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An analysis of quantum Fokker–Planck
models: A Wigner function approach
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Abstract
The analysis of dissipative transport equations within the frame-

work of open quantum systems with Fokker–Planck–type scattering
is carried out from the perspective of a Wigner function approach.
In particular, the well–posedness of the self–consistent whole–space
problem in 3D is analyzed: existence of solutions, uniqueness and
asymptotic behavior in time, where we adopt the viewpoint of mild
solutions in this paper. Also, the admissibility of a density matrix
formulation in Lindblad form with Fokker–Planck dissipation mech-
anisms is discussed. We remark that our solution concept allows to
carry out the analysis directly on the level of the kinetic equation
instead of on the level of the density operator.

1. Introduction

This paper is concerned with the analysis of a class of dissipative quantum
models that arise when considering the motion of an ensemble of quantum
particles (for example, electrons) interacting with a heat bath of oscillators
in thermal equilibrium, and thus the effects of system–environment inter-
actions have to be taken into account. Of particular practical interest are
interaction mechanisms that can be described by Fokker–Planck scattering
terms. On a kinetic level these models are typically represented by an initial
value problem for the Wigner function:

∂W

∂t
+ (ξ · ∇x)W + Θ[V ]W = LQFP W, x, ξ ∈ R

3, t > 0,(1.1)

W (x, ξ, 0) = W I(x, ξ).(1.2)
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Here x and ξ denote respectively the position and velocity variables of the
phase–space. We are interested in the case in which the potential V is the
electrostatic Hartree (Coulomb) potential

(1.3) V (x, t) =
α

4π

∫
R3

y

n(y, t)

|x − y| dy, n(x, t) =
∫

R3
ξ

W (x, ξ, t) dξ,

where α = +1 or α = −1 depending on the type of forces acting on the
system (repulsive or attractive) and n(x, t) is the particle position density.
In this model, the nonlinear character of the Wigner–Fokker–Planck equa-
tion (1.1) stems from the self–consistent action of the potential (1.3) on the
system through the pseudo–differential operator

Θ[V ]W (x, ξ, t) =
i

(2π)3

∫
R3

η

∫
R3

ξ′

V (x + �

2m
η, t) − V (x − �

2m
η, t)

�

× W (x, ξ′, t)e−i(ξ−ξ′)·η dξ′ dη(1.4)

with � denoting the Planck constant and m the effective mass of the particles,
while LQFP represents the quantum Fokker–Planck operator

(1.5) LQFP W =
Dpp

m2
∆ξW + 2γdivξ(ξW ) + 2

Dpq

m
divx(∇ξW ) + Dqq∆xW.

Here γ,Dpp, Dpq, Dqq are positive constants related to the interaction be-
tween the particles and the reservoir (see next section).

The above described quantum model with Fokker–Planck–type scatter-
ing governs the dynamical evolution of an electron ensemble in the single–
particle Hartree approximation interacting dissipatively with an idealized
heat bath consisting of an ensemble of harmonic oscillators [7]. This system
generally fits the framework of open quantum–mechanical systems, present
in a wide range of situations in quantum statistical mechanics [22], [16],
where the particle–background interaction is important. Dissipative phe-
nomena play a relevant role in microelectronics, essentially through the
modeling of quantum transport of charge carriers in quantum semiconductor
devices ([24], [36]). Some other significant fields of application are quantum
optics, quantum Brownian motion ([7], [20], [21]) and damped quantum os-
cillators (A4 of [34]), as well as a variety of technological problems based on
systems representing transport processes that operate far from equilibrium.

The rigorous well–posedness analysis of quantum Fokker–Planck models
in the Wigner phase–space representation will be carried out in this pa-
per for the simplest Markovian approximation of open quantum systems
in the high–temperature limit (for which Dqq = Dpq = 0) and frictionless
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case γ = 0. Denoting σ = Dpp

m2 , the system studied in this paper is

(1.6)
∂W

∂t
+ (ξ · ∇x)W + Θ[V ]W − σ∆ξW = 0

with initial condition (1.2). Our main existence and uniqueness result for
this Wigner–Poisson–Fokker–Planck (WPFP) system shall be given in The-
orem 3.3, and the large–time behavior of the solution is characterized in
Theorem 5.9.

In reference [19] it is shown that this model yields a mathematically
“consistent” master equation (i.e. a positivity–preserving equation at the
density matrix level) which does not take into account energy dissipation
of the electron ensemble by the background. In spite of this, the friction-
less models constitute the only physically relevant Fokker–Planck quantum
models which make quantum entropy grow monotonously (see next sec-
tion). Also, in [20] the simplest systematic Markovian approximation with
dissipation is derived, consisting of equation (1.1) after disregarding the
term Dpq

m
divx(∇ξW ). This fact means that the friction model includes an

elliptic term with respect to the position variable, namely Dqq∆xW . Setting
Dpq = Dqq = 0 gives the Caldeira–Leggett model [7] which does not belong
to the Lindblad class, and thus positivity of the density matrix operator is
not preserved under temporal evolution. In the next section we shall show in
more detail how the Lindblad form of the evolution equation for the density
matrix provides the necessary properties to ensure that the system is well–
posed (in the sense that total charge and quantum density and entropy are
well–defined, as well as mathematical “consistency” of the problem holds).
The mathematical analysis of the frictionless WPFP problem becomes more
complex due to the a priori lack of elliptic regularization in the x–variable.

The technique to be used to prove existence of mild solutions relies on
the construction of a sequence of approximate problems whose solutions are
shown to verify some appropriate bounds (independent of the regularization)
in order to pass to the limit in the approximation parameter. In essence,
these bounds are based on the regularization of the initial particle density,
which also implies the corresponding elliptic regularization of the potential
through the Poisson equation. For this purpose, we will take advantage of
the Green function representation associated with the WPFP system, which
provides for an equivalent fixed–point nonlinear integral equation useful for
a priori estimates. The uniqueness (resp. stability) proof follows by estimat-
ing the difference of two different solutions in an adequate norm. On the
other hand, the analysis of the asymptotic behavior of the solutions relies
on a nonlinear technique consisting of the introduction of a rescaling group
acting on the WPFP equation (thus of a sequence of rescaled problems),
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the derivation of the necessary compactness properties for the rescaled so-
lutions and potentials in order to pass to the limit in the scale parameter
(somehow connected to the time variable, as we will see later) and the iden-
tification of the large–time limit.

In this paper we shall establish an L1(R3
x × R

3
ξ)–theory for the Wigner

function W (x, ξ, t). In contrast to collisionless Wigner models (cf. [30]) this
is possible here due to the smoothing effects of the FP–operator. It allows
a direct mathematical analysis of the kinetic equation without going back
to the density operator formulation. Specifically, our main goals are, on
the one hand, the L1–boundedness of the Wigner function locally uniformly
in time, under very weak assumptions on the initial data; on the other
hand, we also deduce strong regularity properties for the Wigner particle
distribution, the density and the potential as well as optimal time decay
estimates. However, these properties cannot be extended (at least with
our techniques) for all times. Actually, global solutions (whose existence
proof requires different techniques) shall be dealt with in a forthcoming
paper. On the other hand, global existence and L1 theory have been recently
dealt with in [8] for the frictional problem (i.e. that containing the full FP–
operator (1.5)). Finally, it is proved that the solution of the WPFP problem
behaves like MG for large times, where M denotes the total charge of the
system and G is the fundamental solution of the linear kinetic Fokker–Planck
equation. Therefore, the quantum effects in the system appear to be lost in
the long time limit.

Finally, a comparison of the results of this paper with those corresponding
to the classical picture, i.e., for the Vlasov-Poisson-Fokker-Planck (VPFP)
system, could help to completely clarify the context. The VPFP system has
been extensively studied in last years, see for example [4, 5, 6, 9, 10, 11] and
the references therein. Our existence result makes use of similar norms as
those employed for the existence analysis of the VPFP system (see [5, 10])
which are the appropriate tools for time–dependent kinetic Fokker–Planck
equations. Under some additional hypotheses involving the control of the
second order velocity moment along with strong regularity assumptions on
the initial density, in [31] the existence of global solutions and gain of regu-
larity for the VPFP system is proved.

The paper is organized as follows: In Section 2 we present an overview of
Wigner–Fokker–Planck problems in the context of open quantum systems
and discuss its relation to completely positive and dissipative systems in
Lindblad form. Section 3 is devoted to the existence of local–in–time solu-
tions. In Section 4 we prove uniqueness and stability. Finally, in Section 5
the long time behavior of solutions of the Wigner–Poisson–Fokker–Planck
system is studied.
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2. Wigner–Fokker–Planck models

2.1. On the derivation of quantum Fokker–Planck models

We consider the motion of an electron in Rd (or of an electron ensemble in the
single–particle approximation) under the influence of an electric potential
V = V (x, t) : R

d
x × R

+
t → R and under interactions with a thermal bath

of harmonic oscillators in equilibrium. In particular we shall be concerned
with an extension of the so–called Caldeira–Leggett master equation [7] to
the case of moderate/high temperatures as derived in [19]. For the following
let R(t) : L2(Rd) → L2(Rd) be the density (matrix) operator of the electron
(ensemble) at time t ≥ 0, i.e. it is a linear, non negative, self–adjoint trace
class operator, and let ρ = ρ(x, y, t) ∈ L2(Rd

x × R
d
y) be its integral kernel,

the “density matrix function”:

(2.1) (R(t)f)(x) =
∫

Rd
y

f(y)ρ(x, y, t) dy.

The model for the motion of the electron reads

∂ρ

∂t
= − i

�
(Hx − Hy)ρ − γ(x − y) · (∇x −∇y)ρ(2.2)

+
(
Dqq|∇x+∇y|2 − Dpp

�2
|x − y|2 +

2i

�
Dpq(x − y) · (∇x + ∇y)

)
ρ,

where

(2.3) H = − �
2

2m
∆x + V (x, t)

is the electron Hamiltonian (Hx, Hy stand for copies of H acting on the x
and, respectively, y–variable), m is the effective electron mass, � the re-
duced Planck constant and, as stated above, V is the electric (or Hartree–)
potential. The positive constants γ,Dpp, Dpq, Dqq stem from the oscillator
bath (cf. [19]):

(2.4) γ =
η

2m
, Dpp = ηkBT, Dqq =

η�2

12m2kBT
, Dpq =

ηΩ�2

12πmkBT
.

Here η > 0 is the coupling (damping) constant of the bath, kB the Boltzmann
constant, T the temperature of the bath and Ω the cut–off frequency of
the reservoir oscillators. Note that (2.2)–(2.4) was derived in [19] as the
Markovian approximation of the originally non–Markovian evolution of the
electron in the oscillator bath. The latter is obtained from the full electron–
oscillator model by tracing out the oscillator coordinates. For a somewhat
more phenomenological derivation we refer to [17].

The assumptions on the parameters, which guarantee the validity of (2.2),
can be found in [19]. Here we only remark that the main hypotheses are:
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(i) the reservoir memory time 1
Ω

is much smaller than the characteristic
time scale of the electrons,

(ii) weak coupling: γ � Ω,

(iii) medium/high temperature: Ω<∼kBT/�.

We now introduce the Wigner function W of the electron ensemble, defined
on the phase space R

d
x × R

d
ξ for t ≥ 0:

(2.5) W (x, ξ, t) :=
1

(2π)d

∫
Rd

η

ρ(x+
�

2m
η, x− �

2m
η, t)e−iξ·ηdη ∈ L2(Rd

x×R
d
ξ)

(cf. [38], [28], [29], [23], [27], [30]). Note that the self–adjointness of R(t)
implies ρ(x, y, t) = ρ̄(y, x, t) (“−” stands for complex conjugation) which
in turn implies that W is real–valued. It is a simple exercise to compute
the evolution equation satisfied by (2.5). From (2.2) we obtain the kinetic
equation (1.1) for W where the pseudo–differential operator is given by (1.4)
and LQFP is the quantum Fokker–Planck operator (1.5). In the classical
limit � → 0 we have Dqq → 0, Dpq → 0 and, formally

LQFP W → Dpp

m2
∆ξW + 2γdivξ(ξW )(2.6)

Θ[V ]W → − 1

m
∇xV · ∇ξW(2.7)

such that the classical Vlasov–Fokker–Planck equation is recovered (see, for
example, [10]):

(2.8)
∂W

∂t
+ (ξ · ∇x)W − 1

m
∇xV · ∇ξW =

Dpp

m2
∆ξW + 2γdivξ(ξW ).

We remark that [19] used an asymptotic expansion procedure in the param-
eter α = γ�/kBT to derive (2.2). The error of the asymptotics is O(α3),
thus (2.2) and, equivalently, (1.1)-(1.4) can be regarded as medium/high tem-
perature model. When the terms in LQFP W with coefficients Dqq and Dpq

(which both are O( 1
T
)) are neglected, then the classical Fokker–Planck oper-

ator (Caldeira–Leggett master equation [7]) is obtained. In [20] it is stated
that this approach, which gives a high temperature O(α2)–accurate model,
is sensible if the coherence length pertaining to the state of the electron is
larger than the de Broglie wavelength λdB = �/

√
4mkBT . When the term

with coefficient γ is also dropped, we obtain an O(α)–accurate model (very
high temperature asymptotics) with LQFP = Dpp

m2 ∆ξ. Then electron energy
dissipation by the thermal bath is not described. The mathematical analysis
presented in the following sections will be concerned with exactly this case.
This simplified model requires the most complex mathematical analysis in
the class of (Lindblad) equations (cf. below) due to its lack of x–ellipticity.
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2.2. The density matrix equation in Lindblad form

Many important mathematical properties of open quantum systems can be
shown to hold if the corresponding Markovian evolution equation for the
density operator R(t) is of so–called Lindblad form (cf. [26], [13], [21]).

The evolution equation

(2.9)
d

dt
R = − i

�
[HE , R] + A(R),

where HE is self–adjoint, is called of Lindblad form, if linear operators Lj ,
j = 1, 2, 3, . . ., exist, such that

(2.10) A(R) =
∞∑

j=1

LjRL∗
j −

1

2
(LR + RL)

with

(2.11) L :=
∞∑

j=1

L∗
jLj

holds. Here [A,B] := AB − BA denotes the commutator of the opera-
tors A,B. Also HE, Lj , j = 1, 2, . . ., have to satisfy additional assumptions
such that − i

�
[HE , ·] + A(·) generates a C0–semigroup on the space of trace

class operators on L2(Rd). For details we refer to [13]. The main properties
of evolution equations in Lindblad form are:

(a) conservation of positivity (cf. [15], [26], [13]):

(2.12) R(0) ≥ 0 =⇒ R(t) ≥ 0, ∀t > 0

(in the sense of positive definite operators). In fact, the Lindblad form
even gives complete positivity of the evolution semigroup (cf. [26]). The
positivity of R(t) implies that the Husimi transform W h = W h(x, ξ, t)
of R(t) is pointwise nonnegative on Rd

x × Rd
ξ (cf. [27], [23]):

(2.13) W h(x, ξ, t) := W (x, ξ, t)
x Γ �

m
(x)
ξ Γ �

m
(ξ) ≥ 0, on R

d
x×R

d
ξ ,

where W is the Wigner function (2.5) and Γσ the Gaussian

(2.14) Γσ(u) =
1

(πσ)d/2
exp(−|u|2

σ
).

As a consequence, a simple calculation leads to∫
Rd

x

∫
Rd

ξ

W h(x, ξ, t) dξ dx =
∫

Rd
x

∫
Rd

ξ

W (x, ξ, t) dξ dx.



778 A. Arnold, J. L. López, P.A. Markowich and J. Soler

Note that TrR(t), the total charge of the electron ensemble, is left
invariant by the evolution: TrR(t) = TrR(0), ∀t > 0, so that

(2.15) M = TrR(0) =
∫

Rd
x

n(x, t) dx =
∫

Rd
x

∫
Rd

ξ

W h(x, ξ, t) dξ dx ≥ 0.

We remark that the Husimi transform shall not be used for proving
existence of local–in–time solutions in §3. However, it shall be needed
in §5 for establishing the large–time behavior of the WPFP solution.
The positivity of W h is crucial for deriving estimates on the kinetic
energy and the inertial momentum (cf. (2.29), (2.30)).

(b) dissipativity (in the space of trace class operators, cf. § X.8 of [33], [32]):
the inequality 〈A(R), sgn(R)〉HS ≤ 0 holds, where 〈A,B〉HS =Tr(AB∗)
is the usual scalar product on the Hilbert space of Hilbert–Schmidt op-
erators on L2(Rd). A(R) is then a dissipative operator in the sense of
the semigroup generator.

(c) entropy growth (cf. [3]): If

(2.16)
∞∑

j=1

LjL
∗
j ≤

∞∑
j=1

L∗
jLj ,

then the quantum entropy (cf. [37]) S(R) := −Tr(RlnR) satisfies

(2.17)
d

dt
S(R(t)) ≥ 0

for all operators R(t).

Obviously, the properties (b) and (c) refer to the irreversibility of the evo-
lution equation (2.9) (in nontrivial cases).

We shall now try to write the equation (2.2) in Lindblad form. Therefore
we set

(2.18) Lj = rxj + δ∂xj
; r, δ ∈ C, j = 1, . . . , d,

where xj stands here for the operator representing multiplication by the j–th
position coordinate. Clearly, L∗

j = r̄xj − δ̄∂xj
. Also we set

Ld+j = wxj; L2d+j = ϕ∂xj
; w, ϕ ∈ C, j = 1, . . . , d.(2.19)

Moreover, we define the “adjusted” Hamiltonian (see [21])

(2.20) HE = H − i
�µ

2

d∑
j=1

{xj , ∂xj
}, µ ∈ R,
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where {A,B} = AB + BA denotes the anti–commutator of the operators A
and B. Obviously, HE is (formally) self–adjoint. A lengthy but simple
exercise gives the integral kernel a = a(x, y) of

− i

�
[HE , R] +

3d∑
j=1

LjRL∗
j −

1

2
(

3d∑
j=1

L∗
jLjR + R

3d∑
j=1

L∗
jLj).

It has the form

(2.21) a(x, y) = − i

�
(Hx − Hy)ρ + d (Re(δr̄) − µ) ρ

− 1

2
(|r|2 + |w|2)|x − y|2ρ +

1

2
(|δ|2 + |ϕ|2)|∇x + ∇y|2ρ

−
(
(µ − iIm(δ̄r))x · ∇x − δr̄y · ∇x−δ̄rx · ∇y + (µ + iIm(δ̄r))y · ∇y

)
ρ.

A comparison shows that we can choose the parameters r, w, δ, ϕ ∈ C and
µ ∈ R such that the right–hand side of (2.2) comes out, iff

(2.22) |(r, w)|2 =
2Dpp

�2
, |(δ, ϕ)|2 = 2Dqq , µ = Re(δ̄r) = γ , Im(δ̄r) =

2

�
Dpq.

We easily can conclude that we can find parameters r, w, δ, ϕ, µ satisfying
these equations iff the reservoir parameters are such that the following ma-
trix is positive definite:

(2.23)

(
Dqq Dpq + i

2
�γ

Dpq − i
2
�γ Dpp

)
≥ 0.

In terms of the original thermal bath constants, this condition reads (see (2.4))

(2.24)
�Ω

kBT
≤

√
3π

or η = 0 (no coupling to the thermal bath, trivial case). (2.24) is satisfied
for medium–high temperatures. We remark that (2.23), (2.24) can be found
in [19], [18].

Under condition (2.23) one possible choice of the Lindblad operators is
given by:

r =

√
2Dpp

�
, δ =

�γ − 2iDpq√
2Dpp

, w = 0, ϕ2 = 2Dqq − |δ|2.

This implies
∑3d

j=1(L
∗
jLj − LjL

∗
j) = −2dγ, and entropy growth for all ini-

tial density matrices can only be concluded in the frictionless case γ = 0
(see (2.16), (2.17)).
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We shall now argue that the condition (2.23) is also necessary for (2.2)
to be of Lindblad form. The above representation in Lindblad form is (as
usual) not unique. However, only the mixed x/y–terms in (2.2) are relevant
for the validity of the Lindblad form. They arise from the operators LjRL∗

j ,
j = 1, . . . , 3d. Since these operators are positive, the cancellation of different
Lindblad operators is not possible. From the structure of (2.21) and (2.2)
we readily see that only Lindblad operators of the form (2.18)–(2.19) can be
used to represent the right–hand side of (2.2). Assume now that (2.2) can be
represented by two operators of the form (2.18) (the other cases are trivial).
Using (the obvious generalization of) the relations (2.22) we estimate:

|γ +
2i

�
Dpq|2 = |δ̄1r1 + δ̄2r2|2 ≤ (|δ1|2 + |δ2|2)(|r1|2 + |r2|2) ≤ 4

�2
DqqDpp,

and (2.23) follows.

Note that the Caldeira–Leggett master equation (with Dpq = Dqq = 0) is
not of Lindblad form and hence the conservation of positivity of R(t) is not
guaranteed. In fact one can easily construct an initial density matrix R(0),
such that the positivity will be lost under temporal evolution with the
Caldeira–Legget equation. The very high temperature model (γ,Dpq, Dqq set
to zero), however, is of Lindblad form.

2.3. Equilibrium states

The dissipativity of the quantum Fokker–Planck operator (we assume now
that the Lindblad condition (2.23) holds) immediately raises the question of
possible equilibrium states of LQFP . Therefore we rewrite LQFP W as follows

(2.25)
Dpp

m2
divξ

(
e
− γm2

Dpp
|ξ|2∇ξ(e

γm2

Dpp
|ξ|2

W )

)
+ 2

Dpq

m
divx(∇ξW ) + Dqq∆xW,

multiply by z := W exp(γm2

Dpp
|ξ|2) and integrate by parts. We obtain

∫
Rd

x

∫
Rd

ξ

e
γm2

Dpp
|ξ|2

W (LQFP W )dξ dx = −
∫

Rd
x

∫
Rd

ξ

e
− γm2

Dpp
|ξ|2

×
(

Dpp

m2
|∇ξz|2 − 2Dpq

m
∇xz · ∇ξz + Dqq|∇xz|2

)
dξ dx.(2.26)

We estimate, using (2.23),

det




Dpp

m2

Dpq

m

Dpq

m
Dqq


 ≥ �

2γ2

4m2
.



An Analysis of Quantum Fokker–Planck Models 781

For γ > 0 we conclude that (2.26) is strictly positive unless z = const.,
which gives We ≡ 0 as the unique state with LQFP We = 0. For γ = 0 we
easily obtain the necessary and sufficient condition

∇ξWe + m

√
Dqq

Dpp

∇xWe = 0

for LQFP We = 0 to hold. This implies

We(x, ξ) = h

(
− m

√
Dqq

Dpp

ξ + x

)

for some scalar function h, which again implies We = 0 for We ∈ L2(Rd
x×R

d
ξ).

Thus, the Lindblad condition excludes nontrivial equilibrium states of the
quantum Fokker–Planck operator. This seems quite natural, since relaxation
towards a nontrivial steady electron state should arise as consequence of the
presence of an external potential or through the evolution of the particle
quasi–probability function in a bounded domain with appropriate boundary
conditions (see, for example, [4]).

Also we remark that the Lindblad condition (2.23) and γ > 0 (non–
vanishing friction) imply that LQFP is uniformly elliptic in (x, ξ) ∈ R2d.

2.4. Propagation of moments

Another important question concerns the behavior of the zeroth, first and
second order velocity moments of the solution W of (1.1)–(1.4). We define
the electron position density

(2.27) n(x, t) =
∫

Rd
ξ

W (x, ξ, t) dξ,

the electron current density

(2.28) J(x, t) =
∫

Rd
ξ

ξW (x, ξ, t) dξ,

the electron kinetic energy density

(2.29) e(x, t) =
∫

Rd
ξ

|ξ|2
2

W (x, ξ, t) dξ

and the electron inertial momentum density

(2.30) I(ξ, t) =
∫

Rd
x

|x|2W (x, ξ, t) dx.
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Instead of the ‘usual’ continuity equation we obtain here

(2.31)
∂n

∂t
+ divxJ = Dqq∆xn,

and hence we have conservation of the total charge:

(2.32)
∫

Rd
x

n(x, t) dx ≡
∫

Rd
x

n(x, t = 0) dx = M, ∀t > 0.

The current density satisfies

(2.33)
d

dt

∫
Rd

x

J(x, t) dx +
1

m

∫
Rd

x

∇xV (x, t)n(x, t) dx = −2γ
∫

Rd
x

J(x, t) dx.

Also, the energy density solves

d

dt

∫
Rd

x

e(x, t) dx +
1

m

∫
Rd

x

∇xV (x, t) · J(x, t) dx =

= d
Dpp

m2
M − 4γ

∫
Rd

x

e(x, t) dx,(2.34)

and the inertial momentum satisfies

(2.35)
d

dt

∫
Rd

ξ

I(ξ, t) dξ = 2
∫

Rd
x

x · J(x, t) dx + 2DqqMd.

For future reference we state the following well–known (formal) identities
for positive density matrices R(t) ≥ 0:

(2.36) n(x, t) = ρ

(
x +

�η

2m
,x − �η

2m
, t

)∣∣∣∣∣
η=0

≥ 0

and

(2.37)
∫

Rd
x

e(x, t) dx =
1

2
Tr(−∆xR(t)) ≥ 0.

Also, by duality,
∫
Rd

ξ
I(ξ, t) dξ = Tr(|x|2R(t)) ≥ 0. Clearly, (2.36) implies

(2.38)
∫

Rd
x

n(x, t) dx = TrR(t).

In the case of Poisson coupling −∆xV = αn (α = ±1) the equation (2.33)
becomes

(2.39)
d

dt

∫
Rd

x

J(x, t) dx = −2γ
∫

Rd
x

J(x, t) dx,
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which gives exponential relaxation of the total current:

(2.40)
∫

Rd
x

J(x, t) dx = e−2γt
∫

Rd
x

J(x, t = 0) dx.

Similarly, (2.34) becomes

d

dt

∫
Rd

x

(
e(x, t) +

α

2m
|∇xV (x, t)|2

)
dx =

= d
Dpp

m2
M − 4γ

∫
Rd

x

e(x, t) dx − αDqq

m

∫
Rd

x

n(x, t)2 dx.(2.41)

Also we shall use the Husimi energy Eh and inertial momentum Ih, which
are related to e(x, t) and, respectively, I(ξ, t) by means of

Eh(t) =
∫

Rd
x

∫
Rd

ξ

|ξ|2
2

W h dξ dx =
∫

Rd
x

∫
Rd

ξ

|ξ|2
2

W dξ dx +
dMσ

4
,(2.42)

Ih(t) =
∫

Rd
ξ

∫
Rd

x

|x|2W h dx dξ =
∫

Rd
ξ

∫
Rd

x

|x|2W dxdξ +
dMσ

2
.(2.43)

We remark that the formal equations (2.29) and (2.36)–(2.38) only hold
under restrictive regularity assumptions on the density matrix R(t). On the
contrary, the Husimi energy is well–defined for all positive density matrices
R(t) with finite trace and finite kinetic energy 1

2
Tr(−∆xR(t)) (see [27], [1]).

3. Existence of local–in–time solutions

In this section, local–in–time existence of mild solutions of the WPFP system
in 3D is discussed. Here, “local in time” means that for a fixed T > 0
there exists a ball of “admissible” initial data for which the corresponding
solutions are defined on (0, T ]. Moreover, T becomes arbitrarily large for
“sufficiently small” initial data. We shall focus our attention on the study
of the frictionless WPFP equation.

Physically, the relevant situation is to consider initial data W I that cor-
respond to a positive density matrix operator RI = R[W I ] (see (2.1), (2.5)).
Since our model is in Lindblad form this would then imply R[W (t)] ≥ 0,
t ≥ 0, and hence the (formal) identities (2.32), (2.36) yield the following
a priori estimate on the position density n(x, t) =

∫
R3

ξ
W (x, ξ, t) dξ:

(3.1) ‖n(t)‖L1(R3
x) = ‖nI‖L1(R3

x) = M.

Indeed, in Proposition 3.10 below we shall prove W (t) ∈ L1(R3
x × R

3
ξ) for

t ∈ [0, T ], and this then gives sense to ‖n(t)‖L1(R3
x).
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In this section, however, we will not require RI ≥ 0 as it is not needed
from a mathematical viewpoint. (3.1) is then replaced by

(3.2) ‖n(t)‖L1(R3
x) ≤ ‖n[RI

+]‖L1(R3
x) + ‖n[RI

−]‖L1(R3
x),

where RI = RI
+ − RI

− is the spectral decomposition of RI into its positive
and negative part.

The mathematical analysis of the frictionless WPFP model is in some
sense more complicated than for the model with friction since the collision
term only acts in the velocity variable ξ. Thus, it is necessary to prove the
regularizing effect of the equation with respect to the position coordinate
by a more detailed analysis than for the friction model. In the sequel we
assume d = 3 and the normalization condition � = m = 1 for simplicity
of the calculations. Then, an important part of our efforts will be devoted
to prove that the density n(x, t) is regularized as far as L∞(R3 × (0, T )),
provided that the initial averaged density

∫
R3

ξ
W I(x − tξ, ξ) dξ, involving

the displaced variable x − tξ, belongs to Lp0(R3) for an appropriate p0.
Also, if p0 > 9

8
and W I ∈ L1(R3

x × R
3
ξ) we shall see that the potential

V (·, t) ∈ W 1,p(R3) with p > p(p0) and, in particular, V (·, t) ∈ L∞(R3).
In addition, if p0 > 3

2
we shall prove that ∇xV (·, t) ∈ L∞(R3)3. Then, the

equivalent integral WPFP equation will be shown to admit a unique solution
W (x, ξ, t) ∈ C([0, T );L1∩Lq(R3

x×R3
ξ)), where T depends on the initial data

and q depends on p0 and on the regularity of W I .
The main point in deriving these estimates lies in proving the required

regularity for the potential and the Wigner function in order to reformulate
the nonlinear term of the WPFP equation as a convolution with respect to
the momentum variable:

(3.3) −Θ[V ]W (x, ξ, t) = Φ(x, ξ, t) 
ξ W (x, ξ, t),

where

(3.4) Φ(x, ξ, t) = − i

(2π)3

∫
R3

η

(
V (x +

η

2
, t) − V (x − η

2
, t)

)
e−iξ·η dη.

In fact, we easily deduce that

Φ = −iF−1
η �→ξ

(
V (x +

η

2
, t) − V (x − η

2
, t)

)

= −16Re[ie2iξ·xF−1
x�→ξV (2ξ, t)],(3.5)

where we denoted the inverse Fourier transform

F−1
x�→yf = (2π)−3

∫
R3

x

f(x)e−ix·ydx.
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Thus, it suffices to control ‖F−1
x�→ξV (·, t)‖L1(R3

ξ
) and ‖W (·, ·, t)‖L1(R3

x×R3
ξ
) to

give sense to the convolution. In order to give a rigorous sense to Θ[V ]W
we shall later show (under some mild assumptions on the initial data) that
V (., t) ∈ Lq(R3

x) for some q > 3 and (Fξ �→ηW )(x, ., t) ∈ Lr(R3
η) for some

r < 6 which implies that the inverse Fourier transform of (1.4) is well defined.
Therefore the equality (3.3) holds. In this case, the WPFP equation can be
equivalently written as

(3.6)
∂W

∂t
+ (ξ · ∇x)W − σ∆ξW = Φ 
ξ W,

with the right–hand side being local in position and non–local in velocity,
see also [2].

We start our study with some notations and definitions.

3.1. The fundamental solution and the concept of mild solution

We are now concerned with a description of the fundamental solution of the
FP equation, as well as with the statement of some of its properties. The
concept of mild solution of the WPFP problem is then introduced as a so-
lution of an equivalent integral equation involving the fundamental solution
of the linear FP operator.

The Green’s function G associated with the linear kinetic FP problem is
the fundamental solution of

(3.7) L[W ]
def
=

∂W

∂t
+ (ξ · ∇x)W − σ∆ξW = 0,

satisfying W (t = 0) = δ(x, ξ). This fundamental solution can be written as
follows (see, for instance, [10] or [5] for details)

(3.8) G(x, ξ, z, v, t) = G0(x − z − tv, ξ − v, t), x, ξ, z, v ∈ R
3, t ≥ 0,

where

(3.9) G0(x, ξ, t) =
(3/4)

3
2

(πσ)3 t6
exp

{
−3|x|2 + 3|x − tξ|2 − t2|ξ|2

2σt3

}
.

As usual, formulae (3.8) and (3.9) are found by Fourier transforming
the linear equation (3.7) in the (x, ξ)–variables and then integrating the
resulting linear first–order hyperbolic equation along the characteristics, cf.
[10], [11], [5]. In the following lemma we list some of the properties of G
that will be useful in the sequel to obtain regularity and compactness for
the mild solutions of the WPFP system (see [10], [5], [9]).
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Lemma 3.1 The fundamental solution G associated with the kinetic FP
equation, given by relations (3.8) and (3.9), satisfies the following properties:

(i) For any t ≥ 0 and x, ξ, z, v ∈ R
3 we have

∫
R3

v

∫
R3

z

G(x, ξ, z, v, t) dz dv =
∫

R3
ξ

∫
R3

x

G(x, ξ, z, v, t) dx dξ = 1,

∫
R3

x

G(x, ξ, z, v, t) dx =
1

(4πσt)
3
2

exp

{
−|ξ − v|2

4σt

}
,

∫
R3

ξ

G(x, ξ, z, v, t) dξ =
1

((4/3)πσ)
3
2 t

9
2

exp

{
−|x − z − tv|2

(4/3)σt3

}
.

(ii) For any h ≥ 0 and for any x, ξ, z, v ∈ R
3, t ≥ 0, the following equality

is satisfied:

∫
R3

ξ

G(x− hξ, ξ, z, v, t) dξ =

=
1

(4πσ(t3/3 + ht2 + h2t))
3
2

exp

{
− |x − z − (t + h)v|2

4σ(t3/3 + ht2 + h2t)

}
.

(iii) For any ε > 0 and for any x, ξ ∈ R
3, t ≥ 0, the fundamental solution G

is scale–invariant (or, equivalently, self–similar) in the following sense:

G0(x, ξ, t) = ε−12G0(ε
−3x, ε−1ξ, ε−2t).

In the sequel we shall consider the WPFP equation as a nonlinear perturba-
tion of equation (3.7). In this context, let us consider the pseudo–differential
term Θ[V ]W as a force term in the right–hand side of (3.7). Then, if we
assume that (W,V ) is a regular solution of the WPFP equation, this prob-
lem may be reformulated by using the relation (3.3) in terms of the integral
equation

W (x, ξ, t) =
∫

R3
v

∫
R3

z

G(x, ξ, z, v, t)W I(z, v) dz dv

+
∫ t

0

∫
R3

v

∫
R3

z

G(x, ξ, z, v, s)(Φ 
ξ W )(z, v, t − s) dz dv ds.(3.10)

We remark that, under some regularity conditions on the Wigner function
and the potential that will be proved in the sequel, the problems WPFP
and (3.10) will be shown to be equivalent. We may consider the solution W
to be split into two parts W = W 1 + W 2, the first of which W 1, the linear
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part, just depending on the initial data W I and the second one W 2 basi-
cally depending upon the potential V through the pseudo–differential op-
erator Θ[V ]. This decomposition is particularly suitable for a convolution,
in order to get estimates and stability results for the Wigner function W .
A similar method was first proposed by G.H. Cottet and J. Soler in [14]
for the same purpose in the context of Navier–Stokes equations. In fact, we
adopt formula (3.10) as our definition of mild solution (see also [11], [32]).
Here we state the precise concept:

Definition 3.2 We call the pair (W,V ), belonging to C([0, T ];L1(R3
x×R3

ξ))
and to C((0, T ]; L∞(R3)), respectively, a mild solution of the WPFP equa-
tion (3.6) with initial data W I ∈ L1(R3

x × R
3
ξ) if Φ 
ξ W is locally integrable

with respect to the Lebesgue measure d(x, ξ, t), and if (W,V ) solves the in-
tegral equation (3.10) for 0 ≤ t ≤ T , and V = α

4π
1
|x| 
 n with n(·, t) ∈ L1(R3)

for 0 ≤ t ≤ T .

Also, we shall say that f = f(x, ξ, t) ∈ Sp if

(3.11) max
h>0

{∥∥∥∥
∫

R3
ξ

f(x − hξ, ξ, t) dξ
∥∥∥∥

Lp(R3)

}
< ∞.

Our main result in this section is the following:

Theorem 3.3 Let W I ∈ L1(R3
x × R

3
ξ) ∩ Sp0 be the initial condition of the

WPFP problem such that p0 > 9/8. Then, the WPFP problem admits a
mild solution W ∈ C([0, T ); L1(R3

x × R
3
ξ) ∩ Sr), with r > 3

2
and the decay

bounds established in (3.34), defined on a maximal time interval [0, T ). If
in addition W I ∈ Lp(R3

x×R3
ξ), then W ∈ C([0, T );L1∩Lq(R3

x×R3
ξ)), where

p0, p and q are related as in (3.45). Also, the density and the potential satisfy
the additional regularity properties:

V (·, t) ∈ L∞(R3), ∇xV (·, t) ∈ Lq(R3)3, n(·, t) ∈ Lp(R3),

such that q = q(p0) and 1
q

= 1
p
− 1

3
. Furthermore, if p0 > 3

2
then ∇xV ∈

L∞(R3)3 and if p0 > 9
2

then n ∈ L∞(R3), with the bounds given in Proposi-
tion 3.9. Here, T depends on σ, p0 and W I . Also, T is arbitrarily large for
initial data W I with SI

p0
and ‖W I‖L1(R3

x×R3
ξ
) sufficiently small.

The rest of the section is devoted to the proof of this theorem. At this
point we should distinguish between the mild solution to Eq. (3.6) (with
convoluted nonlinearity) for p0 > 9/8, in terms of which Theorem 3.3 is
stated, and the mild solution to Eq. (1.6) (with the original form of the
pseudo–differential operator) for p0 > 7/6. The equivalence between both
of them is sketched in the last remark of § 3.2.
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We notice that W 1(x, ξ, t) in the above decomposition actually solves the
linear WFP problem L[W ] = 0 (V ≡ 0) with initial datum W I . In addition,
we have (see [9], [5], [11])

Lemma 3.4 If we define

(3.12) f(x, ξ, t) =
∫

R3
v

∫
R3

z

G(x, ξ, z, v, t)g(z, v) dz dv,

then the following decay estimate

‖f(·, ·, t)‖Lq(R3
x×R3

ξ
) ≤ Ct−6( 1

p
− 1

q
)‖g‖Lp(R3

x×R3
ξ
), 1 ≤ p ≤ q ≤ ∞, t > 0,

holds, where C is a positive constant. In particular, for p = q we have

‖f(·, ·, t)‖Lq(R3
x×R3

ξ
) ≤ ‖g‖Lq(R3

x×R3
ξ
), t ≥ 0.

The same result holds true when

(3.13) f(x, ξ, t) =
∫ t

0

∫
R3

v

∫
R3

z

G(x, ξ, z, v, t − s)g(z, v, s) dz dv ds.

In this case, for every 1 ≤ p ≤ q ≤ ∞, we have

‖f(·, ·, t)‖Lq(R3
x×R3

ξ
) ≤ C

∫ t

0
(t − s)−6( 1

p
− 1

q
)‖g(·, ·, s)‖Lp(R3

x×R3
ξ
) ds.

In order to give simpler expressions for the corresponding position densities
nk = n(W k), with k = 1, 2, we now introduce the following notation:

(3.14) N (x) =
1

((4/3)πσ)
3
2

e−
|x|2
2 , dh(t) =

t3

3
+ ht2 + h2t.

Then, we find the following integral representation for the “two–parts” den-
sity (with the notation n1,2 =

∫
W 1,2dξ) :

n1(x, t) =
1

((4/3)πσ)
3
2 t

9
2

∫
R3

z

exp

{
− |x − z|2

(4/3)σt3

}
(3.15)

×
∫

R3
v

W I(z − tv, v) dv dz,

n2(x, t) =
1

((4/3)πσ)
3
2

∫ t

0
s−

9
2

∫
R3

z

exp

{
− |x − z|2

(4/3)σs3

}
(3.16)

×
∫

R3
v

(Φ 
ξ W )(z − sv, v, t − s) dv dz ds,

where we have used Lemma 3.1 (i) and the change of variables z − tv �→ z.
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Formulae (3.15) and (3.16) illustrate the fact that the solution operator
acts on the density just as a convolution in the position variable by a Gaus-
sian which spreads with time, producing a regularizing effect on the system
(see [5], [10]). Indeed, formulae (3.15)–(3.16) can be rewritten as

n1(x, t) = t−
9
2N

(
x√

(2/3)σt3

)

x

∫
R3

v

W I(x − tv, v) dv,(3.17)

n2(x, t) =
∫ t

0
s−

9
2N

(
x√

(2/3)σs3

)
(3.18)


x

∫
R3

v

(Φ 
ξ W )(x − sv, v, t − s) dv ds.

The next crucial ingredient lies in deriving a priori estimates. For this
purpose it is not sufficient to assume Lp–bounds of the initial density nI =
n(W I). As one can see from (3.17) and (3.18) we shall also need to control
some appropriate Lp–norms of

(3.19) nI
h(x) = nh(W

I)(x) =
∫

R3
ξ

W I(x − hξ, ξ) dξ,

uniformly with respect to h, for all h ≥ 0.
Thus, according to Lemma 3.1 (ii) we can express the density averages

nk
h = nh(W

k), following the notation introduced in (3.19), as follows:

n1
h(x, t) =

∫
R3

ξ

W 1(x − hξ, ξ, t) dξ(3.20)

=
1

(3dh(t))
3
2

N

 x√

2σdh(t)


 
x

∫
R3

v

W I(x − (t + h)v, v) dv,

n2
h(x, t) =

∫
R3

ξ

W 2(x − hξ, ξ, t) dξ =
∫ t

0

1

(3dh(s))
3
2

N

 x√

2σdh(s)


(3.21)


x

∫
R3

v

(Φ 
ξ W )(x − (s + h)v, v, t − s) dv ds.

3.2. A priori estimates

In this section we shall derive a–priori estimates for mild solutions of (3.10),
i.e. for W ∈ C([0, T ];L1(R3

x × R
3
ξ)). This regularity assumption implies the

following estimate for the particle density n =
∫

Wdξ :

(3.22) ‖n(t)‖L1(R3
x) ≤ ‖W (t)‖L1(R3

x×R3
ξ
) , 0 ≤ t ≤ T.
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For a positive initial density matrix RI and a smooth enough solution, we
would of course have the charge conservation (3.1). The main goal of this
section is to develop the main tools to derive the uniform boundedness (with
respect to h ≥ 0) of nh(·, t) in L1 ∩Lq for some q > 3

2
, which implies the fol-

lowing regularity result on the potential: V (·, t) ∈ W 1,q(R3) for some q > 3
and V (·, t) ∈ L∞(R3) by a Sobolev imbedding.

In Proposition 3.9 we shall prove that W (·, ·, t) ∈ L1(R3
x×R3

ξ), t > 0, and
hence the convolution in (3.6) is well–defined and the weak formulation (3.6)
of the WPFP problem makes sense. Note that for the usual Wigner–Poisson
problem without Fokker–Planck scattering kernel the property W (·, ·, t) ∈
L1(R3

x × R
3
ξ) is generally not satisfied. Actually, this can be considered

as a specific property due to the regularizing effect of the Fokker–Planck
operator.

Our first task is to prove the Lp–boundedness of the averaged densi-
ties nk

h. For that we define for an arbitrary f = f(x, ξ, t)

Sp(t, f) = max{‖nh(f)(·, t)‖Lp(R3), h ≥ 0}
for any 1 ≤ p ≤ ∞, and we denote by

SI
p(f) = max{‖nI

h(f)‖Lp(R3), h ≥ 0} = Sp(0, f).

In the case f = |W | the functional dependence of Sp will be omitted in the
sequel, i.e. Sp(t, |W |) = Sp(t), and Sj

p(t), j = 1, 2, is defined as Sj
p(t) =

Sp(t, |W j|) (compare (3.20), (3.21)). Notice that the Sp norms are natural
in this context, since they allow in a natural way to estimate the particle
density: ‖n(·, t)‖Lp(R3) ≤ Sp(t).

From now on, unless otherwise specified, C will denote various positive
constants depending on generic parameters of the problem. Besides, we shall
(by a slight abuse of notation) also denote by Sp the space consisting of all
functions f with bounded Sp(t, f) norm (cf. (3.11)).

Lemma 3.5 Consider f and g related as in (3.12). Then, the following
decay estimates hold for any 1 ≤ p ≤ q ≤ ∞:

Sq(t, f) ≤ Ct−
9
2
( 1

p
− 1

q
)Sp(g),

and hence from (3.10)

(3.23) S1
q (t) ≤ Ct−

9
2
( 1

p
− 1

q
)SI

p .

An analogous result holds true when f and g are related as in (3.13). In
this case

(3.24) Sq(t, f) ≤ C
∫ t

0
(t − s)−

9
2
( 1

p
− 1

q
)Sp(s, g) ds.



An Analysis of Quantum Fokker–Planck Models 791

Proof. We focus here on the proof of (3.24), since the first part of the lemma
is proved similarly. From the properties of the fundamental solution G
we have

‖nh(f) (·, t)‖Lq(R3
x) =

∥∥∥∥∥
∫ t

0

ds

(4πσdh(t − s))
3
2

exp

{
− |x|2

4σdh(t − s)

}


x

∫
R3

v

g(x − (t − s + h)v, v, s) dv

∥∥∥∥∥
Lq(R3

x)

≤ C
∫ t

0
ds (t − s)−

9
2
( 1

p
− 1

q
) ×

∥∥∥∥∥
∫

R3
v

g(x − (t − s + h)v, v, s) dv

∥∥∥∥∥
Lp(R3

x)

(3.25)

with p ≤ q, where we have applied the Young inequality to estimate the
convolution in the x variable. Now, taking maximum with respect to the
parameter h ≥ 0 on both sides of this inequality yields the assertion (3.24). �

Note that this result directly provides for a bound of n1(x, t) in Lq(R3):

(3.26) ‖n1(·, t)‖Lq(R3) ≤ S1
q (t) ≤ Ct−

9
2
( 1

p
− 1

q
)SI

p , 1 ≤ p ≤ q ≤ ∞.

We now proceed to estimate S2
q and, hence, ‖n2(·, t)‖Lq(R3).

Lemma 3.6 Let 1 ≤ p ≤ q ≤ ∞ and 3
2

< r ≤ 2 be fixed, and assume that
W ∈ C([0, T ];L1(R3

x × R3
ξ)) is a mild solution of (3.10), satisfying (3.22).

Then, the following estimates

‖F−1
x�→yV (·, t)‖L1(R3) ≤ C

(
Sr(t) +

√
MSr(t)

)
,(3.27)

S2
q (t) ≤ C

∫ t

0
(t − s)−

9
2
( 1

p
− 1

q
)Sp(s)

(
Sr(s) +

√
MSr(s)

)
ds(3.28)

hold, where M =
∫
R3

x

∫
R3

ξ
W Idξdx denotes the total charge of the system.

Proof. Set f = |W 2| and g = Φ 
ξ W in (3.24) (cf. (3.10)). Then we have

(3.29) S2
q (t) ≤ C

∫ t

0
(t − s)−

9
2
( 1

p
− 1

q
)Sp(s, |Φ 
ξ W |) ds

for every 1 ≤ p ≤ q ≤ ∞. From (3.5), an easy computation leads to

(3.30) Sp(t, |Φ 
ξ W |) ≤ CSp(t)‖F−1
x�→yV (·, t)‖L1(R3),

since ∫
R3

ξ

|Φ 
ξ W | (x − hξ, ξ, t) dξ ≤

≤ C
∫

R3
ξ

∫
R3

η

|F−1
x�→ηV (2η, t)||W (x − hξ, ξ − η, t)| dη dξ

= C
∫

R3
η

|F−1
x�→ηV (2η, t)||nh(|W |)(x − hη, t)| dη ,
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and hence∥∥∥∥∥
∫

R3
ξ

|Φ
ξ W |(x − hξ, ξ, t) dξ

∥∥∥∥∥
Lp(R3

x)

≤

≤ C
∫

R3
η

|F−1
x�→ηV (2η, t)|‖nh(|W |)(x − hη, t)‖Lp dη

≤ C‖F−1
x�→yV (·, t)‖L1(R3)‖nh(|W |)(·, t)‖Lp(R3

x).

Finally, we also have

‖F−1
x�→yV (·, t)‖L1 =

1

4π

∥∥∥∥∥F−1
x�→y

(
1

|x| 
 n(x, t)

)
(·, t)

∥∥∥∥∥
L1

=

∥∥∥∥∥ 1

| · |2 (F−1
x�→yn)(·, t)

∥∥∥∥∥
L1

.

We now estimate the L1 norm of | · |−2(F−1
x�→yn)(·, t) in BR and Bc

R separately,
with BR denoting the ball of radius R in R3 centered at the origin. On the
one hand, we find for Bc

R∥∥∥∥ 1

| · |2 (F−1
x�→yn)(·, t)

∥∥∥∥
L1(Bc

R)
≤ C‖F−1

x�→yn(·, t)‖Lr′ (R3).

Hence,

(3.31) ‖F−1
x�→yV (·, t)‖L1(Bc

R) ≤ C‖n(·, t)‖Lr(R3) ≤ CSr(t).

On the other hand, using analogous arguments we obtain for BR:∥∥∥∥ 1

| · |2 (F−1
x�→yn)(·, t)

∥∥∥∥
L1(BR)

≤ C‖F−1
x�→yn(·, t)‖Lq̃(R3) ≤ C‖n(·, t)‖Lq̃′ (R3)

with 3 < q̃ ≤ ∞. Therefore, the interpolation inequality for Lp spaces yields

‖F−1
x�→yV (·, t)‖L1(BR) ≤ C‖n(·, t)‖θ

L1(R3)‖n(·, t)‖1−θ
Lr(R3)

≤ CM θSr(t)
1−θ,(3.32)

where 1/q̃′ = θ + (1 − θ)/r for the fixed r ∈ (3
2
, 2]. In (3.32) we used the

bound (3.1) for n. Combining (3.31) and (3.32) yields (3.27), where we have
fixed q̃ such that θ = 1

2
. Now, from (3.30) and (3.27) we obtain

(3.33) Sp(t, |Φ 
ξ W |) ≤ CSp(t)
(
Sr(t) +

√
MSr(t)

)

and the proof concludes by inserting (3.33) into (3.29). �

In the following result we derive the dominant time decay rates for Sq(t)
on bounded time intervals. For that, as easily deduced from Lemma 3.6, it
is enough to control the Sr(t) norm for some r > 3

2
.
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Proposition 3.7 Let W be a mild solution of (3.10) on [0, T ].

(a) Let p0 with 9
8

< p0 < 2 be fixed, and W I be the initial datum for the
WPFP system such that SI

p0
is bounded. Then, there exists a T > 0

depending on SI
p0

and M such that, for every 0 < t ≤ T , the estimate

(3.34) Sq(t) ≤ C(T )t
− 9

2
( 1

p0
− 1

q
)

is satisfied, where q = q(p0) > 3
2

is arbitrarily close to 3
2

for p0 suffi-
ciently close to 9

8
. Estimate (3.34) is also valid for q = p0 and hence,

by interpolation, for any q such that p0 ≤ q ≤ q(p0). If p0 > 3
2

one can
choose q(p0) > 3 in (3.34).

(b) If p0 > 9
2
, then (3.34) holds true for q = ∞.

Proof. Part (a): (3.23) and Lemma 3.6 yield the following estimate for Sq(t):

Sq(t) ≤ C1t
− 9

2
( 1

p0
− 1

q
)
SI

p0
(3.35)

+ C2

∫ t

0
(t − s)−

9
2
( 1

p
− 1

q
)Sp(s)

(
Sr(s) +

√
MSr(s)

)
ds ,

for any 1 ≤ p ≤ q ≤ ∞ with q ≥ p0 and C1 and C2 represent different
positive constants. The constant r = r(p0) with max(3

2
, p0) < r ≤ 2 will be

chosen later in the proof.

First step. Estimating Sp0(t) and Sr(t). (3.35) provides the following
bound for the choice q = p = p0 :

(3.36) Sp0(t) ≤ C1S
I
p0

+ C2

∫ t

0
Sp0(s)

(
Sr(s) +

√
MSr(s)

)
ds,

and the following one for the choice q = r and p = p0:

Sr(t) ≤ C1t
− 9

2
( 1

p0
− 1

r
)
SI

p0
(3.37)

+ C2

∫ t

0
(t − s)

− 9
2
( 1

p0
− 1

r
)
Sp0(s)

(
Sr(s) +

√
MSr(s)

)
ds.

Define

Kp(t) =

{
t

9
2
( 1

p0
− 1

p
)
Sp(t) for p > p0,

Sp(t) for p ≤ p0

and, for continuous–in–t Kp(t), denote by Kp := max{Kp(t), 0 ≤ t ≤ T}.
Then, from (3.36) and (3.37) it is easily deduced that

Kp0(t) ≤ C1S
I
p0

+ C2B
(
1, 1 − 9

2
(

1

p0

− 1

r
)
)
Kp0Kr(3.38)

+ C2 B
(
1, 1 − 9

4
(

1

p0

− 1

r
)
)
Kp0

√
MKr
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and

Kr(t) ≤ C1S
I
p0

+ C2 t
9
2
( 1

p0
− 1

r
)
B
(
1 − 9

2
(

1

p0

− 1

r
), 1 − 9

2
(

1

p0

− 1

r
)
)
Kp0Kr

+ C2t
9
2
( 1

p0
− 1

r
)
B
(
1 − 9

2
(

1

p0

− 1

r
), 1 − 9

4
(

1

p0

− 1

r
)
)
Kp0

√
MKr,(3.39)

with B(a, b) denoting the Beta function defined by

B(a, b) =
∫ t

0
(t − s)a−1sb−1ds.

We recall that, when the arguments a, b are positive, then this integral is
convergent and equals B(a, b) = C(a, b)ta+b−1, where C(a, b) is a constant
depending on a and b. For our fixed p0 > 9

8
one can now easily choose a

r = r(p0) > max(3
2
, p0), such that the Beta functions appearing in (3.38)

and (3.39) are convergent. Finally, if we define K := max{Kp0 ,Kr} we
obtain from (3.38), (3.39):

(3.40) K ≤ C1S
I
p0

+ C̃2T
1− 9

2
( 1

p0
− 1

r
)
K2 + C̃2T

1− 9
4
( 1

p0
− 1

r
)
√

MK
3
2 .

For small values of T ≥ 0, K = K(T ) is continuous in T and K(0) ≤ C1S
I
p0

(from (3.40)). Using K
3
2 ≤ K2+1 in (3.40) hence yields the a priori estimate:

K ≤
1 −

√
1 − 4C̃2α(T,M)T

1− 9
2
( 1

p0
− 1

r
)
(
C1SI

p0
+ C̃2

√
MT

1− 9
4
( 1

p0
− 1

r
)
)

2C̃2α(T,M)T
1− 9

2
( 1

p0
− 1

r
)

<
1

2C̃2T
1− 9

2
( 1

p0
− 1

r
)
,

as long as T = T (SI
p0

,M) is “small enough” such that the radicand of the
square root is positive. Here we used the definition

α(T,M) = 1 +
√

MT
9
4
( 1

p0
− 1

r
)
> 1.

This concludes the first step of the proof.

Second step. Estimating Sq(t). We first prove an estimate for q “close
enough” and greater than 3. Putting p = r in formula (3.35) we have

Sq(t) ≤ C1t
− 9

2
( 1

p0
− 1

q
)
SI

p0

+ C2

∫ t

0
(t − s)−

9
2
( 1

r
− 1

q
)
(
Sr(s)

2 +
√

MSr(s)
3
2

)
ds.(3.41)

The uniform bound on Kr(t) yields

(3.42) Sr(s) ≤ γ(M,T )s
− 9

2
( 1

p0
− 1

r
)
,

where the function γ is of the form γ(M,T ) = C ′
1(M,T )SI

p0
+ C ′

2(M,T ).
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Hence, the integrability conditions of the Beta functions in (3.41) give
1
r
− 1

q
< 2

9
and 1

p0
− 1

r
< 1

9
. These inequalities and the range of r ∈ (3

2
, 2]

imply
3

2
< r(p0) ≤ q < min

( 3p0

3 − p0

,
18

5

)

as possible choices for q = q(p0). For future reference we remark that p0 > 3
2

allows to choose q(p0) > 3. We insert (3.42) in (3.41) and observe that the
first term of the right–hand side of (3.41) dominates (due to the inequality
1
p0

− 1
r

< 1
9
). This finishes Part (a) of the proof.

Part (b): To obtain a bound for S∞(t) we now consider p = q ≥ p0 > 9
2

in formula (3.35), which becomes

Sq(t) ≤ C1t
− 9

2
( 1

p0
− 1

q
)
SI

p0
+ C2

∫ t

0
Sq(s)

(
Sr(s) +

√
MSr(s)

)
ds,

with r = r(p̃0) to be fixed later on. In terms of Kq, as defined in the first
part of this proof, it reads

Kq(t) ≤ C1S
I
p0

+ C2(T,M, SI
p̃0

)T
9
2
( 1

p0
− 1

q
)
∫ t

0
Kq(s)s

− 9
2
( 1

p0
+ 1

p̃0
− 1

q
− 1

r(p̃0)
)
ds

+ C3(T,M, SI
p̃0

)T
9
2
( 1

p0
− 1

q
)
∫ t

0
Kq(s)s

− 9
4
( 2

p0
+ 1

p̃0
− 2

q
− 1

r(p̃0)
)
ds,(3.43)

where we have used that

Sr(p̃0)(t) ≤ C(T,M, SI
p̃0

)t
− 9

2
( 1

p̃0
− 1

r(p̃0)
)
,

for some p̃0 ∈ (9
8
, 2) large enough and

max
(

3

2
, p̃0

)
< r(p̃0) ≤ 2 with

1

p̃0

− 1

r(p̃0)
<

2

9

(first step of the proof). We remark that SI
p̃0

is bounded due to the interpo-
lation SI

p̃0
≤ SI

p0
+ SI

1 , and SI
1 = ‖W I‖L1(R3

x×R3
ξ
). Considering the relations

1

p0

+
1

p̃0

<
2

9
+

1

q
+

1

r(p̃0)
,

1

p0

− 1

q
<

2

9
,(3.44)

for 9
8

< p̃0 < p0 ≤ q, we see that the exponents in the power functions in the
integrals of (3.43) exceed −1.

Hence we can apply the Gronwall lemma to (3.43) and obtain Kq(t) ≤ C,
with p0 ≤ q such that (3.44) is fulfilled, where C is a positive constant
depending on T , SI

p0
and ‖W I‖L1(R3

x×R3
ξ). Thus, for p0 > 9

2
we may choose

q = q(p0) = ∞ and this concludes the proof. �
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This result will be useful when discussing the regularizing effect of the
system on the density and the potential as a function of the choice of p0,
starting from the hypothesis W I ∈ L1(R3

x × R3
ξ) ∩ Sp0 .

Let us now recall a general result on singular integrals of convolution
type whose proof can be found in [35]. We shall adapt the statement of the
lemma to the particular case in which V = α

4π
1
|x| 
 n is the self–consistent

Hartree potential.

Lemma 3.8 The following assertions hold true for V :

(i) If 1 < p < q < ∞ satisfy 1
q

= 1
p
− 2

3
and n(·, t) ∈ Lp(R3), then

V (·, t) ∈ Lq(R3)3 and

‖V (·, t)‖Lq(R3)3 ≤ C(p, q)‖n(·, t)‖Lp(R3) ,

where C(p, q) is a positive constant which depends on p and q. Fur-
thermore, if n(·, t) ∈ Lp(R3) with 1

q
= 1

p
− 1

3
, then ∇xV (·, t) ∈ Lq(R3)

and
‖∇xV (·, t)‖Lq(R3) ≤ C(p, q)‖n(·, t)‖Lp(R3) .

(ii) If

1 ≤ p <
3

2
< q ≤ ∞ ,

1

q
+

1

q′
= 1 , θ =

( 1

q′
− 1

3

)/(1

p
− 1

q

)

and n(·, t) ∈ Lp(R3) ∩ Lq(R3), we have V ∈ L∞(R3) and

‖V (·, t)‖L∞(R3) ≤ C(p, q)‖n(·, t)‖θ
Lp(R3)‖n(·, t)‖1−θ

Lq(R3).

Also, if n(·, t) ∈ Lp(R3) ∩ Lq(R3) with

1 ≤ p < 3 < q ≤ ∞ and θ =
( 1

q′
− 2

3

)/(1

p
− 1

q

)
,

then ∇xV ∈ L∞(R3)3 and

‖∇xV (·, t)‖L∞(R3)3 ≤ C(p, q)‖n(·, t)‖θ
Lp(R3)‖n(·, t)‖1−θ

Lq(R3).

(iii) If n(·, t) ∈ Lp(R3) with 1 < p < ∞, then ∂xi
∂xj

V (·, t) ∈ Lp(R3) and
the following estimates hold:

‖∂xi
∂xj

V (·, t)‖Lp(R3) ≤ C(p)‖n(·, t)‖Lp(R3), 1 ≤ i, j ≤ 3.
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Some a priori regularities for the particle density and the potential are
stated in the following proposition, which is a direct consequence of the
estimates given in Proposition 3.7 and Lemma 3.8.

Proposition 3.9 Assume W to be a mild solution of (3.10) on [0, T ]. Let
p0 > 9

8
be fixed such that W I ∈ L1(R3

x ×R3
ξ)∩Sp0. Then, for arbitrary small

ε > 0, there exists T = T (SI
p0

,M) > 0 such that the following regularity
properties are verified for 0 < t ≤ T :

(i) ‖V (·, t)‖L∞(R3) ≤ Ct
3− 9

2p0
−ε

.

(ii) If 3
2

< p0 < 2, then ∇xV ∈ L∞(R3)3 and

‖∇xV (·, t)‖L∞(R3) ≤ Ct
3
2
− 9

2p0
−ε

.

(iii) If p0 > 9
2
, then the density n ∈ L∞(R3) and

‖n(·, t)‖L∞(R3) ≤ Ct
− 9

2p0 .

The constants C in (i) and (ii) may depend on ε.

Finally, as consequence of the regularization effect of the Fokker–Planck
kernel, we also find the following bound for the Lq norm of the Wigner
function.

Proposition 3.10 Assume W to be a mild solution of (3.10) on [0, T ]. Let
9
8

< p0 < 2 be fixed such that SI
p0

is bounded. Then, the following estimate
holds in (0, T ] for every 1 ≤ p ≤ q ≤ ∞ satisfying

(3.45)
6

p
<

6

q
+ 4 − 9

2p0

,

‖W (·, ·, t)‖Lq(R3
x×R3

ξ
) ≤ Ct−6( 1

p
− 1

q )‖W I‖Lp(R3
x×R3

ξ
),

where C is a positive constant depending on T and M .

Proof. First we choose a constant r ∈ (3
2
, 2] sufficiently close to 3

2
such that

(3.45a)
6

p
<

6

q
+ 1 − 9

2

(
1

p0

− 1

r

)

holds, and such that r lies in the interval of admissible q(p0) for our fixed p0

(see the proof of Proposition 3.7 (a)). Applying Lemma 3.4 to (3.10) yields

‖W (·, ·, t)‖Lq(R3
x ×R3

ξ
) ≤ C1 t−6( 1

p
− 1

q )‖W I‖Lp(R3
x×R3

ξ
)

+ C2

∫ t

0

(
Sr(s) +

√
MSr(s)

)
‖W (·, ·, s)‖Lq(R3

x×R3
ξ
) ds,(3.46)
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where we estimated

‖(Φ 
ξ W )(·, ·, s)‖Lq(R3
x×R3

ξ
) ≤ C

(
Sr(s) +

√
MSr(s)

)
‖W (·, ·, s)‖Lq(R3

x×R3
ξ
)

via the Young inequality and we used (3.27). Then, from Proposition 3.7,
(3.46) becomes

‖W (·, ·, t)‖Lq(R3
x×R3

ξ
) ≤ C1t

−6( 1
p
− 1

q )‖W I‖Lp(R3
x×R3

ξ
)

+ C2

(
SI

p0

) ∫ t

0

(
s
− 9

2
( 1

p0
− 1

r
)
+
√

Ms
− 9

4
( 1

p0
− 1

r
)
)
‖W (·, ·, s)‖Lq(R3

x×R3
ξ
) ds.(3.47)

Define Np,q(t) := t6(
1
p
− 1

q )‖W (·, ·, t)‖Lq(R3
x×R3

ξ). Then, from (3.47) it is a

simple matter to obtain the estimate

Np,q (t) ≤ C1‖W I‖Lp(R3
x×R3

ξ
)

+ C2

(
SI

p0

)
T 6( 1

p
− 1

q )
∫ t

0
s
− 9

2

(
1

p0
− 1

r

)
−6( 1

p
− 1

q )(1 +
√

Ms
9
4
( 1

p0
− 1

r
)
)Np,q(s) ds.

Now the proof ends as a straightforward consequence of the Gronwall in-
equality, since (3.45a) guarantees the integrability of the coefficient in the
last integral. �

Remark. As a consequence of Proposition 3.10, choosing p0 > 7
6

implies
that W (., ., t) ∈ Lq(R3

x × R
3
ξ) with some q > 6

5
, which implies

(Fξ �→ηW )(x, ., t) ∈ Lq′(R3
η)

a.e. in x ∈ R3 with some q′ < 6. This completes the equivalence of the
pseudo–differential operator (1.4) with its convolution form (cf. (3.3)).

3.3. Sequence of approximate solutions and passage to the limit

We shall now define a sequence of linearized problems formally approximat-
ing the WPFP equation. For every n ∈ N0 we consider mild solutions of
the equation

∂

∂t
W n+1 + (ξ · ∇x)W

n+1 − σ∆ξW
n+1 = −θ[V n]W n,

with

V n(x, t) =
α

4π

1

|x| 

∫

R3
ξ

W n(x, ξ, t) dξ

and W n(x, ξ, 0) = W I(x, ξ) for every n ≥ 1.
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We consider W 0(x, ξ, t) = 0 to avoid regularity problems with the def-
inition of θ[V 0]W 0. Using the integral formulation, the sequence {W n} is
defined iteratively by

W n+1(x, ξ, t) =
∫

R3
v

∫
R3

z

G(x, ξ, z, v, t)W I(z, v) dz dv

+
∫ t

0

∫
R3

v

∫
R3

z

G(x, ξ, z, v, s)(Φn 
ξ W n)(z, v, t − s) dz dv ds,(3.48)

where we have used the convoluted form of the nonlinear term, with Φn =

Φ(V n). If W n ∈ C([0, T ];L1(R6)) and t
9
2
( 1

p0
− 1

r
)
W n ∈ L∞(0, T ;Sr) for some

3
2

< r ≤ 2, then estimates like in the proof of Proposition 3.10 show
that again W n+1 ∈ C([0, T ];L1(R6)). Estimate (3.34) shows that also

t
9
2
( 1

p0
− 1

r
)
W n+1 ∈ L∞(0, T ;Sr), and hence the sequence {W n} is well–defined.

We are now concerned with the passage to the limit as n → ∞. For
this purpose, we shall firstly prove that {W n}n∈N is a Cauchy sequence in
a suitable space in order to give sense to the limit solution. Note that the
estimates derived in Lemmata 3.5 and 3.6 and Propositions 3.7 and 3.9 are
still valid independently of n.

Lemma 3.11 Assume that W I belongs to L1(R3
x × R3

ξ) ∩ Sp0 with p0 > 9
8
.

Then, there exists a (small enough) T > 0 such that {W n}n∈N is a Cauchy

sequence in L∞(0, T ;Sp0) and {t 9
2
( 1

p0
− 1

r
)
W n}n∈N is a Cauchy sequence in

L∞(0, T ;Sr), with 0 < r − 3
2

sufficiently small.

Proof. Consider the difference W n+1 − W n in the norm of the spaces Sr,
for 3

2
< r ≤ 2. We can estimate

Sr(t,W
n+1 − W n) ≤ C

∫ t

0
(t − s)−

9
2
( 1

p
− 1

r
)Sp(s,Φ

n 
ξ W n − Φn−1 
ξ W n−1) ds

according to Lemma 3.5. Now, introducing the term Φn
ξW
n−1 in the above

expression we deduce

Sq(t,W
n+1 − W n) ≤

≤ C
∫ t

0
(t − s)−

9
2
( 1

p
− 1

q
)
{
Sp(s, |W n − W n−1|)

(
Sr(s, |W n|) +

√
MSr(s, |W n|)

)

+ Sp(s, |W n−1|)
(
Sr(s, |W n − W n−1|) +

√
2MSr(s, |W n − W n−1|)

)}
ds

for 1 ≤ p ≤ q ≤ ∞, as in Lemma 3.6, with M =
∫
R3

x

∫
R3

ξ
W Idξdx. Following

a similar reasoning as in Proposition 3.7, we set

Kn
p (t) =

{
t

9
2
( 1

p0
− 1

p
)
Sp(t, |W n|) for p > p0

Sp(t, |W n|) for p ≤ p0
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and denote by Kn
p := max{Kn

p (t), 0 ≤ t ≤ T}. Then, applying exactly the
same ideas as in the proof of Proposition 3.7, we obtain

Kn+1 ≤ CT
1− 9

2
( 1

p0
− 1

r
)
[
2K + T

9
4
( 1

p0
− 1

r
)
√

MK
]
Kn + CT

1− 9
4
( 1

p0
− 1

r
)
K
√

MKn,

where we denoted

K := max{Kn
r ,Kn−1

p0
} and Kn := max{Kr|W n−W n−1|, Kp0|W n−W n−1|}.

Now, if we set K̄n := max{Kn,
√

Kn} then we have Kn+1 ≤ λ(K,T,M)K̄n,
with

λ(K,T,M) = CT
1− 9

2
( 1

p0
− 1

r
)
[(

2 +
√

MT
9
4
( 1

p0
− 1

r
)
)
K +

√
MT

9
4
( 1

p0
− 1

r
)
√

K
]
.

We already know from (3.40) that

K ≤ C1S
I
p0

+ CT
1− 9

2
( 1

p0
− 1

r
)
(√

MT
9
4
( 1

p0
− 1

r
)
+ (1 +

√
MT

9
4
( 1

p0
− 1

r
)
)K

)
K,

which implies

√
K ≤

(
1 − C

√
MT

1− 9
4
( 1

p0
− 1

r
)

2C(1 +
√

MT
9
4
( 1

p0
− 1

r
)
)T

1− 9
2
( 1

p0
− 1

r
)

)1/2

for small values of T . Then it is a simple matter to observe that a suffi-
cient condition to guarantee that λ < 1 is given by “small enough” times T
such that

T
1− 9

4
( 1

p0
− 1

r
)
<

1

C
√

M
, SI

p0
≤

(
CT

1− 9
4
( 1

p0
− 1

r
) − 1

)2

4CC1

(
1 +

√
MT

9
4
( 1

p0
− 1

r
)
)
T

1− 9
2
( 1

p0
− 1

r
)
.

Iterating this bound we have Kn+1 ≤ λnK̄1, which concludes the proof. �
Then, the sequence of approximate solutions W n converges to a certain

function W in L∞(0, T ;Sp0), as well as

t
9
2
( 1

p0
− 1

r
)
W n is convergent in L∞(0, T ;Sr).

This implies that

n(W n) −→ n(W ) in L∞(0, T ;Lp0(R3
x × R

3
ξ)),

and

t
9
2
( 1

p0
− 1

r
)
n(W n) −→ t

9
2
( 1

p0
− 1

r
)
n(W ) in L∞(0, T ;Lr(R3

x × R3
ξ)),

with r > 3
2
.
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As a consequence, using Lemma 3.8 (ii) we deduce that the sequence

t
9

2p0
−3

V n is a Cauchy sequence in L∞(0, T ;L∞(R3
x)

3).

Since W n+1 is a solution of the integral equation (3.48), the Cauchy
property proved in Lemma 3.11 implies that the integral formula (3.10) is
verified by W by passing to the limit in (3.48), for which we use Lemma 3.4
and the arguments of Proposition 3.7. Similar to the above L1–argument
for (3.48) we verify W ∈ C([0, T ];L1(R6)), and hence W is a mild solution
of the WPFP problem.

Now the passage to the limit as n goes to infinity is justified and this
proves Theorem 3.3.

Notice that the ’smallness’ assumption on the size of the initial data for
existence of solutions to be proved in [0, T ), with T large, stems from the
T–dependence on SI

p0
and M in the proof of Proposition 3.7.

The conditions in Theorem 3.3 on the initial data are satisfied e.g. for
an initial density matrix function ρI ∈ S, the Schwartz space, which also
implies W I ∈ S.

4. Uniqueness and stability

We now turn to show the uniqueness result. Assume that there exist two
different solutions W1 and W2 of the WPFP problem satisfying the bounds
proved in the previous section. We set w(x, ξ, t) = W1(x, ξ, t) − W2(x, ξ, t)
and n(w)(x, t) =

∫
R3

ξ
w(x, ξ, t)dξ. It is clear that w solves the following

problem:

(4.1)
∂w

∂t
+ (ξ · ∇x)w + θ[V1 − V2]W1 + θ[V2]w = σ∆ξw, w(x, ξ, 0) = 0,

with V1 = V (W1) and V2 = V (W2).

If we now consider the problem (4.1) as a nonlinear perturbation of a
heat equation, we find the following integral formulation for the Wigner
function w:

w(x, ξ, t) = −
∫ t

0

∫
R3

v

∫
R3

z

G(x, ξ, z, v, s)θ[V1 − V2]W1(z, v, t − s) dz dv ds

−
∫ t

0

∫
R3

v

∫
R3

z

G(x, ξ, z, v, s)θ[V2]w(z, v, t − s) dz dv ds.

Now, application of Lemma 3.6 with p = q = r easily gives

Sr(t, w) ≤ C(T )
∫ t

0

{
s
− 9

2
( 1

p0
− 1

r
)
(
2 +

√
Ms

9
4
( 1

p0
− 1

r
)
)

Sr(s, w)

+ s
− 9

2
( 1

p0
− 1

r
)
√
‖w(·, ·, s)‖L1(R3

x×R3
ξ
)Sr(s, w)

}
ds,(4.2)
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where we have estimated

M(w)(t) = ‖n(W1 − W2)(·, t)‖L1(R3
x) ≤ ‖w(·, ·, t)‖L1(R3

x×R3
ξ).

On the other hand, repeating the same type of arguments leading to
Proposition 3.10 yields

‖w(·, ·, t) ‖L1(R3
x×R3

ξ) ≤

≤ C(T )
∫ t

0

{
s
− 9

2
( 1

p0
− 1

r
)
(
1 +

√
Ms

9
4
( 1

p0
− 1

r
)
)
‖w(·, ·, s)‖L1(R3

x×R3
ξ
)

+ Sr(w, s) +
√

M(w)(s)Sr(s, w)
}

ds.(4.3)

Denoting X(t) = max{Sr(t, w), ‖w(·, ·, t)‖L1(R3
x×R3

ξ
)}, the estimate (4.2) be-

comes

(4.4) Sr(t, w) ≤ C(T )
∫ t

0
s
− 9

2
( 1

p0
− 1

r
)
(
3 +

√
Ms

9
4
( 1

p0
− 1

r
)
)

X(s) ds,

while (4.3) becomes

(4.5) ‖w(·, ·, t)‖L1 ≤ C(T )
∫ t

0

{
2 + s

− 9
2
( 1

p0
− 1

r
)
(
1 +

√
Ms

9
4
( 1

p0
− 1

r
)
)}

X(s) ds.

Combining (4.4) and (4.5) it is a simple matter to observe that

(4.6) X(t) ≤ C(T )
∫ t

0

{
2 + s

− 9
2
( 1

p0
− 1

r
)
(
3 +

√
Ms

9
4
( 1

p0
− 1

r
)
)}

X(s) ds,

which implies that Sr(t, w) = 0 and ‖w(·, ·, t)‖L1(R3
x×R3

ξ
) = 0 for every t > 0

via the Gronwall lemma. Then W1 = W2, and thus the existence of a unique
mild solution W of the WPFP system satisfying the estimates proved in
Section 3 is guaranteed.

Note that the same arguments yield the stability of mild solutions with
respect to small perturbations of the initial data in L1(R3

x × R
3
ξ) ∩ Sr, but

then on the right–hand side of (4.6) there also appears a constant–in–time
term depending on Sr(W

I
1 − W I

2 ) and ‖W I
1 − W I

2 ‖L1(R3
x×R3

ξ
):

X(t) ≤ C1X(0) + C2(T )
∫ t

0

{
2 + s

− 9
2
( 1

p0
− 1

r
)
(
3 +

√
Ms

9
4
( 1

p0
− 1

r
)
)}

X(s) ds,

which allows to conclude the stability via the Gronwall inequality.
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5. Large–time behavior

The aim of this section is to give a description of the asymptotic behavior
of global solutions W (x, ξ, t) of the three–dimensional frictionless WPFP
system. In particular, we shall prove that global mild solutions W (which
satisfy certain t–uniform a–priori bounds that are motivated by the local–
in–time analysis of Section 3) converge as t → ∞ towards the total charge
of the system times the Green’s function G, defined by (3.8) and (3.9). This
means that the quantum effect due to the Coulomb potential term vanishes
as t → ∞.

In this section we shall need the positivity of the Husimi function, and
hence R(t) ≥ 0 and W (t) ∈ L2(R3

x × R
3
ξ) as announced in §2. We shall also

consider a solution W (t) defined for t ∈ [0,∞), which satisfies

‖W‖L∞(0,∞;L1(R3
x×R3

ξ
)) ≤ C‖W I‖L1(R3

x×R3
ξ
),(5.1)

Mp0 = sup{Sp0(t), 0 ≤ t < ∞} < ∞(5.2)

for p0 > 9
8

and

(5.3) Mr = sup{t 9
2
( 1

p0
− 1

r
)
Sr(t), 0 ≤ t < ∞} < ∞

for 3
2

< r ≤ 2. These bounds, which were shown in Section 3 to hold locally
in time, also appear to be inherent to the properties of global solutions of
Vlasov–Fokker–Planck equations, as can be seen in [11].

5.1. Rescaling and a priori estimates

For any ε > 0, t ≥ 0 and x, ξ ∈ R
3 we define the following sequence of

rescaled solutions

(5.4) Wε(x, ξ, t) = ε−12W (ε−3x, ε−1ξ, ε−2t),

keeping the same self–similarity factors as the fundamental solution G, as
stated in Lemma 3.1 (iii). Also, denote by W I

ε (x, ξ) = Wε(x, ξ, 0). Then,
after a simple change of variables we deduce the following expression for the
rescaled density

(5.5) nε(x, t) = n(Wε)(x, t) = ε−9n(ε−3x, ε−2t).

Moreover, we set Vε = α
4π|x| 
 nε, which yields

Vε(x, t) = ε−3V (ε−3x, ε−2t).
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We also rescale the Husimi transform W h (cf. (2.13)) according to our
group of scale transformations. Let W h

ε denote the rescaled Husimi function
defined by W h

ε = Wε 
x,ξ Γε(x, ξ), where Γε stands for the Gaussian function

Γε(x, ξ) = ε−12π−3e−(|ε−3x|2+|ε−1ξ|2),

so that
W h

ε (x, ξ, t) = ε−12W h(ε−3x, ε−1ξ, ε−2t).

Straightforward computations lead to the following

Lemma 5.1 For any ε > 0, t > 0 and 1 ≤ p ≤ ∞, the following equalities
hold:

(i) ‖Wε(·, ·, t)‖Lp(R3
x×R3

ξ
) = ε

− 12
p′ ‖W (·, ·, ε−2t)‖Lp(R3

x×R3
ξ
).

(ii) ‖nε(·, t)‖Lp(R3) = ε
− 9

p′ ‖n(·, ε−2t)‖Lp(R3).

(iii) ‖Vε(·, t)‖Lp(R3) = ε
9
p
−3‖V (·, ε−2t)‖Lp(R3).

We shall now derive the equation satisfied by the rescaled pair (Wε, Vε).

Lemma 5.2 Let the pair (W,V ) be a mild solution of the WPFP equation.
Then, for any ε > 0 fixed, (Wε, Vε) is a mild solution of the problem

∂Wε

∂t
+ (ξ · ∇x)Wε + εθε[Vε]Wε = σ∆ξWε(5.6a)

Wε(t = 0) = ε−12WI(ε
−3x, ε−1ξ)(5.6b)

in R3
x ×R3

ξ × (0, T ), where the rescaled pseudo–differential operator θε[Vε] is
given by

θε[Vε]Wε(x, ξ, t) =
i

(2π)3

∫
R3

η

∫
R3

y

(
Vε(x + ε4 y

2
, t) − Vε(x − ε4 y

2
, t)

)

× Wε(x, η, t)e−i(ξ−η)·y dy dη.(5.7)

In the sequel we shall denote by WPFPε the rescaled problem (5.6)–(5.7)
with initial data Wε(x, ξ, 0) = W I

ε (x, ξ). As for the non–rescaled system, we
observe that Wε admits a ’two–parts’ integral representation Wε = W 1

ε +W 2
ε

with W k
ε , k = 1, 2, defined as in formula (3.10) up to the natural action of

the scaling group, where the self–similarity of G stated in Lemma 3.1 (iii)
and the expression (5.7) defining the rescaled pseudo–differential operator
have been taken into account.
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Our sequence of rescaled solutions Wε contains information about the
long time behavior of solutions of the WPFP problem in the following way:
We first prove that {Wε}ε converges towards a function g in an appropriate
sense as ε → 0. Indeed, after passing to the limit with the scale parameter
ε → 0 in the rescaled problem (5.6), we show that the nonlinear term is
asymptotically “killed” and identify g as the unique distributional solution
of the linear kinetic FP equation subject to the initial condition g(x, ξ, 0) =
Mδ0, i.e. g = MG. Now, it is enough to observe that the convergence
Wε → g is equivalent to τ 6W (τ

3
2 x, τ

1
2 ξ, τ) → g(x, ξ, 1), as τ → ∞ by setting

t = 1 and ε = τ− 1
2 . In order to develop this process we shall need uniform

estimates with respect to ε which allow for the passage to the limit. Notice
that, with the same notation (affected by the scaling) as in Section 3, the
rescaled densities nk

ε = n(W k
ε ), k = 1, 2 are derived in an analogous way as

those for the non–rescaled system.
In the following lemma we collect some extensions of the properties

proved for the original WPFP problem to the rescaled WPFPε problem.
These properties are easily transfered to the rescaled equation up to the
obvious changes in the proofs already given. Let

Sk
p,ε(t) = max{‖nk

ε,h(|W |)(·, t)‖Lp(R3), h ≥ 0}
for any 1 ≤ p ≤ ∞, and denote by

SI
p,ε = max{‖nI

ε,h(|W |)‖Lp(R3), h ≥ 0}.
Lemma 5.3 The following assertions hold true for mild solutions of the
WPFP equation:

(i) Let 1 ≤ q ≤ ∞. Then, Sq,ε(t) = ε
− 9

q′ Sq(ε
−2t).

(ii) Let 1 ≤ p ≤ q ≤ ∞. Then, S1
q,ε(t) ≤ Ct−

9
2
( 1

p
− 1

q
)SI

p,ε.

(iii) Let 1 ≤ p ≤ q ≤ ∞, 3
2

< r ≤ 2. Then,

S2
q,ε(t) ≤ Cε

∫ t

0
(t − s)−

9
2
( 1

p
− 1

q
)Sp,ε(s)

(
Sr,ε(s) +

√
MSr,ε(s)

)
ds.

(iv) If εSI
p0,ε is small enough for p0 > 9

8
fixed, then there exists a positive

T = T (W I) such that

(5.8) Sq,ε(t) ≤
(
C1(T )SI

p0,ε + C2(T )
)
t
− 9

2
( 1

p0
− 1

q
)

for every 9
8

< q ≤ r and 0 < t ≤ T . Here, C1 and C2 are uniformly
bounded in ε < 1. In addition, if p0 > 3

2
then Sq,ε(t) satisfies (5.8) for

q > 3. Also, if p0 > 9
2

then (5.8) is still valid for q = ∞.
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Proof. The estimate (iii) follows from re–establishing Lemma 3.6 for the
mild solution of the scaled WPFP equation (5.6a). Similarly, the esti-
mate (iv) can be established for the scaled WPFP equation (5.6a) like Propo-
sition 3.7. �

Before proving the convergence properties of Wε which rigorously allow
for passing to the limit ε → 0, we shall clarify how the nonlinear term of
the rescaled problem WPFPε will be asymptotically simplified. To this aim,
we will use essentially the scaling properties of the system and the bounds
established in Lemma 5.3. However, we firstly need the following result
based on the regularizing nature of the FP equation.

Lemma 5.4 Let p0 > 9
8

fixed and W I ∈ L1(R3
x × R

3
ξ) be such that the

hypotheses (5.1), (5.2), and (5.3) are satisfied. Then, the following estimate

Sp0,ε(t) ≤ C(W I , t)ε
− 9

p′

is fulfilled for 0 < 9
8
− p sufficiently small, t > 0 and ε small enough, where

C(W I , t) is a positive constant depending on the initial data W I and on
time, but not on ε. Furthermore, for 0 < δ < t we have

‖F−1
x�→yVε(·, t)‖L1(R3) ≤ C(W I , δ, T )(t − δ)

− 9
2
( 1

p0
− 1

r
)
ε
− 9

p′ .

Proof. We first estimate Sp0,ε(t). For that, we choose 1 < p̃ < p < p0 and
use Lemma 5.3 (ii) and (iii) to obtain the following bound:

Sp0,ε(t) ≤ C1t
− 9

2
( 1

p
− 1

p0
)
SI

p,ε

+ C2 ε
∫ t

0
(t − s)

− 9
2
( 1

p̃
− 1

p0
)
Sp̃,ε(s)

(
Sr,ε(s) +

√
MSr,ε(s)

)
ds

≤C1t
− 9

2
( 1

p
− 1

p0
)
SI

p,ε + C2ε
∫ t

0
(t − s)

− 9
2
( 1

p̃
− 1

p0
)
s−

9
2
( 1

p
− 1

r
)

× max{Sp̃,ε(s), 0 ≤ s ≤ t}max
{
s

9
2
( 1

p
− 1

r
)Sr,ε(s), 0 ≤ s ≤ t

}
ds

+ C2

√
M ε

∫ t

0
(t − s)

− 9
2
( 1

p̃
− 1

p0
)
s−

9
4
( 1

p
− 1

r
)

× max{Sp̃,ε(s), 0 ≤ s ≤ t}max
{
s

9
4
( 1

p
− 1

r
)
√

Sr,ε(s), 0 ≤ s ≤ t
}

ds.(5.9)

It is easy to observe that

max{Sp̃,ε(s), 0 ≤ s ≤ t} ≤ ε
− 9

p̃′ max{Sp̃(τ), 0 ≤ τ ≤ ε−2t} =: Mp̃,ε,

max
{
s

9
2
( 1

p
− 1

r
)Sr,ε(s), 0 ≤ s ≤ t

}
≤

≤ ε
− 9

p0
′ max

{
τ

9
2
( 1

p
− 1

r
)Sr(τ), 0 ≤ τ ≤ t

ε2

}
=: Mr,ε,
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and

max
{
s

9
4
( 1

p
− 1

r
)
√

Sr,ε(s), 0 ≤ s ≤ t
}
≤

≤ ε
− 9

2p0
′ max

{
τ

9
4
( 1

p
− 1

r
)
√

Sr(τ), 0 ≤ τ ≤ t

ε2

}
≤
√

Mr,ε.

Then, a simple computation shows that the r.h.s. of the estimate (5.9) for
Sp0,ε(t) can be bounded by

C1t
− 9

2
( 1

p
− 1

p0
)
ε
− 9

p′ SI
p + C2εT

1− 9
2
( 1

p̃
− 1

p0
+ 1

p
− 1

r
)
Mp̃,ε

(
Mr,ε +

√
MT

9
4
( 1

p
− 1

r
)
√

Mr,ε

)
,

where we have used Lemma 5.3 (i). We now estimate Mp̃,ε and Mr,ε. An in-
terpolation argument for the norm Sp̃ between S1 and Sp0 gives

Mp̃,ε ≤ C‖W I‖
1
2

L1(R3
x×R3

ξ
)
M

1
2
p0ε

− 9
p̃′ ,

where we used hypothesis (5.1) and Mp0 = max{Sp0(t), 0 ≤ t < ∞}. By

hypothesis (5.3) we have Mr,ε ≤ Mrε
− 9

p0
′ < ∞. Therefore, we have

Sp0,ε(t) ≤ C1t
− 9

2
( 1

p
− 1

p0
)
ε
− 9

p′ SI
p + C2T

1− 9
2
( 1

p̃
− 1

p0
+ 1

p
− 1

r
)‖W I‖

1
2

L1(R3
x×R3

ξ
)
M

1
2
p0

×max{Mr,
√

Mr}ε1−9( 1
p̃′ +

1
p0

′ )
(
1 +

√
MT

9
4
( 1

p
− 1

r
)ε

9
2p′
)

and the proof of the first assertion concludes by identifying

C(W I , t) = C1t
− 9

2
( 1

p
− 1

p0
)
SI

p + C2T
1− 9

2
( 1

p̃
− 1

p0
+ 1

p
− 1

r
)‖W I‖

1
2

L1(R3
x×R3

ξ
)
M

1
2
p0

×max{Mr,
√

Mr}
(
1 +

√
MT

9
4
( 1

p
− 1

r
)
)

when choosing p close enough to 9
8

and 18
17

< p̃ < p close enough to 18
17

.

The proof of the second assertion stems from an application of Lemma 5.3
(iv) with initial condition given by Wε(x, ξ, δ) instead of W I

ε (x, ξ). First we
must check that the quantity εSp0,ε(δ) is small enough, which is guaranteed

since εSp0,ε(δ) ≤ C(W I , δ)ε
1− 9

p′ for 18
17

< p < 9
8
, thus 1 − 9

p′ > 0. As

consequence, Lemma 5.3 (iv) yields

‖F−1
x�→yVε(·, t)‖L1(R3) ≤ C

(
Sr,ε(t) +

√
MSr,ε(t)

)

≤ (t − δ)
− 9

2
( 1

p0
− 1

r
)
(C1(T )Sp0,ε(δ) + C2(T ))

+
√

M(t − δ)
− 9

4
( 1

p0
− 1

r
)
√

C1(T )Sp0,ε(δ) + C2(T ).

Finally, the result follows from the first part of the Lemma. �
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These bounds give the maximum rate of decay (with respect to the scal-
ing group) of the pseudo–differential term in the rescaled equation (5.6). If
we now reformulate this term as a convolution, i.e. −θε[Vε]Wε = Φε
ξWε with

Φε = −iF−1
y �→ξ

(
Vε(x +

ε4y

2
, t) − Vε(x − ε4y

2
, t)

)

= −16 ε−12 Re

(
ie2iε−4ξ·x (F−1

x�→ξVε

)
(2

ξ

ε4
, t)

)

and Φε(x, ξ, t) = ε−6Φ(ε−3x, ε−1ξ, ε−2t), we find that, using the same kind
of ideas developed in the previous sections in order to estimate

‖F−1
x�→yV (·, t)‖L1(R3),

the following estimate holds:

Proposition 5.5 Under the hypotheses of Lemma 5.4, we have

‖(Φε 
ξ Wε)(·, ·, t)‖L1(R3
x×R3

ξ
) ≤ C(W I , δ)‖W I‖L1(R3

x×R3
ξ
)(t − δ)

− 9
2
( 1

p0
− 1

r
)
ε
− 9

p′

for 0 < 9
8
− p sufficiently small and ε small enough, where C(W I , δ) is a

positive constant depending on W I and δ but not on ε. As a consequence,

the nonlinear term of the WPFPε problem decays like ε
1− 9

p′ in L1(R3
x ×R3

ξ).

The proof is an easy consequence of the Young inequality and the second
assertion in Lemma 5.4.

5.2. Compactness in L1

We recall the following result due to Bouchut and Dolbeault ([6, p. 510]):

Lemma 5.6 Let σ > 0, T > 0 and 1 ≤ p < ∞ and consider the solution
f ∈ C([0, T ]; Lp(R2N )) of

L0f ≡ ∂tf + v · ∇xf − σ∆vf = h in (0, T ) × R
2N , f(·, 0) = f0.

Assume that f0 ∈ F a bounded set of Lp(R2N ) and h ∈ H a bounded subset
of Lq((0, T ); Lp(R2N )), with 1 < q ≤ ∞. Then, for any η > 0 and ω bounded
open subset of R

2N , f is compact in C([η, T ];Lp(ω)).

Our proof of compactness in L1 is based on a straightforward application
of this result. We have
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Corollary 5.7 Denote by

hε(x, ξ, t) = −εθ[Vε]Wε(x, ξ, t).

Then, for ε sufficiently small there is δ > 0 such that, for every 0 < η < T ,
we have

‖hε‖L∞([η,T ];L1(R3
x×R3

ξ
)) ≤ C(W I , δ)εδ.

The proof is a direct consequence of Proposition 5.5. We shall also need
the following bounds for the kinetic energy and the inertial momentum

E(t) =
∫

Rd
x

e(x, t) dx, I(t) =
∫

Rd
ξ

I(ξ, t) dξ.

Proposition 5.8 Assume that SI
6/5 is bounded and that the initial kinetic

energy E(0) and the initial inertial momentum I(0) are finite. Then, there
exist positive constants C = C(T ) such that, for every t ≥ 0:

(i) E(t) ≤ C(1 + t).

(ii) I(t) ≤ C(1 + t)3.

Proof. (i) From Lemma 3.8 (i) and (3.34) with p0 = q = 6
5

we first deduce

‖∇xV (·, t)‖L2(R3) ≤ C‖n(·, t)‖
L

6
5 (R3)

≤ C(T ).

Then, the result can be deduced from the energy equation (see (2.41))

(5.10)
d

dt

∫
Rd

x

(
e(x, t) +

α

2
|∇xV (x, t)|2

)
dx = 3σM.

Integrating (5.10) over (0, t) yields

E(t) = E(0) + 3σMt +
α

2

{
‖∇xV (·, 0)‖2

L2(R3) − ‖∇xV (·, t)‖2
L2(R3)

}
.

Now, using the bound for the potential energy we find E(t) ≤ C1(1 + t),
which concludes the proof of (i).

(ii) follows from the inertial momentum equation (2.35)

d

dt
I = 2

∫
R3

x

∫
R3

ξ

(x · ξ)W (x, ξ, t) dξ dx.

Integrating this equation with respect to time and taking into account the
identity∫ t

0

∫
R3

x

∫
R3

ξ

(x · ξ)W h(x, ξ, t) dξ dx =
∫ t

0

∫
R3

x

∫
R3

ξ

(x · ξ)W (x, ξ, t) dξ dx,
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we obtain

I(t) = I(0) + 2
∫ t

0

∫
R3

x

∫
R3

ξ

(x · ξ)W h(x, ξ, s) dξ dx ds.

Then, an application of the Hölder inequality leads to

I(t) ≤ I(0) + C
∫ t

0

√
Ih(s)

√
Eh(s) ds.

The proof concludes by using the relations (2.42) and (2.43). �

Using Proposition 5.8 and the relation between the Husimi kinetic en-
ergy and the kinetic energy given in (2.42), the following estimate for the
growth in time of the kinetic energy associated with the rescaled Husimi
function holds:

∫
R3

x

∫
R3

ξ

|ξ|2
2

W h
ε (x, ξ, t) dξ dx = ε2

∫
R3

x

∫
R3

ξ

|ξ|2
2

W h(x, ξ, ε−2t) dξ dx

≤ Cε2(1 + ε−2t) ≤ C(1 + t).

Also, for the inertial momentum associated with W h
ε we find∫

R3
ξ

∫
R3

x

|x|2W h
ε (x, ξ, t) dx dξ = ε6

∫
R3

ξ

∫
R3

x

|x|2W h(x, ξ, ε−2t) dx dξ

≤ Cε6(1 + ε−2t)3 ≤ C(1 + t)3.

Now, for η > 0 fixed we can apply Lemma 5.6 to the family

F = {Wε(x, ξ, t), ε ≤ ε0},
with ε0 = ε0(η) sufficiently small, and deduce the following result:

Theorem 5.9 Let (W,V ) be a mild solution of the WPFP equation (1.6)
with initial condition W I ∈ L1(R3

x ×R3
ξ), such that the initial kinetic energy

E(0) and the initial inertial momentum I(0) are finite. Let also W (t) ∈
L2(R3

x × R
3
ξ), R(t) ≥ 0 and SI

p0
be bounded with p0 ≥ 6

5
fixed, such that the

hypotheses (5.1), (5.2) and (5.3) are fulfilled. Then,

lim
t→∞ ‖W (·, ·, t) − MG0(·, ·, t)‖L1(ωt) = 0

for any ω bounded open subset of R
6, where ωt = {(t 3

2 x, t
1
2 ξ) s.t. (x, ξ) ∈ ω}.

Also,
lim
t→∞ ‖W h(·, ·, t) − MG0(·, ·, t)‖L1(R3

x×R3
ξ
) = 0 .
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Proof. Fix 0 < η < T such that η ≤ t ≤ T and consider the families

F = {Wε(·, ·, ·), 0 < ε ≤ ε0(η)}, H = {hε(·, ·, t), 0 < ε ≤ ε0(η)},
with hε = −εθ[Vε]Wε. Then, by Lemma 5.1 (i) and hypothesis (5.1) F is
a bounded subset of L∞(0,∞;L1(R3

x × R3
ξ)). Also, H is a bounded subset

of L∞([η, T ];L1(R3
x × R3

ξ)) by Corollary 5.7. Lemma 5.6 now implies that
F is compact in C([η, T ];L1(ω)) for every 0 < η < T , ω being an arbitrary
bounded subset of R

3
x × R

3
ξ . Let g denote one of its accumulation points.

Then, according to Corollary 5.7 we can pass to the limit ε → 0 in the
rescaled problem (5.6) and obtain that the nonlinear term vanishes at the
limit, so that g is the unique weak solution of the linear equation (3.7) with
initial condition g(·, 0) = Mδ0 (cf. (5.6b)), δ0 representing the Dirac mass
centered at 0 and M being the total charge of the system. Thus, g(x, ξ, t)
coincides with MG0(x, ξ, t) in the sense of distributions because G0 is the
fundamental solution of the linear operator L defined in (3.7). The first
assertion of the Theorem follows straightforwardly from the self–similarity
of G0 (cf. Lemma 3.1 (iii)) by setting t = 1 and τ = ε−2, then performing

the change of variables x �→ τ
3
2 x, ξ �→ τ

1
2 ξ.

Now it is a simple matter to see that the sequence of rescaled Husimi
functions W h

ε is also compact in C([η, T ];L1(ω)). To this end, choose R > 0
such that ω ⊂ BR and let χR be the characteristic function associated with
BR, where BR denotes the ball in R

6 of radius R centered at the origin.
Then, we have

‖W h
ε − g‖L1(ω) ≤ ‖(Wε − g) ∗x,ξ Γε‖L1(ω) + ‖g ∗x,ξ Γε − g‖L1(ω)

≤ ‖(Wε−g)∗x,ξΓεχR‖L1(ω)+‖(Wε−g)∗x,ξΓε(1−χR)‖L1(ω)+‖g∗x,ξΓε−g‖L1(ω)

≤ ‖Wε − g‖L1(B2R) + C‖Γε‖L1(Bc
R) + ‖g ∗x,ξ Γε − g‖L1(R6).

Here, C = C(‖W I‖L1(R6), ‖g‖L1(R6)) and Bc
R denotes the complementary set

of BR. Passing to the limit as ε → 0 proves the compactness of W h
ε in L1(ω).

Now, it suffices to observe that the kinetic energy and the inertial mo-
mentum associated with W h

ε satisfy

E(W h
ε )(t) ≤ C(T ), I(W h

ε )(t) ≤ C(T ), 0 ≤ t ≤ T, ε ≤ 1.

As consequence, we claim that the sequence W h
ε is compact in the whole

space C([η, T ]; L1(R3
x ×R3

ξ)) for every 0 < η < T , as follows from the
estimate ∫

R3
x

∫
R3

ξ

|W h
ε − g| dξ dx ≤

∫
BR

|W h
ε − g| dξ dx +

C(T )

R2
,

where we have used that (|ξ|2 + |x|2)W h
ε , (|ξ|2 + |x|2)g ∈ L1(R3

x × R
3
ξ) with

bounds independent of ε. Note that we used the positivity of W h
ε for this

L1–bound. The proof concludes by identifying t = 1 and ε = τ− 1
2 . �
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