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Independence of time and position

for a random walk

Christophe Ackermann, Gérard Lorang and Bernard Roynette

Abstract

Given a real-valued random variable X whose Laplace transform
is analytic in a neighbourhood of 0, we consider a random walk
(Sp,n > 0), starting from the origin and with increments distributed
as X. We investigate the class of stopping times T' which are indepen-
dent of Sy and standard, i.e. (Syar,n > 0) is uniformly integrable.
The underlying filtration (F,,n > 0) is not supposed to be natural.
Our research has been deeply inspired by [7], where the analogous
problem is studied, but not yet solved, for the Brownian motion. Like-
wise, the classification of all possible distributions for St remains an
open problem in the discrete setting, even though we manage to iden-
tify the solutions in the special case where T is a stopping time in the
natural filtration of a Bernoulli random walk and minT < 5. Some
examples illustrate our general theorems, in particular the first time
where |S,| (resp. the age of the walk or Pitman’s process) reaches a
given level ¢ € N*. Finally, we are concerned with a related problem
in two dimensions. Namely, given two independent random walks
(S/,n > 0) and (S/,n > 0) with the same incremental distribution,
we search for stopping times 7" such that S/, and S/ are independent.

Introduction

B. de Meyer, B. Roynette, P. Vallois and M. Yor investigate the follow-
ing problem in [7]: given a linear Brownian motion (Bt > 0) starting
from 0 and adapted to a filtration (F;,t > 0), characterize the (F;)—stopping
times 7" such that (i) (Biar,t > 0) is uniformly integrable (7" is then called
“B-standard”) and (ii) 7" and By are independent. This question is strongly
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related to the celebrated “Skorokhod problem” for the space-time process
((t, B;),t > 0), which consists in finding a stopping time 7" such that (7', Br)
follows a given distribution £ on R, xR. The characterization of all possible
stopping distributions £ turns out to be difficult, although a necessary and
sufficient condition, due to the works of Bourekh [2], Rost [11], Falkner and
Fitzsimmons [3], is known. Hence it is natural to introduce the additional
“simplifying” conditions (i) and (ii) above. Nevertheless, even in that case a
simple description of the stopping distributions (as obtained e.g. in [12] for
the two-dimensional process ((Ly, By),t > 0), where (L;,t > 0) denotes the
local time at 0 of the Brownian motion) remains an open problem.

In this paper, we are concerned with the discrete version of the above
problem. More precisely, let X be a real-valued random variable whose
Laplace transform ¢(z) = E(expzX) is analytic in some neighbourhood
of 0. This implies in particular that X has finite moments of any order.
Let S = (S,,n > 0) be a random walk starting from the origin, with in-
crements distributed as X. We assume that S is adapted to a filtration
(Fn,n > 0) which is not necessarily the natural filtration (cf. (1.1)).

In Section 1, we investigate the class of (F,,)—stopping times T" such that

(IP) T is S-standard and 7" 1L St.

Here the label “S-standard” has the same meaning as in the case of Brownian
motion, whether X is centered or not (cf. definition 1.1). Theorem 1.1 gives
some properties of stopping times solving (IP). First, we prove that the
Laplace transform 1r(z) = E(exp zS7) is well-defined and holomorphic in
the strip of regularity of . Then we establish the following relation, referred
to as Wald’s identity:

lo(2)| >1 = E(expzSr) E (@) =1.

Denoting by gr(r) = E(rT) the generating function of T', Wald’s identity
reads:

P21 = br(s)gr (ﬁ) 1

The consequences of this equality are manifold. First of all, it shows that
the law of T" uniquely determines that of St, and conversely. Moreover, it
implies that the generating function of T is analytic at 1, whence T has
finite moments of any order. Under the stronger assumption that gr is an
entire function and with some technical constraints on ¢, we obtain that T
is necessarily constant. This is the object of theorem 1.2. Finally, when ¢
is entire, Wald’s identity permits us to relate the order and the type of ¢p
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to those of ¢ (cf. proposition 1.1). We conclude Section 1 by improving
Khinchine’s inequalities for S7, in the case where X is centered and belongs
to Newman’s class (£). The reader is referred to proposition 1.3 for precise
statements.

Section 2 is entirely devoted to examples of stopping times solving (IP).
We begin by proving a few general results when S is a Bernoulli random
walk, that is, when P(X = 1) = p =1 —-P(X = —1). In the symmet-
ric case (p = 1/2), a direct application of Wald’s identity implies that, for
each T satisfying (IP), there exists a polynomial P,, of degree m = minT
which uniquely determines the joint law of (Sr,7T) through the relations
Yr(z) = Pp(chz) and gr(r) = 1/P,(1/7) (cf. lemma 2.2). If in addition
the filtration (F,,n > 0) is assumed to be natural, it will be shown that the
same 7" also solves (IP) in the general case 0 < p < 1 (cf. proposition 2.1).
We study a few examples in detail, in particular the first time where |S,,],
respectively Pitman’s process reaches a given level ¢ € N*. The most in-
teresting example is certainly provided by the first time the age process
reaches a; here the independence of T" and Sy is realized for any distribution
of X (cf. proposition 2.4).

We return to the symmetric Bernoulli random walk in Section 3. Here,
every probability distribution of some Sp, where T' is a stopping time in
the natural filtration of the walk and satisfies (IP), will be called a “stop-
ping distribution”. By elementary combinatorial arguments, we obtain an
algorithm which characterizes the stopping distributions according to the
maximal element of their support (which is also the minimum of the corre-
sponding stopping time) (cf. proposition 3.1 and theorem 3.1). Let us stress
the fact that this algorithm is of little practical interest because infinitely
many steps are necessary to check that a given distribution is actually a
stopping distribution. To each stopping distribution, say L£(Sr), we asso-
ciate its “generating polynomial” (which, roughly speaking, is nothing else
but the polynomial P,, above, m being the minimum of the corresponding
stopping time 7") and we are able to express the law of 7" in terms of the
roots of the generating polynomial (cf. proposition 3.2). Finally, we manage
to identify all stopping distributions for m < 5. The general classification
of stopping distributions remains an open problem.

In Section 4, we turn to a related problem in two dimensions. Given two
independent symmetric Bernoulli random walks (S/,,n > 0) and (S//,n > 0),
we investigate the class of stopping times 7" such that S7. and S7 are inde-
pendent. We prove that when 7 is not too large (cf. theorem 4.1 for details),
S7. and SY. are both distributed as Sy, for some integer N. In the appendix,
we generalize this result to more general increments.



896 C. ACKERMANN, G. LORANG AND B. ROYNETTE

1. General theorems

Let (X, X;,i > 1) be a sequence of i.i.d. real-valued random variables defined
on some filtered probability space (£, F, (F,,n > 0),P), such that

>
(11) { U(Xl,XQ, ,Xn) C fn,n = 1

fnJ_L U(Xn+17Xn+2,...),TL20.

The Laplace transform ¢(z) = E(exp 2X) is assumed to be analytic in a
neighbourhood of 0. Let B, denote the strip of regularity of ¢, i.e.

B,={2z€C,pRe z) < +o0} ={2 € C,—a < Re z < f}.

Throughout this work, it will be assumed that 0 < a, 8 < co. This implies
in particular that X has finite moments of any order. The trivial case X =0
a.s. will always be excluded.

We define a random walk by Sy =0and S, = X;+ Xo+...+ X,,, n > 1.
Let us recall that the centered walk S = (S, — nu,n > 0), where p = EX,
is a martingale with respect to the filtration (F,,n > 0). When g > 0
(resp. pu <0), (Sp,n > 0) is a submartingale (resp. a supermartingale) with
respect to this filtration.

Definition 1.1 A stopping time T in the filtration (F,,n > 0) is said to be
S—standard if T is a.s. finite and if the stopped process ST = (Spar,n > 0)
s uniformly integrable.

The prefix “S—" will be omitted whenever no confusion is possible.
Lemma 1.1 IfET < +o0, then T is standard.

Proof. If ET < +o0, then Sy is a uniformly integrable martingale. Indeed,
denoting ¢®> = Var X, it is easy to check that (Syar — (R AT)o%,n > 0) is a
martingale, which implies that E(S2,,) = 0?E(nAT). Hence, the process S”
is bounded in L? and therefore u.i. As a result, ST is the sum of two u.i.

processes and thus is also u.i. [ |

Remark 1.1 Retain from this proof that if ET < 400, then Sy is wi. A

1.1. Independence of 7" and Sr. Wald’s identity and consequences

For any a.s. finite (F,,) —stopping time 7', we will adopt the notation 17 (\) =
E(exp ASt) throughout. The following theorem gives some necessary prop-
erties of stopping times which solve the independence problem (IP) stated
in the introduction.
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Theorem 1.1 Let T be a (F,)—stopping time satisfying (IP). Then:
a) Y is holomorphic in the strip of reqularity of , that is:

(1.2) VA€ l—a,8], Yr(A) =E(expASr) < +o0.
b) Wald’s identity holds for all z € C such that |p(z)| > 1, i.e.:

1
1.3 v(2)] > 1= E(exp 2S5 E(—)zl
c) If l(2)| > 1 then [yr(2)| > 1.
d) gr(r) .= E@rT) < o0, for some r > 1, i.e. the radius of convergence of
the generating function of T is > 1.

e) Setting u = EX and o* = Var X, we have
(1.4) ESy = uET and Var Sy = o°ET — i Var T.

Remark 1.2 (i) By a), if ¢ is an entire function, the same is true for ¢y
(i) If w > 0 (resp. p < 0) then (1.3) holds for all nonnegative (resp.
nonpositive) real numbers. If X is centered, (1.3) holds for every z € R.
(iii) According to d), T" has finite moments of any order. In particular, T is
of finite expectation.

(iv) Wald’s identity shows that the law of T uniquely determines that of Sy,
and conversely. For instance, St has the same distribution as Sy, for some
integer N, if and only if "= N a.s. In this case 17(2) = p(2)".

(v) Let T be a stopping time satisfying (IP) and Fy-measurable, that is,
independent of the variables Xi, Xs,... An elementary computation yields
the equality: E(expASr) = E(¢p(A\)T). Wald’s identity becomes

E(e(N)E(@N) =1,

for every A € R such that ¢(A) > 1. Now, by Cauchy—Schwarz, T is neces-
sarily constant a.s. The same conclusion holds even without the hypothesis
that T is standard. Indeed, by independence of T" and S7, for any Borel set
A and any integer n:

P(SreAand T =n)=P(Sr € A) P(T =n).
On the other hand, T" being independent of the X, we have:
P(SpeAand T =n)=P(S, €¢ Aand T =n) =P (S, € A) P(T =n).

Thus,
Vn>0, P(T'=n)=0o0r Sy ~S,,

which means that 7' = N a.s., for some integer N. Note incidentally that
this remark applies to the case when X is constant a.s.
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(vi) For a positive, integer-valued random variable T', with finite second
moment and independent of the X;, the following identities are classical:

(1.5) ESy = uET and VarSy = o’ET + p*VarT.

If moreover T satisfies (IP), then (1.4) and (1.5) imply that Var7T = 0. In
other words, we have proved again that 7" is constant a.s. A

Proof of Theorem 1.1. a) For every \ € |—a, (], the exponential martin-
gale (M, (\) = exp(AS,)/@(A)",n > 0) is well defined. Since T is standard,
we know that lim,,_.., Spar = S7, a.s. and L'. Now, by Fatou’s lemma,

E(Mr(\)=E (lim inf M7 ()\)> < liminf E (Myar () = 1.

n—oo n—oo

Combining this inequality with the independence assumption, we get
(1.6) E (Mp (X)) = E (exp ASr) E(p () ") < 1.
From the fact that E(p (\)~") > 0, we finally deduce (1.2).

Remark 1.3 Another obvious consequence of (1.6) is that E(o(A\) ™) < +o00,
—a < A < 3, else we would have S = +00 a.s., a contradiction. In the
case 1 # 0, this settles immediately point d) of our theorem. In particular,
T has then finite moments of any order and remark (1.1) yields the uniform
integrability of ST A

b) Let us extend the definition of the exponential martingale to complex
numbers. More precisely, for every z € B, such that ¢(z) # 0, we set:

M, (z) = exp (2S,) /¢ (2)" ,n > 0.

If |p(z)] > 1, then |Muar(2)] < exp[(Re z) Spar]. We prove first that
the dominating process (exp [(Re z) Spar],n > 0) is uniformly integrable
when p > 0. Two cases have to be distinguished:

Re 2> 0 = exp[(Re z) Spuar] < exp[(Re z) E(Sr/Furr)]
< E (exp (Re z) St/ Funr)

Re 2 <0 = expl[(Re z) Spar] = exp -(§Re 2) Spar + (Re 2) (n AT) ,u]

< exp _(%e 2) Sn/\T}

= exp :(é)%e 2)E (ST/FW\TH as ST is w.i.

<E [exp ((E)%e z) ST) /anT} :
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Inverting the above arguments when p < 0, we conclude that, for any pu,
the martingale M, (z) is u.i. By the optional stopping theorem we get:

E [exp (57) /¢ (2)7] = L.

The independence of T and St finally leads to (1.3).
c¢) This is an immediate corollary of b).

d) As already noticed in remark 1.3, the assertion is trivial in the case u # 0.
More generally, the function 1/1r(2) is analytic at every z € B, such that
Yr(z) # 0. This is true at 0, since 17 (0) = 1. Thus,

(1.7) wr (2) =E (¢ é)T) B @le(Z)

admits analytic continuation in some open disc D centered at 0. Since ¢(D)
is open and contains 1, there exists some v € ]0,1[ N ¢ (D) for which we
have E[1/47] < +o0.

e) Both identities follow easily from Wald’s identity written in terms of the
power series expansion of ¥y and wr at 0. [

Lemma 1.2 If T satisfies (IP) then either P(T'=0) =0 or P(T =0) = 1.
Proof. By the independence assumption,

P{T =0} n{Sr =0}) =P({T = 0}) - P({Sr = 0})
S P{T=0})=P{T=0})-P({Sr=0})
SPH{T'=0})=0o0r P({Sr=0}) =1.

Now, assume that S = 0 a.s. and, for instance, take p > 0. This implies
that 0 = E(S7/Fuar) > Suar. On the other hand, since ST is a submartin-
gale, E(Suar) > E(Sy) = 0. Hence S,or = 0 a.s. for every n. The same
conclusion holds of course in the case u < 0. Observing that the event
{T # 0} belongs to Fy, we have:

PHET # 0} n{X, =0}) =P({T #0}) - P({X1 = 0})
S P{T #0}N{Sir =0}) =P({T #0}) - P({X, =0})
S P{T #0}) =P{T #0}) -P({X1=0}).
Since the case X; = 0 a.s. was excluded from the beginning, it follows that
P(T'#0)=0,ie. T =0 as. |

Proposition 1.1 Assume that ¢ is an entire function. Let T # 0 be a
(Fn)—stopping time solving (IP). Then:

a) ¢ and Yy have the same order, which belongs to [1,400].

b) If ¢ is of finite order and of type T, then the type of ¥y is equal to min T'-T.
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Proof. Let us first recall the elementary fact that

M (r) == sup | (2)] = max{p (1), (=7)}, r = 0.

|z[<r

Furthermore, we note that if P(X < 0) > 0, then lim, ., p(r) = +oo.
Thus, only nonnegative random variables X satisfy lim,_,_., ¢(r) < +oo.
More precisely, if X > 0 a.s.,thenr > 0= p(r) > 1land r <0 = p(r) < 1.
Hence

X>0as. =M, (r)=¢(r), Vr>0

and
X <0as. = M,(r)=¢(-r), Vr>0.

Obviously, if X > 0 a.s. (resp. X < 0 a.s.) then the same is true for Sy.
Thus, restricted to R, the functions ¢ and 7 always tend to +o0o together.

Now, set m = minT', m # 0 by assumption. For every A € R such that
©(A) > 1, Wald’s identity yields the following upper bound for 17 (\):

1 < 1 < 90()‘>m .
E(e™) " E(em T =m}) ~ B@=m)

Thus, the order of ¥ is at most equal to the order of . If ¢ is of finite
order p and of type 7 then the type of ¢z is bounded above by mt since

log ¢ (M) log v ())

v <mlimjy—jo—"—- = mr.

AP
On the other hand, when ¢(A) > 1 we have

Yr ()‘) =

limyy - oo

E(p()") =Y ¢ P@=k)  (m#0)
k=m
— -k _ ¥ "
which yields

= W > @(A)m (1 _90()‘)71)'

This shows that the order of ¥ is at least equal to the order of ¢. If ¢ is of
finite order p and type 7 then the type of 17 is bounded below by mr since
1 A) log o (\) +1log (1 — ¢ (A~

Oglﬁf = > Ty oo cep (M) Tloe(L=p (X)) mr.

AP

hm|)\|—>+oo
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1.2. Conditions which imply the constancy of T

Statement d) of Theorem 1.1 asserts that the radius of convergence Ry of
the generating function gr is > 1. Assuming that Ry = oo and imposing
some technical constraints on ¢, we are able to show that 7' is necessarily
constant.

Theorem 1.2 Assume that o is an entire function. LetT be a (F,)-stopping
time satisfying (IP). Fach of the following conditions:

(a) T is bounded;
(by) ¥r >0, gr(r) < +00 and ¢ has at least one zero;
(by) ¥r >0, gr(r) < +00 and ¢ has finite order

implies the constancy of T'.

Remark 1.4 (i) In particular, there are no bounded stopping times 7" such
that T 1L S, except the constant ones.

(ii) If ¢ is of finite order, then it has at least one zero, except for two cases,
as will be shown in the lemma below.

(iii) If ¢ is of infinite order, then it does not necessarily vanish, even in the
symmetric case. For example, let X; and X, be two independent variables
having the Poisson distribution with parameter A. Setting X = X; — X5,
we have ¢px(2) = exp[2A(chz — 1)] # 0.

(iv) Open problem: prove Theorem 1.2 without assuming that ¢ has at least
one zero. A

Lemma 1.3 If ¢ is an entire function of finite order and without any zero,
then X is necessarily constant or gaussian.

Proof of Lemma 1.3. By Hadamard’s factorization theorem for entire
functions of finite order (cf. [13] or [1]), there exists a polynomial P of
degree at most the order of ¢, such that ¢(z) = exp(P(z)). Therefore the
statement of the lemma comes immediately from Marcinkiewicz’s theorem
(cf. [Lu], p. 213). |

Proof of Theorem 1.2. Let Z; denote the set of zeros of an holomorphic
function f. Our first step is to show that

(1.8) Z, = Zyr,

whenever the radius of convergence of gr is infinite. Under this assumption,
which will be in force throughout the proof, the function wr(z) = E(p(z)~7)
is analytic at each z such that ¢(z) # 0. Wald’s identity ¢r(2) - wr(z) = 1,
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at the beginning only valid when [¢(2)| > 1, can now be extended on Z¢ by
analytic continuation:

(1.9) Vze Zg, Yr(2) wr(z) =1

In particular, if ¢(z) # 0 then ¥r(z) # 0. If ¢(z) = 0, the principle of
preservation of a domain allows us to choose a sequence of complex num-
bers (z,) such that z, — z and ¢(z,) € R%. Then wy(z,) tends to infinity
and by (1.9), ¥r(z,) tends to 0, whence ©7(z) = 0. Thus (1.8) holds.

Now, assume that Z, # (). This implies that T is necessarily bounded.
Indeed, rewrite (1.9) as follows:

1
1.10 Vze Z5, wr(z) = ——,
140 o=
and observe that the righthand side of the last equality is a meromorphic
function. Given zy € Z,, (1.8) ensures the existence of an integer N such

that the function
E AN-TY w (2
(cp( ) ) or ()

is holomorphic in some neighbourhood of z5. On the other hand,
+oo
E(e(=") = ¢
k=0

where p, = P(T' =k). Since lim,_,,, ¢(2) = 0, we may choose again a
sequence (z,) such that z, — 2z, ¢ (2,) € R’ and by continuity, ¢ (2,,) — 0.
If p; # 0 for some [ > N, we would have

)N

lim E (go(zn)N*T) > lim ¢ (2,)" " pr = +o0,

n—oo n—oo

a contradiction. Hence T' < N a.s.

We finally prove that T is in fact constant. Set N = maxT and n =
min 7', so that in particular py # 0 and p,, # 0. For every z € Z¢, we have

al k al N—k P z
(1.11) = ; SOZ(DZ)I@ = gpé)N ;pw(Z) = —(;Z;N)),

where P is a polynomial of degree N — n such that P(0) # 0. Combin-
ing (1.10) and (1.11) yields:
P 1
ez PEE) 1
p(2)" Yr(2)
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This shows that P(¢(z)) never vanishes. Thus, inverting both sides, we get:
N
v (2)
Vz € (CJ QZJT (Z) ~— D
P(e(2)

vr (2) _ @(Z)N_n
p(2)" Ple(2)
It is easy to see that the righthand side of the last equality is a bounded entire
function, so necessarily constant by Liouville’s theorem. Since 97 (0) =
¢ (0) = 1, we have ¢r(2) = ¢(2)". This means that T = n a.s., by
Remark 1.2, (iv).

It remains to study the Gaussian case, i.e. p(z) = exp(uz + "2—2z2), with
o # 0. The other cases are settled thanks to Remark 1.4, (ii) and the first
step of the proof. The generating function of 7' being entire, we derive
from (1.8) and statement a) of Proposition 1.1 that ¢ is an entire function
of order 2 without zero. Thus, by Lemma 1.3, ¢ is either gaussian or
constant, that is: ¢7(z) = exp(az + bz?), where a = ESy and b = Var Sp/2.
Combining Wald’s identity and the relations in (1.4), we have

E [exp (— <uz + "7222> T)] = exp (— (,uz + %222> ET + “7222 Var T) ,
or equivalently:

(1.12) E [exp (— (,uz + %222> ’f’)] = exp (%222 Var T> , where T =T —ET.

whence

Vz € Zg,

If 11 # 0, the equation puz + "2—222 = 0 admits 29 = —2u/0? > 0 as a solution.
Substituting z = z in (1.12), we get 1 = exp(2u*VarT/o*), which is only
possible if VarT' = 0, i.e. if T" is constant. If ;1 = 0 then (1.12) becomes:

E [exp (—U—;ZQT)] =1,VzeC.

from which follows at once that 7 = 0 a.s., i.e. T = ET a.s. [

1.3. Moment inequalities

We begin with an upper bound for E(S3).

Proposition 1.2 Assume that X is symmetric, 0*>= E(X?) and 74 = E(X*).
Let T be a (F,)—stopping time satisfying (IP). Then

(1.13) E(S7) = o’ET
and
(1.14) E (S}) < 30* (ET)* — (30" — %) ET,

with equality if and only if T is constant.
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Proof. Equality (1.13) is just the second identity in (1.4). In order to
prove (1.14), one shows easily that

(M,, = St — 61n02S? + 3n(n + 1)o* — nr*;n > 0)
is a martingale and then applies the optional stopping theorem:
E (Sprr) =60°E[(RnAT)S2 ] =30 E[(nAT)(n AT+ 1)+ 7E(nAT).

Since T has finite moments of any order, we may let n tend to +oc. The
independence assumption then yields:

E (51) = 60°ET E(S7) — 30"E (I% + T) + 'ET.
Combining this with (1.13), we get:
E (S7) = 30* (ET)? — 30* Var T — (30* — 7*) ET,
from which (1.14) follows readily. |
Remark 1.5 When P(X =1) =P(X = —1) = 1/2, (1.14) simplifies to
E(S%) < 3(ET)? — 2ET = 3(ES2)” — 2ES2.

In particular, Khinchine’s well-known inequality E(S%) < 3(ES2) holds.
In what follows, we will generalize this inequality for moments of higher
order. JAN

Let us recall that a random variable X satisfies “Khinchine’s inequali-
ties” if (2p)!
2 D): 2\P
E (X*) §2p—p!E(X) ,Vp e N.
These inequalities hold for example if X is distributed according to the
symmetric binomial distribution with parameter n, denoted by BS (n),

(1.15) X ~ BS (n) <= px (2) = (chz2)",

or, more generally, if X belongs to Newman'’s class (£) (cf. [9]), i.e. the class
of random variables whose Laplace transform ¢ has the following properties:

i) ¢ is of order at most 2,

(1.16) ii) the zeros of ¢ are all purely imaginary.

X is said to satisfy “Khinchine’s improved inequalities” (for large moments),
if there exist constants C' > 0 and « €]0, 1] such that:

E (X?) < CQP% [E(X?)]",VpeN.

D!
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Proposition 1.3 Assume that X is centered and belongs to Newman’s
class (L). Let T be a (F,)—stopping time satisfying (IP). Then:

2 (2p)! p
where C' = 1/P(T =m) and a = m/E(T'), m being the minimum of T.
In particular, St satisfies Khinchine’s improved inequalities if and only
if T is not constant.

The key tool for proving (1.17) is contained in the following elementary
lemma.

Lemma 1.4 If X is centered and T satisfies (IP), then
Vn,peN, P(T<n)E(SY¥)<E(S¥).

Proof of Lemma 1.4. Under the above assumptions, (S?,n >0) is a
submartingale. By the optional stopping theorem and the independence
hypothesis, we have successively:

E(SF) > E(Sihy) > B(S2 I{T < n})
= E(SPI{T < n}) = E(S7P)P(T < n). m

Proof of Proposition 1.3. We apply Lemma 1.4 with n =m = minT"

1

E(5%).

m

Now, since X belongs to Newman’s class (£), the same is clearly true for
any finite sum of independent random variables distributed as X. Thus,
each S,,,n > 0, belongs to (£). By Khinchine’s inequality,

! 2 p
E(S) < g oy [E (53]

_ 1 (227)! 2\P
- P(T <m) 27p! (o)

1 m P (2p)! P
T P(T<m) (ﬁ) 2vp! (°BT)".

Since E(S%) = ¢?ET, inequality (1.17) is proved. It remains to observe that
the constant o = m/ET is < 1 if and only if 7" is not constant, whence the
last assertion of the proposition follows immediately. [



906 C. AcCKERMANN, G. LORANG AND B. ROYNETTE

Proposition 1.4 Assume that X is centered. Let T be a stopping time
satisfying (IP) and set m = minT. Then, denoting by ||.||, the norm in
Lr(Q, F,P), we have:

m ‘
(1.18) 157 [l,, < BT = m) [ X1l5, ,p €N
(1.19) 157l < m Xl -

Proof. Once more, we apply Lemma 1.4 with n =m = min 7"

1 m
157 |, < BT m) [Simllop < BT = m) 1X1lo, »
since
||Sm||2p =[|X1i+...+ Xm||2p < m|[ X[z
Letting p tend to +oo, we obtain (1.19). |

We end this section by refining (1.19).

Proposition 1.5 Assume that X is bounded. Let T be a stopping time
(standard or not) independent of Sy. Then (1.19) holds with m = minT. If
moreover T' is standard and X is centered, then (1.19) becomes an equality.

Proof. Let m = minT and M = || X||w. By the independence assumption:
P(T =m and |Sr| >mM) =P (T =m)P(|Sy| > mM).
But
P(T =m and |St| > mM) < P(|S,,| > mM) =0
and P(T = m) # 0. Thus, P(|Sy| > mM) = 0, which means that

157/l < minT" - [[X]]o.

Assuming moreover that T is standard and X is centered, we know that
|Spar| < mM, for every n. To prove the second statement of the proposition,
choose 0 < ¢ < :n”—ﬁ and write:

0<]P)<X1>M—%,X2>M—%,...,Xm+1>M—%)

<P (T =m and Sp > mM — ¢) (else Smy1 = Spamt1) > mM, impossible)
=P(T=m)-P(Sr>mM —¢).

Hence, for £ small enough, we have P(S;p > mM — ¢) > 0. [ |
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2. Examples

2.1. Some general results in the case of a Bernoulli random walk

Throughout this section, we denote by T" a (F,,)—stopping time solving (IP)
and by m its minimum. Most of the time, we will work under the assumption
that S is a Bernoulli random walk, that is:

(2.1) P(X=1)=pandP(X =-1)=qg=1-p,

for some p € ]0,1[. In the symmetric case, i.e. p = 1/2, Proposition 1.5
shows that
|S7|| . = minT = m.

The following lemma gives further details in the general case, i.e. 0 < p < 1.

Lemma 2.1 In the general Bernoulli case and with the above notation, we

have:

(2.2) Supp(£(Sr)) C {m — 25,0 < j < m},
(2.3) Supp(L(T)) C {m + 2k, k > 0},

(2.4) P(Sr =m) > 0 and P(Sp = —m) > 0.

Proof. Since T' 1L S7, we have
P(Sr=k)=P(Sp=k/T=m)=P(S,,=kand T =m) /P(T =m)

and similarly,

P(T'=k)=P(T =k/|Sr|=m) =P (T =k and |Sg| =m) /P (|Sr|=m).

Whenever these probabilities are = 0, m and k must have the same parity,
whence (2.2) and (2.3) follow. To show (2.4), we proceed as in Proposi-
tion 1.5:

O<P<X1::Xm: m+1:1>
<P(T =m and Sy = m)
The positivity of P(Sy = —m) can be obtained in the same way. [ |

Notational convention FEvery time we work with the Bernoulli random
walk, characters topped by a ~ (resp. without the ~ ) will refer to quantities
computed in the symmetric (resp. general) case.
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Lemma 2.2 In the symmetric Bernoulli case, there exists a polynomial Py,
of degree m = min'T’, such that:

(2.5) Ur(z) = E(exp 2S7) = Pp,(ch2)

1

2.6 gr(r) =E(¢r") = ———
2. () =B(") = 5
Moreover, J-:’m(l) =1, P, has the same parity as m and all the roots of P,
are located in the open unit disk.

Proof. Relation (2.5), as well as the degree and the parity of P,,, are easily
derived from (2.2) and the symmetry of Sy. (2.6) is an immediate conse-
quence of Wald’s identity. Point ¢) of Theorem 1.1 states that if |ch z| > 1,
then [{r(2)| > 1, so that P, (chz) # 0. Since the equation ch z = u, where
lu| > 1, has always at least one solution z, the roots of P,, are necessarily
located in the open unit disk. [ |

So far, the filtration (F,,n > 0) has not played a significant role in our
discussion. Clearly, if the filtration is assumed to be natural, that is,

(27) fU:{Qaw} and fn:O-(XlaX27"'7Xn)> n > 17

then the class of stopping times solving (IP) is more restricted. This will
become apparent for instance by comparing example 4 (cf. proposition 2.6)
with its “natural” analogue (cf. proposition 3.3). In the framework of
Bernoulli random walks, hypothesis (2.7) leads to a more surprising result,
namely: the independence of T" and St under P, the probability associated
with the symmetric case (p = 1/2), suffices to ensure independence in the
general case (0 < p < 1).

Proposition 2.1 Let T be a stopping time in the natural filtration of a
Bernoulli random walk, with minimum m. If T satisfies (IP) in the sym-
metric case (p = 1/2), the same is true in the general case (0 < p < 1).
Moreover, setting p(z) = pe® 4+ qe* and denoting by P, the polynomial of
Lemma 2.2, we have:

29 o) =P (52 /2 (55 )

(29) gr (r) = B, (Z%p,q) /E. (ﬁ) |
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Proof. Write €2, for the set of all 2" possible trajectories of the walk until
time n. Consider the event I';), = {Sr=m — 25,7 =m + 2k} € Frion.
By (2.7), it is possible to identify it in a natural way with a subset of €, o
Observing that the number of positive and negative jumps of a trajectory
in I'; . is respectively m + k — j and k + j, we have:

P (S =m —25,T = m+ 2k) = [T, p" ",

In particular, when p = ¢ = 1/2, this becomes:

P(Sy=m—2j,T =m+2k) = Tyl (&)™

Combining the previous equalities and using the independence of 7" and St
under P, we get:

P(Sy =m —25,T =m+ 2k)
(2.10) =P (Sp =m —2j) P(T =m~+2k)(2p)" "7 (2¢)""7 .
From this, we derive the laws of Sz and 7" under P in terms of the corre-
sponding laws under P:

m—2j

P(Sp=m —2j)= (g) P B(Sr=m—2) Y (2y/p0)" B (T= m + 2k)

(2.11) = (2) 7 g VB0 B(Sr = m —2))

and:

2|3

P(T = m+2k) = (4PQ)%+k@(T:m+2k)§: B(Sr=m—2)) (2)

j=0
TRP(T = m + 2k) Py (% log (g))
P (T =m + 2k)
gr (2/pq) |

where the last equality is just Wald’s identity in the symmetric case. The
independence of Sy and 7" under P now easily follows from (2.10), (2.11)
and (2.12). Another application of Wald’s identity and some straightfor-
ward computations lead to (2.8) and (2.9). Let us finally notice that T
is also standard under P. Indeed, by (2.9), the radius of convergence of
the generating function gr is > 1 and therefore 7" has a finite expectation
under P. |

|3

= (4pq)

(4pq)

|3

(2.12) =




910 C. AckeRMANN, G. LORANG AND B. ROYNETTE

To end this subsection, we state the following combinatorial lemma with-
out proof. A more general result may be found in [4], chapter I11.10, prob-
lem 3, page 96.

Lemma 2.3 Given two nonnegative integers a and b, denote by a?’b the
number of paths in Z, which lead from 0 to a in a+2j steps, without leaving

{=0b,...,a}. Then:

ab _ Z CUTh(atbt2) _ i ltk(atbi2)

@ a+2j a+2j

kEZ

2.2. Example 1: The stopping time 77

Let T} = inf{n:|S, — So| > a}. The following proposition shows that,
if Ty 1L Srs, Va > 0, then the support of the distribution of X is very
particular.

Proposition 2.2 Assume that X is bounded. Then the following are equiv-
alent:

(i) for every a >0, T¥ and St» are independent;

(1) supp L(X) C {—X,0,\}.

Remark 2.1 The assumption that X is bounded is essential in our proof.
We do not know whether or not, there exists an unbounded variable X, for
which the independence of T); and Sr: holds for every a. A

Proof of Proposition 2.2. (i) = (ii): Denote by A and & respectively the
maximum and the minimum of the support of the law of X. Assume for
instance that A > 0. Then, for every a € |0, A[, we have

P(T; =1and Sp: > \) =P (X; > \) =0.

Since P(T) = 1) > P(X; > a) # 0, it follows from the independence assump-
tion that P (ST; > )\) = 0. But,

Ve el0,al, P(Sp: >A)>2Pe<X;<a)P(Xy>X—¢)

and, by definition, P(Xs > A —¢) # 0. Hence P(e < X; < a) = 0. Letting a
tend to A and € to 0, we obtain that

P(X €]0,A]) = 0.
A similar argument shows that, if x < 0, then

P (X €]x,0[) = 0.
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To sum up, we have proved that:
Supp L(X) C {k,0, A},

where the real numbers k,0 and A are not necessarily distinct. If x = 0
or kK = A, there is nothing more to prove. So, let us assume that x < 0 < \.
The goal is then to show that k = —A. If for instance, 0 < || < A, then we
would have:

(2.13) P(Ty =1and Sz <0) =P (Ty = 1) - P (S; < 0) = 0.

But,

and,
]P)(ST; <O) Z]P’(Xlzli)]P)(XQZIQ)]P)(X,,:K,)%O,

where v is an integer such that v - |k| > A. The required contradiction arises
when comparing the two last statements with (2.13). The case where |k| > A
may be handled in an analogous way.

(ii)) = (i): We may restrict to the case where A = 1 and a € N*. If
P(X =0) = 0, then S is a Bernoulli random walk. The symmetric case
(p = 1/2) is trivial, but suffices, by Proposition 2.1, to settle the general
case. If P(X = 0) > 0, a direct proof leads easily to the independence. N

In order to get explicit expressions of g7+ and 17+ in the general Bernoulli
case, we adopt a direct approach:

P (TF = a+2j and Sy, = a) = Bop*+ig/
P (T; =a+2j and Spx = —a) — 5;;qua+j7

where (7 denotes the number of paths of length a + 2j in Z such that
Ty =a+2j and S+ = a. By Lemma 2.3, we have

a a—1,a—1 i+2ka j—14+2ka
53' =y = Z Cc]zi_1+2j - 0271123' .
keZ
Thus, the law of T is given by
P(T; = a+2j)=Bp¢ (" +q°).

In particular, notice that

+o0 ; 1
2.14 < T
(2.14) ijo 3¢ (pq) )
The distribution of Sy is classical (cf. ruin problem, [4], ch. XIV.2, p. 344):
pa q(z
P (S =a) = and P (Sp» = —a) =
( TCL ) pa_|_qa ( Ta ) pa+qa
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Corollary 2.1 Take ¢ (z) = pe*+qe* and denote by Ca,a >0, the Cheby-
shev polynomauals of the first kind. Then

2./p*q* ~ z
(2.15) ors () = 2T ¢, (£,
P +q 2y/pq
r+q 1
(2.16) grs (r) = : .
a 2 a ~Qa = 1
e} <2mr>
In the symmetric case (p = q=1/2), (2.15) and (2.16) simplify to
. - . 1 = 7\ a2
A7)y () = Culehs) and g () = Zms = > (5)
al\r j=0
Proof. The symmetric case is straightforward. (2.15) and (2.16) follow
easily from Proposition 2.1 and (2.14). |
Remark 2.2 (i) The roots of C, are given by cos (2’;—;17r) s k=1,...,a.

Thus, the radius of convergence of gr: is equal to 1/2,/pgcos - > 1.

(ii) In the symmetric case, another expression of the law of 77 can be derived
from the power series expansion of gz« (r) = 1/C,(1/r), provided that a is
fairly small. The following table gives our results for a < 5.

a| gry(r) L(T7)
2 2227’2 P(T5:2+2k>:2k1+17k20
3| i P(Ty =3+2k) =1 (3)" k>0
4] L P(T;=4+2k) =1y, (=) k>0
7‘5 E3 l;f v 14
5 574 —20r2+16 P (T5 =5+ 2k) = % (%) Z Okfy (_%) 7k >0 A

2.3. Example 2: J. Pitman’s example

Here we work again with a Bernoulli random walk in its natural filtration,
that is, (2.1) and (2.7) are in force. Following Pitman (cf. [10]), we define
M,, = supy<i<, Sk and Y, = 2M,, — S,,. Note that Y, is the symmetric of S,
with respect to M,,.

It is easy to see that the 2-dimensional process ((M,,Y,),n > 0) is
Markovian on the state space H = {(m,y) € Z*,0 < m < y}. The transition
probabilities (tr) are given by:
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Figure 1 may serve as an illustration.

Y

L] L] L] L] L]
allle af [ qf |p qu q]M
L] L] L] L]
alllp al e 9 |p q]l%
L] L] L]
allle af o g %
L] L]

’ m
1 2 3 4 5

fig. 1: State space and transition probabilities of (Mp,Yn),>¢

Proposition 2.3 Set V, = inf{n > 0:Y, = a}, fora > 0. Then:
a) V, is a standard stopping time,
b) Vo, and Sy, are independent.

Remark 2.3 Again, by Proposition 2.1, it would suffice to consider the case
p = q = 1/2, although the following direct approach yields more quickly
explicit formulas. A

Proof. a) This is clear, since |Syav,| < a, for every n.
b) We will prove that V, 1L My, , which is equivalent to the statement of the
proposition, because Sy, = 2My, — a. Denote by I'j, the set of the paths of
the process (M, Y,,) leading from the origin to the point (My, = k, Yy, = a)
in V, = a+2j steps. The key observation is that the number of these paths,
denoted by 74, does not depend on k. Indeed, as discussed in [10], the
“projection” mapping:

QT — I, (My, Yy)

3,00

— (0,Y,)

0<n<a+2j 0<n<a+2j

is one-to-one, for every k = 0,1,...,a. As a result, we may write 7; instead
of 7§y, for every 0 < k < a.

We notice incidentally that ~§ is the number of paths in Z which lead
from 0 to a—1in a—14-2j steps, staying in {0,1,2,...,a — 1}. By Lemma 2.3:

a__ a—10 _ j+k(a+1) j—1+k(a+1)
VT = E :Ca—1+2j - Ca—1+2j .

keZ
The joint law of (V,, My,) is given by

P(V,=a+2jand My, =k) = ,Y;zpk+jqa+j—k’
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whence the law of V, follows immediately:

k
P(Va=a+2))=plg" > <I—)>

q
{ VWPPETEI ifp £ g,
Vot ifp=q=3
In particular:
o 9a
ZVJ pa)’ a+1 qa—H 1fp7éqandz—: at+1

From thls, we derive the law of My, :

0<k<a=P(My, =k) =pq kZ’yjp]q

prq” k(p—Q) T

; — 2}
pa+1_qa+1 _TTG+1_17 1fp%Q7/r q)

1\* 2@ 1 £ 1
— = — 1 = = =,
2) a+1 a+1 P=a=7

Thus, for p = ¢ = 1/2, we have rediscovered the well-known fact that My,
is uniformly distributed on {0, 1,...,a}. To complete the proof, it remains
to check that V,, LL My, , which is straightforward. |

Corollary 2.2 Take ¢ (z) = pe* +qe™* and denote by U,,a > 0, the Cheby-
shev polynomials of the second kind.

(i) If p # q then
_ VP 5 (9(2)
Yy, (2) = potl — gotl Va (2\/17_61)
and
Pt =gt L
(p —Q)\/W U, (

(i) If p = q = 1/2 these equalities simplify to

U, (ch 2)
a+1

v, (1) =
’ )

I;Va (2) =

and

v (r) = ;+( 1) (a+1) Z%( )MJ-

Proof. Similar to that of Corollary 2.1. [
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2.4. Example 3: The first hitting time of a given level by the age
process.

We denote by g, = sup{k < n: S, = 0} the last return to zero before time n
and by A, =n — g, the age of the walk at time n. Define

Ay =inf{n>0: A, =a}, a>0.
A surprising feature of this example is that A, 1L Sy, for any increment
variable X. Note however that, if

T:=inf{n>0:95,=0} =00 as,

i.e. if the walk never returns to 0, then A, = a a.s. and thus, A, is trivial.
The next proposition shows that the joint law of (Sy,,A,) is uniquely de-
termined by that of (S, 7).

Proposition 2.4 For any X, we have:
r®-Elexp (AS,) 1 (7 > a)]

(218)  Elep(Su)r] = 5

Thus, defining

(2.19) Ha(z):m{z“—iphza—k)zk},
we get: )

B P (1 > a) 1
(2.20) ga, (1) = 1—ZZ:1P(T:k)Tk = i, (%)
and
(2.21) Ua, (A) = E(exp (AS,) /7 > a) = Ha (¢ (X)),

Moreover, A, is standard, and A, 1L Sy, .

Remark 2.4 Statement d) of Theorem 1.1 holds in every case. Indeed, for
any X # 0, the stopping time 7 is unbounded, whence,

7] §1:ZP(T:k)|r|k§P(T§a) <1
k=1

Thus, the first real root of the denominator in (2.20), say p, is > 1. p is also
the radius of convergence of the generating function g, . A

Proof of Proposition 2.4. Set
F(A7) = E[exp(ASy, )]
and write (0, k > 0) for the shift operators.
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By the strong Markov property and the fact that 7 > a is equivalent
to A, = a, we get:

fr) = Z]E (exp (ASa,) r**I{r = k}) + E (exp (ASp,) r**I{7 > a})

:ZE [E (exp (ASano0,) 772 {7 = k}/F.) ] 4+7°E (exp (AS,) I{7 > a})
k=1

a

=f(\7) Z r*P (1 = k) + r°E (exp (AS,)I{7 > a}),

whence (2.18) follows immediately. The rest of the proof is straightfor-
ward. -

We now give explicit formulas in the case of a Bernoulli random walk.

Proposition 2.5 Under the assumption (2.1), the polynomial H, of Propo-
sition 2.4 1is given by

(2.22) H,(z) = A, (2 Wq) /i, (Q%p,q) ,

where H, denotes this polynomial in the symmetric case. More precisely, for
every n > 0,

ﬁ (Z) _ 1 (22)271 . — O;lrL_ka (2 )2k
2 cy £ (2n — 2k — 1)
é (A5)” 2
2.2 = 2
(2.23) 2 =20 - 2)az &)
k=0
and
(2.24) ﬁ2n+1(z) = zﬁ%(z)

Remark 2.5 It is easy to check the following recurrence relation between
HQn and Hgnfli

. onzHo, 4 (z2) —1
Mo (2) = —— = A

Corollary 2.3 The probability distribution of the first return to 0 in case

of the general Bernoulli random walk is given by:
1 " n
(2.25) P(r=2n)= 5, 1 (pq)

(2.26) P(r>2n)=P(r>2n+1)=Cy (pq)" Hap (

‘ =

).

2

3



INDEPENDENCE OF TIME AND POSITION FOR A RANDOM WALK 917

Remark 2.6 (2.25) follows immediately from (4.14), page 352 in [4]. (2.26)
seems to be less classical. YA

Proof of Proposition 2.5 and Corollary 2.3. The law of 7 under P is
classical (cf. [4], pp. 76-78):
~ 1

P (7 =2k) = 57— 0527

and 5 3
P(r>2k) =P (r >2k+1) = C5 272"

Substituting both formulas in (2.19) yields (2.23). The recurrence rela-
tion (2.24) follows immediately from the fact that A1 = Ag, + 1, aus.
Comparing (2.21) and (2.8), we get (2.22), whence the corollary can be
easily derived. [ ]

2.5. Example 4: A randomized stopping time solving (IP)

Here again, we do not need to specify X, but we assume that the filtration
(Fn,n > 0) is natural. Let T be a non-zero (F,,)-stopping time solving (IP).
Define inductively an increasing sequence of stopping times (7,,n > 0):

T,+Toby, ifSy, =0,

(2.27) To=0and T,y = { T,, otherwise,

where the (6;,j > 0) are again the shift operators.

Now, in order to augment the filtration (F,,n > 0), let (Y,,,n > 1) be a
sequence of i.i.d. random variables having the Bernoulli distribution with
parameter p, 0 < p < 1. Assume that the o—algebras V,, = o(Y,,,n > 1)
and Fo, = V2 Fi are independent. Putting

ﬁn::/rn\/yooa nZO,

we define a (ﬁn)—stopping time T solving (IP) as follows:

A . STl — 0 STnfl = 0 ST” % O
(228) T=T,< { Y= 0 and ... and { A and orY, = 1.

Thus 7 is the first time 7}, such that St, # 0or Y, = 1. In both special
cases p = 0 and p = 1, the o—algebra ), is trivial, so that T is actu-
ally a stopping time in the natural filtration. In particular, if p = 1 or
P(Sp = 0) =0, then T =T a.s.
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Proposition 2.6 Under the above assumptions, T satisfies (IP). Moreover,
setting « =P (Sp =0) and o =P (Yy =0) =1 — p, we have:

(2.29) by (z) = LrlE) a0

1—ao

and

(1 —ao)gr(r)
(2.30) g4 (r) = v
Remark 2.7 (i) The intuitive purpose of the parameter o is to remove an
arbitrary amount of mass from 0 in the distribution of Sr. In the special case
o = 1, the mass on 0 is totally removed, so that £(S;) = L(Sr/Sr # 0).
When o = 0, the weight of 0 is left unchanged, so that £(S;) = L(Sr).
(ii) The stopping time T is randomized. In case of the symmetric Bernoulli
random walk, it is possible to choose the variables (Y,,,n > 1) in such a way
that each Y,, is Fp, —measurable. T then becomes a stopping time in the
natural filtration (cf. Proposition 3.3). A

Proof of Proposition 2.6. Set N' = {Sp = 0}. T satisfies the following
identity in law:

(2.31) T L Tlleonge=py + (T + T 0 0r) Tovngr—oy.

~

Thus, to establish the joint distribution of (S, 1), we compute:

~

fAr)=E [exp (AS7) 7’?}
=E [exp (AST) TT]IWCU(NQ{y:l})ﬂ
(2.32) +E [exp ()\STJrfOQT) rT+f°9T]IWm{y:0H] )
The first term is
E [exp (AST) rT]IWCU(/\m{y:l})ﬂ =E [exp (AST) TT(]I{STﬂ)} + ]I{STZO}]I{yzl})}
=E [exp (ASr) 1" (1 — Tysp—oy Liy—oy)] -
Applying the Markov property to the second term, we get

E |exp (A7, ) 7T ooy
=E |:TT]I{y:0} Iy E <exp </\ (ST+T09T — ST>> rfoeT/]/:\Tﬂ
= FO\PE [FT Ty gy y] .

By the independence assumption, we have

(2.33) E [r' Tiy-o x| = oagr (r),

where 0 = P(Y; = 0) and o = P(N).
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Substituting everything in (2.32) yields

- E [exp (ASr) T (1 — Tsy—oy Liy—oy) ]
Frr) = 1
— oagr (1)
 (r () —0a) gr(r)
1—oagr(r)
The rest of the proof is standard. [ |

Remark 2.8 When 7T is a constant stopping time, say 7" = N a.s., we have

W —ao (1—ao)rV

ez e
vr(2) = 1—ao and g7 () = 1—aorN - A

2.6. Examples obtained by iteration

Throughout this paragraph, we will assume that (F,,,n > 0) is the natural
filtration of the walk. We give a simple method which yields a large class of
stopping times solving (IP).

Let Ty be a (F,)—stopping time satisfying (IP). Then (S), := Sp+n —
St,,n > 0) is a random walk independent of Fr, and with the same distri-
bution as (S,,n > 0); denote by (F,,n > 0) its natural filtration. Let 75 be
a (F])—stopping time, also satisfying (IP). Then T'= T} + T is a standard
stopping time such that 7" 1L Sp. Indeed, (1%, 57,) and (11, St,) are inde-
pendent and the components of each pair are independent by hypothesis.
As a result, the four random variables Ty, Sy, 15 and S, are indepen-
dent, whence the independence of T' =T} + 15 and Sy = Sp, + S’T2 follows.
Clearly, T is standard since for instance, ET = ET} + ET; < 400. Iterating
the above construction leads to the following

Proposition 2.7 Given a finite sequence (11,...,Ty) of (F,)—stopping
times solving (IP), it is possible to construct another (F,)—stopping time T
solving (IP), such that

(2.34) L(T)=L(T)*...x L(T})
To illustrate the iteration method, we take again the symmetric Bernoulli

random walk. For any sequence (ay)i1<k<, of positive integers, we define a

stopping time 77 by the following recurrence relation:

n—1

where T is the stopping time of Example 1.
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By Proposition 2.7 and Corollary 2.1, we have

E (exp 25t an) = ﬁch (ax2) = 5= Z exp|(e1a1+...+€nan)z].

k=1 (61 ,,,,, En)e{—l,l}"
In other words,

(2.36) E(Sle an) = £(CL181 + ...+ ansn),

AAAAA

where the ¢ are i.i.d. random variables with P(e, = £1) = 1/2. Permuting
the (ax)1<k<n does not change this probability distribution, denoted simply
by L(ay, ..., a,). Thus, stopping times 7" satisfying (IP) and such that Sr is
distributed according to L(ay, ..., a,) are in general not unique.

To conclude, we note that the generating function of Ty, is given by

1111

n 1

E (T = I‘L{::1 @_(l),

where C, is again the Chebyshev polynomial of first kind and degree a.

3. Stopping distributions in the Bernoulli case

Throughout this section, we will assume that S is the symmetric Bernoulli
random walk and that the filtration (F,,n > 0) is natural. Our goal is to
describe all possible distributions of S, where T' runs through the set 7 of
all (F,,)—stopping times solving (IP). In the sequel, these distributions will
simply be called “stopping distributions”.

3.1. Definition and characterization
Let T € 7 and m = minT. Recall from Lemma 2.1 that
(3.1) Supp L (S7) C {m —2j, 0 <j<m} and
(3.2) Supp L(T') C {m + 2k, k > 0} .
Here and in all that follows, we use the notation

p; =P (Sr=m—2j),0<j5<m.

These probabilities have a particular form. Indeed, since the filtration is
assumed to be natural, the event {S;y =m — 25,7 = m} depends only on
the history of the walk until time m. Among the CY paths leading from
the origin to M,;(m, m — 2j), write 7; for the number of paths stopped at
time m.
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Thus,
P(Sr=m—2jand T =m) =m27"

and summing this expression over j, we get
m
P(T=m)=>» m2™"
§=0

The independence assumption yields

(Ny)  p;= %, where m; € Nand 0 < 7; < C? V5 €{0,1,...,m}.
The symmetry of £(Sy) translates into

(Ns) T = Tm—j,Vj €{0,1,...,m},

Moreover,

(N3) Ty = T = 1,

since the only path leading from the origin to the point M, has to be stopped.
Notice finally that the number of paths going through M; and being stopped
after time m is given by

(33) Hj = an — Ty,

where in particular 6y = 6,, = 0.

More generally, for £ > 0 and 0 < j < m, we denote by ;, (resp. 6,)
the number of paths leading from the origin to the point M, (m+2k, m—2j)
and being stopped at (resp. after) time m + 2k. As above, we have

(3.4) P(Sy=m—2j and T = m + 2k) = m;, 27" 2"
and
(3.5) P(T =m+2k) =Y mx2 "
§=0

By the independence assumption,

Tjk .
3.6 = e, 0< 5 <m, k> 0.
(3.6) Py =S J

Thus, the total number of paths stopped at or going through M, is given by
(37) Vik = Tk + Gj,k,
or alternatively,

(3.8) Vik =0j_1p—1+20541 + 011561
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This equality remains valid for j = 0 and j = m, provided that we set
0_1% = Omi1x = 0. Obviously 0y = 0, = 0, otherwise the walk would
leave [—m,m] with positive probability. On the other hand, we have

(39) Tk = T30k — 7Tj91,k—1-

Indeed, the first equality is a consequence of the independence assumption
whereas the second one comes from the fact that the 6, ;_; trajectories going
through M, j_; without being stopped have in particular 6, _; connections
to My, which have to be stopped.

Equalities (3.7), (3.8) and (3.9) now easily lead to the following recur-
rence system:
(3.10) { zﬂé R P L S

3,0 =Y

which can be put into matrix form:
(3.11) 0, =100,k >0

Where @0 = (90, 61, ceey Hm)t s @k = (90,;6, 91,]@, ey Qm,k)t and

2 1—m 0 o o o 0
1 2—-m 1 0 ..
0 1—-m 2 1 0 ..
(3.12) M= 0 -m 1 2 1 0
0 My . 0 1 2 1
0 —m oo . 0 1 2

Furthermore, since ; = 6,,,_; and 0y = 6,,, = 0, we have:
Ok = Om—jr and O = 0,1, = 0,0 < 7 <m,k > 0.

The coefficients ;) and v;; can now be derived from the 6;;, via (3.9)
and (3.7). Note that every 6;, is necessarily > 0, since 7;; must be < v .

For the converse, start with some sequence (7;,0 < j < m), satisfy-
ing the necessary conditions (N;) to (N3) and compute the 6; and the 6
according to (3.3) and (3.10), respectively. If 6;, > 0, for any j and
any k, then it is possible to construct a stopping time 7" € 7 such that
L(St) = {(m —24,p,),0 < j <m}. This is achieved by choosing determin-
istically for each path w the corresponding stopping time 7'(w), in such a way
that the recurrence system (3.10) is fulfilled. 7" is then trivially standard
since, by construction, |S,,r| < m, for every n. Thus we have the following
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Proposition 3.1 Assume that S is the symmetric Bernoulli random walk
and that the filtration (F,,n > 0) is natural. Let

L={(m—2j,p;)/0 <j <m}

be a probability distribution satisfying conditions (Ny) to (N3). Then the
following are equivalent:

(1) L is a stopping distribution,

(i) Vj € {0,...,m},Vk € N, 0;;, >0,
where the 8, satisfy (3.10) with the 0; given by (3.3) .

Remark 3.1 It seems difficult to list all stopping distributions for a given
m = min 1. To simplify the task, one may begin by discarding distributions
that are inadmissible a priori. To be precise, given a random variable U with
a distribution £ = {(m —2j,p;),0 < j < m} satisfying conditions (N;)
o (N3), consider the power series expansion of 1/P,(1/r) where P,, is
defined by E(exp zU) = P, (chz); whenever £ is a stopping distribution,
Wald’s identity entails that all the coefficients of this power series are non-
negative. In other words, if some of the coefficients are negative, then L
cannot be a stopping distribution. This strategy will be applied successfully
to settle the cases m = 1,2,3 and 4. JAN

Now, for any 17" € 7 with minimum m, consider the polynomial P,
introduced in Lemma 2.2. We have:

] 0

P, (ch \) = E(ch ASy) = ij ch(A(m — 2§)).
.7 =0

Recalling that Cj denotes the ﬁSt Chebyshev polynomial of first kind and
setting for convenience C'_j = C}, k > 0, we may write equivalently

(3.13) P, (r) ij o (7
] 0 Ty =0

The distribution of 7" can be expressed in terms of the 7; and 6, ;. Indeed,
with the convention that ¢; _y =1, (3.5) and (3.9) yield

m

P(T=m+2l) = (Z 7@-) 01,272 1 >0.

J=0

Hence,

(3.14) gr(r) = <i7rj> io@u_l (g)ml.
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Substituting (3.13) and (3.14) in Wald’s identity, we get:

m +oo
(315) ZTFij_Qj(T> : Z 91’1_1(2T)7m72l =1.
7=0 =0

Let us go further into the study of the coefficients 6;;. First we ob-
serve that

062 " = P(Spior =m —2j and T > m + 2k).

Unfortunately, the right-hand side in this equality does not depend directly
on the joint distribution of (Sr,T). To remedy this defect, we proceed as
follows:

(3.16) i 0;x27" % exp[A(m — 2j)] = E[exp(ASy o) I{T > m + 2k}].

On the other hand, by the martingale property, we have, for every n > 0,

Elexp(ASuar)(ch A) ] =1 = E[exp(ASz)(ch A) 7]

<= Elexp(AS,)(ch \) "T{T > n}] + Elexp(AS7)(ch \) " TT{T < n}]

= Elexp(ASt)(ch \) 7]

<= E[exp(A\S,)(ch \) "I{T > n}] = E[exp(AS7)|E[(ch \) T T{T > n}].

Thus,
E[exp(AS,)I{T > n}] = (ch \)"E[exp(AS7)]|E[(ch \)"TT{T > n}]

(3.17) = (ch \)"P,,(ch VE[(ch \)"TT{T > n}],
whence it is natural to introduce

Qr(r) = (2r)" 2B (ME[rTI{T > m + 2k}]

- ~ 6. (2 —21
= (2r)%* ijCm,zj (r) - 291,171(27”)721 — (2r)m 2k 2ok a1 (2r)
=0

1>k Z;og 91,171(27”)721.

Note incidentally that the last equality follows immediately from (3.15).
Combining (3.16) and (3.17), we now see that:

(3.18) > 050 exp[A(m — 2j)] = Qx(ch )
5=0
or alternatively, using symmetry,

(3.19) > 0;4Crmsj(ch X) = Qr(ch N).

=0
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Substituting ch A = 7 in (3.19), we see that Qx(r) is, for every k£ > 0, a
polynomial of degree at most m — 2 (remember that 6y = 6, = 0). The
coefficients 6}, in the decomposition

Qu(r) = 06 Crmzy(r)
=0

are nonnegative integers. They are unique if we impose the additional con-
dition that C,, and C_,, have the same coefficient.

Substituting e=* = r in (3.18), we obtain similarly that

m 2
25 m re+1
(3.20) JE:O@',M“] =r Qk( oy )7

which is, for every £ > 0, an even polynomial of degree at most 2m—2, whose
coefficients are nonnegative integers and symmetric (i.e. 8;5 = Om_jx).

The recurrence system (3.10) and equality (3.20) have been established
by combinatorial arguments. They can also be derived in a purely algebraic
way from Wald’s identity and some natural hypotheses on the support of
the distributions of 7" and St, as will be shown in the following proposition.
We will see furthermore that the distribution of 7" has a very special form.

Proposition 3.2 Let U and V be two integer-valued independent random
variables such that, for some positive integer m,

LU) ={(m—2j,p;) /0 <j < m}, where the p; satisfy (Ny) to (Ns),
L(V)={(m+2k,q)/k > 0} where go # 0,

and
(3.21) E(exp AU)E((chA\)™Y) = 1,¥A € R.

a) There exist unique integers p and 130,151, e ,ISM, with Z;O =1, ZA)H #£ 0
and 2p < m, such that:

o
(3.22) m=3 bCil, <j<m.
1=0
b) There exist unique integers (Gp, k > 0) with o = 1, such that

m H
(3.23) Gr = (ij)qkrm—% — <Zbl2—2l> G272* k>0.
=0

J=0
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c¢) Moreover, the (i, k > 0) are uniquely determined by the following system:

bodo = 1 (Eo)
(3.24) pk
D b =0 (Ep)k>1
1=0
d) Let B be the “generating polynomial” of U, defined by
o
(3.25) B(z) =Y bz~
=0
The roots ofé, denoted by z1, . . ., zw, with respective multiplicity mq, ..., my,,

are all of modulus < 4.
There ezist unique complex constants (s, )1<s<w.o<r<m.—1 Such that

w mg—1

(3.26) qr = Z Z cs,rk’”zf, k> n.

s=1 r=0
e) For every k > 0,

—21
Qu(r) = (zr)mwkw
Zz 0 ar- 2

18 a polynomial with integer coefficients, of degree at most m — 2. It is
expressed in terms of the Chebyshev polynomials of first kind as follows:

m

(3.27) Qu(r) =Y 0;5Crn s (1),

=0

where the 0, are integers, and more precisely:

(3.28) O = Z . Z biQkth—i-

h=1

In particular, éj,k = ém,j,k, (907/1C =0 and Hl,k = Qga1-
f) For every k > 0,

(3.29) Qulr) = r™Qy, (T H) Zejkr

1s a polynomial of degree at most 2m —2, with symmetm’c integer coefficients.

g) The recurrence system (3.10) remains valid:

(3.30) { Oje = Oj—1h—1 + 20501 + 50161 — Tibh k1 0<j<m k>1

= (T .
Oj0 =C}, —m;
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Remark 3.2 (i) We stress the fact that the “generating polynomial” of U,
as defined in the above proposition, does not suffice to determine L(U).
However, in conjunction with m, the maximum of the support, it does.

(ii) By Proposition (3.1), £(U) is a stopping distribution iff the éjyk are
all > 0. A

Proof of Proposition 3.2. a) Consider again the polynomial P,, defined
by Pn(chA) = E(exp A\U), and expand it:

m ©

A m—2i

= E ijmf2j(Z) = E a;z )
=0 i=0

with the convention that a, # 0, that is, a, 2™ 2" is the term of least degree,
or equivalently, mg := m — 2 > 0 is the “multiplicity” of 0. When multi-
plying both sides in the above equality by Z;n:() 7j, we get a polynomial B,
with integer coefficients, which is more convenient for our purpose:

m u
Z) = Zﬁij_Qj(Z) = Zdizm—m’
j=0 =0
where a; = a; > m;. Observe that G; is a multiple of 2™~ *. Indeed,
Z 752 Croaj(2), if m is odd,
(3.31) Poz)=< """ |
Ty + Z 7;2Ch9(2), if m is even,
=0

where x = [m/2]. But the polynomial 2C}(z/2) has integer coefficients, for
every k € N. By (3.31), the same holds for the polynomial P,.(z/2), whence
our claim follows. Hence a; = b;2™ 2 where b; is an integer. In particular,
4o = 2™, that is, by = 1. Finally, since a,, # 0, we have also b # 0.

Let us now recall the following classical identity:
(3.32) (22)"Ci(z ZC Chrin—o(2), n €Nk € Z,

which may be easily proved by induction, the case n = 1 representing just the
well-known recurrence relation between Chebyshev polynomials of first kind:

2Zék(2) = ék_1(2’) + ék+1(2), k € Z.
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Applying (3.32) with k£ = 0, we obtain:

P.(2) :zu:&lzm 2 Zb 22)m %

I
oo
Q
3
‘;3
3
’;3
1\3
W‘

Z(pm ) Conns(2),

whence (3.22) follows by a simple comparison of the coefficients.
b) and c) Transforming (3.21) gives:

Pu(rE(r) =14 P,(rEr"") = Zﬁj

m

m

ZIA) 27“”"”2’2(]] —ij
i=0 5=0
m
D b

(3.33)

where the (¢;,7 > 0) are defined by (3.23). By substituting (2r)™" = 2z in
the last equality and simplifying, we are finally led to

+o0
(3.34) iéiziZc}jzj =1,
i=0 j=0

whence the system (3.24) follows at once. By induction it is easily seen
that ¢ is always an integer.

d) Compute the coefficients g, ¢1,...,q,—1 in terms of bo, by, . .. ,I;u,l, by

using equations (Ey),(E4),. .. ,(E,-1). Consider the following square matrix
with v := pu — 1 rows and columns:

1 0 ... 0 .10 L 0
21 21 ... 2 ce Zy o Ry e Zu
22 222 L. omitlx2 0 2 272 . 2mwlp2
2Rk kTl 2R gk el
P U VUL R UL AR 77, AU VUL 14

Classically, det W # 0, since the roots z; of the generating polynomial B are
non-zero and distinct. Thus, the system Y = WC, where Y = (Go, .. -, Gu—1)"
and C' = (C1.0,- -+, Clumy—1y- -+ Cw0s - - - Cwmy—1)", has a unique solution C'.
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In other words, the representation formula (3.26) holds for & < p. So
it remains to show that it is still valid for & > p, with the constants c,,
now adjusted as above, or equivalently, that ¢ satisfies equation (Ey), for
every k > p. By linearity, it is enough to verify the equation separately for
each term of the form y;, = k"2 1 < s <w, 0 <7 < my:

7 7 1
Z biyi—i = Z bi(k — i) 2570 = hon Z bi(k — i) 2" =0,
=0 =0

i=0
since (k —4)" is a polynomial of degree < ms.
Finally, because the roots of P, are all located in the open unit disk and
o

Z bi(22)? = (2z)7™0 Zdizm_% = (22)"™P,,(2),

i=0
it is clear that |,21] < 4, for every 1 < i < w.
e) By (3.33), we have

(3.35) Ppu(r) Z Gi(2r) 7% = (2r)"
Thus, :

—21
Qulr) = <2r>m+2k73>’f e
Zz 0 @ %

m+2k D ik gi(2r)

= (2 ) o0 A QkP q’L QT
> Gil2r)? Z
From (3.35), (3.32) and the fact that ¢y = 1, we derive that

1) Gi(2r) 7 = Bu(r) Y 6i(2r) ™ = GoPu(r)

336 = ()"~ Balr) = 3 (Ch ) g 0),

which implies in particular that éj,o = (¥ —m;. More generally, the following
recurrence relation holds between Q) and Qy_1 :

Qulr) = @ Palr) (a2 20) ) = 2rPQus0) — Pulr),
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Expanding the last product yields

o k
Qk(r) (2T m+2k ZEQ 2T m—2(i—1)

© pA(k+h)
= (2r)" % — Z (2r)m 2" Z bi+n—i-
h=—F i=0Vh
The term corresponding to h = —k is exactly (2r)™*?*. The other terms

with index h < 0 vanish according to equation (Ej). Hence,

B pA(k+h) © h—1
Z 27‘ m2h Z bzqk+h i = Z(Qr)m 2h biQrsh—i-
h=1 i=h h=1 i=0

We see already here that ), has integer coefficients and degree at most
m — 2. Using again (3.32), we now express () in terms of the Chebyshev
polynomials:

n h—1 m—2h

Qr(r) = > bidesn-i Y Cn 9uConan-20(r)
h=1 =0 v=0

m—1 w h—1

The other claims are obvious.
f) Substituting » = ch A in (3.27), we get

m—1
(3.37) r(ch ) Z Ojk ch(A(m —2j)) = > O;x exp(A(m — 2j)),
J=1

where the last equality comes from the symmetry of the coefficients. The
proof of (3.29) is achieved by substituting u = e~ in (3.37).
g) The recurrence relation is easily obtained by writing both members of the
equality R

Qr(r) = 2r)*Qu—1(r) — GpLou(r)

in terms of the Chebyshev polynomials. [ |
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We end this paragraph with an equivalent formulation of Proposition 3.1.

Theorem 3.1 (Characterization of stopping distributions) With the
notation of Proposition 3.2, a distribution

satisfying conditions (Ny) to (N3) is a stopping distribution if and only if the
following hold:

i) the coefficients in the power series expansion of 1/P,,(1/r) are all > 0,

i1) the coefficients of the polynomials (Qk)kzo are all > 0.

Remark 3.3 Condition ii) cannot be omitted in this theorem, since we have
the following counter-example for m = 7:

£ {1 5) 00, () w0 (3 5. o (<7 5}

Here, i) holds but ii) does not, since some negative coefficients appear in Qg.
As a result, £ is not a stopping distribution. A

Notation In view of Remark 3.2, (i), any probability distribution

satisfying conditions (Ny) to (N3), will be denoted throughout by

where the integers ju and ZA)O, 51, e ,ZAJM are defined in Proposition 3.2.

Remark 3.4 Given Ty € 7 such that
E(‘STO) = Em(?)o, 817 BRI lA),u,)u

we may consider, for n > 0, T,, := Ty +n. Then, T,, € 7 and it is easily
seen that:

L(S7,) = Lonin(bo, by, ..., b,).

Moreover, St,, has the same generating polynomial (in the sense of Propo-
sition 3.2) than St,, for every n > 0. A



932 C. ACKERMANN, G. LORANG AND B. ROYNETTE

3.2. A version of Example 4 in the natural filtration

In the case where m is even, we are able to construct a “natural” version of
the stopping time 7" given by (2.28) (cf. also Remark 2.7 (ii)). This will be
helpful to establish the complete list of stopping distributions for m < 4.

Proposition 3.3 Let T € T and L = L(St) = {(m — 27,p;),0 < j < m},
where m = minT is assumed to be even. In particular, conditions (Ny)
to (N3) are satisfied. Let (7;,0 < j <m) be a sequence of weights differing
from the (m;,0 < j < 'm) only by the central coefficient, i.e.

ogﬁggw% and j # 5 = T; = mj,

and define

A
(3.38) D = mJ —
’ >0 T

Then £ = {(m — 2j,p;)/0 < j <m }, is also a stopping distribution. Tt can
be realized via the stopping time T given by (3.43).

Proof. Consider the increasing sequence of stopping times (7,,n > 0)
introduced in Example 4, defined by (2.27). For every k& > 0, choose a set
of paths I'y C {T'=m + 2k, Sy = 0} such that

(339) ‘Fk| = To,k ﬁ'm,kzo
2
This is clearly possible because

ok Tm < Mo T
2

Note that if moy = 0, i.e. if P(T' = m + 2k) = 0 then 'y, = (). We have:

=T E

Ik
NE

P(I'y) = mok - Am 227m 2k and T := U I'y € Fr.
2
k=0

Now, for every n > 1, we define:

Y. — I[F e} 9Tn71 if STn—l = 0,
" 0 otherwise.

Y,, is obviously Fr. -measurable. (3.39) ensures that Y,, 1L T, —T,_1, condi-
tionally on {Sr,_, = 0}. To see this, it is enough, by the Markov property,
to consider the case n = 1:

P (Y1 =1and Ty = m+2k) = P (Tx) = moy - Am - 27"7F,

2|3
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Summing over k and using (3.4) and (3.9), we get

+oo
P(Y;=1)= ZWOJ‘? : 7}% . 9—m—2k
k=0

Tm 100 o Tm
3.40 =2 cm 27T = 2P (S =0).
(3.40) o Doy —Lp (s = 0)
2 = 2

Since T1 =T a.s. and T' 1L S7, we obtain similarly:

Tog - Tm - 2—m—2kz

P(Ti=m-+28) =P(Ty =m+2K/Sr = 0) = —5 2o,
=

whence the independence of Y; and 77 comes immediately.
Now, our key observation is that the law of Y7, conditionally on {S7, = 0}
and {7} = m + 2k}, does not depend on k:

ok - ,ﬁ.m . 27m72k

S —0and T, — m 2y S _re_
(B41) B =1/5n =0 and Ty =m +2) = 2 s = 7y~ 7
2 2

and likewise,

Tm

(342) ]P)(Yi:()/STl:0andT1:m+2k):1——2:0.
Tm
2

To define the stopping time T solving our problem, it suffices to copy (2.28):

A_ ST1:O STnflzo STn%O
(3.43) T—Tnﬁ{ylzo and...and{Ynlzo and oY, —1.

Clearly, T satisfies the identity in law (2.31). Therefore, the rest of the proof
goes exactly as in Proposition 2.6: (2.33) still holds by (3.41) and (3.42).
Finally, the distribution of S; is easily derived by computing explicitly the
Laplace transform ., given by (2.29). [

Notation The above stopping time T depends on the associated stopping
time T and, of course, on the choice of the set I'. Hence, there are in-
finitely many such stopping times. We denote them all by T(frm/Q), where
T2 = |To|, without bothering about the choice of I'. This is justified by the

fact that we are only interested in the distributions ofT and Sj.
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3.3. Stopping distributions for m € {1,2,3,4}

We assume that the notations for the various stopping times introduced in
the previous paragraphs are still valid.

m = 1: there is exactly 1 stopping distribution:

=
—

L3),(-1,3)} realized via T =1

m = 2: there are 3 stopping distributions:

{(2, %) , (—2, %)} realized via T%
{(2.3).(0,3).(=2.3)} v
{(2.9).(0,3).(=2.9)} T =2

m = 3: there are 4 stopping distributions:

{(3.3),(-3.3)} realized via T}

((3.5). (1) (13 (8.2} T 1LV or Ay
{(3:5) (1,8), (-1.8) (=3.3)} Vot
{33, (1L3), (1.3, (=3.3)} T=3

3
,p

. there are 22 stopping distributions:

W~

N =

) ( )} realized via T}

4.3) . (0, %(%9} T3, (1)

4.4).(0.9) (+4.9) T3,

(When mo = 1,7 = 0 and 7 > 3, the power series 1/P,,(1/r) contains negative
coefficients.)

Vot Wanten Wanden
/-\/-\/-\

(4.4)(2.4) . (=2.9) . (=4.9) } Ty +1
{(4,5)(2:5):(0.5) (=2.3) . (=4:5)} Va
{(4,5)(2:5).(0.5) (=2.5) . (=4.5)} T3 + Vo 0 by

(When 7y = 1,71 = 1 and 13 > 3, the power series 1/P,,(1/r) contains negative
coefficients. )

{(4,5).(2:8) . (=2.5) . (-4.3) ) Ay
((1.5).2.2).(0.4). (-2.2) . (-4.3)} 01) (for U, et ink)
{(4,5)(2:8).(0.5), (=2.3) . (=4.5)} U=T5+2
{(4,5):(2.5).(0.5), (=2.5) . (=4.5)} Vat+ Voo,

(When g = 1,71 = 2 and w3 > 4, the power series 1/P,,(1/r) contains negative

coefficients.)
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4,

Ol—= o=

~— —
Yomn
[N}

=

=

= Sl

~

—~ :ﬂ

“[\3

Sles

~
— ;\ S

{(
{(
{(
{( )

{4 5)(25) 0.5

1
(When mp = 1,7, = 3 and my > 5, the power series 1/P,,(1/r) contains negative
coefficients.)

{(4, %) , (2, 1%) , (—2, 1%) , (—4, 1—10)} C (0) (for C, cf. infra)
{(45%),250),0.5), (-2%). (-4%)} ¢ (1)
{(4%),25)05),(-25), (-45)} ¢(2)
{(455)(25)(0,53) (=2.35) » (=4 13) } ¢ (3)
{(431),(25),(0.97), (=2.47) . (-4, ) } C(4)
{(455)(255) (0,33)  (=2.55) » (=4 55) } ¢ (5)
{(416)(2%6) (0,35) - (=2.56) » (—4.16) } C=4

3.4. Generating polynomials of degree < 2. Stopping distributions
for m =5

By Proposition 3.2, when m < 5, the generating polynomial Bofa stopping
distribution, given by (3.25), is of degree u < 2. We are now going to estab-
lish the complete list of these generating polynomials and derive therefrom
the stopping distributions in the case m = 5.

If 1 = 0, then B(z) = 1 and T is constant. L£,,(1) is nothing else but
BS(m) and of course, this is a stopping distribution for every m > 1.

If & =1, then B(z) = 2 + b, has exactly one root, @ = —b;, which is
NON-Zero.

Proposition 3.4 If £, (1, —«), where m>0, is a stopping distribution, then
necessarily o = 1,2 or 8. Conversely, L,,(1,—1) and L,,(1,—2) are stopping
distributions, whenever m > 2, and so is L,,(1,—3), whenever m > 3.

Proof. By (3.26), ¢» = of and by (3.23), ¢ = (1 — a/4)(a/4)*, whence
a = 1,2 or 3. For the converse, given a distribution of this type, it is easy
to see that



936 C. ACKERMANN, G. LORANG AND B. ROYNETTE

so that,

r?+1
2r

m—1
Qu(r) =" Qu ( ) = ot (r? 4 1) = oM Z I,
j=1
which has only nonnegative coefficients, for every o > 0. Now, according
to (3.22), the corresponding 7; are given by

Wj:Cﬂ;l—ozC'j_l 0<7<m.

m—2)

A simple calculation shows that 0 < 7; < CY7, for every 0 < j < m,
provided that

a m-—1 .
- < — when m is even,
4 m
Q@ m
- < — when m is odd,
4 " m+1
whence the proposition follows immediately. [ |

Let us finally investigate the case p = 2. Given two integers b, and 132,
the generating polynomial of £,,(b;, b2) has two non-zero roots « and 3, not
necessarily distinct and satisfying

(3.44) a+B=—b and af =b,.

« and (3 are either both real or conjugate complex and distinct. The follow-
ing lemma shows that, in the second case, £,,(b1,by) cannot be a stopping
distribution, for any m.

Lemma 3.1 Let « and 3 be defined by (3.44). Then:

a) The coefficients Gy in (3.24) are given by
aFtl gl

(3.45) Q= a—p fa? B p>o.
(k+1)a**t ifa=4

b) If G > 0, for every k > 0, then o and [ are both real.

Proof. Statement a) follows immediately from the recurrence relation

(3.46) Gr = (a+ B)gr—1 — afdr-2,k > 2,

with initial conditions ¢y = 1 and ¢; = a + 3.

b) Assuming that a = re® and 3 = re=®, for some 0 # 0, we have
ot — gttt sin((k + 1)0)

4, — = k >
L a—a " sin(6) 7~ 0,

whence the claim can be derived without difficulty. [
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The analog of Proposition 3.4 in the case p = 2 is

Proposition 3.5 For any integers s > 0 and p # 0, the following are equi-
valent:

(1) L. (1,—s,p) is a stopping distribution, for sufficiently large m,

(ii) The roots a and 3 of 2*> — sz +p = 0 are real and |a| < 4, |B| < 4.

Proof. (i) = (ii): We know already by Lemma 3.1 that « and  must be
real. Moreover, since ¢; = a + [3, necessarily s > 0. By (3.23) and (3.45),
we have

aFHl — ghel

(4—a){4-p)

4k+2

- if a3
(k+ 1) ifa=p

From this and the fact that limg ., qx = 0, it follows that |a| < 4
and |f| < 4.

(ii) = (i): Assume for instance that o > 3. Then, since s > 0 and p # 0,
necessarily o > || > 0, and therefore the ¢, given by (3.45) are all > 0.
The same holds for the gy, since |a| < 4 and |3 < 4.

Now, by (3.28) and (3.46),

~

Ok = CL Gt + CL 2 Qv — SGui1) = O Ldurn — O 2ipa.
We have to show that the éj,k are all > 0, provided that m is large enough.
If p < 0, this is obviously true. If p > 0, we have s > a > (> 0 and

Pdk o,

3.48) Vi €{0,1,....m}\\Vk>0,0,,>0 & sup—= < n—2.
( ) Jed } Tr k;zlo) Qr+1 ~ 0<j<m C’ﬁnf_i

The right-hand side of the last inequality is
ol { Am=3) if m is even,
min —— =

m—2
. 2 =\ 4(m-3) . :
0<jsm V2 4m=3) it 1y s odd.

m—1
To simplify the left-hand side, let us define uy = Gry1/Gx, & > 0. We have
ug = s # 0 and, for k > 1, the following recurrence holds:

p
Uk—1

U = S —

A simple fixed-point argument shows that (ug, k& > 0) decreases to a. Hence,
inf{uy,k > 0} = «, so that

sup ?Qk :B:ﬁ<4.

k>0 Gk+1 @

Thus, for m large enough, (3.48) is satisfied.
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To complete the proof, it remains to check that the 7; are all nonnegative,
for sufficiently large m. We have

;= Ch = 050 = Ch, = sChy + pCo72,
whence,
5 >0,Y0<j<m
& maxo<j<m $(m — 2)(m — 3)j(m — j) —pj(i — )(m —j)(m —j —1)
(3.49) <m(m—1)(m —2)(m — 3).

Therefore it is natural to introduce the function:
fmx— s(m—2)(m—3)z(m —z) —px(z —1)(m —z)(m —x —1).
Clearly f,,(m —x) = f,,(x). Thus, for z > 0, consider the more convenient
Im(@) = fu(F + V)
= s(m —2)(m — 3) (mTQ—x) —p(mTQ—x) <@—x>
= [sm(m = 2)(m — 3) — Zm*m — 2"

4 16

/

— [s(m =2)(m = 3) — E(m® — 2m + 2)] « — pa’.
b

The following elementary lemma, which we state without proof, will now be
helpful:

Lemma 3.2 Under condition (ii) of Proposition 3.5, we have:

2> 4p, s> and 0< 2 - L <1,
S=th sy an 416
Hence, for m sufficiently large, a,, and b,, are nonnegative. Then, the fact

that g,,(m?/4) = 0 and some other straightforward considerations lead to:

max g () = gn(0) = fm (%) = max fp,(z).

Observing finally that

9n(0) = s = 32 (m — 2)(m — 3) — B (m — 2)

and remembering that ; — {% < 1, we conclude that it is always possible to

choose m sufficiently large for (3.49) to be satisfied. [
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Remark 3.5 (i) Proposition 3.5 allows us to give the complete list of gene-
rating polynomials of degree 2. There are 46 solutions, corresponding to the
following pairs (s,p):

0 = —15<p<—1,
=1= —-11<p<—1,
—2 = 7<p<1(andpA0),
—3 = —3<p<2(andp#0),
=4 = p=>5orp=06,

5 = p=09.

(ii) Of course, these generating polynomials do not all provide a solution
when m = 5. In that case, a close look at the previous proof shows that
condition (3.48), when p > 0, is equivalent to § < 3. One checks that
this is true for each pair (s, p) listed above. Since the HAM are trivially > 0
when p < 0, it suffices to discard the generating polynomials for which some
of the

;=0 —sCI 4 pCiT? 0< <5

are negative. This happens for exactly 16 among the above pairs (s,p). A

Corollary 3.1 There are exactly 30 + 3 + 1 = 34 stopping distributions
for m = 5.

The corresponding coefficients (7;,0 < j < 5) are given below. Since
7o = 1 and 7; = 7m5_;, it is enough to specify m and mo:

m=5=0<m<10 m=2=0<m<3
T =4=0<m<7 m=1=0<m<2
m=3=>0<m<5 m=0=0<m<1

We end this section with the following

Open problem Tuake a distribution £ = {(m—2j,p;),0 < j < m} satisfying
(N1) to (N3). Denote by

n
B(z) = Z by
1=0

the generating polynomial of L and assume that the coefficients in the power
series expansion of 1/B(1/z) are all > 0. Is it then always possible to find an
integer n sufficiently large for L, (bo, b1, ..., b,) to be a stopping distribution?
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4. Results for a two-dimensional walk

Let (S/,n>0) and (S//,n > 0) be two independent symmetric Bernoulli
random walks, starting from 0. We denote the corresponding filtrations
by (F},n > 0) and (F,/,n > 0) respectively; we assume that (1.1) holds for
either of them and moreover, that F/ 1L F. . The two-dimensional walk
S = ((5),57),n >0) is adapted to the filtration (F,, = F, V F/,n >0).
Note that if 7" is a (F,)— stopping time such that 7" 1L S/, then S7. 1 S7.
This leads us more generally to investigate the class of (F,,)—stopping times
T such that S}, 1L SY. The analogous problem in case of the two-dimensional
Brownian motion has been treated in [7].

4.1. Stopping times T such that S’. and S/ are independent

Theorem 4.1 Assume the above notations. Let T be a (F,)—stopping time
such that

(4.1) T is S'-standard and S"-standard,
(4.2) Sh and ST have finite exponential moments of any order,

St and Sy are independent.

Then L(S}) = L(ST}) = BS(N), for some integer N, where the symmetric
binomial distribution BS(N) is defined by (1.15).

Remark 4.1 (i) Theorem 4.1 will be extended to more general walks in the
appendix.

(ii) Theorem 1.2 is actually a corollary of Theorem 4.1. Indeed, let T be a
(F!)—stopping time such that gr(r) = E(rT) < co, Vr > 0 and S, 1L T.
We claim that S 1L S and that S7. and S/ have finite exponential moments
of any order. The first statement is trivial, whereas the second follows from
Theorem 1.1, a) in the case of S7.. For S7, we write

—+00
E(expASy) = Y E(exp AS))P(T = n)

n=0

=" 0BT =)
= gr(6(N)) < o0,

Hence, by Theorem 4.1, for some integer N, we have E(exp 255) = (ch z)V,
that is, T'= N a.s. A
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Proof of Theorem 4.1. Proceeding as in Theorem 1.1, one shows first that

_ exp(AS) + uS)

is a martingale. By (4.1) and (4.2), whenever |ch Ach u| > 1, the stopped
martingale M (A, 1) is uniformly integrable. In that case, we have
 [exp (ASp + uSp)
(ch Achp)”

To determine the joint distribution of (S}, S%), it suffices to consider the
case where

(4.4) chAchp =1,

which occurs for instance when

(4.5) A€ R and p=1i arccos(1/ch ).
Thus, assuming (4.4) and applying (4.3), we have

(4.6) E (exp (AS})) E (exp (uS4) = 1

Notice that if (A, ) satisfies (4.4), then so does (—A\, ), whence the dis-
tribution of S, (and likewise that of S7) is symmetric. Using (4.5) and
introducing the notation v (z) = E(exp 25}) and ) (2) = E(exp 257), we
may rewrite (4.6) as

(4.7) 1 () o (z arccos <$)) =1, Ve R

Since limy_, 4o ¥1(A) = 400, by passing to the limit in (4.7), we obtain
that (z%) = 0. It follows from the symmetry and the 2im-periodicity
of 15 that
Zy, D Z:={i(Z+knr): keZ}.
To show that actually Z,, = Z, observe that
VpeC\Z, 3IAxeC\ Z: chAchp=1.

Substituting any such pair (A, ) in (4.6), we conclude that 1o(u) # 0, for
every 1 € C\ Z, whence our claim follows. Exchanging ¢, and ) leads
finally to

2y = 2y, = 2.
Note that the zeros of v, (resp. 1;) have a common multiplicity, denoted
by N (resp. M) throughout. This follows again from the symmetry and the
periodicity of the functions.
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In our next step, we will prove that 1/, is an entire function of order 1.
First of all, we observe that the power series expansion of 15 at the point im /2
may be written as follows:

“+oo

¢2(Z)=Zan(i§—z)n, z€C, ay #0.

n=N

Hence,
+oo
o(i arccos (r)) = Z ay(iarcsin(r))”, —1 <r < 1.
n=N

Using the power series expansion of arcsin at 0, we obtain that

. 1 S c
Yo (2 arccos (m))’ > W,

for some constant ¢ > 0 and A\ € R sufficiently large. Under this condi-
tion, (4.7) implies that |po(N)] < ¢7'(ch M)V, whence 1, is of order < 1. As
the Laplace transform of a non-zero random variable, it must be of order 1.

Now, an application of Hadamard’s factorization theorem for entire func-
tions of finite order yields

i (2) = ﬁo (1 - ﬁ)M = (chz)™.

1
k=0 k+§

Thus, applying again (4.6) with ch Achu =1, we get

Wy (1) = djh) = (C}}QM = (chp)™,

whence M = N, that is, S7. and S7 are both distributed according to
BS(N). |

4.2. Stopping times such that S; ~ S,

Of course, constant stopping times satisfy the assumptions of Theorem 4.1.
Thus, we naturally wonder whether there are other standard stopping times 7T’
such that, for fixed n € N,

(4.8) Sy ~ S,

Let us first investigate the analogous problem in the one-dimensional
setting. More precisely, given a symmetric Bernoulli random walk S on Z, we
ask for a standard, non constant stopping time 7', such that, for fixed n € N,

(4.9) Sy~ Sy
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Direct and straightforward calculations show that this problem has no
solution for n < 4. When n > 4, we will actually provide two solutions, the
first being unbounded and the second bounded. Both stopping times will
be constructed in the natural filtration of the walk.

Remark 4.2 It suffices to figure out a solution 7" in the case n = 4. Then,

for n =4+ p, p > 0, the stopping time 7}, = T + p trivially works. A

4.2.1. An unbounded stopping time satisfying (4.9)
Let us first recall the target distribution, that is, £(Sy):

k 41-210)2 |4

16 16 16 16 16

Now, a stopping time 7', such that (4.9) holds, may be defined as follows:

2,if Sy € {—2,2},
inf {n > 2,| S,| =4 or S, = 0}, otherwise.

(4.10) T = {
The verification is straightforward and left to the reader.

4.2.2. A bounded stopping time satisfying (4.9)

Here we describe a more general construction, which works whenever n = 2m
is even and (9, meets some divisibility condition to be specified. Given
an integer p such that 0 < p < m, let I', be an arbitrary set of paths
leading from the origin to the point (2p,0). We will assume throughout that
Yp = |Tp| satisfies 0 < 7, < C3,. Define a stopping time 7" as follows:

e OnT),, set T =2p (sothat Sy =0),
(4.11) e On YN {Sy, #0},set T'=2m,
e On Iy N{Sy,=0},set T =4m — 2p.

The intuition behind this definition is to replace the contribution of the
paths stopped at time 2p by that of the paths which are only stopped at
time 4m — 2p.

Before calculating the distribution of S, let us recall that the number of
paths leading from the origin to (2m,2z) is given by g, 0. := C5%*. Now,
for x # 0, we have

P (Sp = 22) = P (I N {Sam = 22}) +P (T N {S2m = 0} N {Samsp = 22}) .
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The first term is calculated as follows:

o )\Qm,2z . 7p >\2m72p,2x o )\Zm,Qx . pr)\2m72p,236
- 22m 22p 22m—2p - 22m 22m

Similarly, we get

(4.12) P (T% N {Som = 0} N {Sum—szp = 20}) = Am—2p.20 (Cp — 7, Co 2, ).

24m—2p 2m—2p

Hence,

)\Qm,Qac /\Zm—Q 2T m m— m—
(413) P(Sr=2z) = 22m - 24m—I;p [CQm — T (CQm—pr +2° 2p)} :

It remains to compute

P(Sp=0) =P (T,) +P (T N {S2m = 0} N {Sum—2p = 0})

cmp
(4.14) = b 22 om O Y

22p 24m—2p 2m—2p

where the last equality comes from substituting x = 0 in (4.12).

Proposition 4.1 Let T be the stopping time defined by (4.11). Then St ~
Som if and only if

(4.15) Vo (Cop By, +2277%P) = Ch..

m—2p

Proof. (4.13) and (4.14) provide two necessary conditions, namely (4.15) and

i C;n_—p2 m m— Cg:n
(4.16) 2_21; - 242725 (Com = 1 Com ") = 92m

It is easy to check that these two conditions are actually equivalent. By the
definition of T', we must have moreover v, < C3,. But this is also implied
by (4.15). Indeed, if 7, > C% , then we would have

2p’
2m—2p
(Cm*p + 22m72p) > Cp Cmfp + Op Ck
Vp 2m—2p = M2p~2m—2p 2p 2m—2p
k=0
2m—2p
D ~M—p 2 : m—k vk
Z CZpC2mf2p + CZp C(27717210
k=0

= O8Oy, + O > O

2m—2p 2m>

a contradiction. [ |
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Setting A, = C§, and assuming that p and ~, satisfy (4.15), there are
exactly C’;Z stopping times T of the type (4.11) for which Sy ~ Sy,,. (This
comes from the fact that the definition of T" does not depend on the choice
of the elements in I'y, but only on their number.) Moreover, note that these
stopping times have the same distribution.

Thus, it is natural to look for pairs (p,~,) such that 0 < p < m and
condition (4.15) is satisfied. Setting p = m — 1 (resp. p = m — 2), this
condition reads 6v,,—; = C%' (resp. 22v,_o = C3'). Note in particular
that one may take p = 7, = 1, when n = 4. More generally, since C3, is
always even and in view of Remark 3.1, we may state the following

Corollary 4.1 For every n > 4 there exists a bounded and non constant
stopping time T satisfying (4.9). If n = 2m is even and C3' is divisible

by 3 (resp. 11), then there are at least C’zz different ways to construct this
stopping time, with p=m — 1 (resp. p=m — 2).

Remark 4.3 The following divisibility criterion from elementary number
theory is a particular case of Kummer’s result (cf. [5]): Let m be a positive
integer and p be a prime number. Then p divides C3 if and only if in the
p-adic representation of m appears at least one coefficient that is > p/2. A

Question Is it possible to count the stopping times T' such that (4.9) holds?

4.2.3. A stopping time satisfying (4.8) when n =4

Let us come back to the 2-dimensional problem (4.8). In view of Remark 4.2,
it is enough to give a solution when n = 4. First of all, we recall that
Sy~ BS (4) ® BS (4). The support of this distribution is given in figure 2
below.

Ad 53 Cl Bl Al

a7 x4 D1 X1 B2
2 c2

Cc4 D4 o]

e X3 D3 X2 e

A3 B5 o3 B4 A2

Fig. 2: Support of L(S4)
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Assuming the corresponding notation, we see that
e points A; to Ay are reached with probability #,
points B; to Bg are reached with probability 12‘2,

points C; to C are reached with probability - 162,

points X; to X, are reached with probability - 162,

points D¢ to D, are reached with probablhty 162,

point O is reached with probability 162

Let X = {X1, X5, X3, X4}. We define a stopping time 7" as follows:

o if Sy € X then T = 2,
(417) o ifSy ¢ X and Sy ¢ X then T = 4,
o ifSy ¢ X and Sy € X then T =inf{n > 4/||S,, — S4| = 2}.

Here and in all that follows, we use the notation ||(x,y) || = max(|z|,|y|).
In our computations, we will have to consider the walk started from other
points than the origin: we will denote by IP); the conditional probability
given that {So= M}. We will still write P for Po. The determination
of L(S7) requires some elementary lemmas, which we state without proof.

Lemma 4.1 Given that the walk starts from O, the distribution of Sy is:
]P)(S2:Xi):16; (Se = )216, (Sy = 0)216,26{1 ,3,4}.

Lemma 4.2 Set0 = inf{n > 0, ||S, — So|| = 2}. Given that the walk starts
from O, the distribution of Sg is:

P(Sp=X)=L P(Sy=D;)=2,i€e{1,234}.

12 ) 127

Lemma 4.3 The probability that the walk starting from O reaches one of
the points X; at time n = 4, without having been stopped before, is given by

P(S; ¢ X and Sy = X;) = 1%, i€ {1,2,3,4}.

162"

Proposition 4.2 The stopping time T defined by (4.17) is standard and
ST ~ S4.

Proof. It is clear that T is standard since ||S,ar|| < 4, for every n > 0.
To calculate the distribution of Sy, we will constantly use Lemmas 4.1, 4.2
and 4.3. For instance,

P(Sr = A1) =P{T >4} N{Sr = A})

P(
=P({Ss ¢ X} N{Ss= X1} N{Sr = A1})
P({Ss & X} N{Ss=X1})Px, (Se = A1)

12 1 1

162 12 — 162
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=B)=P{T =4}n{Ss=B}) +P{T >4} n{Sr = B1})
{So=Di1}N{Ss=B1})+P({S: ¢ X} N{S, = X1} N {Sr = By})
So=D1)Pp, (Se=B1)+P({S2 ¢ X} N{Ss = X1}) Py, (Sy = By)

1
2 1 12 2 4

162 12 ~ 162"

The remaining probabilities are obtained by similar calculations. The reader
may easily verify that they agree with BS (4) ® BS (4), hence completing
the proof. [ |

Remark 4.4 Likewise, it is possible to construct a bounded non constant
stopping time 7" such that S; ~ BS (4)®BS (4), by taking the corresponding
construction in dimension 1 as a source of inspiration. A

5. Appendix: Generalization of Theorem 4.1

Here we use again the notation of Section 4, but the common increment X of
the random walks (S/,n > 0) and (S”,n > 0) will be more general, namely:

(A) X is integer-valued, symmetric and not constant;

(B) ¢(2) = E(exp zX) is entire, of order 1, and with zeros that are all
simple and located in the vertical strip [—a, a] xR, where a > 0.

Theorem 5.1 Under the above assumptions, let T be a (F,,)—stopping time
such that:

(5.1) T is S'-standard and S”-standard,
5.2) St and S7have finite exponential moments of any order,

Sy and Sf. are independent.
Then, for some integer N, we have S’ ~ S/ ~ Sy, that is,
E(exp 257) = E(exp 257) = ¢(2)".
Proof. We need a few preliminary lemmas:

Lemma 5.1 Assuming that conditions (A) and (B) are satisfied, we have
i) p(C) =C, and

i) lim,| oo |9 (2) | = 00, in any horizontal strip |Im z| < b, where b > 0.
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Proof of Lemma 5.1. i) Given a complex number u, we ask for a solution z
of the equation ¢(z) = u. Write n,(2) for ¢(z)—u and note that this function
is still entire, symmetric and of order 1. If 5, vanishes for some z, € C,
then zy is the required solution. Otherwise, by Hadamard’s factorization
theorem, we have 7,(z) = exp(c + dz), for some constants ¢ and d, whence
©(2) = u+e“t®. Since p is symmetric, d must be 0, so that p(2) = u + €€,
which contradicts the fact that ¢ is not constant.

ii) We denote by +a1, tay, *as, ... the sequence of the zeros of ¢, ordered
in such a way that (|a,|),>1 is increasing. By Hadamard’s factorization
theorem, we have the following representation formula:

o(z) = H (1 — ?>, where Z PAE < 0.

k=1 k

Since |ay| — 400 and (Re (ax))k>1 is bounded, we have:

Vv>0,3K(v) eN, k> K(v) =
arg(ay) € [7/2 —v, /2 +v]U[37/2 —v,37/2 +v] (mod 27).

Now, let (z,)n>0 be a sequence of complex numbers such that |[Sm z| < b
and |z,| — +oo. Consequently,

Ve >0,dN(e) e N, n> N
As a result, for k > K(v) and n > N (e

(e) = —e < arg(z?) < e.
),

2
m—e—2v <arg (—g) <7m+e+2v.

Q,

Choosing € and v sufficiently small, we have, for k¥ > K(v) and n > N(¢),

22 T 37
arg ? € 5,7 )
k

so that,
2 K(v) 2
‘1 — —5| = 1 and consequently [¢(z,)] > H 1—-—5.
k =0 O
Thus, lim,, .« |p(2,)| = +oo. |

Now, recall the notation used in Section 4: (z) = E(exp z5}) and
YPo(2) = E(exp 257). We write still Z, (resp. Zy,, Zy,) for the set of the
zeros of ¢ (resp. 11,19). As in Theorem 4.1, it is easily seen that, for every
complex numbers A and pu,

(5.4) p(Npp) =1 = Pi(Ne(p) = 1.

This shows in particular that ¢; and ), are even.
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Lemma 5.2 Under the assumptions (A) and (B), we have Z, = Z,, = Z,,.

Proof of Lemma 5.2. Since ; and vy play symmetric roles, it suffices to
prove that Z, = Z,,, for instance. To show that Z, C Z,,, let a be a zero
of p. Choose a sequence of complex numbers (A,),>1 converging to «, such
that p(A,) € R%. Clearly, since ¢(A,,) converges to 0, there exists a sequence
of real numbers (u,,),>1 tending to +o0o, such that (A, )p(u,) = 1, for every
n > 1. Thus, (5.4) implies that 11 (\,)2(i,) = 1. Since o (p,) — +00, we
have ¥ (A,) — 0, whence ¢ (a) = 0, the desired result.

For the converse, let o/ be a zero of ¢;. Choose a sequence of complex
numbers (\,),>1 converging to o, such that ¢ (),) € R% and p(A,) # 0.
By the first statement of Lemma 5.1, there exists of a sequence of com-
plex numbers (i, ),>1, such that ¢(\,)¢(u,) = 1. Remembering that ¢ is
periodic, we may assume moreover that (|3m p,|)n,>1 is bounded. Apply-
ing once more (5.4) yields ¥ (\,)o(pn) = 1. From this we deduce that
o (,) — 400, which in turn shows that |Re (u,)] — +oo. Now, by the
second statement of Lemma 1, we have |p(u,)| — +00, whence p(\,) — 0.
Hence, by continuity, ¢(a’) = 0. [

Lemma 5.3 Under assumptions (A) and (B), 11 and 1y are of order 1.

Proof of Lemma 5.3. Let o be a zero of ¢. Recall that the zeros of
@ are all simple, by hypothesis. Hence, by the local inversion theorem for
holomorphic functions, there exist neighbourhoods U and V of a and 0
respectively, such that the restriction ¢ : U — V is one-to-one. Its local
inverse will be denoted by =1 throughout.

Now, pick € > 0, such that [0,e[ x {0} C V. Since lim,_ p(A\) = +o0,
there exists a real number A > 0, such that A > A = ¢(\) > 1/e. The local
inverse ¢! being holomorphic on V, we have

o l(z)=a+Bz+0(2),2z€V
for some 3 # 0. Thus,

By Lemma 5.2, ¥»(«) = 0, so that, in a neighourhood of «a,

ba(2) =7 (z—a)" +o((z-a)"),

for some integer n > 1 and v # 0. In particular, for A > A,

ol () o () ()
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Since

we have by (5.4):

whence, |1 (A)] < C (¢(N)", for some constant C' and A sufficiently large.
This inequality shows that the order of 17 is 1 and similar arguments yield
the same result for vs. [

We come to the final step in our proof. Even if it means changing indices,
we denote from now on by ay,...,q the zeros (simple and distinct) of ¢
such that —7/2 < arg(a;) < 7m/2 and —7 < Sm a; <7, 1 < j <k, so that
Z, ={xa; +m-2ir, 1 < j <k, m € Z}, by assumptions (A) and (B).
Applying once more Hadamard’s factorization theorem, we have

400 2
©=2E& ... & where §(z) = H (1_( T 2)'

aj +m - 2im)

m=—00

The §; are 2im-periodic. Their zeros are simple and moreover,

(56) VZ,j € {1,27 .. .,/{7}, §j(ozj) =0 and fj(Oéi) 7é 0if ¢ #]

Thus, every a; has a neighbourhood V,;, such that the restriction of ¢ to
this neighbourhood, denoted by ¢;, is one-to-one. We write gpj_l for its local
inverse. By using Lemmas 5.2 and 5.3 as well as the symmetry of 1 and 9,
it is easily seen that

(5.7) Y= €M €% and gy = €M L €

for some positive integers ni,no,...,ng and my, mo, ..., mg. Without loss
of generality, we may assume that m; is the minimum of these exponents.

Now, since
-1( 1 _
p(A) ¢ <4P1 (@(M)) =1,

for real and sufficiently large \’s, we have by (5.4):

uie (e () = 1.
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or equivalently, using (5.7),

(5.8) (e G (€ ) (o1 () = 1

But, for sufficiently large A,

so that (5.8) simplifies to

(5:9) (€™ ) (@ g™ (6 () = 1
Letting A tend to +oco in (5.9), we get

Jim [0 ) G N)] T 0n)  0T an) = 1

Since limy_ ;o |&(A)| = 400, for every 1 < j < k, we deduce from (5.6)

that ny = ng = -+ = ny = my. Hence ¢y = ¢™'. Substituting this in (5.4)
leads without difficulty to ¥y = ™!, whence ¥y = 1. |
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