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Independence of time and position
for a random walk

Christophe Ackermann, Gérard Lorang and Bernard Roynette

Abstract

Given a real-valued random variable X whose Laplace transform
is analytic in a neighbourhood of 0, we consider a random walk
(Sn, n ≥ 0), starting from the origin and with increments distributed
as X. We investigate the class of stopping times T which are indepen-
dent of ST and standard, i.e. (Sn∧T , n ≥ 0) is uniformly integrable.
The underlying filtration (Fn, n ≥ 0) is not supposed to be natural.
Our research has been deeply inspired by [7], where the analogous
problem is studied, but not yet solved, for the Brownian motion. Like-
wise, the classification of all possible distributions for ST remains an
open problem in the discrete setting, even though we manage to iden-
tify the solutions in the special case where T is a stopping time in the
natural filtration of a Bernoulli random walk and minT ≤ 5. Some
examples illustrate our general theorems, in particular the first time
where |Sn| (resp. the age of the walk or Pitman’s process) reaches a
given level a ∈ N∗. Finally, we are concerned with a related problem
in two dimensions. Namely, given two independent random walks
(S′

n, n ≥ 0) and (S′′
n, n ≥ 0) with the same incremental distribution,

we search for stopping times T such that S′
T and S′′

T are independent.

Introduction

B. de Meyer, B. Roynette, P. Vallois and M. Yor investigate the follow-
ing problem in [7]: given a linear Brownian motion (Bt, t ≥ 0) starting
from 0 and adapted to a filtration (Ft, t ≥ 0), characterize the (Ft)−stopping
times T such that (i) (Bt∧T , t ≥ 0) is uniformly integrable (T is then called
“B-standard”) and (ii) T and BT are independent. This question is strongly
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related to the celebrated “Skorokhod problem” for the space-time process
((t, Bt), t ≥ 0), which consists in finding a stopping time T such that (T,BT )
follows a given distribution L on R+×R. The characterization of all possible
stopping distributions L turns out to be difficult, although a necessary and
sufficient condition, due to the works of Bourekh [2], Rost [11], Falkner and
Fitzsimmons [3], is known. Hence it is natural to introduce the additional
“simplifying” conditions (i) and (ii) above. Nevertheless, even in that case a
simple description of the stopping distributions (as obtained e.g. in [12] for
the two-dimensional process ((Lt, Bt) , t ≥ 0), where (Lt, t ≥ 0) denotes the
local time at 0 of the Brownian motion) remains an open problem.

In this paper, we are concerned with the discrete version of the above
problem. More precisely, let X be a real-valued random variable whose
Laplace transform ϕ(z) = E(exp zX) is analytic in some neighbourhood
of 0. This implies in particular that X has finite moments of any order.
Let S = (Sn, n ≥ 0) be a random walk starting from the origin, with in-
crements distributed as X. We assume that S is adapted to a filtration
(Fn, n ≥ 0) which is not necessarily the natural filtration (cf. (1.1)).

In Section 1, we investigate the class of (Fn)−stopping times T such that

(IP) T is S-standard and T ⊥⊥ ST .

Here the label “S-standard” has the same meaning as in the case of Brownian
motion, whether X is centered or not (cf. definition 1.1). Theorem 1.1 gives
some properties of stopping times solving (IP). First, we prove that the
Laplace transform ψT (z) = E(exp zST ) is well-defined and holomorphic in
the strip of regularity of ϕ. Then we establish the following relation, referred
to as Wald’s identity:

|ϕ(z)| ≥ 1 ⇒ E(exp zST ) E

(
1

ϕ(z)T

)
= 1.

Denoting by gT (r) = E(rT ) the generating function of T , Wald’s identity
reads:

|ϕ(z)| ≥ 1 ⇒ ψT (z) gT

(
1

ϕ(z)

)
= 1.

The consequences of this equality are manifold. First of all, it shows that
the law of T uniquely determines that of ST , and conversely. Moreover, it
implies that the generating function of T is analytic at 1, whence T has
finite moments of any order. Under the stronger assumption that gT is an
entire function and with some technical constraints on ϕ, we obtain that T
is necessarily constant. This is the object of theorem 1.2. Finally, when ϕ
is entire, Wald’s identity permits us to relate the order and the type of ψT
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to those of ϕ (cf. proposition 1.1). We conclude Section 1 by improving
Khinchine’s inequalities for ST , in the case where X is centered and belongs
to Newman’s class (L). The reader is referred to proposition 1.3 for precise
statements.

Section 2 is entirely devoted to examples of stopping times solving (IP).
We begin by proving a few general results when S is a Bernoulli random
walk, that is, when P(X = 1) = p = 1 − P(X = −1). In the symmet-
ric case (p = 1/2), a direct application of Wald’s identity implies that, for
each T satisfying (IP), there exists a polynomial P̃m of degree m = min T
which uniquely determines the joint law of (ST , T ) through the relations
ψT (z) = P̃m(ch z) and gT (r) = 1/P̃m(1/r) (cf. lemma 2.2). If in addition
the filtration (Fn, n ≥ 0) is assumed to be natural, it will be shown that the
same T also solves (IP) in the general case 0 < p < 1 (cf. proposition 2.1).
We study a few examples in detail, in particular the first time where |Sn|,
respectively Pitman’s process reaches a given level a ∈ N∗. The most in-
teresting example is certainly provided by the first time the age process
reaches a; here the independence of T and ST is realized for any distribution
of X (cf. proposition 2.4).

We return to the symmetric Bernoulli random walk in Section 3. Here,
every probability distribution of some ST , where T is a stopping time in
the natural filtration of the walk and satisfies (IP), will be called a “stop-
ping distribution”. By elementary combinatorial arguments, we obtain an
algorithm which characterizes the stopping distributions according to the
maximal element of their support (which is also the minimum of the corre-
sponding stopping time) (cf. proposition 3.1 and theorem 3.1). Let us stress
the fact that this algorithm is of little practical interest because infinitely
many steps are necessary to check that a given distribution is actually a
stopping distribution. To each stopping distribution, say L(ST ), we asso-
ciate its “generating polynomial” (which, roughly speaking, is nothing else
but the polynomial P̃m above, m being the minimum of the corresponding
stopping time T ) and we are able to express the law of T in terms of the
roots of the generating polynomial (cf. proposition 3.2). Finally, we manage
to identify all stopping distributions for m ≤ 5. The general classification
of stopping distributions remains an open problem.

In Section 4, we turn to a related problem in two dimensions. Given two
independent symmetric Bernoulli random walks (S ′

n, n ≥ 0) and (S′′
n, n ≥ 0),

we investigate the class of stopping times T such that S′
T and S′′

T are inde-
pendent. We prove that when T is not too large (cf. theorem 4.1 for details),
S′

T and S′′
T are both distributed as SN , for some integer N . In the appendix,

we generalize this result to more general increments.
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1. General theorems

Let (X,Xi, i ≥ 1) be a sequence of i.i.d. real-valued random variables defined
on some filtered probability space (Ω,F , (Fn, n ≥ 0), P), such that

(1.1)

{
σ(X1, X2, . . . , Xn) ⊂ Fn, n ≥ 1
Fn ⊥⊥ σ(Xn+1, Xn+2, . . . ), n ≥ 0.

The Laplace transform ϕ(z) = E(exp zX) is assumed to be analytic in a
neighbourhood of 0. Let Bϕ denote the strip of regularity of ϕ, i.e.

Bϕ = {z ∈ C, ϕ(�e z) < +∞} = {z ∈ C,−α < �e z < β}.

Throughout this work, it will be assumed that 0 < α, β ≤ ∞. This implies
in particular that X has finite moments of any order. The trivial case X = 0
a.s. will always be excluded.

We define a random walk by S0 = 0 and Sn = X1 +X2 + ...+Xn, n ≥ 1.
Let us recall that the centered walk S̃ = (Sn − nµ, n ≥ 0), where µ = EX,
is a martingale with respect to the filtration (Fn, n ≥ 0). When µ ≥ 0
(resp. µ ≤ 0), (Sn, n ≥ 0) is a submartingale (resp. a supermartingale) with
respect to this filtration.

Definition 1.1 A stopping time T in the filtration (Fn, n ≥ 0) is said to be
S−standard if T is a.s. finite and if the stopped process ST = (Sn∧T , n ≥ 0)
is uniformly integrable.

The prefix “S−” will be omitted whenever no confusion is possible.

Lemma 1.1 If ET < +∞, then T is standard.

Proof. If ET < +∞, then S̃T is a uniformly integrable martingale. Indeed,
denoting σ2 = VarX, it is easy to check that (S̃n∧T − (n∧ T )σ2, n ≥ 0) is a
martingale, which implies that E(S̃2

n∧T ) = σ2E(n∧T ). Hence, the process S̃T

is bounded in L2 and therefore u.i. As a result, ST is the sum of two u.i.
processes and thus is also u.i. �

Remark 1.1 Retain from this proof that if ET < +∞, then S̃T is u.i. 


1.1. Independence of T and ST . Wald’s identity and consequences

For any a.s. finite (Fn)−stopping time T , we will adopt the notation ψT (λ) =
E(expλST ) throughout. The following theorem gives some necessary prop-
erties of stopping times which solve the independence problem (IP) stated
in the introduction.
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Theorem 1.1 Let T be a (Fn)−stopping time satisfying (IP). Then:

a) ψT is holomorphic in the strip of regularity of ϕ, that is:

(1.2) ∀λ ∈ ]−α, β[ , ψT (λ) = E(expλST ) < +∞.

b) Wald’s identity holds for all z ∈ C such that |ϕ(z)| ≥ 1, i.e.:

(1.3) |ϕ(z)| ≥ 1 ⇒ E(exp zST ) E

(
1

ϕ(z)T

)
= 1.

c) If |ϕ(z)| ≥ 1 then |ψT (z)| ≥ 1.

d) gT (r) := E(rT ) < +∞, for some r > 1, i.e. the radius of convergence of
the generating function of T is > 1.

e) Setting µ = EX and σ2 = VarX, we have

(1.4) EST = µET and VarST = σ2ET − µ2 VarT.

Remark 1.2 (i) By a), if ϕ is an entire function, the same is true for ψT .
(ii) If µ > 0 (resp. µ < 0) then (1.3) holds for all nonnegative (resp.
nonpositive) real numbers. If X is centered, (1.3) holds for every z ∈ R.
(iii) According to d), T has finite moments of any order. In particular, T is
of finite expectation.
(iv) Wald’s identity shows that the law of T uniquely determines that of ST ,
and conversely. For instance, ST has the same distribution as SN , for some
integer N , if and only if T = N a.s. In this case ψT (z) = ϕ(z)N .
(v) Let T be a stopping time satisfying (IP) and F0-measurable, that is,
independent of the variables X1, X2, . . . An elementary computation yields
the equality: E(expλST ) = E(ϕ(λ)T ). Wald’s identity becomes

E(ϕ(λ)T )E(ϕ(λ)−T ) = 1,

for every λ ∈ R such that ϕ(λ) ≥ 1. Now, by Cauchy–Schwarz, T is neces-
sarily constant a.s. The same conclusion holds even without the hypothesis
that T is standard. Indeed, by independence of T and ST , for any Borel set
A and any integer n:

P (ST ∈ A and T = n) = P (ST ∈ A) P (T = n) .

On the other hand, T being independent of the Xi, we have:

P (ST ∈ A and T = n) = P (Sn ∈ A and T = n) = P (Sn ∈ A) P (T = n) .

Thus,
∀n ≥ 0, P (T = n) = 0 or ST ∼ Sn,

which means that T = N a.s., for some integer N . Note incidentally that
this remark applies to the case when X is constant a.s.
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(vi) For a positive, integer-valued random variable T , with finite second
moment and independent of the Xi, the following identities are classical:

(1.5) EST = µ ET and VarST = σ2ET + µ2VarT.

If moreover T satisfies (IP), then (1.4) and (1.5) imply that VarT = 0. In
other words, we have proved again that T is constant a.s. 


Proof of Theorem 1.1. a) For every λ ∈ ]−α, β[, the exponential martin-
gale (Mn(λ) = exp(λSn)/ϕ(λ)n, n ≥ 0) is well defined. Since T is standard,
we know that limn→∞ Sn∧T = ST , a.s. and L1. Now, by Fatou’s lemma,

E (MT (λ)) = E
(
lim inf
n→∞

Mn∧T (λ)
)
≤ lim inf

n→∞
E (Mn∧T (λ)) = 1.

Combining this inequality with the independence assumption, we get

(1.6) E (MT (λ)) = E (exp λST ) E(ϕ (λ)−T ) ≤ 1.

From the fact that E(ϕ (λ)−T ) > 0, we finally deduce (1.2).

Remark 1.3 Another obvious consequence of (1.6) is that E(ϕ(λ)−T )<+∞,
−α < λ < β, else we would have ST = ±∞ a.s., a contradiction. In the
case µ 
= 0, this settles immediately point d) of our theorem. In particular,
T has then finite moments of any order and remark (1.1) yields the uniform
integrability of S̃T . 


b) Let us extend the definition of the exponential martingale to complex
numbers. More precisely, for every z ∈ Bϕ such that ϕ(z) 
= 0, we set:

Mn (z) = exp (zSn) /ϕ (z)n , n ≥ 0.

If |ϕ(z)| ≥ 1, then |Mn∧T (z)| ≤ exp [(�e z) Sn∧T ]. We prove first that
the dominating process (exp [(�e z) Sn∧T ] , n ≥ 0) is uniformly integrable
when µ ≥ 0. Two cases have to be distinguished:

�e z ≥ 0 ⇒ exp [(�e z) Sn∧T ] ≤ exp [(�e z) E (ST/Fn∧T )]

≤ E (exp (�e z) ST/Fn∧T )

�e z < 0 ⇒ exp [(�e z)Sn∧T ] = exp
[
(�e z) S̃n∧T + (�e z) (n ∧ T )µ

]
≤ exp

[
(�e z) S̃n∧T

]
= exp

[
(�e z) E

(
S̃T/Fn∧T

)]
as S̃T is u.i.

≤ E
[
exp

(
(�e z) S̃T

)
/Fn∧T

]
.
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Inverting the above arguments when µ < 0, we conclude that, for any µ,
the martingale Mn∧T (z) is u.i. By the optional stopping theorem we get:

E
[
exp (zST ) /ϕ (z)T

]
= 1.

The independence of T and ST finally leads to (1.3).

c) This is an immediate corollary of b).

d) As already noticed in remark 1.3, the assertion is trivial in the case µ 
= 0.
More generally, the function 1/ψT (z) is analytic at every z ∈ Bϕ such that
ψT (z) 
= 0. This is true at 0, since ψT (0) = 1. Thus,

(1.7) ωT (z) = E

(
1

ϕ (z)T

)
=

1

ψT (z)

admits analytic continuation in some open disc D centered at 0. Since ϕ(D)
is open and contains 1, there exists some γ ∈ ]0, 1[ ∩ ϕ (D) for which we
have E[1/γT ] < +∞.

e) Both identities follow easily from Wald’s identity written in terms of the
power series expansion of ψT and ωT at 0. �

Lemma 1.2 If T satisfies (IP) then either P (T = 0) = 0 or P (T = 0) = 1.

Proof. By the independence assumption,

P ({T = 0} ∩ {ST = 0}) = P ({T = 0}) · P ({ST = 0})
⇔ P ({T = 0}) = P ({T = 0}) · P ({ST = 0})
⇔ P ({T = 0}) = 0 or P ({ST = 0}) = 1.

Now, assume that ST = 0 a.s. and, for instance, take µ ≥ 0. This implies
that 0 = E(ST/Fn∧T ) ≥ Sn∧T . On the other hand, since ST is a submartin-
gale, E(Sn∧T ) ≥ E(S0) = 0. Hence Sn∧T = 0 a.s. for every n. The same
conclusion holds of course in the case µ < 0. Observing that the event
{T 
= 0} belongs to F0, we have:

P ({T 
= 0} ∩ {X1 = 0}) = P ({T 
= 0}) · P ({X1 = 0})
⇔ P ({T 
= 0} ∩ {S1∧T = 0}) = P ({T 
= 0}) · P ({X1 = 0})

⇔ P ({T 
= 0}) = P ({T 
= 0}) · P ({X1 = 0}) .

Since the case X1 = 0 a.s. was excluded from the beginning, it follows that
P(T 
= 0) = 0, i.e. T = 0 a.s. �

Proposition 1.1 Assume that ϕ is an entire function. Let T 
= 0 be a
(Fn)−stopping time solving (IP). Then:

a) ϕ and ψT have the same order, which belongs to [1,+∞].

b) If ϕ is of finite order and of type τ , then the type of ψT is equal to min T ·τ .
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Proof. Let us first recall the elementary fact that

Mϕ (r) := sup
|z|≤r

|ϕ (z)| = max {ϕ (r) , ϕ (−r)} , r ≥ 0.

Furthermore, we note that if P(X < 0) > 0, then limr→−∞ ϕ(r) = +∞.
Thus, only nonnegative random variables X satisfy limr→−∞ ϕ(r) < +∞.
More precisely, if X ≥ 0 a.s., then r ≥ 0 ⇒ ϕ(r) ≥ 1 and r ≤ 0 ⇒ ϕ(r) ≤ 1.
Hence

X ≥ 0 a.s. ⇒ Mϕ (r) = ϕ (r) , ∀r ≥ 0

and
X ≤ 0 a.s. ⇒ Mϕ (r) = ϕ (−r) , ∀r ≥ 0.

Obviously, if X ≥ 0 a.s. (resp. X ≤ 0 a.s.) then the same is true for ST .
Thus, restricted to R, the functions ϕ and ψT always tend to +∞ together.

Now, set m = min T , m 
= 0 by assumption. For every λ ∈ R such that
ϕ(λ) ≥ 1, Wald’s identity yields the following upper bound for ψT (λ):

ψT (λ) =
1

E
(
ϕ (λ)−T

) ≤ 1

E
(
ϕ (λ)−T1I{T = m}

) ≤ ϕ (λ)m

P (T = m)
.

Thus, the order of ψT is at most equal to the order of ϕ. If ϕ is of finite
order ρ and of type τ then the type of ψT is bounded above by mτ since

lim|λ|→+∞
log ψT (λ)

λρ
≤ m lim|λ|→+∞

log ϕ (λ)

λρ
= mτ.

On the other hand, when ϕ(λ) > 1 we have

E
(
ϕ (λ)−T

)
=

+∞∑
k=m

ϕ (λ)−k P (T = k) (m 
= 0)

≤
+∞∑
k=m

ϕ (λ)−k =
ϕ (λ)−m

1 − ϕ (λ)−1 ,

which yields

ψT (λ) =
1

E
(
ϕ (λ)−T

) ≥ ϕ (λ)m (1 − ϕ (λ)−1) .

This shows that the order of ψT is at least equal to the order of ϕ. If ϕ is of
finite order ρ and type τ then the type of ψT is bounded below by mτ since

lim|λ|→+∞
log ψT (λ)

λρ
≥ lim|λ|→+∞

m log ϕ (λ) + log
(
1 − ϕ (λ)−1)

λρ
= mτ.

�
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1.2. Conditions which imply the constancy of T

Statement d) of Theorem 1.1 asserts that the radius of convergence RT of
the generating function gT is > 1. Assuming that RT = ∞ and imposing
some technical constraints on ϕ, we are able to show that T is necessarily
constant.

Theorem 1.2 Assume that ϕ is an entire function. Let T be a (Fn)-stopping
time satisfying (IP). Each of the following conditions:

(a) T is bounded;

(b1) ∀r > 0, gT (r) < +∞ and ϕ has at least one zero;

(b2) ∀r > 0, gT (r) < +∞ and ϕ has finite order

implies the constancy of T .

Remark 1.4 (i) In particular, there are no bounded stopping times T such
that T ⊥⊥ ST , except the constant ones.
(ii) If ϕ is of finite order, then it has at least one zero, except for two cases,
as will be shown in the lemma below.
(iii) If ϕ is of infinite order, then it does not necessarily vanish, even in the
symmetric case. For example, let X1 and X2 be two independent variables
having the Poisson distribution with parameter λ. Setting X = X1 − X2,
we have ϕX(z) = exp[2λ(ch z − 1)] 
= 0.
(iv) Open problem: prove Theorem 1.2 without assuming that ϕ has at least
one zero. 


Lemma 1.3 If ϕ is an entire function of finite order and without any zero,
then X is necessarily constant or gaussian.

Proof of Lemma 1.3. By Hadamard’s factorization theorem for entire
functions of finite order (cf. [13] or [1]), there exists a polynomial P of
degree at most the order of ϕ, such that ϕ(z) = exp(P (z)). Therefore the
statement of the lemma comes immediately from Marcinkiewicz’s theorem
(cf. [Lu], p. 213). �

Proof of Theorem 1.2. Let Zf denote the set of zeros of an holomorphic
function f . Our first step is to show that

(1.8) Zϕ = ZψT
,

whenever the radius of convergence of gT is infinite. Under this assumption,
which will be in force throughout the proof, the function ωT (z) = E(ϕ(z)−T )
is analytic at each z such that ϕ(z) 
= 0. Wald’s identity ψT (z) · ωT (z) = 1,
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at the beginning only valid when |ϕ(z)| ≥ 1, can now be extended on Zc
ϕ by

analytic continuation:

(1.9) ∀z ∈ Zc
ϕ, ψT (z) · ωT (z) = 1.

In particular, if ϕ(z) 
= 0 then ψT (z) 
= 0. If ϕ(z) = 0, the principle of
preservation of a domain allows us to choose a sequence of complex num-
bers (zn) such that zn → z and ϕ(zn) ∈ R∗

+. Then ωT (zn) tends to infinity
and by (1.9), ψT (zn) tends to 0, whence ψT (z) = 0. Thus (1.8) holds.

Now, assume that Zϕ 
= ∅. This implies that T is necessarily bounded.
Indeed, rewrite (1.9) as follows:

(1.10) ∀z ∈ Zc
ϕ, ωT (z) =

1

ψT (z)
,

and observe that the righthand side of the last equality is a meromorphic
function. Given z0 ∈ Zϕ, (1.8) ensures the existence of an integer N such
that the function

E
(
ϕ (z)N−T

)
=

ϕ (z)N

ψT (z)

is holomorphic in some neighbourhood of z0. On the other hand,

E
(
ϕ (z)N−T

)
=

+∞∑
k=0

ϕ (z)N−k pk,

where pk = P(T = k). Since limz→z0 ϕ(z) = 0, we may choose again a
sequence (zn) such that zn → z0, ϕ (zn) ∈ R∗

+ and by continuity, ϕ (zn) → 0.
If pl 
= 0 for some l > N , we would have

lim
n→∞

E
(
ϕ (zn)N−T

)
≥ lim

n→∞
ϕ (zn)N−l pl = +∞,

a contradiction. Hence T ≤ N a.s.

We finally prove that T is in fact constant. Set N = max T and n =
min T , so that in particular pN 
= 0 and pn 
= 0. For every z ∈ Zc

ϕ, we have

ωT (z) = E
(
ϕ (z)−T

)
=

N∑
k=n

pk

ϕ (z)k
=

1

ϕ (z)N

N∑
k=n

pkϕ (z)N−k =
P (ϕ (z))

ϕ (z)N
,(1.11)

where P is a polynomial of degree N − n such that P (0) 
= 0. Combin-
ing (1.10) and (1.11) yields:

∀z ∈ Zc
ϕ,

P (ϕ (z))

ϕ (z)N
=

1

ψT (z)
.
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This shows that P (ϕ(z)) never vanishes. Thus, inverting both sides, we get:

∀z ∈ C, ψT (z) =
ϕ (z)N

P (ϕ (z))
,

whence

∀z ∈ Zc
ϕ,

ψT (z)

ϕ (z)n =
ϕ (z)N−n

P (ϕ (z))
.

It is easy to see that the righthand side of the last equality is a bounded entire
function, so necessarily constant by Liouville’s theorem. Since ψT (0) =
ϕ (0) = 1, we have ψT (z) = ϕ (z)n. This means that T = n a.s., by
Remark 1.2, (iv).

It remains to study the Gaussian case, i.e. ϕ(z) = exp(µz + σ2

2
z2), with

σ 
= 0. The other cases are settled thanks to Remark 1.4, (ii) and the first
step of the proof. The generating function of T being entire, we derive
from (1.8) and statement a) of Proposition 1.1 that ψT is an entire function
of order 2 without zero. Thus, by Lemma 1.3, ψT is either gaussian or
constant, that is: ψT (z) = exp(az + bz2), where a = EST and b = VarST /2.
Combining Wald’s identity and the relations in (1.4), we have

E
[
exp

(
−
(
µz + σ2

2
z2
)

T
)]

= exp
(
−
(
µz + σ2

2
z2
)

ET + µ2

2
z2 Var T

)
,

or equivalently:

(1.12) E
[
exp

(
−
(
µz + σ2

2
z2
)

T̂
)]

= exp
(

µ2

2
z2 Var T

)
, where T̂ = T −ET.

If µ 
= 0, the equation µz + σ2

2
z2 = 0 admits z0 = −2µ/σ2 > 0 as a solution.

Substituting z = z0 in (1.12), we get 1 = exp(2µ4VarT/σ4), which is only
possible if VarT = 0, i.e. if T is constant. If µ = 0 then (1.12) becomes:

E
[
exp

(
−σ2

2
z2T̂

)]
= 1, ∀z ∈ C.

from which follows at once that T̂ = 0 a.s., i.e. T = ET a.s. �

1.3. Moment inequalities

We begin with an upper bound for E(S4
T ).

Proposition 1.2 Assume that X is symmetric, σ2 = E(X2) and τ 4 = E(X4).
Let T be a (Fn)−stopping time satisfying (IP). Then

(1.13) E(S2
T ) = σ2ET

and

(1.14) E
(
S4

T

)
≤ 3σ4 (ET )2 −

(
3σ4 − τ 4

)
ET,

with equality if and only if T is constant.
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Proof. Equality (1.13) is just the second identity in (1.4). In order to
prove (1.14), one shows easily that

(Mn = S4
n − 6nσ2S2

n + 3n(n + 1)σ4 − nτ 4;n ≥ 0)

is a martingale and then applies the optional stopping theorem:

E
(
S4

n∧T

)
= 6σ2E

[
(n ∧ T ) S2

n∧T

]
− 3σ4E [(n ∧ T ) (n ∧ T + 1)]+ τ 4E (n ∧ T ) .

Since T has finite moments of any order, we may let n tend to +∞. The
independence assumption then yields:

E
(
S4

T

)
= 6σ2ET E(S2

T ) − 3σ4E
(
T 2 + T

)
+ τ 4ET.

Combining this with (1.13), we get:

E
(
S4

T

)
= 3σ4 (ET )2 − 3σ4 VarT −

(
3σ4 − τ 4

)
ET,

from which (1.14) follows readily. �

Remark 1.5 When P(X = 1) = P(X = −1) = 1/2, (1.14) simplifies to

E(S4
T ) ≤ 3(ET )2 − 2ET = 3(ES2

T )
2 − 2ES2

T .

In particular, Khinchine’s well-known inequality E(S4
T ) ≤ 3(ES2

T )
2

holds.
In what follows, we will generalize this inequality for moments of higher
order. 


Let us recall that a random variable X satisfies “Khinchine’s inequali-
ties” if

E
(
X2p

)
≤ (2p)!

2pp!
E
(
X2
)p

,∀p ∈ N.

These inequalities hold for example if X is distributed according to the
symmetric binomial distribution with parameter n, denoted by BS (n),

(1.15) X ∼ BS (n) ⇐⇒ ϕX (z) = (ch z)n ,

or, more generally, if X belongs to Newman’s class (L) (cf. [9]), i.e. the class
of random variables whose Laplace transform ϕ has the following properties:

(1.16)
i) ϕ is of order at most 2,
ii) the zeros of ϕ are all purely imaginary.

X is said to satisfy “Khinchine’s improved inequalities” (for large moments),
if there exist constants C > 0 and α ∈]0, 1[ such that:

E
(
X2p

)
≤ Cαp (2p)!

2pp!

[
E
(
X2
)]p

,∀p ∈ N.
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Proposition 1.3 Assume that X is centered and belongs to Newman’s
class (L). Let T be a (Fn)−stopping time satisfying (IP). Then:

(1.17) E
(
S2p

T

)
≤ Cαp (2p)!

2pp!

(
E
(
S2

T

))p
,∀p ∈ N

where C = 1/P(T = m) and α = m/E(T ), m being the minimum of T .
In particular, ST satisfies Khinchine’s improved inequalities if and only

if T is not constant.

The key tool for proving (1.17) is contained in the following elementary
lemma.

Lemma 1.4 If X is centered and T satisfies (IP), then

∀n, p ∈ N, P (T ≤ n) E(S2p
T ) ≤ E

(
S2p

n

)
.

Proof of Lemma 1.4. Under the above assumptions, (S2p
n , n ≥ 0) is a

submartingale. By the optional stopping theorem and the independence
hypothesis, we have successively:

E(S2p
n ) ≥ E(S2p

n∧T ) ≥ E(S2p
n∧T1I{T ≤ n})

= E(S2p
T 1I{T ≤ n}) = E(S2p

T )P(T ≤ n). �

Proof of Proposition 1.3. We apply Lemma 1.4 with n = m = min T :

E
(
S2p

T

)
≤ 1

P (T ≤ m)
· E

(
S2p

m

)
.

Now, since X belongs to Newman’s class (L), the same is clearly true for
any finite sum of independent random variables distributed as X. Thus,
each Sn, n ≥ 0, belongs to (L). By Khinchine’s inequality,

E
(
S2p

T

)
≤ 1

P (T ≤ m)

(2p)!

2pp!

[
E
(
S2

m

)]p
=

1

P (T ≤ m)

(2p)!

2pp!

(
mσ2

)p

=
1

P (T ≤ m)

( m

ET

)p (2p)!

2pp!

(
σ2ET

)p
.

Since E(S2
T ) = σ2ET , inequality (1.17) is proved. It remains to observe that

the constant α = m/ET is < 1 if and only if T is not constant, whence the
last assertion of the proposition follows immediately. �
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Proposition 1.4 Assume that X is centered. Let T be a stopping time
satisfying (IP) and set m = min T . Then, denoting by ||.||p the norm in
Lp(Ω,F , P), we have:

‖ST‖2p ≤
m

P (T = m)1/2p
‖X‖2p , p ∈ N∗(1.18)

‖ST‖∞ ≤ m ‖X‖∞ .(1.19)

Proof. Once more, we apply Lemma 1.4 with n = m = min T :

‖ST‖2p ≤
1

P (T = m)1/2p
‖Sm‖2p ≤

m

P (T = m)1/2p
‖X‖2p ,

since
||Sm||2p = ||X1 + ... + Xm||2p ≤ m||X||2p.

Letting p tend to +∞, we obtain (1.19). �

We end this section by refining (1.19).

Proposition 1.5 Assume that X is bounded. Let T be a stopping time
(standard or not) independent of ST . Then (1.19) holds with m = min T . If
moreover T is standard and X is centered, then (1.19) becomes an equality.

Proof. Let m = min T and M = ||X||∞. By the independence assumption:

P (T = m and |ST | > mM) = P (T = m) P (|ST | > mM) .

But
P(T = m and |ST | > mM) ≤ P(|Sm| > mM) = 0

and P(T = m) 
= 0. Thus, P(|ST | > mM) = 0, which means that

||ST ||∞ ≤ min T · ||X||∞.

Assuming moreover that T is standard and X is centered, we know that
|Sn∧T | ≤ mM , for every n. To prove the second statement of the proposition,
choose 0 < ε < mM

m+1
and write:

0 < P
(
X1 > M − ε

m
, X2 > M − ε

m
, . . . , Xm+1 > M − ε

m

)
≤ P (T = m and ST > mM − ε) (else Sm+1 = ST∧(m+1) > mM , impossible)

= P (T = m) · P (ST > mM − ε) .

Hence, for ε small enough, we have P(ST > mM − ε) > 0. �
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2. Examples

2.1. Some general results in the case of a Bernoulli random walk

Throughout this section, we denote by T a (Fn)−stopping time solving (IP)
and by m its minimum. Most of the time, we will work under the assumption
that S is a Bernoulli random walk, that is:

(2.1) P (X = 1) = p and P (X = −1) = q = 1 − p,

for some p ∈ ]0, 1[. In the symmetric case, i.e. p = 1/2, Proposition 1.5
shows that

||ST ||∞ = min T = m.

The following lemma gives further details in the general case, i.e. 0 < p < 1.

Lemma 2.1 In the general Bernoulli case and with the above notation, we
have:

Supp(L(ST )) ⊂ {m − 2j, 0 ≤ j ≤ m},(2.2)

Supp(L(T )) ⊂ {m + 2k, k ≥ 0},(2.3)

P(ST = m) > 0 and P(ST = −m) > 0.(2.4)

Proof. Since T ⊥⊥ ST , we have

P (ST = k) = P (ST = k/T = m) = P (Sm = k and T = m) /P (T = m)

and similarly,

P (T = k) = P (T = k/ |ST | = m) = P (T = k and |Sk| = m) /P (|ST | = m) .

Whenever these probabilities are 
= 0, m and k must have the same parity,
whence (2.2) and (2.3) follow. To show (2.4), we proceed as in Proposi-
tion 1.5:

0 < P (X1 = · · · = Xm = Xm+1 = 1)

≤ P (T = m and ST = m)

≤ P (ST = m) .

The positivity of P(ST = −m) can be obtained in the same way. �

Notational convention Every time we work with the Bernoulli random
walk, characters topped by a ∼ (resp. without the ∼) will refer to quantities
computed in the symmetric (resp. general) case.
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Lemma 2.2 In the symmetric Bernoulli case, there exists a polynomial P̃m

of degree m = min T , such that:

ψ̃T (z) = Ẽ( exp zST ) = P̃m(ch z)(2.5)

g̃T (r) = Ẽ(rT ) =
1

P̃m(1/r)
(2.6)

Moreover, P̃m(1) = 1, P̃m has the same parity as m and all the roots of P̃m

are located in the open unit disk.

Proof. Relation (2.5), as well as the degree and the parity of P̃m, are easily
derived from (2.2) and the symmetry of ST . (2.6) is an immediate conse-
quence of Wald’s identity. Point c) of Theorem 1.1 states that if | ch z| ≥ 1,
then |ψ̃T (z)| ≥ 1, so that P̃m(ch z) 
= 0. Since the equation ch z = u, where
|u| ≥ 1, has always at least one solution z, the roots of P̃m are necessarily
located in the open unit disk. �

So far, the filtration (Fn, n ≥ 0) has not played a significant role in our
discussion. Clearly, if the filtration is assumed to be natural, that is,

(2.7) F0 = {Ω, ∅} and Fn = σ (X1, X2, ..., Xn) , n ≥ 1,

then the class of stopping times solving (IP) is more restricted. This will
become apparent for instance by comparing example 4 (cf. proposition 2.6)
with its “natural” analogue (cf. proposition 3.3). In the framework of
Bernoulli random walks, hypothesis (2.7) leads to a more surprising result,
namely: the independence of T and ST under P̃, the probability associated
with the symmetric case (p = 1/2), suffices to ensure independence in the
general case (0 < p < 1).

Proposition 2.1 Let T be a stopping time in the natural filtration of a
Bernoulli random walk, with minimum m. If T satisfies (IP) in the sym-
metric case (p = 1/2), the same is true in the general case (0 < p < 1).
Moreover, setting ϕ(z) = pez + qe−z and denoting by P̃m the polynomial of
Lemma 2.2, we have:

ψT (z) = P̃m

(
ϕ (z)

2
√

pq

)/
P̃m

(
1

2
√

pq

)
,(2.8)

gT (r) = P̃m

(
1

2
√

pq

)/
P̃m

(
1

2
√

pq · r

)
.(2.9)



Independence of time and position for a random walk 909

Proof. Write Ωn for the set of all 2n possible trajectories of the walk until
time n. Consider the event Γj,k := {ST = m − 2j, T = m + 2k} ∈ Fm+2k.
By (2.7), it is possible to identify it in a natural way with a subset of Ωm+2k.
Observing that the number of positive and negative jumps of a trajectory
in Γj,k is respectively m + k − j and k + j, we have:

P (ST = m − 2j, T = m + 2k) = |Γj,k| pm+k−jqk+j.

In particular, when p = q = 1/2, this becomes:

P̃ (ST = m − 2j, T = m + 2k) = |Γj,k|
(

1
2

)m+2k
.

Combining the previous equalities and using the independence of T and ST

under P̃, we get:

P(ST = m − 2j, T = m + 2k)

= P̃ (ST = m − 2j) P̃ (T = m + 2k) (2p)m+k−j (2q)k+j .(2.10)

From this, we derive the laws of ST and T under P in terms of the corre-
sponding laws under P̃:

P (ST = m − 2j)=
(

p
q

)m−2j
2

P̃ (ST = m − 2j)
∑

k

(2
√

pq)m+2k
P̃ (T = m + 2k)

=
(

p
q

)m−2j
2

g̃T (2
√

pq) P̃ (ST = m − 2j)(2.11)

and:

P (T = m + 2k) = (4pq)
m
2

+k
P̃ (T = m + 2k)

m∑
j=0

P̃ (ST = m − 2j)
(

p
q

)m
2
−j

= (4pq)
m
2

+k
P̃ (T = m + 2k) ψ̃T

(
1
2
log

(
p
q

))
=

(4pq)
m
2

+k
P̃ ( T = m + 2k)

g̃T

(
2
√

pq
) ,(2.12)

where the last equality is just Wald’s identity in the symmetric case. The
independence of ST and T under P now easily follows from (2.10), (2.11)
and (2.12). Another application of Wald’s identity and some straightfor-
ward computations lead to (2.8) and (2.9). Let us finally notice that T
is also standard under P. Indeed, by (2.9), the radius of convergence of
the generating function gT is > 1 and therefore T has a finite expectation
under P. �



910 C. Ackermann, G. Lorang and B. Roynette

To end this subsection, we state the following combinatorial lemma with-
out proof. A more general result may be found in [4], chapter III.10, prob-
lem 3, page 96.

Lemma 2.3 Given two nonnegative integers a and b, denote by αa,b
j the

number of paths in Z, which lead from 0 to a in a+2j steps, without leaving
{−b, . . . , a}. Then:

αa,b
j =

∑
k∈Z

C
j+k(a+b+2)
a+2j − C

j−1+k(a+b+2)
a+2j .

2.2. Example 1: The stopping time T ∗
a

Let T ∗
a = inf{n : |Sn − S0| ≥ a}. The following proposition shows that,

if T ∗
a ⊥⊥ ST ∗

a
, ∀a ≥ 0, then the support of the distribution of X is very

particular.

Proposition 2.2 Assume that X is bounded. Then the following are equiv-
alent:

(i) for every a ≥ 0, T ∗
a and ST ∗

a
are independent;

(ii) suppL(X) ⊂ {−λ, 0, λ}.

Remark 2.1 The assumption that X is bounded is essential in our proof.
We do not know whether or not, there exists an unbounded variable X, for
which the independence of T ∗

a and ST ∗
a

holds for every a. 


Proof of Proposition 2.2. (i) ⇒ (ii): Denote by λ and κ respectively the
maximum and the minimum of the support of the law of X. Assume for
instance that λ > 0. Then, for every a ∈ ]0, λ[, we have

P
(
T ∗

a = 1 and ST ∗
a

> λ
)

= P (X1 > λ) = 0.

Since P(T ∗
a = 1) ≥ P(X1 ≥ a) 
= 0, it follows from the independence assump-

tion that P
(
ST ∗

a
> λ

)
= 0. But,

∀ε ∈ ]0, a[ , P
(
ST ∗

a
> λ

)
≥ P (ε < X1 < a) P (X2 > λ − ε)

and, by definition, P(X2 > λ − ε) 
= 0. Hence P(ε < X1 < a) = 0. Letting a
tend to λ and ε to 0, we obtain that

P (X ∈ ]0, λ[) = 0.

A similar argument shows that, if κ < 0, then

P (X ∈ ]κ, 0[) = 0.
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To sum up, we have proved that:

SuppL(X) ⊂ {κ, 0, λ},
where the real numbers κ, 0 and λ are not necessarily distinct. If κ = 0
or κ = λ, there is nothing more to prove. So, let us assume that κ < 0 < λ.
The goal is then to show that κ = −λ. If for instance, 0 < |κ| < λ, then we
would have:

(2.13) P
(
T ∗

λ = 1 and ST ∗
λ

< 0
)

= P (T ∗
λ = 1) · P

(
ST ∗

λ
< 0

)
= 0.

But,
P (T ∗

λ = 1) = P (X1 = λ) 
= 0

and,

P
(
ST ∗

λ
< 0

)
≥ P (X1 = κ) · P (X2 = κ) · ... · P (Xν = κ) 
= 0,

where ν is an integer such that ν · |κ| ≥ λ. The required contradiction arises
when comparing the two last statements with (2.13). The case where |κ| > λ
may be handled in an analogous way.

(ii) ⇒ (i): We may restrict to the case where λ = 1 and a ∈ N∗. If
P(X = 0) = 0, then S is a Bernoulli random walk. The symmetric case
(p = 1/2) is trivial, but suffices, by Proposition 2.1, to settle the general
case. If P(X = 0) > 0, a direct proof leads easily to the independence. �

In order to get explicit expressions of gT ∗
a

and ψT ∗
a

in the general Bernoulli
case, we adopt a direct approach:{

P
(
T ∗

a = a + 2j and ST ∗
a

= a
)

= βa
j p

a+jqj

P
(
T ∗

a = a + 2j and ST ∗
a

= −a
)

= βa
j p

jqa+j,

where βa
j denotes the number of paths of length a + 2j in Z such that

T ∗
a = a + 2j and ST ∗

a
= a. By Lemma 2.3, we have

βa
j = αa−1,a−1

j =
∑
k∈Z

Cj+2ka
a−1+2j − Cj−1+2ka

a−1+2j .

Thus, the law of T ∗
a is given by

P (T ∗
a = a + 2j) = βa

j p
jqj (pa + qa) .

In particular, notice that

(2.14)
∑+∞

j=0
βa

j (pq)j =
1

(pa + qa)
.

The distribution of ST ∗
a

is classical (cf. ruin problem, [4], ch. XIV.2, p. 344):

P
(
ST ∗

a
= a

)
=

pa

pa + qa
and P

(
ST ∗

a
= −a

)
=

qa

pa + qa
.
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Corollary 2.1 Take ϕ (z) = pez +qe−z and denote by C̃a, a ≥ 0, the Cheby-
shev polynomials of the first kind. Then

ψT ∗
a

(z) =
2
√

paqa

pa + qa
· C̃a

(
ϕ (z)

2
√

pq

)
,(2.15)

gT ∗
a

(r) =
pa + qa

2
√

paqa
· 1

C̃a

(
1

2
√

pqr

) .(2.16)

In the symmetric case (p = q = 1/2), (2.15) and (2.16) simplify to

(2.17) ψ̃T ∗
a

(z) = C̃a (ch z) and g̃T ∗
a

(r) =
1

C̃a

(
1
r

) =

+∞∑
j=0

2βa
j

(r

2

)a+2j

.

Proof. The symmetric case is straightforward. (2.15) and (2.16) follow
easily from Proposition 2.1 and (2.14). �
Remark 2.2 (i) The roots of C̃a are given by cos

(
2k−1
2a

π
)
, k = 1, . . . , a.

Thus, the radius of convergence of gT ∗
a

is equal to 1/2
√

pq cos π
2a

> 1.
(ii) In the symmetric case, another expression of the law of T ∗

a can be derived
from the power series expansion of gT ∗

a
(r) = 1/C̃a(1/r), provided that a is

fairly small. The following table gives our results for a ≤ 5.

a gT ∗
a

(r) L(T ∗
a )

2 r2

2−r2 P (T ∗
2 = 2 + 2k) = 1

2k+1 , k ≥ 0

3 r3

4−3r2 P (T ∗
3 = 3 + 2k) = 1

4

(
3
4

)k
, k ≥ 0

4 r4

r4−8r2+8
P (T ∗

4 = 4 + 2k) = 1
8

∑
ν

Cν
k−ν

(
−1

8

)ν
, k ≥ 0

5 r5

5r4−20r2+16
P (T ∗

5 = 5 + 2k) = 1
16

(
5
4

)k ∑
ν

Cν
k−ν

(
−1

5

)ν
, k ≥ 0.




2.3. Example 2: J. Pitman’s example

Here we work again with a Bernoulli random walk in its natural filtration,
that is, (2.1) and (2.7) are in force. Following Pitman (cf. [10]), we define
Mn = sup0≤k≤n Sk and Yn = 2Mn −Sn. Note that Yn is the symmetric of Sn

with respect to Mn.
It is easy to see that the 2-dimensional process ((Mn, Yn), n ≥ 0) is

Markovian on the state space H = {(m, y) ∈ Z2, 0 ≤ m ≤ y}. The transition
probabilities (tr) are given by:

m = y ⇒
{

tr ((m, y) , (m + 1, y + 1)) = p
tr ((m, y) , (m, y + 1)) = q

m < y ⇒
{

tr ((m, y) , (m, y + 1)) = q
tr ((m, y) , (m, y − 1)) = p
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Figure 1 may serve as an illustration.
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fig. 1: State space and transition probabilities of (Mn, Yn)n≥0

Proposition 2.3 Set Va = inf{n ≥ 0 : Yn = a}, for a ≥ 0. Then:
a) Va is a standard stopping time,
b) Va and SVa are independent.

Remark 2.3 Again, by Proposition 2.1, it would suffice to consider the case
p = q = 1/2, although the following direct approach yields more quickly
explicit formulas. 


Proof. a) This is clear, since |Sn∧Va| ≤ a, for every n.

b) We will prove that Va ⊥⊥ MVa, which is equivalent to the statement of the
proposition, because SVa = 2MVa − a. Denote by Γa

j,k the set of the paths of
the process (Mn, Yn) leading from the origin to the point (MVa = k, YVa = a)
in Va = a+2j steps. The key observation is that the number of these paths,
denoted by γa

j,k, does not depend on k. Indeed, as discussed in [10], the
“projection” mapping:

Φ : Γa
j,k → Γa

j,0, (Mn, Yn)0≤n≤a+2j �→ (0, Yn)0≤n≤a+2j

is one-to-one, for every k = 0, 1, ..., a. As a result, we may write γa
j instead

of γa
j,k, for every 0 ≤ k ≤ a.

We notice incidentally that γa
j is the number of paths in Z which lead

from 0 to a−1 in a−1+2j steps, staying in {0, 1, 2, ..., a − 1}. By Lemma 2.3:

γa
j = αa−1,0

j =
∑
k∈Z

C
j+k(a+1)
a−1+2j − C

j−1+k(a+1)
a−1+2j .

The joint law of (Va,MVa) is given by

P (Va = a + 2j and MVa = k) = γa
j pk+jqa+j−k,
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whence the law of Va follows immediately:

P (Va = a + 2j) = γa
j pjqa+j

∑a

k=0

(
p

q

)k

=

{
γa

j pjqj pa+1−qa+1

p−q
, if p 
= q,

γa
j

a+1
2a+2j , if p = q = 1

2
.

In particular:

+∞∑
j=0

γa
j (pq)j =

p − q

pa+1 − qa+1
if p 
= q and

+∞∑
j=0

γa
j

4j
=

2a

a + 1
.

From this, we derive the law of MVa:

0 ≤ k ≤ a ⇒ P(MVa = k) = pkqa−k

+∞∑
j=0

γa
j pjqj

=


pkqa−k(p − q)

pa+1 − qa+1
= rk r − 1

ra+1 − 1
, if p 
= q, r := p

q
,(

1

2

)a
2a

a + 1
=

1

a + 1
, if p = q = 1

2
.

Thus, for p = q = 1/2, we have rediscovered the well-known fact that MVa

is uniformly distributed on {0, 1, ..., a}. To complete the proof, it remains
to check that Va ⊥⊥ MVa , which is straightforward. �
Corollary 2.2 Take ϕ (z) = pez +qe−z and denote by Ũa, a ≥ 0, the Cheby-
shev polynomials of the second kind.
(i) If p 
= q then

ψVa (z) =
(p − q)

√
paqa

pa+1 − qa+1
· Ũa

(
ϕ (z)

2
√

pq

)
and

gVa (r) =
pa+1 − qa+1

(p − q)
√

paqa
· 1

Ũa

(
1

2
√

pqr

) .

(ii) If p = q = 1/2 these equalities simplify to

ψ̃Va (z) =
Ũa (ch z)

a + 1

and

g̃Va (r) =
a + 1

Ũa

(
1
r

) = (a + 1)

+∞∑
j=0

γa
j

(r

2

)a+2j

.

Proof. Similar to that of Corollary 2.1. �
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2.4. Example 3: The first hitting time of a given level by the age
process.

We denote by gn = sup{k ≤ n : Sk = 0} the last return to zero before time n
and by An = n − gn the age of the walk at time n. Define

Λa = inf{n ≥ 0 : An = a}, a ≥ 0.

A surprising feature of this example is that Λa ⊥⊥ SΛa for any increment
variable X. Note however that, if

τ := inf{n > 0 : Sn = 0} = ∞ a.s.,

i.e. if the walk never returns to 0, then Λa = a a.s. and thus, Λa is trivial.
The next proposition shows that the joint law of (SΛa ,Λa) is uniquely de-
termined by that of (Sa, τ).

Proposition 2.4 For any X, we have:

(2.18) E
[
exp (λSΛa) rΛa

]
=

ra · E [exp (λSa)1 (τ > a)]

1 −
∑a

k=1 P (τ = k) rk
.

Thus, defining

(2.19) Ha (z) =
1

P (τ > a)

[
za −

a−1∑
k=0

P (τ = a − k) zk

]
,

we get:

(2.20) gΛa (r) =
raP (τ > a)

1 −
∑a

k=1 P (τ = k) rk
=

1

Ha

(
1
r

)
and

(2.21) ψΛa (λ) = E (exp (λSa) /τ > a) = Ha (ϕ (λ)) ,

Moreover, Λa is standard, and Λa ⊥⊥ SΛa.

Remark 2.4 Statement d) of Theorem 1.1 holds in every case. Indeed, for
any X 
= 0, the stopping time τ is unbounded, whence,

|r| ≤ 1 ⇒
a∑

k=1

P (τ = k) |r|k ≤ P (τ ≤ a) < 1.

Thus, the first real root of the denominator in (2.20), say ρ, is > 1. ρ is also
the radius of convergence of the generating function gΛa. 


Proof of Proposition 2.4. Set

f(λ, r) = E[ exp(λSΛa)r
Λa]

and write (θk, k ≥ 0) for the shift operators.
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By the strong Markov property and the fact that τ > a is equivalent
to Λa = a, we get:

f (λ, r) =
a∑

k=1

E
(
exp (λSΛa) rΛa1I{τ = k}

)
+ E

(
exp (λSΛa) rΛa1I{τ > a}

)
=

a∑
k=1

E
[
E
(
exp (λSΛa◦θτ ) rτ+Λa◦θτ 1I{τ = k}/Fτ

)]
+raE (exp (λSa)1I{τ > a})

= f (λ, r)

a∑
k=1

rkP (τ = k) + raE (exp (λSa)1I{τ > a}) ,

whence (2.18) follows immediately. The rest of the proof is straightfor-
ward. �

We now give explicit formulas in the case of a Bernoulli random walk.

Proposition 2.5 Under the assumption (2.1), the polynomial Ha of Propo-
sition 2.4 is given by

(2.22) Ha (z) = H̃a

(
z

2
√

pq

)/
H̃a

(
1

2
√

pq

)
,

where H̃a denotes this polynomial in the symmetric case. More precisely, for
every n ≥ 0,

H̃2n(z) =
1

Cn
2n

[
(2z)2n −

n−1∑
k=0

Cn−k
2n−2k

(2n − 2k − 1)
(2z)2k

]

=

n∑
k=0

(
Ak

n

)2
(1 − 2n − 2k)A2k

2n

(2z)2k(2.23)

and

(2.24) H̃2n+1(z) = zH̃2n(z)

Remark 2.5 It is easy to check the following recurrence relation between
H̃2n and H̃2n−1:

H̃2n (z) =
2nzH̃2n−1 (z) − 1

2n − 1
. 


Corollary 2.3 The probability distribution of the first return to 0 in case
of the general Bernoulli random walk is given by:

P (τ = 2n) =
1

2n − 1
Cn

2n (pq)n(2.25)

P (τ > 2n) = P (τ > 2n + 1) = Cn
2n (pq)n H̃2n

(
1

2
√

pq

)
.(2.26)
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Remark 2.6 (2.25) follows immediately from (4.14), page 352 in [4]. (2.26)
seems to be less classical. 


Proof of Proposition 2.5 and Corollary 2.3. The law of τ under P̃ is
classical (cf. [4], pp. 76-78):

P̃ (τ = 2k) =
1

2k − 1
Ck

2k2
−2k

and
P̃ (τ > 2k) = P̃ (τ > 2k + 1) = Ck

2k2
−2k.

Substituting both formulas in (2.19) yields (2.23). The recurrence rela-
tion (2.24) follows immediately from the fact that Λ2n+1 = Λ2n + 1, a.s.
Comparing (2.21) and (2.8), we get (2.22), whence the corollary can be
easily derived. �

2.5. Example 4: A randomized stopping time solving (IP)

Here again, we do not need to specify X, but we assume that the filtration
(Fn, n ≥ 0) is natural. Let T be a non-zero (Fn)-stopping time solving (IP).
Define inductively an increasing sequence of stopping times (Tn, n ≥ 0):

(2.27) T0 = 0 and Tn+1 =

{
Tn + T ◦ θTn , if STn = 0,
Tn, otherwise,

where the (θj , j ≥ 0) are again the shift operators.

Now, in order to augment the filtration (Fn, n ≥ 0), let (Yn, n ≥ 1) be a
sequence of i.i.d. random variables having the Bernoulli distribution with
parameter ρ, 0 ≤ ρ ≤ 1. Assume that the σ−algebras Y∞ = σ(Yn, n ≥ 1)
and F∞ = ∨∞

k=0Fk are independent. Putting

F̂n = Fn ∨ Y∞, n ≥ 0,

we define a (F̂n)−stopping time T̂ solving (IP) as follows:

(2.28) T̂ = Tn ⇔
{

ST1 = 0
Y1 = 0

and ... and

{
STn−1 = 0
Yn−1 = 0

and

{
STn 
= 0

or Yn = 1.

Thus T̂ is the first time Tn such that STn 
= 0 or Yn = 1. In both special
cases ρ = 0 and ρ = 1, the σ−algebra Y∞ is trivial, so that T̂ is actu-
ally a stopping time in the natural filtration. In particular, if ρ = 1 or
P(ST = 0) = 0, then T̂ = T a.s.
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Proposition 2.6 Under the above assumptions, T̂ satisfies (IP). Moreover,
setting α = P (ST = 0) and σ = P (Y1 = 0) = 1 − ρ, we have:

(2.29) ψT̂ (z) =
ψT (z) − ασ

1 − ασ

and

(2.30) gT̂ (r) =
(1 − ασ) gT (r)

1 − ασgT (r)
.

Remark 2.7 (i) The intuitive purpose of the parameter σ is to remove an
arbitrary amount of mass from 0 in the distribution of ST . In the special case
σ = 1, the mass on 0 is totally removed, so that L(ST̂ ) = L(ST/ST 
= 0).
When σ = 0, the weight of 0 is left unchanged, so that L(ST̂ ) = L(ST ).

(ii) The stopping time T̂ is randomized. In case of the symmetric Bernoulli
random walk, it is possible to choose the variables (Yn, n ≥ 1) in such a way
that each Yn is FTn−measurable. T̂ then becomes a stopping time in the
natural filtration (cf. Proposition 3.3). 


Proof of Proposition 2.6. Set N = {ST = 0}. T̂ satisfies the following
identity in law:

(2.31) T̂
d
= T1I[N c∪(N∩{Y =1})] +

(
T + T̂ ◦ θT

)
1I[N∩{Y =0}].

Thus, to establish the joint distribution of (ST̂ , T̂ ), we compute:

f̂(λ, r) := E
[
exp

(
λST̂

)
rT̂
]

= E
[
exp (λST ) rT 1I[N c∪(N∩{Y =1})]

]
+ E

[
exp

(
λST+T̂◦θT

)
rT+T̂◦θT 1I[N∩{Y =0}]

]
.(2.32)

The first term is

E
[
exp (λST ) rT1I[N c∪(N∩{Y =1})]

]
= E

[
exp (λST ) rT

(
1I{ST 
=0} + 1I{ST =0}1I{Y =1}

)]
= E

[
exp (λST ) rT

(
1 − 1I{ST =0}1I{Y =0}

)]
.

Applying the Markov property to the second term, we get

E
[
exp

(
λST+T̂◦θT

)
rT+T̂◦θT 1I[N∩{Y =0}]

]
= E

[
rT 1I{Y =0}1IN E

(
exp

(
λ
(
ST+T̂◦θT

− ST

))
rT̂◦θT �F̂T

)]
= f̂(λ, r)E

[
rT 1I{Y =0}1IN

]
.

By the independence assumption, we have

(2.33) E
[
rT 1I{Y =0}1IN

]
= σαgT (r) ,

where σ = P(Y1 = 0) and α = P(N ).
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Substituting everything in (2.32) yields

f̂(λ, r) =
E
[
exp (λST ) rT

(
1 − 1I{ST =0}1I{Y =0}

)]
1 − σαgT (r)

=
(ψT (λ) − σα) gT (r)

1 − σαgT (r)
.

The rest of the proof is standard. �

Remark 2.8 When T is a constant stopping time, say T = N a.s., we have

ψT̂ (z) =
ϕ (z)N − ασ

1 − ασ
and gT̂ (r) =

(1 − ασ) rN

1 − ασrN
.




2.6. Examples obtained by iteration

Throughout this paragraph, we will assume that (Fn, n ≥ 0) is the natural
filtration of the walk. We give a simple method which yields a large class of
stopping times solving (IP).

Let T1 be a (Fn)−stopping time satisfying (IP). Then (S′
n := ST1+n −

ST1 , n ≥ 0) is a random walk independent of FT1 and with the same distri-
bution as (Sn, n ≥ 0); denote by (F ′

n, n ≥ 0) its natural filtration. Let T2 be
a (F ′

n)−stopping time, also satisfying (IP). Then T = T1 + T2 is a standard
stopping time such that T ⊥⊥ ST . Indeed, (T2, S

′
T2

) and (T1, ST1) are inde-
pendent and the components of each pair are independent by hypothesis.
As a result, the four random variables T1, ST1 , T2 and S′

T2
are indepen-

dent, whence the independence of T = T1 + T2 and ST = ST1 + S′
T2

follows.
Clearly, T is standard since for instance, ET = ET1 + ET2 < +∞. Iterating
the above construction leads to the following

Proposition 2.7 Given a finite sequence (T1, . . . , Tk) of (Fn)−stopping
times solving (IP), it is possible to construct another (Fn)−stopping time T
solving (IP), such that

L (T ) = L (T1) ∗ . . . ∗ L (Tk)(2.34)

L (ST ) = L (ST1) ∗ . . . ∗ L (STk
) .(2.35)

To illustrate the iteration method, we take again the symmetric Bernoulli
random walk. For any sequence (ak)1≤k≤n of positive integers, we define a
stopping time T ∗

a1,...,an
by the following recurrence relation:

T ∗
a1,...,an

= T ∗
a1,...,an−1

+ T ∗
an

◦ θT ∗
a1,...,an−1

,

where T ∗
a1

is the stopping time of Example 1.
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By Proposition 2.7 and Corollary 2.1, we have

E
(
exp zST ∗

a1,...,an

)
=

n∏
k=1

ch (akz) =
1

2n

∑
(ε1,...,εn)∈{−1,1}n

exp[(ε1a1+...+εnan)z].

In other words,

(2.36) L(ST ∗
a1,...,an

) = L(a1ε1 + ... + anεn),

where the εk are i.i.d. random variables with P(εk = ±1) = 1/2. Permuting
the (ak)1≤k≤n does not change this probability distribution, denoted simply
by L(a1, ..., an). Thus, stopping times T satisfying (IP) and such that ST is
distributed according to L(a1, ..., an) are in general not unique.

To conclude, we note that the generating function of T ∗
a1,...,an

is given by

E
(
rT ∗

a1,...,an

)
=
∏n

k=1

1

C̃ak

(
1
r

) ,
where C̃a is again the Chebyshev polynomial of first kind and degree a.

3. Stopping distributions in the Bernoulli case

Throughout this section, we will assume that S is the symmetric Bernoulli
random walk and that the filtration (Fn, n ≥ 0) is natural. Our goal is to
describe all possible distributions of ST , where T runs through the set T of
all (Fn)−stopping times solving (IP). In the sequel, these distributions will
simply be called “stopping distributions”.

3.1. Definition and characterization

Let T ∈ T and m = min T . Recall from Lemma 2.1 that

Supp L (ST ) ⊂ {m − 2j, 0 ≤ j ≤ m} and(3.1)

Supp L (T ) ⊂ {m + 2k, k ≥ 0} .(3.2)

Here and in all that follows, we use the notation

pj := P (ST = m − 2j) , 0 ≤ j ≤ m.

These probabilities have a particular form. Indeed, since the filtration is
assumed to be natural, the event {ST = m − 2j, T = m} depends only on
the history of the walk until time m. Among the Cj

m paths leading from
the origin to Mj(m,m − 2j), write πj for the number of paths stopped at
time m.
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Thus,
P (ST = m − 2j and T = m) = πj2

−m

and summing this expression over j, we get

P (T = m) =

m∑
j=0

πj2
−m.

The independence assumption yields

(N1) pj =
πj∑m
l=0 πl

, where πj ∈ N and 0 ≤ πj ≤ Cj
m,∀j ∈{0, 1, ...,m}.

The symmetry of L(ST ) translates into

(N2) πj = πm−j ,∀j ∈ {0, 1, ...,m},

Moreover,

(N3) π0 = πm = 1,

since the only path leading from the origin to the point M0 has to be stopped.
Notice finally that the number of paths going through Mj and being stopped
after time m is given by

(3.3) θj := Cj
m − πj,

where in particular θ0 = θm = 0.

More generally, for k ≥ 0 and 0 ≤ j ≤ m, we denote by πj,k (resp. θj,k)
the number of paths leading from the origin to the point Mj,k(m+2k,m−2j)
and being stopped at (resp. after) time m + 2k. As above, we have

(3.4) P (ST = m − 2j and T = m + 2k) = πj,k2
−m−2k

and

(3.5) P (T = m + 2k) =
m∑

j=0

πj,k2
−m−2k.

By the independence assumption,

(3.6) pj =
πj,k∑m
l=0 πl,k

, 0 ≤ j ≤ m, k ≥ 0.

Thus, the total number of paths stopped at or going through Mj,k is given by

(3.7) νj,k = πj,k + θj,k,

or alternatively,

(3.8) νj,k = θj−1,k−1 + 2θj,k−1 + θj+1,k−1.
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This equality remains valid for j = 0 and j = m, provided that we set
θ−1,k = θm+1,k = 0. Obviously θ0,k = θm,k = 0, otherwise the walk would
leave [[−m,m]] with positive probability. On the other hand, we have

(3.9) πj,k = πjπ0,k = πjθ1,k−1.

Indeed, the first equality is a consequence of the independence assumption
whereas the second one comes from the fact that the θ1,k−1 trajectories going
through M1,k−1 without being stopped have in particular θ1,k−1 connections
to M0,k, which have to be stopped.

Equalities (3.7), (3.8) and (3.9) now easily lead to the following recur-
rence system:

(3.10)

{
θj,k = θj−1,k−1 + 2θj,k−1 + θj+1,k−1 − πjθ1,k−1

θj,0 = θj
, 0 ≤ j ≤ m, k ≥ 1,

which can be put into matrix form:

(3.11) Θk = ΠkΘ0, k ≥ 0

where Θ0 = (θ0, θ1, ..., θm)t , Θk = (θ0,k, θ1,k, ..., θm,k)
t and

(3.12) Π =



2 1 − π0 0 ... ... ... 0
1 2 − π1 1 0 ... ... ...
0 1 − π2 2 1 0 ... ...
0 −π3 1 2 1 0 ...
... ... ... ... ... ... ...
0 −πm−1 ... 0 1 2 1
0 −πm ... ... 0 1 2


Furthermore, since θj = θm−j and θ0 = θm = 0, we have:

θj,k = θm−j,k and θ0,k = θm,k = 0, 0 ≤ j ≤ m, k ≥ 0.

The coefficients πj,k and νj,k can now be derived from the θj,k via (3.9)
and (3.7). Note that every θj,k is necessarily ≥ 0, since πj,k must be ≤ νj,k.

For the converse, start with some sequence (πj , 0 ≤ j ≤ m), satisfy-
ing the necessary conditions (N1) to (N3) and compute the θj and the θj,k

according to (3.3) and (3.10), respectively. If θj,k ≥ 0, for any j and
any k, then it is possible to construct a stopping time T ∈ T such that
L(ST ) = {(m − 2j, pj), 0 ≤ j ≤ m}. This is achieved by choosing determin-
istically for each path ω the corresponding stopping time T (ω), in such a way
that the recurrence system (3.10) is fulfilled. T is then trivially standard
since, by construction, |Sn∧T | ≤ m, for every n. Thus we have the following
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Proposition 3.1 Assume that S is the symmetric Bernoulli random walk
and that the filtration (Fn, n ≥ 0) is natural. Let

L = {(m − 2j, pj)/0 ≤ j ≤ m}

be a probability distribution satisfying conditions (N1) to (N3). Then the
following are equivalent:

(i) L is a stopping distribution,

(ii) ∀j ∈ {0, . . . ,m},∀k ∈ N, θj,k ≥ 0,

where the θj,k satisfy (3.10) with the θj given by (3.3) .

Remark 3.1 It seems difficult to list all stopping distributions for a given
m = min T . To simplify the task, one may begin by discarding distributions
that are inadmissible a priori. To be precise, given a random variable U with
a distribution L = {(m − 2j, pj), 0 ≤ j ≤ m} satisfying conditions (N1)
to (N3), consider the power series expansion of 1/P̃m(1/r) where P̃m is
defined by E( exp zU) = P̃m(ch z); whenever L is a stopping distribution,
Wald’s identity entails that all the coefficients of this power series are non-
negative. In other words, if some of the coefficients are negative, then L
cannot be a stopping distribution. This strategy will be applied successfully
to settle the cases m = 1, 2, 3 and 4. 


Now, for any T ∈ T with minimum m, consider the polynomial P̃m

introduced in Lemma 2.2. We have:

P̃m(ch λ) = E(ch λST ) =
1∑m

j=0 πj

m∑
j=0

πj ch(λ(m − 2j)).

Recalling that C̃k denotes the kst Chebyshev polynomial of first kind and
setting for convenience C̃−k = C̃k, k ≥ 0, we may write equivalently

(3.13) P̃m(r) =
1∑m

j=0 πj

m∑
j=0

πjC̃m−2j(r).

The distribution of T can be expressed in terms of the πj and θ1,k. Indeed,
with the convention that θ1,−1 = 1, (3.5) and (3.9) yield

P(T = m + 2l) =

( m∑
j=0

πj

)
θ1,l−12

−m−2l , l ≥ 0.

Hence,

(3.14) gT (r) =

( m∑
j=0

πj

) +∞∑
l=0

θ1,l−1

(r

2

)m+2l

.
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Substituting (3.13) and (3.14) in Wald’s identity, we get:

(3.15)

m∑
j=0

πjC̃m−2j(r) ·
+∞∑
l=0

θ1,l−1(2r)
−m−2l = 1.

Let us go further into the study of the coefficients θj,k. First we ob-
serve that

θj,k2
−m−2k = P(Sm+2k = m − 2j and T > m + 2k).

Unfortunately, the right-hand side in this equality does not depend directly
on the joint distribution of (ST , T ). To remedy this defect, we proceed as
follows:

(3.16)
m∑

j=0

θj,k2
−m−2k exp[λ(m − 2j)] = E[ exp(λSm+2k)1I{T > m + 2k}].

On the other hand, by the martingale property, we have, for every n ≥ 0,

E[exp(λSn∧T )(ch λ)−n∧T ] = 1 = E[exp(λST )(ch λ)−T ]

⇐⇒ E[exp(λSn)(ch λ)−n1I{T > n}] + E[exp(λST )(ch λ)−T 1I{T ≤ n}]
= E[exp(λST )(ch λ)−T ]

⇐⇒ E[exp(λSn)(ch λ)−n1I{T > n}] = E[exp(λST )]E[(ch λ)−T 1I{T > n}].
Thus,

E[exp(λSn)1I{T > n}] = (ch λ)nE[ exp(λST )]E[(ch λ)−T 1I{T > n}]
= (ch λ)nP̃m(ch λ)E[(ch λ)−T 1I{T > n}],(3.17)

whence it is natural to introduce

Qk(r) = (2r)m+2kP̃m(r)E[r−T1I{T > m + 2k}]

= (2r)2k

m∑
j=0

πjC̃m−2j(r) ·
∑
l>k

θ1,l−1(2r)
−2l = (2r)m+2k

∑
l>k θ1,l−1(2r)

−2l∑+∞
l=0 θ1,l−1(2r)−2l

.

Note incidentally that the last equality follows immediately from (3.15).
Combining (3.16) and (3.17), we now see that:

(3.18)

m∑
j=0

θj,k exp[λ(m − 2j)] = Qk(ch λ)

or alternatively, using symmetry,

(3.19)
m∑

j=0

θj,kC̃m−2j(ch λ) = Qk(ch λ).
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Substituting ch λ = r in (3.19), we see that Qk(r) is, for every k ≥ 0, a
polynomial of degree at most m − 2 (remember that θ0,k = θm,k = 0). The
coefficients θj,k in the decomposition

Qk(r) =
m∑

j=0

θj,kC̃m−2j(r)

are nonnegative integers. They are unique if we impose the additional con-
dition that C̃n and C̃−n have the same coefficient.

Substituting e−λ = r in (3.18), we obtain similarly that

(3.20)

m∑
j=0

θj,kr
2j = rmQk

(
r2 + 1

2r

)
,

which is, for every k ≥ 0, an even polynomial of degree at most 2m−2, whose
coefficients are nonnegative integers and symmetric (i.e. θj,k = θm−j,k).

The recurrence system (3.10) and equality (3.20) have been established
by combinatorial arguments. They can also be derived in a purely algebraic
way from Wald’s identity and some natural hypotheses on the support of
the distributions of T and ST , as will be shown in the following proposition.
We will see furthermore that the distribution of T has a very special form.

Proposition 3.2 Let U and V be two integer-valued independent random
variables such that, for some positive integer m,

L(U) = {(m − 2j, pj) / 0 ≤ j ≤ m}, where the pj satisfy (N1) to (N3),

L(V ) = {(m + 2k, qk) / k ≥ 0} where q0 
= 0,

and

(3.21) E(expλU) E((ch λ)−V ) = 1,∀λ ∈ R.

a) There exist unique integers µ and b̂0, b̂1, . . . , b̂µ, with b̂0 = 1, b̂µ 
= 0
and 2µ ≤ m, such that:

(3.22) πj =

µ∑
l=0

b̂lC
j−l
m−2l ≤ j ≤ m.

b) There exist unique integers (q̂k, k ≥ 0) with q̂0 = 1, such that

(3.23) q̂k =

( m∑
j=0

πj

)
q̂k2

−m−2k =

( µ∑
l=0

b̂l2
−2l

)
q̂k2

−2k, k ≥ 0.
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c) Moreover, the (q̂k, k ≥ 0) are uniquely determined by the following system:

(3.24)


b̂0q̂0 = 1 (E0)
µ∧k∑
l=0

b̂lq̂k−l = 0 (Ek), k ≥ 1

d) Let B̂ be the “generating polynomial” of U , defined by

(3.25) B̂(z) =

µ∑
i=0

b̂iz
µ−i.

The roots of B̂, denoted by z1, . . . , zw, with respective multiplicity m1, . . . ,mw,
are all of modulus < 4.

There exist unique complex constants (cs,r)1≤s≤w,0≤r≤ms−1 such that

(3.26) q̂k =

w∑
s=1

ms−1∑
r=0

cs,rk
rzk

s , k ≥ n.

e) For every k ≥ 0,

Qk(r) = (2r)m+2k

∑
i>k qir

−2i∑+∞
i=0 qir−2i

is a polynomial with integer coefficients, of degree at most m − 2. It is
expressed in terms of the Chebyshev polynomials of first kind as follows:

(3.27) Qk(r) =
m∑

j=0

θ̂j,kC̃m−2j(r),

where the θ̂j,k are integers, and more precisely:

(3.28) θ̂j,k =

µ∑
h=1

Cj−h
m−2h

h−1∑
i=0

b̂iq̂k+h−i.

In particular, θ̂j,k = θ̂m−j,k, θ̂0,k = 0 and θ̂1,k = q̂k+1.

f) For every k ≥ 0,

(3.29) Q̂k(r) = rmQk

(
r2 + 1

2r

)
=

m−1∑
j=1

θ̂j,kr
2j

is a polynomial of degree at most 2m−2, with symmetric integer coefficients.

g) The recurrence system (3.10) remains valid:

(3.30)

{
θ̂j,k = θ̂j−1,k−1 + 2θ̂j,k−1 + θ̂j+1,k−1 − πj θ̂1,k−1

θ̂j,0 = Cj
m − πj

, 0 ≤ j ≤ m, k ≥ 1.
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Remark 3.2 (i) We stress the fact that the “generating polynomial” of U ,
as defined in the above proposition, does not suffice to determine L(U).
However, in conjunction with m, the maximum of the support, it does.
(ii) By Proposition (3.1), L(U) is a stopping distribution iff the θ̂j,k are
all ≥ 0. 


Proof of Proposition 3.2. a) Consider again the polynomial P̃m defined
by P̃m(ch λ) = E(exp λU), and expand it:

P̃m(z) =

m∑
j=0

pjC̃m−2j(z) =

µ∑
i=0

aiz
m−2i,

with the convention that aµ 
= 0, that is, aµz
m−2µ is the term of least degree,

or equivalently, m0 := m − 2µ ≥ 0 is the “multiplicity” of 0. When multi-
plying both sides in the above equality by

∑m
j=0 πj , we get a polynomial P̂m

with integer coefficients, which is more convenient for our purpose:

P̂m(z) =

m∑
j=0

πjC̃m−2j(z) =

µ∑
i=0

âiz
m−2i,

where âi = ai

∑m
j=0 πj . Observe that âi is a multiple of 2m−2i. Indeed,

(3.31) P̂m(z) =



κ∑
j=0

πj 2 C̃m−2j(z), if m is odd,

πκ +
κ−1∑
j=0

πj 2 C̃m−2j(z), if m is even,

where κ = [m/2]. But the polynomial 2C̃k(z/2) has integer coefficients, for
every k ∈ N. By (3.31), the same holds for the polynomial P̂m(z/2), whence
our claim follows. Hence âi = b̂i2

m−2i where b̂i is an integer. In particular,
â0 = 2m, that is, b̂0 = 1. Finally, since âµ 
= 0, we have also b̂µ 
= 0.

Let us now recall the following classical identity:

(3.32) (2z)nC̃k(z) =
n∑

ν=0

Cν
nC̃k+n−2ν(z), n ∈ N, k ∈ Z,

which may be easily proved by induction, the case n = 1 representing just the
well-known recurrence relation between Chebyshev polynomials of first kind:

2zC̃k(z) = C̃k−1(z) + C̃k+1(z), k ∈ Z.
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Applying (3.32) with k = 0, we obtain:

P̂m(z) =

µ∑
i=0

âiz
m−2i =

µ∑
i=0

b̂i(2z)m−2i

=

µ∑
i=0

b̂i

m−2i∑
k=0

Ck
m−2iC̃m−2i−2k(z) =

m∑
j=0

( µ∑
i=0

b̂iC
j−i
m−2j

)
C̃m−2j(z),

whence (3.22) follows by a simple comparison of the coefficients.

b) and c)Transforming (3.21) gives:

P̃m(r)E(r−V ) = 1 ⇔ P̂m(r)E(r−V ) =

m∑
j=0

πj

⇔
µ∑

i=0

b̂i(2r)
m−2i

+∞∑
j=0

qjr
−m−2j =

m∑
j=0

πj

⇔
µ∑

i=0

b̂i(2r)
m−2i

+∞∑
j=0

q̂j(2r)
−m−2j = 1,(3.33)

where the (q̂j , j ≥ 0) are defined by (3.23). By substituting (2r)−1 = z in
the last equality and simplifying, we are finally led to

(3.34)

µ∑
i=0

b̂iz
i

+∞∑
j=0

q̂jz
j = 1,

whence the system (3.24) follows at once. By induction it is easily seen
that q̂k is always an integer.

d) Compute the coefficients q̂0, q̂1, . . . , q̂µ−1 in terms of b̂0, b̂1, . . . , b̂µ−1, by
using equations (E0),(E1),. . . ,(Eµ−1). Consider the following square matrix
with ν := µ − 1 rows and columns:

W =



1 0 . . . 0 . . . 1 0 . . . 0
z1 z1 . . . z1 . . . zw zw . . . zw

z2
1 2z2

1 . . . 2m1−1z2
1 . . . z2

w 2z2
w . . . 2mw−1z2

w

. . . . . . . . . . . . . . . . . . . . . . . . . . .
zk
1 kzk

1 . . . km1−1zk
1 . . . zk

w kzk
w . . . kmw−1zk

w

. . . . . . . . . . . . . . . . . . . . . . . . . . .
zν
1 νzν

1 . . . νm1−1zν
1 . . . zν

w νzν
w . . . νmν−1zν

w


Classically, detW 
= 0, since the roots zi of the generating polynomial B̂ are
non-zero and distinct. Thus, the system Y = WC, where Y = (q̂0, . . . , q̂µ−1)

t

and C = (c1,0, . . . , c1,m1−1, . . . , cw,0, . . . cw,mw−1)
t, has a unique solution C.
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In other words, the representation formula (3.26) holds for k < µ. So
it remains to show that it is still valid for k ≥ µ, with the constants cs,r

now adjusted as above, or equivalently, that q̂k satisfies equation (Ek), for
every k ≥ µ. By linearity, it is enough to verify the equation separately for
each term of the form yk = krzk

s , 1 ≤ s ≤ w, 0 ≤ r < ms:
µ∑

i=0

b̂iyk−i =

µ∑
i=0

b̂i(k − i)rz(k−i)
s = zk−µ

s

µ∑
i=0

b̂i(k − i)rzµ−i
s = 0,

since (k − i)r is a polynomial of degree < ms.

Finally, because the roots of P̂m are all located in the open unit disk and

B̂(4z2) =

µ∑
i=0

b̂i(2z)2(µ−i) = (2z)−m0

µ∑
i=0

âiz
m−2i = (2z)−m0P̂m(z),

it is clear that |zi| < 4, for every 1 ≤ i ≤ w.

e) By (3.33), we have

(3.35) P̂m(r)

+∞∑
i=0

q̂i(2r)
−2i = (2r)m.

Thus,

Qk(r) = (2r)m+2k

∑
i>k qir

−2i∑+∞
i=0 qir−2i

= (2r)m+2k

∑
i>k q̂i(2r)

−2i∑+∞
i=0 q̂i(2r)−2i

= (2r)2kP̂m(r)
∑
i>k

q̂i(2r)
−2i.

From (3.35), (3.32) and the fact that q̂0 = 1, we derive that

Q0(r) = P̂m(r)
∑
i>0

q̂i(2r)
−2i = P̂m(r)

∑
i≥0

q̂i(2r)
−2i − q̂0P̂m(r)

= (2r)m − P̂m(r) =
m−1∑
j=1

(
Cj

m − πj

)
C̃m−2j(r),(3.36)

which implies in particular that θ̂j,0 = Cj
m−πj. More generally, the following

recurrence relation holds between Qk and Qk−1 :

Qk(r) = (2r)2kP̂m(r)

( ∑
i>k−1

q̂i(2r)
−2i− q̂k(2r)

−2k

)
= (2r)2Qk−1(r) − q̂kP̂m(r).

Iterating this, we get

Qk(r) = (2r)m+2k − P̂m(r)
k∑

l=0

q̂k−l(2r)
2l.
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Expanding the last product yields

Qk(r) = (2r)m+2k −
µ∑

i=0

k∑
l=0

b̂iq̂k−l(2r)
m−2(i−l)

= (2r)m+2k −
µ∑

h=−k

(2r)m−2h

µ∧(k+h)∑
i=0∨h

b̂iq̂k+h−i.

The term corresponding to h = −k is exactly (2r)m+2k. The other terms
with index h ≤ 0 vanish according to equation (Ek). Hence,

Qk(r) = −
µ∑

h=1

(2r)m−2h

µ∧(k+h)∑
i=h

b̂iq̂k+h−i =

µ∑
h=1

(2r)m−2h

h−1∑
i=0

b̂iq̂k+h−i.

We see already here that Qk has integer coefficients and degree at most
m − 2. Using again (3.32), we now express Qk in terms of the Chebyshev
polynomials:

Qk(r) =

µ∑
h=1

h−1∑
i=0

b̂iq̂k+h−i

m−2h∑
ν=0

Cν
m−2hC̃m−2h−2ν(r)

=

m−1∑
j=1

C̃m−2j(r)

µ∑
h=1

Cj−h
m−2h

h−1∑
i=0

b̂iq̂k+h−i,

whence (3.27) follows by setting

θ̂j,k =

µ∑
h=1

Cj−h
m−2h

h−1∑
i=0

b̂iq̂k+h−i.

The other claims are obvious.

f) Substituting r = ch λ in (3.27), we get

(3.37) Qk(ch λ) =
m−1∑
j=1

θ̂j,k ch(λ(m − 2j)) =
m−1∑
j=1

θ̂j,k exp(λ(m − 2j)),

where the last equality comes from the symmetry of the coefficients. The
proof of (3.29) is achieved by substituting u = e−λ in (3.37).

g) The recurrence relation is easily obtained by writing both members of the
equality

Qk(r) = (2r)2Qk−1(r) − q̂kP̂m(r)

in terms of the Chebyshev polynomials. �
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We end this paragraph with an equivalent formulation of Proposition 3.1.

Theorem 3.1 (Characterization of stopping distributions) With the
notation of Proposition 3.2, a distribution

L = {(m − 2j, pj), 0 ≤ j ≤ m}

satisfying conditions (N1) to (N3) is a stopping distribution if and only if the
following hold:

i) the coefficients in the power series expansion of 1/P̃m(1/r) are all ≥ 0,

ii) the coefficients of the polynomials (Q̂k)k≥0 are all ≥ 0.

Remark 3.3 Condition ii) cannot be omitted in this theorem, since we have
the following counter-example for m = 7:

L =
{(

7,
1

16

)
, (5, 0),

(
3,

7

16

)
, (1, 0), (−1, 0),

(
−3,

7

16

)
, (−5, 0),

(
−7,

1

16

)}
.

Here, i) holds but ii) does not, since some negative coefficients appear in Q̂2.
As a result, L is not a stopping distribution. 


Notation In view of Remark 3.2, (i), any probability distribution

L = {(m − 2j, pj), 0 ≤ j ≤ m},

satisfying conditions (N1) to (N3), will be denoted throughout by

Lm(b̂0,b̂1, . . . , b̂µ),

where the integers µ and b̂0, b̂1, . . . , b̂µ are defined in Proposition 3.2.

Remark 3.4 Given T0 ∈ T such that

L(ST0) = Lm(b̂0, b̂1, . . . , b̂µ),

we may consider, for n ≥ 0, Tn := T0 + n. Then, Tn ∈ T and it is easily
seen that:

L(STn) = Lm+n(b̂0, b̂1, . . . , b̂µ).

Moreover, STn has the same generating polynomial (in the sense of Propo-
sition 3.2) than ST0 , for every n ≥ 0. 
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3.2. A version of Example 4 in the natural filtration

In the case where m is even, we are able to construct a “natural” version of
the stopping time T̂ given by (2.28) (cf. also Remark 2.7 (ii)). This will be
helpful to establish the complete list of stopping distributions for m ≤ 4.

Proposition 3.3 Let T ∈ T and L = L(ST ) = {(m − 2j, pj), 0 ≤ j ≤ m},
where m = min T is assumed to be even. In particular, conditions (N1)
to (N3) are satisfied. Let (π̂j , 0 ≤ j ≤ m) be a sequence of weights differing
from the (πj , 0 ≤ j ≤ m) only by the central coefficient, i.e.

0 ≤ π̂m
2
≤ πm

2
and j 
= m

2
⇒ π̂j = πj ,

and define

(3.38) p̂j =
π̂j∑m
l=0 π̂l

.

Then L̂ = {(m − 2j, p̂j)/0 ≤ j ≤ m }, is also a stopping distribution. It can

be realized via the stopping time T̂ given by (3.43).

Proof. Consider the increasing sequence of stopping times (Tn, n ≥ 0)
introduced in Example 4, defined by (2.27). For every k ≥ 0, choose a set
of paths Γk ⊂ {T = m + 2k, ST = 0} such that

(3.39) |Γk| = π0,k π̂m
2
, k ≥ 0.

This is clearly possible because

π0,k π̂m
2
≤ π0,k πm

2
= πm

2
,k
.

Note that if π0,k = 0, i.e. if P(T = m + 2k) = 0 then Γk = ∅. We have:

P (Γk) = π0,k · π̂m
2
· 2−m−2k and Γ :=

∞⋃
k=0

Γk ∈ FT .

Now, for every n ≥ 1, we define:

Yn =

{
1IΓ ◦ θTn−1 if STn−1 = 0,
0 otherwise.

Yn is obviously FTn-measurable. (3.39) ensures that Yn ⊥⊥ Tn−Tn−1, condi-
tionally on {STn−1 = 0}. To see this, it is enough, by the Markov property,
to consider the case n = 1:

P (Y1 = 1 and T1 = m + 2k) = P (Γk) = π0,k · π̂m
2
· 2−m−2k.
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Summing over k and using (3.4) and (3.9), we get

P (Y1 = 1) =

+∞∑
k=0

π0,k · π̂m
2
· 2−m−2k

=
π̂m

2

πm
2

+∞∑
k=0

π0,k · πm
2
· 2−m−2k =

π̂m
2

πm
2

P (ST = 0) .(3.40)

Since T1 = T a.s. and T ⊥⊥ ST , we obtain similarly:

P (T1 = m + 2k) = P (T1 = m + 2k/ST = 0) =
π0,k · πm

2
· 2−m−2k

P (ST = 0)
,

whence the independence of Y1 and T1 comes immediately.

Now, our key observation is that the law of Y1, conditionally on {ST1 = 0}
and {T1 = m + 2k}, does not depend on k:

(3.41) P (Y1 = 1/ST1 = 0 and T1 = m + 2k) =
π0,k · π̂m

2
· 2−m−2k

π0,k · πm
2
· 2−m−2k

=
π̂m

2

πm
2

= ρ

and likewise,

(3.42) P (Y1 = 0/ST1 = 0 and T1 = m + 2k) = 1 −
π̂m

2

πm
2

= σ.

To define the stopping time T̂ solving our problem, it suffices to copy (2.28):

(3.43) T̂ = Tn ⇔
{

ST1 = 0
Y1 = 0

and . . . and

{
STn−1 = 0
Yn−1 = 0

and

{
STn 
= 0

or Yn = 1.

Clearly, T̂ satisfies the identity in law (2.31). Therefore, the rest of the proof
goes exactly as in Proposition 2.6: (2.33) still holds by (3.41) and (3.42).
Finally, the distribution of ST̂ is easily derived by computing explicitly the
Laplace transform ψT̂ , given by (2.29). �

Notation The above stopping time T̂ depends on the associated stopping
time T and, of course, on the choice of the set Γ. Hence, there are in-
finitely many such stopping times. We denote them all by T̂ (π̂m/2), where
π̂m/2 = |Γ0|, without bothering about the choice of Γ. This is justified by the

fact that we are only interested in the distributions of T̂ and ST̂ .
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3.3. Stopping distributions for m ∈ {1, 2, 3, 4}
We assume that the notations for the various stopping times introduced in
the previous paragraphs are still valid.

m = 1: there is exactly 1 stopping distribution:{(
1, 1

2

)
,
(
−1, 1

2

)}
realized via T = 1

m = 2: there are 3 stopping distributions:{(
2, 1

2

)
,
(
−2, 1

2

)}
realized via T ∗

2{(
2, 1

3

)
,
(
0, 1

3

)
,
(
−2, 1

3

)}
V2{(

2, 1
4

)
,
(
0, 2

4

)
,
(
−2, 1

4

)}
T = 2

m = 3: there are 4 stopping distributions:{(
3, 1

2

)
,
(
−3, 1

2

)}
realized via T ∗

3{(
3, 1

4

)
,
(
1, 1

4

)
,
(
−1, 1

4

)
,
(
−3, 1

4

)}
T ∗

2 + 1, V3, or Λ3{(
3, 1

6

)
,
(
1, 2

6

)
,
(
−1, 2

6

)
,
(
−3, 1

6

)}
V2 + 1{(

3, 1
8

)
,
(
1, 3

8

)
,
(
−1, 3

8

)
,
(
−3, 1

8

)}
T = 3

m = 4: there are 22 stopping distributions:{(
4, 1

2

)
,
(
−4, 1

2

)}
realized via T ∗

4{(
4, 1

3

)
,
(
0, 1

3

)
,
(
−4, 1

3

)}
T̂ ∗

2,2 (1){(
4, 1

4

)
,
(
0, 2

4

)
,
(
−4, 1

4

)}
T ∗

2,2

(When π0 = 1, π1 = 0 and π2 ≥ 3, the power series 1/P̃m(1/r) contains negative
coefficients.){(

4, 1
4

)
,
(
2, 1

4

)
,
(
−2, 1

4

)
,
(
−4, 1

4

)}
T ∗

3 + 1{(
4, 1

5

)
,
(
2, 1

5

)
,
(
0, 1

5

) (
−2, 1

5

)
,
(
−4, 1

5

)}
V4{(

4, 1
6

)
,
(
2, 1

6

)
,
(
0, 2

6

) (
−2, 1

6

)
,
(
−4, 1

6

)}
T ∗

2 + V2 ◦ θT ∗
2

(When π0 = 1, π1 = 1 and π2 ≥ 3, the power series 1/P̃m(1/r) contains negative
coefficients.){(

4, 1
6

)
,
(
2, 2

6

)
,
(
−2, 2

6

)
,
(
−4, 1

6

)}
Λ4{(

4, 1
7

)
,
(
2, 2

7

)
,
(
0, 1

7

)
,
(
−2, 2

7

)
,
(
−4, 1

7

)}
Û (1) (for U , cf. infra){(

4, 1
8

)
,
(
2, 2

8

)
,
(
0, 2

8

)
,
(
−2, 2

8

)
,
(
−4, 1

8

)}
U = T ∗

2 + 2{(
4, 1

9

)
,
(
2, 2

9

)
,
(
0, 3

9

)
,
(
−2, 2

9

)
,
(
−4, 1

9

)}
V2 + V2 ◦ θV2

(When π0 = 1, π1 = 2 and π2 ≥ 4, the power series 1/P̃m(1/r) contains negative
coefficients.)
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{(
4, 1

8

)
,
(
2, 3

8

)
,
(
−2, 3

8

)
,
(
−4, 1

8

)}
Ŷ (0) (for Y , cf. infra){(

4, 1
9

)
,
(
2, 3

9

)
,
(
0, 1

9

)
,
(
−2, 3

9

)
,
(
−4, 1

9

)}
Ŷ (1){(

4, 1
10

)
,
(
2, 3

10

)
,
(
0, 2

10

)
,
(
−2, 3

10

)
,
(
−4, 1

10

)}
Ŷ (2){(

4, 1
11

)
,
(
2, 3

11

)
,
(
0, 3

11

)
,
(
−2, 3

11

)
,
(
−4, 1

11

)}
Ŷ (3){(

4, 1
12

)
,
(
2, 3

12

)
,
(
0, 4

12

)
,
(
−2, 3

12

)
,
(
−4, 1

12

)}
Y = V2 + 2

(When π0 = 1, π1 = 3 and π2 ≥ 5, the power series 1/P̃m(1/r) contains negative
coefficients.){(

4, 1
10

)
,
(
2, 4

10

)
,
(
−2, 4

10

)
,
(
−4, 1

10

)}
Ĉ (0) (for C, cf. infra){(

4, 1
11

)
,
(
2, 4

11

)
,
(
0, 1

11

)
,
(
−2, 4

11

)
,
(
−4, 1

11

)}
Ĉ (1){(

4, 1
12

)
,
(
2, 4

12

)
,
(
0, 2

12

)
,
(
−2, 4

12

)
,
(
−4, 1

12

)}
Ĉ (2){(

4, 1
13

)
,
(
2, 4

13

)
,
(
0, 3

13

)
,
(
−2, 4

13

)
,
(
−4, 1

13

)}
Ĉ (3){(

4, 1
14

)
,
(
2, 4

14

)
,
(
0, 4

14

)
,
(
−2, 4

14

)
,
(
−4, 1

14

)}
Ĉ (4){(

4, 1
15

)
,
(
2, 4

15

)
,
(
0, 5

15

)
,
(
−2, 4

15

)
,
(
−4, 1

15

)}
Ĉ (5){(

4, 1
16

)
,
(
2, 4

16

)
,
(
0, 6

16

)
,
(
−2, 4

16

)
,
(
−4, 1

16

)}
C = 4

3.4. Generating polynomials of degree ≤ 2. Stopping distributions
for m = 5

By Proposition 3.2, when m ≤ 5, the generating polynomial B̂ of a stopping
distribution, given by (3.25), is of degree µ ≤ 2. We are now going to estab-
lish the complete list of these generating polynomials and derive therefrom
the stopping distributions in the case m = 5.

If µ = 0, then B̂(z) = 1 and T is constant. Lm(1) is nothing else but
BS(m) and of course, this is a stopping distribution for every m ≥ 1.

If µ = 1, then B̂(z) = z + b̂1 has exactly one root, α = −b̂1, which is
non-zero.

Proposition 3.4 If Lm(1,−α), where m>0, is a stopping distribution, then
necessarily α = 1, 2 or 3. Conversely, Lm(1,−1) and Lm(1,−2) are stopping
distributions, whenever m ≥ 2, and so is Lm(1,−3), whenever m ≥ 3.

Proof. By (3.26), q̂k = αk and by (3.23), qk = (1 − α/4)(α/4)k, whence
α = 1, 2 or 3. For the converse, given a distribution of this type, it is easy
to see that

Qk(r) = (2r)m+2k

∑
i>k

(
α

4r2

)i∑+∞
i=0

(
α

4r2

)i = αk+1(2r)m−2,
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so that,

Q̂k(r) = rmQk

(
r2 + 1

2r

)
= αk+1r2(r2 + 1)m−2 = αk+1

m−1∑
j=1

Cj−1
m−2r

2j,

which has only nonnegative coefficients, for every α > 0. Now, according
to (3.22), the corresponding πj are given by

πj = Cj
m − αCj−1

m−2, 0 ≤ j ≤ m.

A simple calculation shows that 0 ≤ πj ≤ Cj
m, for every 0 ≤ j ≤ m,

provided that 
α

4
≤ m − 1

m
when m is even,

α

4
≤ m

m + 1
when m is odd,

whence the proposition follows immediately. �

Let us finally investigate the case µ = 2. Given two integers b̂1 and b̂2,
the generating polynomial of Lm(b̂1, b̂2) has two non-zero roots α and β, not
necessarily distinct and satisfying

(3.44) α + β = −b̂1 and αβ = b̂2.

α and β are either both real or conjugate complex and distinct. The follow-
ing lemma shows that, in the second case, Lm(b̂1, b̂2) cannot be a stopping
distribution, for any m.

Lemma 3.1 Let α and β be defined by (3.44). Then:

a) The coefficients q̂k in (3.24) are given by

(3.45) q̂k =


αk+1 − βk+1

α − β
if α 
= β

(k + 1)αk+1 if α = β
, k ≥ 0.

b) If q̂k ≥ 0, for every k ≥ 0, then α and β are both real.

Proof. Statement a) follows immediately from the recurrence relation

(3.46) q̂k = (α + β)q̂k−1 − αβq̂k−2, k ≥ 2,

with initial conditions q̂0 = 1 and q̂1 = α + β.

b) Assuming that α = reiθ and β = re−iθ, for some θ 
= 0, we have

q̂k =
αk+1 − ᾱk+1

α − ᾱ
= rk sin((k + 1)θ)

sin(θ)
, k ≥ 0,

whence the claim can be derived without difficulty. �
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The analog of Proposition 3.4 in the case µ = 2 is

Proposition 3.5 For any integers s ≥ 0 and p 
= 0, the following are equi-
valent:

(i) Lm(1,−s, p) is a stopping distribution, for sufficiently large m,

(ii) The roots α and β of z2 − sz + p = 0 are real and |α| < 4, |β| < 4.

Proof. (i) ⇒ (ii): We know already by Lemma 3.1 that α and β must be
real. Moreover, since q̂1 = α + β, necessarily s ≥ 0. By (3.23) and (3.45),
we have

(3.47) qk =
(4 − α)(4 − β)

4k+2
·


αk+1 − βk+1

α − β
if α 
= β

(k + 1)αk+1 if α = β

From this and the fact that limk→+∞ qk = 0, it follows that |α| < 4
and |β| < 4.

(ii) ⇒ (i): Assume for instance that α ≥ β. Then, since s ≥ 0 and p 
= 0,
necessarily α ≥ |β| > 0, and therefore the q̂k, given by (3.45) are all ≥ 0.
The same holds for the qk, since |α| < 4 and |β| < 4.

Now, by (3.28) and (3.46),

θ̂j,k = Cj−1
m−2q̂k+1 + Cj−2

m−4(q̂k+2 − sq̂k+1) = Cj−1
m−2q̂k+1 − Cj−2

m−4pq̂k.

We have to show that the θ̂j,k are all ≥ 0, provided that m is large enough.
If p < 0, this is obviously true. If p > 0, we have s > α > β > 0 and

(3.48) ∀j ∈ {0, 1, . . . ,m}, ∀k ≥ 0, θ̂j,k ≥ 0 ⇔ sup
k≥0

pq̂k

q̂k+1

≤ min
0≤j≤m

Cj−1
m−2

Cj−2
m−4

.

The right-hand side of the last inequality is

min
0≤j≤m

Cj−1
m−2

Cj−2
m−4

=

{
4(m−3)

m−2
if m is even,

4(m−3)
m−1

if m is odd.

To simplify the left-hand side, let us define uk = q̂k+1/q̂k, k ≥ 0. We have
u0 = s 
= 0 and, for k ≥ 1, the following recurrence holds:

uk = s − p

uk−1

.

A simple fixed-point argument shows that (uk, k ≥ 0) decreases to α. Hence,
inf{uk, k ≥ 0} = α, so that

sup
k≥0

pq̂k

q̂k+1

=
p

α
= β < 4.

Thus, for m large enough, (3.48) is satisfied.
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To complete the proof, it remains to check that the πj are all nonnegative,
for sufficiently large m. We have

πj = Cj
m − θ̂j,0 = Cj

m − sCj−1
m−2 + pCj−2

m−4,

whence,

πj ≥ 0, ∀0 ≤ j ≤ m

⇔ max0≤j≤m s(m − 2)(m − 3)j(m − j) − pj(j − 1)(m − j)(m − j − 1)

≤ m(m − 1)(m − 2)(m − 3).(3.49)

Therefore it is natural to introduce the function:

fm : x �−→ s(m − 2)(m − 3)x(m − x) − px(x − 1)(m − x)(m − x − 1).

Clearly fm(m − x) = fm(x). Thus, for x ≥ 0, consider the more convenient

gm(x) = fm(m
2

+
√

x)

= s(m − 2)(m − 3)
(

m2

4
− x

)
− p

(
m2

4
− x

)(
(m−2)2

4
− x

)
=
[

s
4
m2(m − 2)(m − 3) − p

16
m2(m − 2)2

]︸ ︷︷ ︸
am

−
[
s(m − 2)(m − 3) − p

2
(m2 − 2m + 2)

]︸ ︷︷ ︸
bm

x − px2.

The following elementary lemma, which we state without proof, will now be
helpful:

Lemma 3.2 Under condition (ii) of Proposition 3.5, we have:

s2 ≥ 4p, s >
p

2
and 0 <

s

4
− p

16
< 1.

Hence, for m sufficiently large, am and bm are nonnegative. Then, the fact
that gm(m2/4) = 0 and some other straightforward considerations lead to:

max
0≤x≤m2

4

gm(x) = gm(0) = fm

(
m
2

)
= max

0≤x≤m
fm(x).

Observing finally that

gm(0) = am = s
4
m2(m − 2)(m − 3) − p

16
m2(m − 2)2

and remembering that s
4
− p

16
< 1, we conclude that it is always possible to

choose m sufficiently large for (3.49) to be satisfied. �
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Remark 3.5 (i) Proposition 3.5 allows us to give the complete list of gene-
rating polynomials of degree 2. There are 46 solutions, corresponding to the
following pairs (s, p ):

s = 0 ⇒ −15 ≤ p ≤ −1,
s = 1 ⇒ −11 ≤ p ≤ −1,
s = 2 ⇒ −7 ≤ p ≤ 1 (and p 
= 0),
s = 3 ⇒ −3 ≤ p ≤ 2 (and p 
= 0),
s = 4 ⇒ 1 ≤ p ≤ 4,
s = 4 ⇒ p = 5 or p = 6,
s = 5 ⇒ p = 9.

(ii) Of course, these generating polynomials do not all provide a solution
when m = 5. In that case, a close look at the previous proof shows that
condition (3.48), when p > 0, is equivalent to β ≤ 3. One checks that
this is true for each pair (s, p ) listed above. Since the θ̂j,k are trivially ≥ 0
when p < 0, it suffices to discard the generating polynomials for which some
of the

πj = Cj
5 − sCj−1

3 + pCj−2
1 , 0 ≤ j ≤ 5

are negative. This happens for exactly 16 among the above pairs (s, p). 


Corollary 3.1 There are exactly 30 + 3 + 1 = 34 stopping distributions
for m = 5.

The corresponding coefficients (πj , 0 ≤ j ≤ 5) are given below. Since
π0 = 1 and πj = π5−j, it is enough to specify π1 and π2:

π1 = 5 ⇒ 0 ≤ π2 ≤ 10 π1 = 2 ⇒ 0 ≤ π2 ≤ 3
π1 = 4 ⇒ 0 ≤ π2 ≤ 7 π1 = 1 ⇒ 0 ≤ π2 ≤ 2
π1 = 3 ⇒ 0 ≤ π2 ≤ 5 π1 = 0 ⇒ 0 ≤ π2 ≤ 1

We end this section with the following

Open problem Take a distribution L = {(m−2j, pj), 0 ≤ j ≤ m} satisfying
(N1) to (N3). Denote by

B̂(z) =

µ∑
l=0

b̂lz
µ−l

the generating polynomial of L and assume that the coefficients in the power
series expansion of 1/B̂(1/z) are all ≥ 0. Is it then always possible to find an
integer n sufficiently large for Ln(b̂0, b̂1, . . . , b̂µ) to be a stopping distribution?
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4. Results for a two-dimensional walk

Let (S′
n, n ≥ 0) and (S′′

n, n ≥ 0) be two independent symmetric Bernoulli
random walks, starting from 0. We denote the corresponding filtrations
by (F ′

n, n ≥ 0) and (F ′′
n , n ≥ 0) respectively; we assume that (1.1) holds for

either of them and moreover, that F ′
∞ ⊥⊥ F ′′

∞. The two-dimensional walk
S = ((S′

n, S′′
n), n ≥ 0) is adapted to the filtration (Fn = F ′

n ∨ F ′′
n , n ≥ 0).

Note that if T is a (F ′
n)− stopping time such that T ⊥⊥ S′

T , then S′
T ⊥⊥ S′′

T .
This leads us more generally to investigate the class of (Fn)−stopping times
T such that S′

T ⊥⊥ S′′
T . The analogous problem in case of the two-dimensional

Brownian motion has been treated in [7].

4.1. Stopping times T such that S′
T and S′′

T are independent

Theorem 4.1 Assume the above notations. Let T be a (Fn)−stopping time
such that

T is S′-standard and S′′-standard,(4.1)

S′
T and S′′

T have finite exponential moments of any order,(4.2)

S′
T and S′′

T are independent.(4.3)

Then L(S′
T ) = L(S′′

T ) = BS(N), for some integer N , where the symmetric
binomial distribution BS(N) is defined by (1.15).

Remark 4.1 (i) Theorem 4.1 will be extended to more general walks in the
appendix.
(ii) Theorem 1.2 is actually a corollary of Theorem 4.1. Indeed, let T be a
(F ′

n)−stopping time such that gT (r) = E(rT ) < ∞, ∀r ≥ 0 and S′
T ⊥⊥ T .

We claim that S′
T ⊥⊥ S′′

T and that S′
T and S′′

T have finite exponential moments
of any order. The first statement is trivial, whereas the second follows from
Theorem 1.1, a) in the case of S′

T . For S′′
T , we write

E(expλS′′
T ) =

+∞∑
n=0

E(exp λS′′
n)P(T = n)

=

+∞∑
n=0

φ(λ)nP(T = n)

= gT (φ(λ)) < ∞.

Hence, by Theorem 4.1, for some integer N , we have E(exp zS′
T ) = (ch z)N ,

that is, T = N a.s. 
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Proof of Theorem 4.1. Proceeding as in Theorem 1.1, one shows first that

Mn (λ, µ) =
exp (λS′

n + µS′′
n)

(ch λ ch µ)n

is a martingale. By (4.1) and (4.2), whenever |ch λ ch µ| ≥ 1, the stopped
martingale MT

n (λ, µ) is uniformly integrable. In that case, we have

E

[
exp (λS′

T + µS′′
T )

(ch λ ch µ)T

]
= 1.

To determine the joint distribution of (S′
T , S′′

T ), it suffices to consider the
case where

(4.4) ch λ ch µ = 1,

which occurs for instance when

(4.5) λ ∈ R and µ = i arccos (1/ ch λ) .

Thus, assuming (4.4) and applying (4.3), we have

(4.6) E (exp (λS′
T )) E (exp (µS′′

T )) = 1.

Notice that if (λ, µ) satisfies (4.4), then so does (−λ, µ), whence the dis-
tribution of S′

T (and likewise that of S′′
T ) is symmetric. Using (4.5) and

introducing the notation ψ1(z) = E(exp zS′
T ) and ψ2 (z) = E(exp zS′′

T ), we
may rewrite (4.6) as

(4.7) ψ1 (λ) ψ2

(
i arccos

(
1

ch λ

))
= 1, ∀λ ∈ R.

Since limλ→±∞ ψ1(λ) = +∞, by passing to the limit in (4.7), we obtain
that ψ2

(
iπ
2

)
= 0. It follows from the symmetry and the 2iπ-periodicity

of ψ2 that
Zψ2 ⊃ Z :=

{
i
(

π
2

+ kπ
)

: k ∈ Z
}

.

To show that actually Zψ2 = Z, observe that

∀µ ∈ C \ Z, ∃λ ∈ C \ Z : ch λ ch µ = 1.

Substituting any such pair (λ, µ) in (4.6), we conclude that ψ2(µ) 
= 0, for
every µ ∈ C \ Z, whence our claim follows. Exchanging ψ1 and ψ2 leads
finally to

Zψ1 = Zψ2 = Z.

Note that the zeros of ψ2 (resp. ψ1) have a common multiplicity, denoted
by N (resp. M) throughout. This follows again from the symmetry and the
periodicity of the functions.
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In our next step, we will prove that ψ1 is an entire function of order 1.
First of all, we observe that the power series expansion of ψ2 at the point iπ/2
may be written as follows:

ψ2 (z) =

+∞∑
n=N

an

(
iπ
2
− z

)n
, z ∈ C, aN 
= 0.

Hence,

ψ2(i arccos (r)) =
+∞∑
n=N

an(i arcsin(r))n,−1 ≤ r ≤ 1.

Using the power series expansion of arcsin at 0, we obtain that∣∣∣∣ψ2

(
i arccos

(
1

ch λ

))∣∣∣∣ ≥ c

(ch λ)N
,

for some constant c > 0 and λ ∈ R sufficiently large. Under this condi-
tion, (4.7) implies that |ψ2(λ)| ≤ c−1(ch λ)N , whence ψ2 is of order ≤ 1. As
the Laplace transform of a non-zero random variable, it must be of order 1.

Now, an application of Hadamard’s factorization theorem for entire func-
tions of finite order yields

ψ1 (z) =

+∞∏
k=0

(
1 +

z2

π2
(
k + 1

2

)2)M

= (ch z)M .

Thus, applying again (4.6) with chλ ch µ = 1, we get

ψ2 (µ) =
1

ψ1(λ)
=

(
1

ch λ

)M

= (ch µ)M ,

whence M = N , that is, S′
T and S′′

T are both distributed according to
BS (N) . �

4.2. Stopping times such that ST ∼ Sn

Of course, constant stopping times satisfy the assumptions of Theorem 4.1.
Thus, we naturally wonder whether there are other standard stopping times T
such that, for fixed n ∈ N,

(4.8) ST ∼ Sn.

Let us first investigate the analogous problem in the one-dimensional
setting. More precisely, given a symmetric Bernoulli random walk S on Z, we
ask for a standard, non constant stopping time T , such that, for fixed n ∈ N,

(4.9) ST ∼ Sn.
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Direct and straightforward calculations show that this problem has no
solution for n < 4. When n ≥ 4, we will actually provide two solutions, the
first being unbounded and the second bounded. Both stopping times will
be constructed in the natural filtration of the walk.

Remark 4.2 It suffices to figure out a solution T in the case n = 4. Then,
for n = 4 + p, p ≥ 0, the stopping time Tp = T + p trivially works. 


4.2.1. An unbounded stopping time satisfying (4.9)

Let us first recall the target distribution, that is, L(S4):

k -4 -2 0 2 4

P(S4 = k) 1
16

4
16

6
16

4
16

1
16

Now, a stopping time T , such that (4.9) holds, may be defined as follows:

(4.10) T =

{
2, if S2 ∈ {−2, 2},
inf {n > 2, | Sn| = 4 or Sn = 0} , otherwise.

The verification is straightforward and left to the reader.

4.2.2. A bounded stopping time satisfying (4.9)

Here we describe a more general construction, which works whenever n = 2m
is even and Cm

2m meets some divisibility condition to be specified. Given
an integer p such that 0 < p < m, let Γp be an arbitrary set of paths
leading from the origin to the point (2p, 0). We will assume throughout that
γp := |Γp| satisfies 0 < γp < Cp

2p. Define a stopping time T as follows:

(4.11)

• On Γp , set T = 2p (so that ST = 0),

• On Γc
p ∩ {S2m 
= 0} , set T = 2m,

• On Γc
p ∩ {S2m = 0} , set T = 4m − 2p.

The intuition behind this definition is to replace the contribution of the
paths stopped at time 2p by that of the paths which are only stopped at
time 4m − 2p.

Before calculating the distribution of ST , let us recall that the number of
paths leading from the origin to (2m, 2x) is given by λ2m,2x := Cm+x

2m . Now,
for x 
= 0, we have

P (ST = 2x) = P
(
Γc

p ∩ {S2m = 2x}
)
+P

(
Γc

p ∩ {S2m = 0} ∩ {S4m−2p = 2x}
)
.
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The first term is calculated as follows:

P
(
Γc

p ∩ {S2m = 2x}
)

= P (S2m = 2x) − P (Γp ∩ {S2m = 2x})

=
λ2m,2x

22m
− γp

22p
· λ2m−2p,2x

22m−2p
=

λ2m,2x

22m
− γpλ2m−2p,2x

22m
.

Similarly, we get

(4.12) P
(
Γc

p ∩ {S2m = 0} ∩ {S4m−2p = 2x}
)

=
λ2m−2p,2x

24m−2p

(
Cm

2m − γpC
m−p
2m−2p

)
.

Hence,

(4.13) P (ST = 2x) =
λ2m,2x

22m
+

λ2m−2p,2x

24m−2p

[
Cm

2m − γp

(
Cm−p

2m−2p + 22m−2p
)]

.

It remains to compute

P (ST = 0) = P (Γp) + P
(
Γc

p ∩ {S2m = 0} ∩ {S4m−2p = 0}
)

=
γp

22p
+

Cm−p
2m−2p

24m−2p

(
Cm

2m − γpC
m−p
2m−2p

)
,(4.14)

where the last equality comes from substituting x = 0 in (4.12).

Proposition 4.1 Let T be the stopping time defined by (4.11). Then ST ∼
S2m if and only if

(4.15) γp

(
Cm−p

2m−2p + 22m−2p
)

= Cm
2m.

Proof. (4.13) and (4.14) provide two necessary conditions, namely (4.15) and

(4.16)
γp

22p
+

Cm−p
2m−2p

24m−2p

(
Cm

2m − γpC
m−p
2m−2p

)
=

Cm
2m

22m
.

It is easy to check that these two conditions are actually equivalent. By the
definition of T , we must have moreover γp < Cp

2p. But this is also implied
by (4.15). Indeed, if γp ≥ Cp

2p, then we would have

γp

(
Cm−p

2m−2p + 22m−2p
)
≥ Cp

2pC
m−p
2m−2p + Cp

2p

2m−2p∑
k=0

Ck
2m−2p

≥ Cp
2pC

m−p
2m−2p +

2m−2p∑
k=0

Cm−k
2p Ck

2m−2p

= Cp
2pC

m−p
2m−2p + Cm

2m > Cm
2m,

a contradiction. �
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Setting λp = Cp
2p and assuming that p and γp satisfy (4.15), there are

exactly C
γp

λp
stopping times T of the type (4.11) for which ST ∼ S2m. (This

comes from the fact that the definition of T does not depend on the choice
of the elements in Γp, but only on their number.) Moreover, note that these
stopping times have the same distribution.

Thus, it is natural to look for pairs (p, γp) such that 0 < p < m and
condition (4.15) is satisfied. Setting p = m − 1 (resp. p = m − 2), this
condition reads 6γm−1 = Cm

2m (resp. 22γm−2 = Cm
2m). Note in particular

that one may take p = γp = 1, when n = 4. More generally, since Cm
2m is

always even and in view of Remark 3.1, we may state the following

Corollary 4.1 For every n ≥ 4 there exists a bounded and non constant
stopping time T satisfying (4.9). If n = 2m is even and Cm

2m is divisible
by 3 (resp. 11), then there are at least C

γp

λp
different ways to construct this

stopping time, with p = m − 1 (resp. p = m − 2).

Remark 4.3 The following divisibility criterion from elementary number
theory is a particular case of Kummer’s result (cf. [5]): Let m be a positive
integer and p be a prime number. Then p divides Cm

2m if and only if in the
p-adic representation of m appears at least one coefficient that is ≥ p/2. 


Question Is it possible to count the stopping times T such that (4.9) holds?

4.2.3. A stopping time satisfying (4.8) when n = 4

Let us come back to the 2-dimensional problem (4.8). In view of Remark 4.2,
it is enough to give a solution when n = 4. First of all, we recall that
S4 ∼ BS (4) ⊗ BS (4). The support of this distribution is given in figure 2
below.

Fig. 2: Support of L(S4)



946 C. Ackermann, G. Lorang and B. Roynette

Assuming the corresponding notation, we see that

• points A1 to A4 are reached with probability 1
162 ,

• points B1 to B8 are reached with probability 4
162 ,

• points C1 to C4 are reached with probability 6
162 ,

• points X1 to X4 are reached with probability 16
162 ,

• points D1 to D4 are reached with probability 24
162 ,

• point O is reached with probability 36
162 .

Let X = {X1, X2, X3, X4}. We define a stopping time T as follows:

(4.17)

• if S2 ∈ X then T = 2,

• if S2 /∈ X and S4 /∈ X then T = 4,

• if S2 /∈ X and S4 ∈ X then T = inf{n > 4/ ‖Sn − S4‖ = 2}.
Here and in all that follows, we use the notation ||(x, y) || = max(|x|,|y|).
In our computations, we will have to consider the walk started from other
points than the origin: we will denote by PM the conditional probability
given that {S0 = M}. We will still write P for PO. The determination
of L(ST ) requires some elementary lemmas, which we state without proof.

Lemma 4.1 Given that the walk starts from O, the distribution of S2 is:

P (S2 = Xi) = 1
16

; P (S2 = Di) = 2
16

; P (S2 = O) = 4
16

, i ∈ {1, 2, 3, 4} .

Lemma 4.2 Set θ = inf{n ≥ 0, ||Sn − S0|| = 2}. Given that the walk starts
from O, the distribution of Sθ is:

P (Sθ = Xi) = 1
12

; P (Sθ = Di) = 2
12

, i ∈ {1, 2, 3, 4} .

Lemma 4.3 The probability that the walk starting from O reaches one of
the points Xi at time n = 4, without having been stopped before, is given by

P(S2 /∈ X and S4 = Xi) = 12
162 , i ∈ {1, 2, 3, 4}.

Proposition 4.2 The stopping time T defined by (4.17) is standard and
ST ∼ S4.

Proof. It is clear that T is standard since ||Sn∧T || ≤ 4, for every n ≥ 0.
To calculate the distribution of ST , we will constantly use Lemmas 4.1, 4.2
and 4.3. For instance,

P (ST = A1) = P ({T > 4} ∩ {ST = A1})
= P ({S2 /∈ X} ∩ {S4 = X1} ∩ {ST = A1})
= P ({S2 /∈ X} ∩ {S4 = X1}) PX1 (Sθ = A1)

= 12
162 · 1

12
= 1

162
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and

P (ST = B1) = P ({T = 4} ∩ {S4 = B1}) + P ({T > 4} ∩ {ST = B1})
= P ({S2 = D1} ∩ {S4 = B1}) + P ({S2 /∈ X} ∩ {S4 = X1} ∩ {ST = B1})
= P (S2 = D1) PD1 (S2 = B1) + P ({S2 /∈ X} ∩ {S4 = X1}) PX1 (Sθ = B1)

= 2
16

· 1
16

+ 12
162 · 2

12
= 4

162 .

The remaining probabilities are obtained by similar calculations. The reader
may easily verify that they agree with BS (4) ⊗ BS (4), hence completing
the proof. �

Remark 4.4 Likewise, it is possible to construct a bounded non constant
stopping time T such that ST ∼ BS (4)⊗BS (4), by taking the corresponding
construction in dimension 1 as a source of inspiration. 


5. Appendix : Generalization of Theorem 4.1

Here we use again the notation of Section 4, but the common increment X of
the random walks (S′

n, n ≥ 0) and (S′′
n, n ≥ 0) will be more general, namely:

(A) X is integer-valued, symmetric and not constant;

(B) ϕ(z) = E(exp zX) is entire, of order 1, and with zeros that are all
simple and located in the vertical strip [−a, a]×R, where a > 0.

Theorem 5.1 Under the above assumptions, let T be a (Fn)−stopping time
such that:

T is S′-standard and S′′-standard,(5.1)

S′
T and S′′

Thave finite exponential moments of any order,(5.2)

S′
T and S′′

T are independent.(5.3)

Then, for some integer N , we have S′
T ∼ S′′

T ∼ SN , that is,

E(exp zS′
T ) = E(exp zS′′

T ) = ϕ(z)N .

Proof. We need a few preliminary lemmas:

Lemma 5.1 Assuming that conditions (A) and (B) are satisfied, we have

i) ϕ(C) = C, and

ii) lim|z|→∞ |ϕ (z) | = ∞, in any horizontal strip |�m z| ≤ b, where b > 0.
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Proof of Lemma 5.1. i) Given a complex number u, we ask for a solution z
of the equation ϕ(z) = u. Write ηu(z) for ϕ(z)−u and note that this function
is still entire, symmetric and of order 1. If ηu vanishes for some z0 ∈ C,
then z0 is the required solution. Otherwise, by Hadamard’s factorization
theorem, we have ηu(z) = exp(c + dz), for some constants c and d, whence
ϕ(z) = u + ec+dz. Since ϕ is symmetric, d must be 0, so that ϕ(z) = u + ec,
which contradicts the fact that ϕ is not constant.

ii) We denote by ±α1,±α2,±α3, ... the sequence of the zeros of ϕ, ordered
in such a way that (|αn|)n≥1 is increasing. By Hadamard’s factorization
theorem, we have the following representation formula:

ϕ(z) =
∞∏

k=1

(
1 − z2

α2
k

)
, where

∞∑
k=1

1

|αk|2
< ∞.

Since |αk| → +∞ and (�e (αk))k≥1 is bounded, we have:

∀ν > 0,∃K(ν) ∈ N, k > K(ν) ⇒
arg(αk) ∈ [π/2 − ν, π/2 + ν] ∪ [3π/2 − ν, 3π/2 + ν] (mod 2π).

Now, let (zn)n≥0 be a sequence of complex numbers such that |�m z| ≤ b
and |zn| → +∞. Consequently,

∀ε > 0,∃N(ε) ∈ N, n > N(ε) ⇒ −ε ≤ arg(z2
n) ≤ ε.

As a result, for k ≥ K(ν) and n ≥ N(ε),

π − ε − 2ν ≤ arg

(
z2

n

α2
k

)
≤ π + ε + 2ν.

Choosing ε and ν sufficiently small, we have, for k ≥ K(ν) and n ≥ N(ε),

arg

(
z2

n

α2
k

)
∈
]
π

2
,
3π

2

[
,

so that, ∣∣∣∣1 − z2
n

α2
k

∣∣∣∣ ≥ 1 and consequently |ϕ(zn)| ≥
K(ν)∏
k=0

∣∣∣∣1 − z2
n

α2
k

∣∣∣∣ .
Thus, limn→∞ |ϕ(zn)| = +∞. �

Now, recall the notation used in Section 4: ψ1(z) = E(exp zS′
T ) and

ψ2(z) = E(exp zS′′
T ). We write still Zϕ (resp. Zψ1 , Zψ2) for the set of the

zeros of ϕ (resp. ψ1, ψ2). As in Theorem 4.1, it is easily seen that, for every
complex numbers λ and µ,

(5.4) ϕ(λ)ϕ(µ) = 1 ⇒ ψ1(λ)ψ2(µ) = 1.

This shows in particular that ψ1 and ψ2 are even.
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Lemma 5.2 Under the assumptions (A) and (B), we have Zϕ = Zψ1 = Zψ2.

Proof of Lemma 5.2. Since ψ1 and ψ2 play symmetric roles, it suffices to
prove that Zϕ = Zψ1, for instance. To show that Zϕ ⊆ Zψ1, let α be a zero
of ϕ. Choose a sequence of complex numbers (λn)n≥1 converging to α, such
that ϕ(λn) ∈ R∗

+. Clearly, since ϕ(λn) converges to 0, there exists a sequence
of real numbers (µn)n≥1 tending to +∞, such that ϕ(λn)ϕ(µn) = 1, for every
n ≥ 1. Thus, (5.4) implies that ψ1(λn)ψ2(µn) = 1. Since ψ2(µn) → +∞, we
have ψ1(λn) → 0, whence ψ1(α) = 0, the desired result.

For the converse, let α′ be a zero of ψ1. Choose a sequence of complex
numbers (λn)n≥1 converging to α′, such that ψ1(λn) ∈ R∗

+ and ϕ(λn) 
= 0.
By the first statement of Lemma 5.1, there exists of a sequence of com-
plex numbers (µn)n≥1, such that ϕ(λn)ϕ(µn) = 1. Remembering that ϕ is
periodic, we may assume moreover that (|�m µn|)n≥1 is bounded. Apply-
ing once more (5.4) yields ψ1(λn)ψ2(µn) = 1. From this we deduce that
ψ2(µn) → +∞, which in turn shows that |�e (µn)| → +∞. Now, by the
second statement of Lemma 1, we have |ϕ(µn)| → +∞, whence ϕ(λn) → 0.
Hence, by continuity, ϕ(α′) = 0. �

Lemma 5.3 Under assumptions (A) and (B), ψ1 and ψ2 are of order 1.

Proof of Lemma 5.3. Let α be a zero of ϕ. Recall that the zeros of
ϕ are all simple, by hypothesis. Hence, by the local inversion theorem for
holomorphic functions, there exist neighbourhoods U and V of α and 0
respectively, such that the restriction ϕ : U → V is one-to-one. Its local
inverse will be denoted by ϕ−1 throughout.

Now, pick ε > 0, such that [0, ε[ × {0} ⊂ V . Since limλ→∞ ϕ(λ) = +∞,
there exists a real number Λ > 0, such that λ ≥ Λ ⇒ ϕ(λ) > 1/ε. The local
inverse ϕ−1 being holomorphic on V , we have

ϕ−1(z) = α + βz + o (z) , z ∈ V

for some β 
= 0. Thus,

ϕ−1

(
1

ϕ(λ)

)
= α + β

1

ϕ(λ)
+ o

(
1

ϕ(λ)

)
, λ ≥ Λ.

By Lemma 5.2, ψ2(α) = 0, so that, in a neigbourhood of α,

ψ2 (z) = γ (z − α)n + o ((z − α)n) ,

for some integer n ≥ 1 and γ 
= 0. In particular, for λ ≥ Λ,

(5.5) ψ2

(
ϕ−1

(
1

ϕ (λ)

))
= γ βn

(
1

ϕ (λ)

)n

+ o

((
1

ϕ (λ)

)n)
.
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Since

ϕ(λ)ϕ

(
ϕ−1

(
1

ϕ(λ)

))
= 1,

we have by (5.4):

ψ1 (λ) ψ2

(
ϕ−1

(
1

ϕ(λ)

))
= 1.

Using (5.5), we obtain that

ψ1 (λ) =
1 + o (1)

γ βn
(

1
ϕ(λ)

)n ,

whence, |ψ1(λ)| ≤ C (ϕ(λ))n, for some constant C and λ sufficiently large.
This inequality shows that the order of ψ1 is 1 and similar arguments yield
the same result for ψ2. �

We come to the final step in our proof. Even if it means changing indices,
we denote from now on by α1, . . . , αk the zeros (simple and distinct) of ϕ
such that −π/2 < arg(αj) ≤ π/2 and −π < �m αj ≤ π, 1 ≤ j ≤ k, so that
Zϕ = {±αj + m · 2iπ, 1 ≤ j ≤ k, m ∈ Z}, by assumptions (A) and (B).
Applying once more Hadamard’s factorization theorem, we have

ϕ = ξ1 · . . . · ξk where ξj(z) =
+∞∏

m=−∞

(
1 − z2

(αj + m · 2iπ)2

)
.

The ξj are 2iπ-periodic. Their zeros are simple and moreover,

(5.6) ∀i, j ∈ {1, 2, . . . , k}, ξj(αj) = 0 and ξj(αi) 
= 0 if i 
= j.

Thus, every αj has a neighbourhood Vαj
, such that the restriction of ϕ to

this neighbourhood, denoted by ϕj , is one-to-one. We write ϕ−1
j for its local

inverse. By using Lemmas 5.2 and 5.3 as well as the symmetry of ϕ1 and ϕ2,
it is easily seen that

(5.7) ψ1 = ξn1
1 · ... · ξnk

k and ψ2 = ξm1
1 · ... · ξmk

k ,

for some positive integers n1, n2, . . . , nk and m1,m2, . . . ,mk. Without loss
of generality, we may assume that m1 is the minimum of these exponents.
Now, since

ϕ(λ) · ϕ
(
ϕ−1

1

(
1

ϕ(λ)

))
= 1,

for real and sufficiently large λ’s, we have by (5.4):

ψ1(λ)ψ2

(
ϕ−1

1

(
1

ϕ(λ)

))
= 1,
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or equivalently, using (5.7),

(5.8) (ξn1
1 · ... · ξnk

k )(λ) · (ξm1
1 · ... · ξmk

k )
(
ϕ−1

1

(
1

ϕ(λ)

))
= 1.

But, for sufficiently large λ,

ϕm1(λ)ϕm1

(
ϕ−1

1

(
1

ϕ(λ)

))
= 1,

so that (5.8) simplifies to

(5.9) (ξn1−m1
1 · ... · ξnk−m1

k )(λ) · (ξm2−m1
2 · ... · ξmk−m1

k )
(
ϕ−1

1

(
1

ϕ(λ)

))
= 1.

Letting λ tend to +∞ in (5.9), we get

lim
λ→+∞

[ξn1−m1
1 (λ) · ... · ξnk−m1

k (λ)] · ξm2−m1
2 (α1) · ... · ξmk−m1

k (α1) = 1.

Since limλ→+∞ |ξj(λ)| = +∞, for every 1 ≤ j ≤ k, we deduce from (5.6)
that n1 = n2 = · · · = nk = m1. Hence ψ1 = ϕm1 . Substituting this in (5.4)
leads without difficulty to ψ2 = ϕm1 , whence ψ2 = ψ1. �

Acknowledgments

We are indebted to Pierre Vallois for a first draft of Example 4. We also
wish to thank Marc Yor for many valuable suggestions and for a first reading
of the paper during the 2002 Saint-Flour Summer School. In particular, the
simple proof of Lemma 1.4 is due to him.

References

[1] Boas, R. Ph.: Entire Functions. Academic Press Inc., New York, 1954.
[2] Bourekh, Y.: Quelques résultats sur le problème de Skorokhod. PhD
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Institut Elie Cartan, BP239
54506 Vandœuvre-lès-Nancy Cedex, France

bernard.roynette@iecn.u-nancy.fr


