

L∞(R+) ‖ψ(t)‖L∞(R+) ,(2.3) ∥∥r1−p g′(ψ+(t) + ψ−(t))
∥∥

L∞(R+)
≤ C ‖∂tψ(t)‖p−1

L∞(R+) ,(2.4)

‖∂rψ(t)‖L∞(R+) ≤ C
(
‖∂tψ(t)‖p−1

L∞(R+) ‖ψ(t)‖L∞(R+) + ‖ψ(t)‖L∞(R+)

)
.(2.5)

Remark. The last estimate shows that in order to prove space time Lips-
chitz bounds it suffices to bound ψ and ∂tψ.

Proof. The Fundamental Theorem of Calculus implies that

|ψ+(t, r) + ψ−(t, r)| ≤ r‖∂r

(
ψ+(t) + ψ−(t)

)‖L∞ .

Using (2.1) one has

∂r(ψ+(t) + ψ−(t)) = ∂t(ψ+(t) − ψ−(t)) .

Combining the preceding assertions yields (2.2).
In g, use (2.2) for |ψ+ + ψ−|p−1 and leave the last factor alone to find

|g(ψ+ + ψ−)| ≤ C rp−1 ‖∂t(ψ+ − ψ−)‖p−1
L∞ |ψ+ − ψ−| .

Estimate (2.3) follows since the rp−1 cancels the r1−p on the left hand side
of (2.3).

For the function g′ which is homogeneous of degree p−1, (2.2) yields (2.4)
directly. Expressing ±∂rψ± = r1−pg − ∂tψ± and using (2.3) yields (2.5). �

2.3. A priori estimate

To prove existence, the solution is constructed as a limit of solutions of
approximate equations. The passage to the limit is based on a priori esti-
mates. The estimate which yields local existence is contained in the following
Proposition.
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Proposition 2.3 (A priori estimate) There is a constant C > 0 so that
if ψ is a uniformly Lipschitzean solution of (2.1) on [0, T ] × [0,∞[ and

M0
±(t) := ‖ψ±(t)‖L∞([0,∞[) , M1

±(t) := ‖∂tψ±(t)‖L∞([0,∞[) ,

m(t) :=
∑
±

(
M0

±(t) + M1
±(t)

)
,

then for t satisfying Ctm(0)p−1 < 1 one has,

(2.6) m(t) ≤ 2m(0)(
1 − C t m(0)p−1

)1/(p−1)
.

Proof of Proposition 2.3. The linear estimate from Lemma 2.1 yields

(2.7) M0
±(t) ≤ max{M0

+(0),M0
−(0)}+

∫ t

0

‖r1−p g(ψ+(s)+ψ−(s))‖L∞([0,∞[) ds.

Using (2.3) in (2.7) yields

(2.8) M0
±(t) ≤ max{M0

+(0),M0
−(0)} + C

∫ t

0

m(s)p ds .

The time derivatives of ψ satisfy

(2.9) (∂t ± ∂r)∂tψ± = r1−pg′(ψ− + ψ+)(∂tψ+ + ∂tψ−) .

Differentiating the boundary condition at {r = 0} with respect to time yields

∂tψ+(t, 0) + ∂tψ−(t, 0) = 0 .

Lemma 2.1 implies the estimate

M1
±(t) ≤max{M1

+(0),M1
−(0)}+(2.10)

+

∫ t

0

∥∥r1−pg′(ψ−(s) + ψ+(s))(|∂tψ+(s)| + |∂tψ−(s)|)∥∥
L∞ ds .

Using (2.4) yields

(2.11) M1
±(t) ≤ max{M1

+(0),M1
−(0)} + C

∫ t

0

m(s)p ds .

Adding (2.8) and (2.11) yields the main result,

m(t) ≤ 2m(0) + C

∫ t

0

m(s)p ds .

This implies that m is no larger than the solution of

y(t) = 2m(0) + C

∫ t

0

y(s)pds .

The function y is the solution of y′ = Cyp with y(0) = 2m(0). The formula
for y is the right hand side of (2.6). This completes the proof of (2.6). �
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2.4. Local existence

The basic local existence theorem is the following. Note that in this result,
∂tψ(0) is computed from the initial data ψ0 = ψ(0) using the differential
equation (2.1).

Proposition 2.4 (Local existence) There is a constant C > 0 so that for
all T and initial data ψ0 ∈ C1([0,∞)) satisfying

(2.12) T ‖ψ0, ∂rψ0‖p−1
L∞([0,∞[) ≤ C ,

and the compatibility conditions

ψ0+(0) + ψ0−(0) = 0 , and ∂rψ0+(0) − ∂rψ0−(0) = 0 ,

there is a unique solution ψ ∈ C1([0, T ]× [0,∞[) of (2.1). In addition there
is a constant K so that for these ψ,

‖ψ, ∂tψ‖L∞([0,T ]×[0,∞[) ≤ K ‖ψ0, ∂rψ0‖L∞([0,∞[) .

Before embarking on the proof, we recall the origin of the compatibility
conditions. For a continuous function satisfying the boundary condition
at r = 0 one has

ψ0+(0) + ψ0−(0) = lim
t→0

(ψ+(t, 0) + ψ−(t, 0)) = 0 .

For a C1 function satisfying the boundary condition,

r1−pg(ψ+ + ψ−) = r1−pO(r)p = O(r)

as r → 0. Thus for such solutions the differential equation (2.1) yields

∂tψ±(t, 0) ± ∂rψ±(t, 0) = 0 .

Using this one derives the second compatibility condition as follows

0 = lim
t→0

∂tψ+(t, 0) + ∂tψ−(t, 0)

= lim
t→0

−∂rψ+(t, 0) + ∂rψ−(t, 0) = −∂rψ0+(0) + ∂rψ0−(0) .

Proof of uniqueness. Suppose that ψ and ψ̃ are two solutions and denote
by δ := ψ − ψ̃ the difference. Then δ satisfies

(∂t ± ∂r)δ± = r1−p
(
g(ψ+ + ψ−) − g(ψ̃+ + ψ̃−)

)
,(

δ+ + δ−
)
(t, 0) = 0 ,

δ(0, r) = 0 .
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Taylor’s Theorem with remainder expresses

(2.13) g(ψ+ + ψ−) − g(ψ̃+ + ψ̃−) = hp−1(ψ+ + ψ− , ψ̃+ + ψ̃−)(δ+ + δ−),

where hp−1 ∈ C∞(C2 \ {(0, 0)}) is homogeneous of degree p − 1 > 0.

Using (2.2) yields

|hp−1(ψ+ + ψ− , ψ̃+ + ψ̃−)| ≤ C rp−1 .

Inserting this in the differential equation for δ± yields

|(∂t ± ∂r)δ±| ≤ C |δ+ + δ−| .
In addition one has the boundary and initial conditions for δ so Lemma 2.1
yields the integral identity

‖δ(t)‖L∞([0,∞[) ≤ C

∫ t

0

‖δ(s)‖L∞([0,∞[) ds .

Gronwall’s inequality implies that δ = 0. �
Proof of existence. Define a sequence of functions kn(s) converging to the
function k∞(s) := s|s|p−1 as follows. First kn(s) = k∞(s) for −n ≤ s ≤ n.
Second, kn is an odd function of s. And finally, for s ≥ n, the graph of
kn is equal to the graph of the tangent line to k∞ at s = n. Then kn

is C1 with bounded derivative. kn converges uniformly on compacts to k∞.
And, for all s

|kn(s)| ≤ |k∞(s)| and |k′
n(s)| ≤ |k′

∞(s)| .
Define

gn(s) = akn(s) .

Define approximate solutions ψn as solutions of

(∂t ± ∂r)ψ
n
± =

(
r + 1/n

)1−p
gn(ψn

+ + ψn
−) .

ψn
+(t, 0) = −ψn

−(t, 0) ,

ψn|t=0 = ψ0 .

Recall that the initial data belong to C1([0,∞[) with ψ0, ∂rψ0 ∈ L∞([0,∞[)
and satisfy a pair of compatibility conditions. Since h′

n ∈ L∞(R), it is
classical that there is a unique global solution ψn ∈ C1([0,∞[×[0,∞[). For
each fixed T and n ∂t,rψ

n ∈ L∞([0, T ] × [0,∞[).
Repeat the derivation of the estimates in Proposition 2.3 for the problem

defining ψn. At each point that one encounters an integral involving (r +
1/n)p−1gn or (r + 1/n)p−1g′

n the integral can be estimated from above by
replacing gn by g and r + 1/n by r.
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In this way one shows that the ψn satisfy the estimates of Proposition 2.3
with the same constant C. Precisely, define

M0
±(n, t) := ‖ψn

±(t)‖L∞([0,∞[) , M1
±(n, t) := ‖∂tψ

n
±(t)‖L∞([0,∞[) ,

and
m(n, t) :=

∑
±

(
M0

±(n, t) + M1
±(n, t)

)

Then with the same constant C as in Proposition 2.3, one has

m(n, t) ≤ 2m(n, 0)(
1 − C t m(n, 0)p−1

)1/(p−1)
,

‖∂rψ
n(t)‖L∞([0,∞[) ≤ m(n, t) + C m(n, t)p .

Note that M0
±(n, 0) = M0

±(0) = ‖ψ0±‖L∞ is independent of n. For the time
derivatives in M1 one has

∂tψ
n
±(0) = ∓∂rψ

n
0± + (r + 1/n)1−p gn(ψn

0+ + ψn
0−) .

The first summand on the right is independent of n but the second depends
on n. One gets an n independent bound as follows.

|∂tψ
n
±(0)| ≤ | ∓ ∂rψ

n
0±| + | (r + 1/n)1−p gn(ψn

0+ + ψn
0−)|

≤ |∂rψ
n
0±| + |r1−pg(ψn

0+ + ψn
0−)|

≤ |∂rψ0±| + r1−p
( 2r

r + 1

)p(‖ψ0‖L∞ + ‖∂rψ0‖L∞
)p

,

where the last estimate uses Lemma 2.2. Therefore

m(n, 0) ≤ ‖ψ0 , ∂rψ0±‖L∞ + C ‖ψ0 , ∂rψ0‖p
L∞ .

The a priori estimate gives us bounds provided

C T m(n, 0)p−1 < 1 .

This is guaranteed as soon as

C T
(‖ψ0 , ∂rψ0±‖L∞ + C ‖ψ0 , ∂rψ0‖p

L∞
)p−1

< 1 .

Choose C so that when (2.12) is satisfied it follows that

C T
(‖ψ0 , ∂rψ0±‖L∞ + C ‖ψ0 , ∂rψ0‖p

L∞
)p−1

< 1/2 .
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If ψ0 and T satisfy the condition of Proposition 2.4 it follows that

m(n, t) ≤ 2p/(p−1)m(n, 0) ,

for 0 ≤ t ≤ T . Together with the companion estimate for ∂rψ
n, this shows

that the family ψn is uniformly bounded in Lip([0, T ] × [0,∞[).
The Arzela-Ascoli Theorem implies that a subsequence converges uni-

formly on compacts in [0, T ] × [0,∞[. The limit ψ ∈ Lip
(
[0, T ] × [0,∞[

)
is

a solution of the the initial value problem (2.1).
Since the data are continuously differentiable it is classical that the sec-

ond compatibility condition guarantees that the solution ψ ∈ C1([0, T ] ×
[0,∞[). For completeness we recall the principal ideas.

That ψ− is continuously differentiable does not require compatibility.
The right hand side of (∂t − ∂r)ψ− = r1−pg(ψ+ + ψ−) is continuous in r > 0
and converges to zero uniformly on [0, T ] as r → 0 so is continuous in r ≥ 0.
It suffices to show that (∂t + ∂r)ψ− is also continuous. For that differentiate
the differential equation to obtain

(∂t − ∂r)(∂t + ∂r)ψ− = (1 − p)r−pg(ψ+ + ψ−)

+ r1−pg′(ψ+ + ψ−)
(
(∂t + ∂r)ψ− + r1−pg(ψ+ + ψ−)

)
.

Denote B− := (∂t + ∂r)ψ− and by aj functions in L∞([0, T ] × [0,∞[) which
are continuous on [0, T ]×]0,∞[, that is in {r > 0}. The above equation is
of the form

(∂t − ∂r)B− = a1B− + a2 .

Since B(0, r) is a continuous function of r it follows that B is continuous
in [0, T ] × [0,∞[.

For ψ+ it suffices to show that B+ := (∂t−∂r)ψ+ is continuous. Using the
fact that one already knows that ψ− is continuously differentiable one has

(2.14) (∂t + ∂r)B+ = a1B+ + a2 .

It is known that B+(0, r) is C([0,∞[) and it follows that B+∈C1({r≥ t}).
Similarly, the boundary condition at r = 0 implies that B+(t, 0) = −B−(t, 0)
∈ C([0, T ]) and it follows that B+ ∈ C({r ≤ t}) so ψ+ ∈ C1({r ≤ t}).

To complete the proof one needs to verify that the limits of ∂tψ+ from
above and below the line {r = t} agree. Each of these limits satisfies the
same equation (2.14), so the conclusion follows if they have the same initial
values at t = r = 0. The limit from below has initial value equal to

lim
r→0

∂tψ+(0, r) = −∂rψ0+(0) ,
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where the differential equation is used to compute the limit as in the deriva-
tion of the compatibility condition after the statement of (2.4). On the other
hand the limit from above has initial value equal to

lim
t→0+

∂tψ+(t, 0)=− lim
t→0+

∂tψ−(t, 0)=−∂tψ−(0, 0) =−∂rψ−(0, 0) =−∂rψ0−(0).

The second compatibility yields the equality and the proof that ψ ∈ C1 is
complete.

Since C1 solutions are unique, it follows that all subsequences of the ψn

have subsequences converging to ψ and it follows that the whole sequence ψn

converges to ψ.
Passing to the limit in our estimates for the derivatives of ‖ψn , ∂t,rψ

n‖L∞

proves the estimate of Proposition 2.4. �

2.5. Global existence for small data

To prove global existence for small data one must estimate the accumulated
effect of the nonlinear term over long time intervals. This is controlled using
the integrability at r → ∞ of the factor r1−p.

Proposition 2.5 (Small data global existence) There are constants K1

and K ′
1 > 0 so that for all initial data ψ0 ∈ C1([0,∞)) satisfying

‖ψ0, ∂rψ0‖L∞([0,∞[) ≤ K1 ,

and the compatibility conditions

ψ0+(0) + ψ0−(0) = 0 , and ∂rψ0+(0) − ∂rψ0−(0) = 0 ,

there is a unique solution ψ ∈ C1([−∞,∞] × [0,∞[) of (2.1). In addition,

‖ψ, ∂tψ‖L∞([−∞,∞]×[0,∞[) ≤ K ′
1 ‖ψ0, ∂rψ0‖L∞([0,∞[) .

To prove this one needs a priori estimates which show that the Lipschitz
norm does not grow without bound. The proof that the solution is C1 uses
the compatibility conditions as in the local existence proof.

The estimate is like that of the previous section in its handling of the
singularity at r = 0. The difference is for large times. The key is to use
the fact that r1−pg(ψ+ + ψ−) decays like 1/rp−1 for large r so is absolutely
integrable along infinitely long characteristics.

According to the linear estimate Lemma 2.1, the quantity

(2.15) max
characteristics Γ

∫
Γ

r1−p|g(ψ− + ψ+)| dt

estimates from above the accumulated effect of the nonlinear term on the
size of the solution.
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Similarly

(2.16) max
characteristics Γ

∫
Γ

r1−p|g′(ψ− + ψ+)| max{|∂tψ+| , |∂tψ−|} dt

bounds the accumulated effect on the time derivatives.

Lemma 2.6 (Total interaction estimate) Suppose that −∞ < T1 <
T2 < ∞ and ψ is a uniformly Lipschitzean, C1 solution of (2.1) on [T1, T2]×
[0,∞[. With M j

±(t) and m(t) as in Proposition 2.3 there is a constant C
independent of ψ, T1, T2, so that both (2.15) and (2.16) with characteristics Γ
in T1 ≤ t ≤ T2 are bounded above by

(2.17) C sup
T1≤t≤T2

m(t)p .

Proof. The bound (2.2) is too rough for large r where the bound

|ψ+(t, r) + ψ−(t, r)| ≤ 2‖ψ(t)‖L∞([0,∞[)

is preferable. Combining the two yields

(2.18) |ψ+(t, r) + ψ−(t, r)| ≤ 4r

1 + r
‖ψ(t), ∂tψ(t)‖L∞([0,∞[) .

Inserting this in (2.15) yields the upper bound

C sup
t

m(t)p max
characteristics Γ

∫
Γ

r1−p
( r

r + 1

)p

dt .

The integrals are no larger than

2

∫ ∞

0

r

(1 + r)p
dr

which is a finite constant. This yields the bound (2.17) for (2.15).

In the same way, using (2.18), (2.16) is bounded by

C sup
t

m(t)p

∫
Γ

r1−p
( r

1 + r

)p−1

dt .

The integral is no larger than

2

∫ ∞

0

1

(1 + r)p−1
dr

which is a finite constant since p > 2. �
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Proposition 2.7 (Small data a priori estimate) Suppose that
−∞ < T1 ≤ 0 < T2 < ∞ and ψ is a uniformly Lipschitzean, C1 solution
of (2.1) on [T1, T2] × [0,∞[. With m(t) as in Proposition 2.3 there is a
constant C independent of ψ, T1, T2, so that

(2.19) max
T1≤t≤T2

m(t) ≤ m(0) + C max
T1≤t≤T2

m(t)p .

Proof. The linear estimate applied to ψ shows that

M0
±(t) ≤ max{M0

+(0) , M0
−(0)} + max

characteristics Γ

∫
Γ

r1−p|g(ψ− + ψ+)| dt .

The linear estimate applied to ∂tψ yields

M1
±(t) ≤ max{M0

+(0) , M0
−(0)}+

max
characteristics Γ

∫
Γ

r1−p|g′(ψ− + ψ+)| max{|∂tψ+| , |∂tψ−|} dt .

Adding these two estimates and bounding the integrals using Lemma 2.6
yields the desired estimate. �

Proof of Proposition 2.5. With C as in estimate (2.19), choose δ > 0 so
that C (2µ)p < µ for all µ ≤ δ. Consider initial data which satisfies m(0) < δ.

We show that such solutions are global and that m(t) ≤ 2m(0) for all
−∞ < t < ∞. The proof is presented for positive t. The case of t < 0 is
essentially the same.

The local existence theorem implies that there is a unique maximal so-
lution ψ ∈ C1([0, T ∗[×[0,∞[) and if T ∗ < ∞, then

lim inf
t→T ∗ m(t) = ∞ .

We show that m(t) < 2m(0) for all 0 ≤ t < T ∗. In particular this implies
that T ∗ = ∞.

If it were not true that max m(t) < 2m(0), there would exist

0 < T = inf{t ∈ [0, T ∗[ : m(t) = 2m(0)} .

Proposition 2.7 implies that

2m(0) = m(T ) ≤ max
0≤t≤T

m(t) ≤ m(0) + C max
0≤t≤T

m(t)p

≤ m(0) + C (2m(0))p < m(0) + m(0) = 2m(0) .

This contradiction proves that

T ∗=∞ and that m(t) < 2m(0) for all t>0. �
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2.6. Global existence in the monotone dissipative case

When a > 0, the solution is global in time even for large initial data. We
restrict our calculations to the case of real solutions. Complex solutions
require only standard modifications.

The nonlinearity is given by g(y) = −a2−p|y|p−1y. If a > 0, the classic
energy estimate asserts that

∑
± ‖ψ±(t)‖2

L2 is a non-increasing function of
time. The key is to derive analogous L∞ bounds.

Proposition 2.8(Forward solvability in the dissipative case) If a> 0,
real solution ψ to problem (2.1) exists for all t > 0. In addition for any
1 ≤ q < ∞,

(2.20)
( ∑

±
‖ψ±(t)‖q

Lq([0,∞[)

)1/q
and

( ∑
±

‖∂tψ±(t)‖q
Lq([0,∞[)

)1/q

are nonincreasing functions of t ≥ 0. If q = ∞, then for t ≥ 0,

max
±

‖ψ±(t)‖L∞([0,∞[) ≤ max
±

‖ψ±(0)‖L∞([0,∞[)

max
±

‖∂tψ±(t)‖L∞([0,∞[) ≤ max
±

‖∂tψ±(0)‖L∞([0,∞[).

If ψ and ψ̃ are two real solutions then for 1 ≤ q < ∞,

(2.21)
(∑

±
‖ψ±(t) − ψ̃±(t)‖q

Lq([0,∞[)

)1/q

is a nonincreasing function of t ≥ 0. Finally, for t ≥ 0,

max
±

‖ψ±(t) − ψ̃±(t)‖L∞([0,∞[) ≤ max
±

‖ψ±(0) − ψ̃±(0)‖L∞([0,∞[).

Proof. Given our local existence theorem it suffices to prove (2.20) and (2.21).

The equations are

(∂t − ∂r)ψ− = br1−p|ψ− + ψ+|p−1(ψ− + ψ+),(2.22)

(∂t + ∂r)ψ+ = br1−p|ψ− + ψ+|p−1(ψ− + ψ+),(2.23)

with b = −a2−p < 0.

For q ≥ 1 define

gq−1(s) :=
d

ds
|s|q = q|s|q−1 sgn s .

Then gq−1 is a nonincreasing odd function of s which is homogeneous of
degree q − 1.



Focusing of Spherical Nonlinear Pulses in R1+3, II. Nonlinear caustic 839

Multiply (2.22) by gq−1(ψ−), and (2.23) by gq−1(ψ+). Summing yields

∂t(|ψ−|q + |ψ+|q) + ∂r(|ψ+|q − |ψ−|q) =

= br1−p
(
gq−1(ψ−) + gq−1(ψ+)

)
gp(ψ− + ψ+)/(p + 1) .

The signs of both gq−1(ψ−) + gq−1(ψ+) and gp(ψ− + ψ+) are equal to the
sign of the larger of ψ±. Therefore

∂t(|ψ−|q + |ψ+|q) − ∂r(|ψ−|q − |ψ+|q) ≤ 0.

For any fixed T > 0 and R > T , integrate over the truncated light cone
{0 ≤ t ≤ T}∩{0 ≤ r ≤ R− t}. Since |ψ+|q = |ψ−|q when r = 0, integration
by parts yields∫ R−T

0

|ψ−(T, r)|q + |ψ+(T, r)|q dr ≤

≤
∫ R

0

|ψ−(0, r)|q + |ψ+(0, r)|q dr −
∫

r=R−t

2|ψ+|qdt .

Note that the boundary contribution at r = 0 vanishes thanks to the bound-
ary condition. Note also that the boundary term at r = R − t is nonnega-
tive so,∫ R−T

0

|ψ−(T, r)|q + |ψ+(T, r)|q dr ≤
∫ R

0

|ψ−(0, r)|q + |ψ+(0, r)|q dr .

Letting R → ∞ proves the ‖ψ‖Lq estimate of the Proposition for q < ∞.

For the sup norm estimate, first fix R and use

‖f‖L∞ = lim
q→∞

‖f‖Lq ,

to find
max
±

‖ψ±(T )‖L∞([0,R−T ]) ≤ max
±

‖ψ±(0)‖L∞([0,R]) .

Letting R → ∞ proves the ‖ψ‖L∞ estimate.

The proof of (2.21) is similar. Multiply(
∂t ± ∂r

) (
ψ± − ψ̃±

)
= b r1−p

(
gp(ψ+ − ψ−) − gp(ψ̃+ − ψ̃−)

)
/(p + 1)

by gq−1(ψ± − ψ̃±) to find

∂t(|ψ+ − ψ̃+|q + |ψ− − ψ̃−|q) + ∂r(|ψ+ − ψ̃+|q − |ψ− − ψ̃−|q) =

=
br1−p

p + 1

(
gq−1(ψ+ − ψ̃+) + gq−1(ψ− − ψ̃−)

) (
gp(ψ− + ψ+) − gp(ψ̃− + ψ̃+)

)
.

The signs of each of the last two factors on the right are both equal to the
sign of the larger of ψ± − ψ̃±. Therefore the right hand side is nonpositive.
The proof of (2.21) is then completed as above.
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To prove the estimates for ∂tψ, differentiate (2.22) and (2.23) with respect
to time to find

(∂t − ∂r)∂tψ− = bpr1−p|ψ− + ψ+|p−1∂t(ψ− + ψ+),(2.24)

(∂t + ∂r)∂tψ+ = bpr1−p|ψ− + ψ+|p−1∂t(ψ− + ψ+).(2.25)

Take gq−1(∂tψ−) and gq−1(∂tψ+) as multipliers and add to find that

∂t( |∂tψ+|q + |∂tψ−|q) + ∂r (|∂tψ+|q − |∂tψ−|q) =

= bpq r1−p |ψ− + ψ+|p−1
(|∂tψ+|q−1 + |∂tψ−|q−1

)
(∂tψ+ + ∂tψ−) ≤ 0 .

Integrating by parts as above the boundary contributions at r = 0 and
r = R − t are respectively zero and nonnegative and one finds∫ R−T

0

|∂tψ+(T, r)|q + |∂tψ−(T, r)|q dr ≤
∫ R

0

|∂tψ+(0, r)|q + |∂tψ−(0, r)|q dr.

The ‖∂tψ‖Lq estimates follow, and the ‖∂tψ‖L∞ as well. �

Remark. For later use note that the case q = 2 yields the identity∫ ∞

0

|ψ+(T, r)|2 + |ψ−(T, r)|2 dr +
a

2p−1

∫ T

0

∫ ∞

0

|ψ+(t, r) + ψ−(t, r)|p+1

rp−1
dt dr

=

∫ ∞

0

|ψ+(0, r)|2 + |ψ−(0, r)|2 dr .

3. Before the focus

This short section proves Theorem 2. The most important observation is
that hypothesis (1.2) implies that the initial data for both vε and for vε

app

are supported in the set {r ≥ r0−Cε}. Then the finite speed of propagation
implies that for ε small(

supp vε ∪ supp vε
app

) ∩ ΩL
δ,T ⊂ {

r ≥ δ/2
}

.

Thus the singular factor r1−p in the nonlinear term is uniformly bounded on
the support of g(vε

+ + vε
−). Since the family vε as well as its ε∂t-derivatives

are uniformly bounded it follows that

∣∣εp−2g(vε
+ + vε

−)
∣∣ +

∣∣ε∂t ε
p−2g(vε

+ + vε
−)

∣∣ ≤ C(δ)εp−2

1 + rp−1
.

Therefore if wε denotes either vε − vε
app or ε∂t(v

ε − vε
app) one has

∣∣(∂t ± ∂r)w
ε
±
∣∣ ≤ C(δ)εp−2

1 + rp−1
.
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The initial data vanish identically near the origin and satisfy∣∣wε
±(0, r)

∣∣ = O(ε) .

Lemma 2.1 implies the estimates for vε−vε
app and ε∂t(v

ε−vε
app) in Theorem 2.

The estimates for ε∂r(v
ε − vε

app) follow from the equations satisfied by vε

and vε
app. �

4. Large time asymptotics and scattering

The passage of pulses through the focal point is described by a scattering
operator for (2.1). In this section, we establish the needed scattering theory
by studying the asymptotic behavior of solutions as t → +∞, and solving
an initial value problem with initial data at t = −∞. The parameter ε does
not appear.

4.1. Asymptotics as t → +∞
First consider the linear problem. For initial data which tend to zero as
r → ∞ the exact solution has the form

ψ =
(
ψ+, ψ−

)
=

(
F (t − r) ,−F (t + r)

)
.

with F (σ) tending to zero as |σ| → ∞. On the outgoing characteristic
Γ+(σ) := {t − r = σ}, one has ψ+ = F (σ), and ψ− → 0 as t → ∞.

Suppose next that ψ is a uniformly Lipschitzean, C1 solution of (2.1).
We show that for fixed σ, the values of ψ+ change along the Γ+(σ) to tend
to a limit as t → +∞ and that limit defines a linear solution to which ψ
tends as t and r tend to infinity.

To find the limiting behavior of ψ+ along Γ+(σ), write

ψ+(t, r) = ψ+(t − r, 0) +

∫
Γ+

r1−pg(ψ+ + ψ−) dt ,

where Γ+ is the forward characteristic connecting (t − r, 0) to (t, r). Since
p > 2 and ψ is bounded, the integral is absolutely convergent so passing to
the limit t → +∞ yields

F (σ) = lim
t→+∞

ψ+(σ + t, t) = ψ+(σ, 0) +

∫
Γ+(σ)

r1−pg(ψ+ + ψ−) dt .

Differentiating shows that F defined by this formula is a continuously dif-
ferentiable uniformly Lipschitzean function on ] −∞,∞[.
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One can define F just as easily when ψ is only defined in r ≥ R in
which case

(4.1) F (σ) = lim
t→∞

ψ+(σ+t, t) = ψ+(σ+R,R)+

∫
Γ+(σ)∩{r≥R}

r1−pg(ψ++ψ−) dt.

Define Ψout by

(4.2) Ψout(t, r) =
(
F (t − r) , −F (t + r)) .

Then Ψout is a linear solution whose positive component has the same asymp-
totics along Γ(σ) as does ψ+, that is

lim
t→∞

(
ψ+ − Ψout

+

)∣∣
Γ+(σ)

= 0 .

Proposition 4.1 (r ≥ h(t) → ∞ asymptotics) Suppose that for some
R > 0, ψ ∈ C1 is a uniformly Lipschitzean solution on Rt × [R,∞[ and
satisfies

lim
r→∞

|ψ(0, r)| + |∂rψ(0, r)| = 0 .

i. Define F and Ψout by (4.1) and (4.2) respectively. Then F is uniformly
Lipschitzean on ] −∞,∞[ with

lim
σ→−∞

(
|F (σ)| + |F ′(σ)|

)
= 0 .

ii. For any increasing function function h(t) satisfying limt→+∞ h(t) = +∞
one has

limT→+∞
∥∥ψ− , ∂t,rψ−

∥∥
L∞({t≥T}∩{r≥h(t)}) = 0 ,

limT→+∞
∥∥(ψ+ − Ψout

+ ) , ∂t,r(ψ+ − Ψout
+ )

∥∥
L∞({t≥T}∩{r≥h(t)}) = 0 .

iii. If h(t) = γt with γ > 0 and the initial data ψ|t=0 vanish for large r, then
as T → ∞

∥∥(ψ − Ψout) , ∂t,r(ψ − Ψout)
∥∥

L∞({t≥T}∩{r≥h(t)}) = O

(
1

T p−2

)
.

Remarks.
1. This result is weak because convergence is only proved in {r ≥ h(t)}.
On the other hand, the proof only uses the differential equation in {r ≥ h(t)}
and there is no smallness assumption.

2. Part iii proves (1.11) of Theorem 3 and part ii of Theorem 4.
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Proof of Proposition 4.1. For σ < −R one has

F (σ) = ψ+(0,−σ) +

∫
Γ+(σ)∩{t≥0}

r1−p g(ψ+ + ψ−) dt .

Since the integration lies in r ≥ |σ| both of the terms on the right are o(1).
A similar argument applies to F ′.

To prove ii, let Γ+ denote the infinite forward ∂t + ∂r characteristic with
foot at (t, r). Integrating the differential equation satisfied by ψ+ along
Γ+(σ) starting at t, r yields the integral identity

(4.3) ψ+(t, r) = Ψout
+ (t, r) −

∫
Γ+

r1−p g(ψ+ + ψ−) dt .

Similarly denote by Γ− the backward ∂t − ∂r characteristic connecting (t, r)
to (0, t + r). Integrating the equation for ψ− on Γ− yields

ψ−(t, r) = ψ−(0, t + r) +

∫
Γ−

r1−p g(ψ+ + ψ−) dt .

Differentiating with respect to time yields

∂tψ+(t, r) = ∂tΨ
out
+ (t, r) −

∫
Γ+

r1−p g′(ψ+ + ψ−)∂t(ψ+ + ψ−) dt(4.4)

+ r1−pg(ψ+ + ψ−)(t, r),

∂tψ− = ∂rψ−(0, t + r) +

∫
Γ−

r1−p g′(ψ+ + ψ−)∂t(ψ+ + ψ−) dt

+ r1−pg(ψ+ + ψ−)(t, r) − (r + t)1−pg(ψ+ + ψ−)(0, r + t) .

For t, r in the region t ≥ T and r ≥ h(t) one has r ≥ h(T ) on the entire
characteristic Γ−. This together with the fact that ψ(0, t+r) and ∂rψ(0, t+r)
tend to zero suffice to show that

lim
T→∞

∥∥ψ− , ∂tψ−
∥∥

L∞({t≥T}∩{r≥h(t)}) = 0 ,

which proves the incoming component of the desired conclusion.

Similarly, one has r ≥ h(t) in the integrals in (4.3) and (4.4) so these
integrals tend to zero which suffices to prove that for j = 0, 1,

lim
T→∞

∥∥∂j
t (ψ+ − Ψout

+ )
∥∥

L∞({t≥T}∩{r≥h(t)}) = 0 .

That the r derivative tends to zero follows using the differential equation.
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To prove iii note that in the proof of ii the contributions from t = 0
vanish for T large because of the compact support and that the integrals are
bounded above by

C

∫ ∞

γt

1

rp−1
dr =

C ′

tp−2
.

Finally, the terms r1−pg(ψ+ +ψ−)(t, r) are decaying at least like T 1−p, which
is even better. This completes the proof of Proposition 4.1 �

This proposition tells us nothing about the behavior of solutions for
fixed r as t tends to infinity, nor of the behavior of F (σ) as σ → +∞. The
values of F for large σ correspond to waves which appear at large times.
If F did not tend to zero, then such waves would appear for infinitely large
times. The outgoing wave would correspond to a solution of the linear wave
equation which did not tend to zero as t → +∞ with r fixed. We are able
to rule this behavior out in two distinct ways. When the real part of a is
nonpositive we can use the fact that the total energy is bounded above. For
general a, we are able to prove a sharp quantitative decay estimate in time
under a smallness hypothesis on the initial data.

Proposition 4.2 (Decay of Ψout) Suppose that ψ ∈ Lip(R+ × R+) is a
uniformly Lipschitzean solution of (2.1).

i. If the real part of a is nonnegative and the initial data have finite energy
in the sense that

∫ ∞
0

|ψ(0, r)|2 dr < ∞ then∫ ∞

−∞
|F (σ)|2 dσ < ∞ .

Since F ′ is bounded, this implies lim|σ|→∞ F (σ) = 0.

ii. If a is a nonnegative real, a ≥ 0, and the initial data satisfy∫ ∞

0

|ψt(0, r)|2 dr < ∞,

then ∫ ∞

−∞
|F ′(σ)|2 dσ < ∞ .

Proof. To prove the first assertion, use the energy law

∂t(|ψ+|2 + |ψ−|2) + ∂r(−|ψ+|2 + |ψ−|2) = −2(Re a)|ψ+ + ψ−|p+1 .

Since the real part of a is nonnegative, the right hand side is nonpositive.
Integrating over the set {0 ≤ t ≤ T} ∩ {0 ≤ r ≤ R − t} shows that for
any R > t > 0,∫ R−t

0

|ψ+(t, r)|2 + |ψ−(t, r)|2 dr ≤
∫ R

0

|ψ+(0, r)|2 + |ψ−(0, r)|2 dr .
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Passing to the limit R→ ∞ using the Monotone Convergence Theorem yields∫ ∞

0

|ψ+(t, r)|2 + |ψ−(t, r)|2 dr ≤
∫ ∞

0

|ψ+(0, r)|2 + |ψ−(0, r)|2 dr .

On the other hand, ψ+(t, t − σ) → F (σ) as t → ∞ so the Dominated
Convergence Theorem implies that as t → ∞

∫ t−α

t−β

|ψ+(t, r)|2 dr →
∫ β

α

|F (σ)|2 dσ .

Combining the last two estimates and letting α → −∞ and β → +∞
implies that∫ ∞

−∞
|F (σ)|2 dσ ≤

∫ ∞

0

|ψ+(0, r)|2 + |ψ−(0, r)|2 dr ,

proving i.
To prove ii, use the fact that

Re
(
a (∂tψ+ + ∂tψ−) ∂t

(
g(ψ+ + ψ−)

)) ≥ 0

to find the derived dissipation inequality

∂t(|∂tψ+|2 + |∂tψ−|2) + ∂r(−|∂tψ+|2 + |∂tψ−|2) ≤ 0 .

Integrating as above this implies that∫ ∞

0

|∂tψ+(t, r)|2 + |∂tψ−(t, r)|2 dr ≤
∫ ∞

0

|∂tψ+(0, r)|2 + |∂tψ−(0, r)|2 dr .

The definition of F implies that as t → ∞

∂tψ+(t + σ, t) → F ′(σ) ,

so ∫ t−α

t−β

|∂tψ+(t, r)|2 dr →
∫ β

α

|F ′(σ)|2 dσ .

Combined with the preceding estimate, this yields∫ ∞

−∞
|F ′(σ)|2 dσ ≤

∫ ∞

0

|∂tψ+(0, r)|2 + |∂tψ−(0, r)|2 dr < ∞ ,

proving ii. �
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The previous result describes the behavior of the outgoing wave, equiva-
lently the behavior of the linear solution to which the solution is asymptotic
as t → +∞. The next result describes the behavior of the solution ψ itself.

Proposition 4.3 (Decay of ψ)

i. For any a there is a constant K(a) > 0 so that if

‖ψt‖L∞([0,∞[×[0,∞[) ≤ K(a) , and sup
r≥0

rp−1
(|ψ(0, r)|+ |ψt(0, r)|

)
< ∞ ,

then
sup

t≥0, r≥0
(1 + |t ∓ r|p−1)

(|ψ±(t, r)| + |∂tψ±(t, r)|) < ∞ ,

and therefore

sup
−∞<σ<∞

σp−1
(|F (σ)| + |F ′(σ)|) < ∞ .

ii. Suppose that a ≥ 0 is a nonnegative real number and

ψ ∈ Lip([0,∞[×[0,∞[)

is a uniformly Lipschitzean solution of (2.1) with limr→∞ |ψ(0, r)| = 0 and
ψ(0, ·) ∈ L2([0,∞[). Then for any R > 0

lim
t→∞

sup
0≤r≤R

|ψ(t, r)| = 0 .

Proof. To prove i, introduce 〈s〉 := (1+ s2)1/2. Then (∂t + ∂r)〈t− r〉 = 0 so

(∂t + ∂r)
(〈t − r〉p−1ψ+

)
= 〈t − r〉p−1 r1−p g(ψ+ + ψ−) .

Use (2.18) to find

∣∣(∂t + ∂r)〈t − r〉p−1ψ+

∣∣ ≤ C ‖ψt(t)‖p−1
L∞ 〈t − r〉p−1

〈r〉p−1

(
|ψ+| + |ψ−|

)
.

Similarly,

∣∣(∂t − ∂r)〈t + r〉p−1ψ−
∣∣ ≤ C ‖ψt(t)‖p−1

L∞ 〈t + r〉p−1

〈r〉p−1

(
|ψ+| + |ψ−|

)
.

Introduce

w+ := 〈t − r〉p−1ψ+ , w− := 〈t + r〉p−1ψ− .

Then∣∣(∂t + ∂r)w+

∣∣ ≤ C ‖ψt(t)‖p−1
L∞

{ 1

〈r〉p−1
|w+| + 〈t − r〉p−1

〈t + r〉p−1〈r〉p−1
|w−|

}
,

∣∣(∂t − ∂r)w−
∣∣ ≤ C ‖ψt(t)‖p−1

L∞

{ 〈t + r〉p−1

〈t − r〉p−1〈r〉p−1
|w+| + 1

〈r〉p−1
|w−|

}
.
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Assume next that ψ(0, r) vanishes for r large. Then the basic linear
estimate shows that

‖w(t)‖L∞ ≤ ‖w(0)‖L∞ +

+ C ‖ψt‖p−1

L∞(R2
+)

max
s∈[0,t]

‖w(s)‖L∞ max
Γ

∫
Γ

∑
±

〈t ± r〉p−1

〈t ∓ r〉p−1〈r〉p−1
+

1

〈r〉p−1
dt ,

where the second max is over characteristic leading backward to t = 0
perhaps with a reflection at r = 0.

In the integral on the right use the triangle inequality |t±r| ≤ |t∓r|+2r
to bound the integrand from above by

C

〈r〉p−1
+

∑
±

C

〈t ∓ r〉p−1
.

It follows that the integrals are bounded independent of Γ and t so

‖w‖L∞([0,T ]×[0,∞[) ≤ ‖w(0)‖L∞ + C ‖ψt‖p−1

L∞(R2
+)
‖w‖L∞([0,T ]×[0,∞[) .

A similar argument works for the time derivatives. One has the equations

(∂t ± ∂r)
(〈t ∓ r〉p−1∂tψ±

)
= 〈t − r〉p−1 r1−p g′(ψ+ + ψ−)(∂tψ+ + ∂tψ−) .

Introduce
z± := 〈t ∓ r〉p−1∂tψ± ,

and use (2.18) to show that

∣∣(∂t + ∂r)z+

∣∣ ≤ C ‖ψt‖p−1
L∞

{ 1

〈r〉p−1
|z+| + 〈t − r〉p−1

〈t + r〉p−1〈r〉p−1
|z−|

}
,

∣∣(∂t − ∂r)z−
∣∣ ≤ C ‖ψt‖p−1

L∞

{ 〈t + r〉p−1

〈t − r〉p−1〈r〉p−1
|z+| + 1

〈r〉p−1
|z−|

}
.

Reasoning as above produces a constant C independent of T so that

‖w, z‖L∞([0,T ]×[0,∞[) ≤ ‖w(0), z(0)‖L∞ + C ‖ψt‖p−1

L∞(R2
+)
‖w, z‖L∞([0,T ]×[0,∞[) .

When C ‖ψt‖p−1
L∞([0,∞[×[0,∞[) < 1, this yields the bound

(4.5) ‖w, z‖L∞([0,T ]×[0,∞[) ≤ ‖w(0), z(0)‖L∞([0,∞[)

1 − C ‖ψt‖p−1
L∞([0,∞[×[0,∞[)

.

For initial data which do not vanish for large r but satisfy the hypotheses of i,
apply this inequality to the solution wn, zn with initial data χ(r/n)ψ(0, r)
cut off at r ∼ n. Passing to the limit n → ∞ proves that estimate (4.5)
holds for w, z. Since the right hand side of the estimate is independent of T
it proves i of the Proposition.
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To prove ii, let T → ∞ in the remark after Proposition 2.8 to find∫ ∞

0

∫ ∞

0

|ψ+(t, r) + ψ−(t, r)|p+1

rp−1
dt dr < ∞ .

Since ψ is uniformly Lipschitzean, this implies that for any 0 < µ < R

lim
t→∞

sup
µ≤r≤R

|ψ+(t, r) + ψ−(t, r)| = 0 .

On the other hand since ψ+(t, r) + ψ−(t, r) vanishes when r = 0 and is
uniformly Lipschitzean one has for 0 ≤ r ≤ µ,∣∣∣ψ+(t, r) + ψ−(t, r)

∣∣∣ ≤ C µ .

Combining these shows that

(4.6) lim
t→∞

sup
0≤r≤R

|ψ+(t, r) + ψ−(t, r)| = 0 .

Express ψ−(t, r) as the sum of ψ−(0, t+r) and the integral over the backward
characteristic from (t, r) to (0, t + r). When t + r → +∞, the initial value
tends to zero by hypothesis and the integral tends to zero thanks to (4.6).
This yields

lim
t→∞

sup
0≤r≤R

|ψ−(t, r)| = 0 .

Combined with (4.6) this completes the proof of ii. �

4.2. Cauchy problem with data at t = −∞
The problem addressed in this section is equivalent to the existence of
Moeller’s wave operators. Suppose

ψL ∈ Lip
(
] −∞,∞[×[0,∞[

)
is a uniformly Lipschitzean C1 linear solution with

lim
r→∞

∣∣ψL(t, r), ∂t,rψ
L(t, r)

∣∣ = 0 .

The Cauchy problem with initial data at t = −∞ is to find a uniformly
Lipschitzean ψ ∈ C1

(
] −∞,∞[×[0,∞[

)
satisfying

(∂t ± ∂r)ψ± = r1−pg(ψ− + ψ+),

ψ−(t, 0) + ψ+(t, 0) = 0 for −∞ < t < ∞ ,

and the initial condition at t = −∞,

(4.7) lim
t→−∞

∥∥ψ(t) − ψL(t) , ∂t,r

(
ψ(t) − ψL(t)

)∥∥
L∞([0,∞[)

= 0 .

A similar definition holds for Cauchy data at t = +∞. A first example is
given by the next result.
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Proposition 4.4 (Corollary to Propositions 4.1 and 4.3) Suppose
that ψ is as in part i of Proposition 4.3 and that Ψout is the linear solu-
tion describing its behavior as in Proposition 4.1. Then ψ has Cauchy data
equal to Ψout at t = +∞ and one has the stronger result

(4.8)
∥∥ψ(t) − Ψout(t) , ∂t,r

(
ψ(t) − Ψout(t)

)∥∥
L∞([0,∞[)

= O(1/tp−2) .

Remarks.
1. We do not prove the analogous result for part ii of Proposition 4.3 which
is an interesting open question.
2. This proves (1.12) of Theorem 3.

Proof. In Proposition 4.1 take h(t) = γt with 0 < γ < 1, and break the
right hand side of (4.8) into r ≤ γt and r ≥ γt. The proposition shows
that the contribution from r ≥ γt is O(1/tp−2). On the other hand, the
contribution from r ≤ γt is O(1/tp−1) thanks to the decay estimate from
Proposition 4.3. �

Proposition 4.5 (Cauchy problem with data at t = −∞)

i. Small data. Suppose that K1 and K ′
1 are as in Proposition 2.5 and that

‖ψL, ∂rψ
L‖L∞([0,∞[) ≤ K1 ,

then there is one and only one solution of the Cauchy problem with initial
data at t = −∞ as in (4.7). The solution satisfies

‖ψ, ∂t,rψ‖L∞([0,∞[×[0,∞[) ≤ K ′
1‖ψL(t), ∂tψ

L(t)‖L∞([0,∞[) ,

the right hand side being independent of t.

ii. Dissipative case. In the case a > 0, one can take arbitrarily large data
and the unique solution satisfies the stronger estimate∑

±, j≤1

‖∂j
t,rψ±(t)‖L∞([0,∞[) ≤

∑
±, j≤1

‖∂j
t ψ

L
±(0)‖L∞([0,∞[) .

Remark. This proves part i of Theorem 3 and completes the proof of that
Theorem.

Proof of uniqueness. Suppose that ψ and ψ̃ are two solutions and define
δ := ψ − ψ̃. Use (2.13) to find

(∂t ± ∂r)δ± = C r1−p hp−1(ψ+ + ψ− , ψ̃+ + ψ̃−) (δ+ + δ−) .

Therefore,∣∣(∂t ± ∂r)δ±
∣∣ ≤ C r1−p

( r

1 + r

)p−1

‖ψ(t), ψ̃(t)‖p−1
Lip

(|δ+| + |δ−|
)
.

In addition one has the homogeneous boundary condition δ+ = −δ− at r = 0.
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Using Lemma 2.1 to estimate δ(T ) in terms of δ(T − N) and letting
N → ∞ yields the following bound with T < 0,

‖δ(T )‖L∞ ≤ C max
characteristics Γ

∫
Γ

r1−p
(|ψp−1| + |ψ̃p−1|) (|δ+| + |δ−|

)
dt ,

where the maximum is over leftward, rightward, and reflected characteristics
lying in {t ≤ T}. Therefore

sup
t≤T

‖δ(t)‖L∞ ≤ C

[
max

Γ

∫
Γ

r1−p
(|ψp−1| + |ψ̃p−1|) dt

]
sup
t≤T

‖δ(t)‖L∞ .

To prove uniqueness we show that the max in brackets on the right is o(1)
as T → −∞. The integrals over Γ are split into two parts.

For the part of the integral in r ≥ |t|/2, the functions ψ and ψ̃ are
estimated by a fixed constant and the integral is no larger than

C

∫ ∞

|t|/2

r1−p dr

which is o(1) as t → −∞.

For the part in r ≤ |t|/2, ψL and ∂tψ
L, tend uniformly to zero as

t → −∞. The initial condition at t = −∞ implies that over this region
‖ψ, ψ̃, ∂tψ, ∂tψ̃‖L∞ = o(1) as t → −∞. Proposition 2.2 shows that the
integrand is estimated by

C r1−p rp−1

(1 + r)p−1
‖ψ(t), ψ̃(t), ∂tψ, ∂tψ̃‖L∞([0,|T |/2])

with a constant independent of Γ and T ≤ −1. Since the sup norm tends to
zero this is

= o(1)
1

(1 + r)p−1
.

Since p > 2 the integrals over Γ are o(1) uniformly in Γ. This completes the
proof of uniqueness.

Proof of existence. For {t ≥ −n} define ψn to be the solution of the
initial value problem

(∂t ± ∂r)ψ
n
± = r1−pg(ψn

− + ψn
+),

ψn
−(t, 0) + ψn

+(t, 0) = 0 for 0 ≤ t ≤ T ,

ψn|t≤−n = ψL|t≤−n .
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The initial data are C1 and uniformly Lipschitzean. The global existence
theorem implies that in both cases of the proposition there is a unique global
solution with

(4.9) ‖ψn , ∂tψ
n‖L∞(]−n,∞[×[0,∞[) ≤ K ′

1 ‖ψL(t), ∂tψ
L(t)‖L∞([0,∞[) .

The Arzela-Ascoli Theorem implies that there is a subsequence converg-
ing uniformly on compact subsets to a function ψ with

‖ψ , ∂tψ‖L∞(]−∞,∞[×[0,∞[) ≤ K ′
1 ‖ψL(t), ∂tψ

L(t)‖L∞([0,∞[) .

That the limit is a solution of the differential equation and the boundary
condition at {r = 0} follows upon passing to the limit in the equation for ψn.
That the limit is C1 follows as in the local existence proof, without need of
compatibility conditions.

It remains to prove that the initial condition at t = −∞ is satisfied.

Lemma 4.6 (Key estimate) There is a constant C and a function f(T )→0
as T → −∞ depending on ψL but independent of n and σ > 0 so that
for −n ≤ T ,

‖(ψn − ψL) , ∂t(ψ
n − ψL)‖L∞({−n≤t≤min{−n+σ,T}) ≤

≤ C ‖(ψn − ψL), ∂t(ψ
n − ψL)‖p

L∞({−n≤t≤min{−n+σ,T}) + f(T ) .

Proof that Lemma 4.6 implies Proposition 4.5. With C as in the key
estimate, choose 0 < ε0 < 1 so that for all 0 < ε < ε0,

C εp < ε/3 .

For 0 < ε < ε0, choose T so that f(T ) < ε/3. We claim that for all n

‖(ψn − ψL), ∂t(ψ
n − ψL)‖L∞({−∞<t≤T}) ≤ ε .

If the claim were true, passing to the limit n → ∞ yields

‖(ψ − ψL), ∂t(ψ − ψL)‖L∞({−∞<t≤T}) ≤ ε .

This proves that

lim
T→−∞

‖(ψ − ψL), ∂t(ψ − ψL)‖L∞({−∞<t≤T}) = 0 .

The convergence of the r derivatives follows from the differential equation.
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We next prove the claim. Since ψn − ψL is C1 ∩ Lip, tends to zero with
its first derivatives as r → ∞ and is equal to 0 at t = −n it follows that

‖(ψn − ψL), ∂t(ψ
n − ψL)‖L∞({−n<t≤−n+σ})

is a continuous function of σ which vanishes for σ = 0. In particular for
small positive σ

‖(ψn − ψL), ∂t(ψ
n − ψL)‖L∞({−n<t≤−n+σ}) ≤ ε .

The proof proceeds by showing that it must remain less than ε for all
σ ≤ T + n. If the claim were false for ψn there would be a first σ with
−n + σ ≤ T for which it was false. For that value of σ, the key estimate
yields the contradiction

ε = ‖(ψn − ψL) , ∂t(ψ
n − ψL)‖L∞({−n≤t≤−n+σ}) ≤ C εp + f(T ) ≤ ε/3 + ε/3.

Proof of Lemma 4.6. Let t be such that −n ≤ t ≤ min(−n + σ, T ).
Integrating the differential equation from time t backward to time −n yields

(4.10) ψn
±(t, r) − ψL

±(t, r) =

∫
Γ±

r1−p g(ψn
+ + ψn

−) dt .

where Γ denotes a backward characteristic possibly reflected at r = 0 con-
necting (t, r) to {t = −n}. Similarly

(4.11) ∂tψ
n
±(t, r) − ∂tψ

L
±(t, r) =

∫
Γ±

r1−p g′(ψn
+ + ψn

−) (∂tψ
n
+ + ∂tψ

n
−) dt .

Since when r ≥ |t|/2, we have r ≥ |T |/2, (4.9) yields∣∣∣ ∫
Γ∩{r≥|t/2|}

∣∣∣ = O(|T |2−p) ,

as T → −∞. These terms are absorbed in the f(T ) term of the key estimate.
In the region r ≤ |t/2| the key fact is that

‖ψL‖Lip({t≤T}∩{r≤|t/2|}) = o(1)

as T → −∞. Thus replacing ψn by ψn − ψL in (4.10) yields, thanks to the
middle two estimates of Proposition 2.2,∣∣∣ ∫

Γ∩{r≤|t/2|}

∣∣∣ ≤ C ‖(ψn − ψL), ∂t(ψ
n − ψL)‖p

L∞([−n,t]×[0,∞[) + o(1) .

Similarly for (4.11),∣∣∣ ∫
Γ∩{r≤|t/2|}

r1−pg′(ψn
+ + ψn

−) ∂t(ψ
n
+ + ψn

−) dt
∣∣∣ ≤

≤ C ‖(ψn − ψL), ∂t(ψ
n − ψL)‖p

L∞([−n,t]×[0,∞[) + o(1) .

The proofs of Lemma 4.6 and Proposition 4.5 are complete. �
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Corollary 4.7 The solution in Proposition 4.5 satisfies

lim
r→∞

(
|ψ(t, r)| + |∂tψ(t, r)| + |∂rψ(t, r)|

)
= 0 .

Proof. For a challenge number ε > 0 choose T << 0 so that

‖(ψ − ψL)(T ), ∂t(ψ − ψL)(T )‖L∞([0,∞[ ≤ ε

2K ′
1

.

Choose R > 0 so that

‖ψL(T ), ∂tψ
L(T )‖L∞([R,∞[) ≤ ε

2K ′
1

.

Consider t, r in the domain of determinacy of the set {t = T} × {r ≥ R}.
This is the set r ≥ R + |t− T |. The Cauchy data in {t = T}× {r ≥ R} has
size at most ε/K ′

1 and a simple consequence of the fundamental estimate
is that

‖ψ, ∂tψ‖L∞(r≥R+|t−T |) ≤ ε .

This shows that for any t > 0 and j = 0, 1

lim sup
r→∞

|∂j
t ψ(t, r)| ≤ ε .

This completes the proof of the corollary. �

4.3. Definition of the scattering operator

With the notation of the preceding section one has

ψL(t, r) =
( − G(t − r) , G(t + r))

)
for a unique G ∈ Lip

(
] −∞,∞[

)
with lim|σ|→∞ |G(σ)| = 0. The function G

gives the profile of the incoming wave near t = −∞.
On the other hand, Proposition 4.1 shows that for r ≥ h(t) the solution

of the initial value problem with data ψL at t = −∞ satisfies for t → +∞
ψ = Ψout + o(1) :=

(
F (t − r) , −F (t + r)

)
+ o(1) .

The function F gives the profile of the outgoing spherical wave at t = +∞.

Definition. The scattering operator S is the mapping sending G to F .

In the linear case, a = 0, the scattering operator defined here is multiplica-
tion by −1. This reflects the fact that the profile of the outgoing spherical
wave is equal to minus the profile of the incoming wave as described in
subsection 1.1.
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The trio of functions ψL, ψ,Ψout are the main players in the description
of the caustic crossing. We have chosen to use a different notation in the
incoming linear solution ψL and the outgoing solution Ψout to emphasize
that the sense in which ψ approaches the two limits is quite different. It is
possible that in fact ψ has Cauchy data equal to Ψout at t = +∞ but we do
not prove that for large solutions.

Note that the domain of S always contains the functions G which are
small in Lipschitz norm and tend to zero with their derivatives at ±∞.
In case a ≥ 0 the smallness is not required. The image of the scattering
operator is contained in the uniformly Lipschitzean functions on R which
tend to zero at −∞. Additional properties of the image function F are given
in Propositions 4.2 and 4.3.

5. Analysis of the focus crossing

Rescale as in § 1.4. There are two ways. One is to introduce characteristic
variables in (1.4) and the other is to rescale the characteristic equations
satisfied by vε introducing

vε
±(t, r) := ψε

±
(t − r0

ε
,
r

ε

)
, ψε

±(τ, ρ) := vε
±(ετ + r0, ερ) .

Both ways yield the equations

(5.1) (∂τ ±∂ρ)ψ
ε
± = ρ1−pg(ψε

−+ψε
+) for ρ > 0,

(
ψε
−+ψε

+

)
ρ=0

= 0 ,

and the initial conditions

ψε
∓
∣∣
τ=− r0

ε

= P∓
(
ερ, ρ − r0

ε

)
± εP1

(
ερ, ρ − r0

ε

)
.

The key to analyzing this initial value problem is to note three things. First,
the initial condition for ψ± is within O(ε) of P±

(
r0, ρ − r0

ε

)
. Second, the

minus part of this is within O(ε) of the value at time τ = −r0/ε of the
linear solution

ψL(τ, ρ) =
(
F (τ + ρ) , −F (τ − ρ)

)
,(5.2)

F (σ) := P−(r0, σ) .(5.3)

In that sense the problem resembles the Cauchy problem with data at
t = −∞. Finally, the P+ part tends to launch an outgoing wave which lives
in the region ρ ∼ r0/ε >> 1 where the nonlinearity is negligible thanks to
the ρ1−p factor. The outgoing wave moves away from the origin and does
not affect the solution near the focal point at τ = ρ = 0. The next Lemma
verifies these expectations. The quantitative versions indicated with “resp.”
apply to our pulse families, since the functions P have compact support in z
thanks to the hypothesis 1.2.
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Proposition 5.1 Suppose that ψL as in (5.2) is a uniformly Lipschitzean
linear solution and suppose that ψ is a uniformly Lipschitzean solution of
the nonlinear problem (5.1) with Cauchy data at t = −∞ equal to those
of ψL. Suppose that for 0 < ε < ε0, ψε is a uniformly Lipschitzean family
of solutions of (5.1) in τ ≥ −r0/ε satisfying at τ = −r0/ε∥∥∥[

ψε
+ − ψL

+ , ∂t(ψ
ε
+ − ψL

+)
]
τ=−r0/ε

∥∥∥
L∞([0,r0/2ε])

= o(1) , resp. 0 ,

and∥∥∥[
ψε
− − ψL

− , ∂t(ψ
ε
− − ψL

−)
]
τ=−r0/ε

∥∥∥
L∞([0,∞])

= o(1) , resp. O(ε) ,

as ε → 0.
i. Then

(5.4)
∥∥∥ψε −ψ , ∂t(ψ

ε −ψ)
∥∥∥

L∞({τ−ρ=−r0/ε})
= o(1) , resp. O(εmin{1,p−2}) .

ii. There is a µ0 > 0 so that if ‖ψ‖Lip([0,∞[×[0∞[) < µ0 then

(5.5)
∥∥∥ψε −ψ , ∂t(ψ

ε −ψ)
∥∥∥

L∞({τ−ρ≥−r0/ε})
= o(1) , resp. O(εmin{1,p−2}) .

iii. If a > 0 is nonnegative and ψL and ψε are real valued, then without this
smallness assumption one has convergence but not necessarily convergence
of derivatives,

(5.6)
∥∥ψε − ψ

∥∥
L∞({τ−ρ≥−r0/ε}) = o(1) , resp. O(εmin{1,p−2}) .

Remarks.
1. The subtlety in this Lemma is that the initial data for the outgoing
component ψε

+ need not be close to those of ψL
+, the latter being o(1). Nev-

ertheless, one still has good approximation on τ − ρ ≥ −r0/ε. This region
where the estimates in parts ii, iii take place is sketched together with some
characteristics in Figure 5.
2. Parts ii and iii of this Proposition yield part i of Theorem 4 completing
the proof of that result.

Proof. First we prove i. The values on the line τ−ρ = −r0/ε with ρ ≤ r0/4ε
are determined by the data at {τ = −r0/ε , ρ ≤ r0/2ε}. By hypothesis this
data is o(1) (resp. 0). The small data estimates show that the solution
is o(1) (resp. 0) in Lipschitz norm on the domain of determinacy of this
data segment so∥∥∥ψε − ψ , ∂t(ψ

ε − ψ)
∥∥∥

L∞({τ−ρ=−r0/ε}∩{ρ≤r0/4ε})
= o(1) (resp. 0) .
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τ − ρ = − r0
ε

τ

ρ

− r0
ε

Figure 5: The region
{
τ − ρ ≥ −r0/ε

}
plus two characteristic paths.

For the minus component in {τ − ρ = −r0/ε} ∩ {ρ ≥ r0/ε}, write for j ≤ 1,

∂j
τ (ψ

ε
− − ψ−) = ∂j

τ (ψ
ε
− − ψ−)(−r0/ε, τ + ρ + r0/ε)(5.7)

+

∫
Γ−

ρ1−p ∂j
τ

[
g(ψε

+ + ψε
−) − g(ψ+ + ψ−)

]
dτ ,

where Γ− is the minus characteristic from (τ, ρ) meeting the initial line
{τ = −r0/ε} at (−r0/ε, τ + ρ + r0/ε). Since this characteristic lies in
ρ ≥ r0/4ε, and ψL and the family ψε are uniformly Lipschitzean, the in-
tegrals are bounded above by

C

∫ ∞

r0/ε

1

rp−1
= O(εp−2) .

The initial value for ∂j
τ (ψ

ε
− − ψ−) is o(1) (resp. O(ε)) by hypothesis. This

proves the estimate in part i for the minus component.

For the plus component on τ − ρ = −r0/ε write

∂j
τ (ψ

ε
+ − ψ+) = ∂j

τ (ψ
ε
+ − ψ+)

(−3r0

4ε
,
r0

4ε

)

+

∫
Γ+

ρ1−p ∂j
τ

[
g(ψε

+ + ψε
−) − g(ψ+ + ψ−)

]
dτ,

where Γ+ is

the segment on τ − ρ = −r0/ε connecting (τ, ρ) to (−3r0/4ε, r0/4ε).

As above, these quantities are o(1) (resp. O(εp−2)). This completes the
proof of i.
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The strategy for proving ii is to use i as initial data in the region

{
τ − ρ ≥−r0

ε

}
.

Toward that end introduce

(5.8) δε
± := ψε

± − ψ±.

Subtracting the equations satisfied by ψ from that for ψε yields

(5.9)
(
∂τ ± ∂ρ

)
δε
± = bρ1−p

(
g(ψε

+ + ψε
−) − g(ψ+ + ψ−)

)
=: f ε .

Define for τ ≥ −r0/ε

(5.10) mε(τ) :=
∥∥δε(τ, ρ) , ∂τδ

ε(τ, ρ)‖L∞({0≤ρ≤τ+r0/ε})

Using i and integrating (5.9) backward along possibly broken characteris-
tics Γ as in Figure 5, shows that

(5.11) mε(τ) ≤ o(1)
(
resp. O(εmin{1,p−2})

)
+ max

Γ

∫
Γ

|f ε| + |∂τf
ε| dτ .

To estimate f ε write

g(ψε
+ + ψε

−) − g(ψ+ + ψ−) = hp−1(ψ
ε
+ + ψε

− , ψ+ + ψ−) (δε
+ + δε

−)

where hp−1 is homogeneous of degree p − 1. Using (2.18) one has

(5.12) |f ε(τ, ρ)| ≤ C
(‖ψ‖Lip + mε(τ)

)p−1 1

1 + ρp−1
mε(τ) .

To estimate ∂τf use

(5.13) ∂τf
ε = bρ1−p

(
g′(ψε

+ +ψε
−)∂τ (ψ

ε
+ +ψε

−)−g′(ψ+ +ψ−)∂τ (ψ+ +ψ−)
)

,

and

g′(ψε
+ + ψε

−) − g′(ψ+ + ψ−) = hp−2(ψ
ε
+ + ψε

− , ψ+ + ψ−) (δε
+ + δε

−) ,

with hp−2 continuous and homogeneous of degree p − 2.

The right hand side of (5.13) is equal to

bρ1−p
(
g′(ψ+ + ψ−)∂τ (δ

ε
+ + δε

−)+

+ hp−2(ψ
ε
+ + ψε

−, ψ+ + ψ−)(δε
+ + δε

−)∂τ (ψ
ε
+ + ψε

−)
)
.
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Using (2.18) again, estimate

∣∣g′(ψ+ + ψ−)
∣∣ ≤

(
Cρ

1 + ρ

)p−1

‖ψ‖p−1
Lip ,

∣∣hp−2(ψ
ε
+ + ψε

− , ψ+ + ψ−)
∣∣ ≤

(
Cρ

1 + ρ

)p−2

(‖ψ‖Lip + mε(τ))p−2 ,

∣∣δε
+(τ, ρ) + δε

−(τ, ρ)
∣∣ ≤ Cρ

1 + ρ
mε(τ) .

Inserting these in (5.13) yields

(5.14) |∂τf
ε(τ, ρ)| ≤ C

(‖ψ‖Lip + mε(τ)
)p−1 1

1 + ρp−1
mε(τ) ,

the same form that we found for |f ε(τ, ρ)|.
Use (5.12) and (5.14) in (5.11). The key is that the integral of 1/(1+ρp−1)

over any possibly reflected characteristic, is bounded independent of the
characteristic so for any T > −r0/ε and −r0/ε ≤ τ ≤ T

mε(τ) ≤ o(1) (resp. O(εmin{1,p−2}))

+ C

(
‖ψ‖Lip + sup

−r0/ε≤σ≤T

mε(σ)

)p−1

sup
−r0/ε≤σ≤T

mε(σ) .

Choose µ0 so that C (2µ0)
p−1 = 1/2. Denote the o(1) term by ζ(ε). Choose

ε0 > 0 so that ζ(ε) < µ0/4 for 0 < ε < ε0. We will show that for ε < ε0 and
‖ψ‖Lip < µ0 one has mε(τ) < 2ζ(ε) for all τ ≥ −r0/ε, which is the desired
conclusion.

To prove that mε(τ) < 2ζ(ε), define

mε(τ) := sup
0≤s≤τ

mε(s) .

The preceding estimates show that when ‖ψ‖Lip < µ0 one has

mε(τ) ≤ ζ(ε) + C
(
µ0 + mε(τ)

)p−1
mε(τ) .

If mε(τ) ≤ µ0 it follows that

mε(τ) < ζ(ε) + C(2µ0)
p−1mε(τ) = ζ(ε) + mε(τ)/2 ,

and therefore for ε < ε0,

(5.15) mε(τ) < 2ζ(ε) < µ0/2 .

This proves that in fact mε < µ0 since if that were not true there would be
a first τ∗ where mε(τ∗) = µ0, and at that value of τ the above estimate leads
to the contradiction µ0 < µ0/2.

It then follows that (5.15) holds for all τ which is the conclusion of ii.
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To prove iii, the argument follows the proof of Proposition 2.8. Multi-
plying (5.9) by gq−1(δ±) and adding shows that

∂τ

(|δ+|q + |δ−|q
)

+ ∂ρ

(|δ+|q − |δ−|q
) ≤ 0 .

For τ > −r0/ε, integrating over
{
(τ , ρ)/ τ − ρ ≥ −r0/ε, τ ≤ τ, and ρ ≥ 0

}
yields∫ τ+r0/ε

0

|δ+(τ, ρ)|q + |δ−(τ, ρ)|q dρ ≤ 2

∫ τ+r0/ε

0

|δ−(ρ − r0/ε, ρ)|q dρ.

Passing to the limit q → ∞ shows that in the shaded region in Fig. 5 one has

‖δ±‖L∞({τ−ρ≥−r0/ε}) ≤ ‖δ−‖L∞({τ−ρ=−r0/ε}) = o(1) (resp. O(εmin{1,p−2})) ,

and the proof of the proposition is complete. �

6. Pulse broadening

The passage of a pulse through the caustic is described by a scattering
operator. If the incoming pulse has profile with compact support as in (1.2)
then the scattering solution has Cauchy data at time t = −∞ given by a
linear solution

(6.1) ψL = (−G(t − r) , G(t + r))

with G compactly supported. If G(σ) is supported in |σ| ≤ R, then the
incoming linear spherical wave solution is supported in a spherical shell
|r + t| ≤ R. The outgoing wave is supported in |r − t| ≤ R.

Part i of Proposition 4.3 shows that for G small, the outgoing linear
solution

Ψout = (F (t − r) , −F (t + r))

has F (σ) = O(|σ|1−p). In this subsection we show that this estimate
is sharp thereby demonstrating that the passage through the nonlinear caus-
tic transforms a compactly supported profile to a pulse with algebraically
decaying tail.

We can show that the estimate is sharp in two contexts. The first is by
studying the simply coupled system

(6.2) �u = 0 , �v + a ut|ut|p−1 = 0 .

The function u satisfies

(∂t ∓ ∂r)(ru) = ψL
±.

and it is assumed that this linear solution ψL is compactly supported in r
for each t and is given by (6.1). The solution v is then expressed in terms
of quadratures.
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Exactly the same computation arises in computing scattering solutions
of (1.4) by Picard iteration. If the first iterate is the linear solution, ψL, then
the second iterate is exactly v. Even more interesting, the same function v is
the term of leading order in the perturbation series of the scattering operator
for small data. In this section, we show that the solution v leads exactly to
algebraic decay in the outgoing profile and also derive the above small data
behavior of the scattering operator. The small data strategy resembles the
strategy in § 6 of [9].

6.1. The simply coupled system

In the simply coupled system (6.2), introduce the characteristic variables,

χ± := (∂t ∓ ∂r)(rv) ,

to find the initial boundary value problem

(6.3)




(∂t ± ∂r)χ± = r1−p g(ψL
+ + ψL

−) ,

χ
∣∣
t=−∞ = 0 ,

χ+(t, 0) + χ−(t, 0) = 0 .

Define the complex number

A = A(ψL) :=
a

2p

∫
G(σ) |G(σ)|p−1 dσ .

To compute χ(t, r) in r − t > R, refer to the right hand graph in Figure 6.

t

r

G(t + r)

r

t t − r = R

r − t = R−G(t − r)

Figure 6: Computing χ(t, r) in t − r > R and r − t > R respectively.

The characteristic for χ− does not intersect the support of the source term
so χ− = 0.
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For r − t → +∞, the quantity r − t measures both the distance of the
∂t + ∂r characteristic to the outgoing source wave and also the distance r
from the points of intersection of the characteristic with the incoming source
wave. Precisely, in that support one has r = r − t + O(1) and therefore

r1−p =
1

(r − t)1−p
+ O((r − t)−p) .

It follows that

χ−(t, r) =
−A

(r − t)p−1
+ O((r − t)−p) .

In an analogous way, when r−t → −∞, the left hand graph in Figure 6 yields

χ∓(t, r) =
±A

(t − r)p−1
+ O((t − r)−p) .

Recall that the function F (σ) defining the outgoing linear wave Ψout is defin-
ed as the limiting value of χ+(t, r) on the characteristic Γ+(σ) := {t−r = σ}.
Note that for |t − r| > R, the values of χ+ are constant outside a compact
subset of Γ+(σ) and the estimates above prove that

|F (σ)| = |A|/|σ|p−1 + O(|σ|−p) .

This shows that our decay estimates are sharp and there are algebraic tails.
Note also that up to a constant factor, the decaying tails are all of the form
c(1 + O(1/|σ|))/|σ|p−1.

6.2. Scattering of small solutions

In this subsection we study the scattering operator applied to incoming linear
solutions δψL(t, r) where ψL is the fixed linear solution from the previous
subsection. The scattering solution is the unique solution (for δ small) of

(6.4)




(∂t ± ∂r)ψ = r1−p g(ψ+ + ψ−) ,(
ψ − δψL

)
t=−∞ = 0 ,

ψ+(t, 0) + ψ−(t, 0) = 0 .

Make a change of dependent variable,

(6.5) φ := ψ/δ , ψ := δφ ,

to find with

µ := |δ|p−1 > 0 ,(6.6) 


(∂t ± ∂r)φ = µ r1−p g(φ+ + φ−) ,(
φ − ψL

)
t=−∞ = 0 ,

φ+(t, 0) + φ−(t, 0) = 0 .

(6.7)
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The solution, φ(t, r, µ), depends on µ = |δ|p−1 → 0. Formally expand

φ(t, r, µ) ∼
∞∑

j=0

µj ηj(t, r),

and insert into the initial boundary value problem. Equating like powers
of µ first implies that each coefficient satisfies the boundary condition

ηj,+(t, 0) + ηj,−(t, 0) = 0 .

One also finds initial boundary value problems which for the two leading
coefficients η0 and η1 are,

(∂t ± ∂r)η0,± = 0 ,
(
η0 − ψL

)
t=−∞ = 0 ,

(∂t ± ∂r)η1,± = r1−p g(η0,+ + η0,−) , η1

∣∣
t=−∞ = 0 .

The first initial boundary value problems has the unique solution η0 = ψL.
The problem determining η1 is then identical to the problem determining χ
in the previous subsection so we know that η1 = χ has algebraically decaying
tails in |t − r| → ∞ when ψL is compactly supported with A �= 0.

In order to draw a rigorous conclusion from this computation, we prove
the following error estimate.

Proposition 6.1 Suppose that ψL is a C1 linear solution compactly sup-
ported in r for each time t. Suppose that η0 = ψL, η1 = χ, and φ(t, r, µ) is
the solution of (6.7) as above. Then as µ → 0,∥∥φ − (η0 + µη1) , ∂t(φ − (η0 + µη1))

∥∥
L∞([0,∞[×]−∞,∞[)

= O(µ2) .

Proof. The first step is to estimate φ − φL = φ − η0 using the differential
equation

(∂t ± ∂r)(φ± − φL
±) = −µ r1−p g(φ+ + φ−) ,

supplemented by homogeneous initial and boundary conditions,

(φ − φL)+(t, 0) + (φ − φL)−(t, 0) = 0 , (φ − φL)t=−∞ = 0 .

Noting that for j = 0, 1,

sup
characteristics

∫ ∣∣∂j
t µ r1−p g(φ+ + φ−)

∣∣dt = O(µ) ,

the basic linear estimate implies that∥∥φ − η0 , ∂t(φ − η0))
∥∥

L∞([0,∞[×]−∞,∞[)
= O(µ) .

Next estimate E := φ − (η0 + µη1) using the differential equation

(∂t ± ∂r)E± = −µ r1−p
[
g(φ+ + φ−) − g(φL

+ + φL
−)

]
:= f ,

supplemented by the following homogeneous initial and boundary condi-
tions: E

∣∣
t=−∞ = 0 and E+(t, 0) + E−(t, 0) = 0.
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Using our estimate for φ − φL it is not hard to show that

sup
characteristics

∫ ∣∣f ∣∣ +
∣∣∂tf

∣∣ dt = O(µ2) ,

and the basic linear estimate completes the proof of the proposition. �
Rewriting in terms of the problems at the beginning of the subsection

yields the following corollary.

Corollary 6.2 Let ψ(t, r, δ) be the scattering solution defined by (6.4) and
χ be the solution of (6.3). Then for small δ, one has∥∥ψ−δ

(
ψL+|δ|p−1χ

)
, ∂t

(
ψ−δ

(
ψL+|δ|p−1χ

))∥∥
L∞([0,∞[×]−∞,∞[)

= O
(|δ|1+2(p−1)

)
.

In particular, if

Ψout(t, r, δ) = δ
(
F (t − r, δ),−F (t + r, δ)

)
is the outgoing linear solution corresponding to ψ(t, r, δ), then F has alge-
braic tails for |σ| → ∞, in the sense that when |δ| � 1,

|F (σ, δ) + G(σ)| = |δ|p−1
( |A|
|σ|p−1

+ O
(|δ|p−1

) )
.
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Rémi Carles
MAB, UMR CNRS 5466
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