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On a subvariety of the moduli space

Francisco Javier Cirre

Abstract
We give an explicit description of a non-normal irreducible sub-

variety of the moduli space of Riemann surfaces of genus 3 charac-
terized by a non-cyclic group action. Defining equations of a family
of curves representing non-normal points of this subvariety are com-
puted. We also find defining equations of the family of hyperelliptic
curves of genus 3 whose full automorphism group is C2×C4. This com-
pletes the list of full automorphism groups of hyperelliptic curves.

1. Introduction

The moduli space Mg of compact Riemann surfaces (or complex algebraic
curves) of genus g ≥ 2 can be viewed as the quotient of the Teichmüller
space under the action of the modular group. The action is not fixed point
free and therefore Mg has a singularity locus that consists (if g > 2) of the
surfaces with non-trivial automorphism group. Certain irreducible subvari-
eties Mg(H) of this singular locus are studied in [6]. They are characterized
by the specification of a finite group H of mapping-classes whose action
on a surface is fixed geometrically. In general, these subvarieties fail to be
normal. Using arguments on the dimension of the set of non-normal points it
is shown in [6] the existence of a non-normal subvariety Mg(H), where H is
a cyclic group of order 2. A more explicit example is given in [7], where the
authors find defining equations of curves corresponding to non-normal points
of a certain subvariety Mg(H), in this case H being a cyclic group of order 8
acting on genus 9. Also in the case of cyclic actions, in [5] it is shown that
if H has prime order and the quotient space X/H has genus zero, then topo-
logical conjugacy implies conformal conjugacy. Classical results concerning
topological conjugacy of cyclic automorphism groups are found in [12], [8]
and [4]. Less results are known for non-cyclic actions.
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In this note we give an explicit description of a subvariety of M3 charac-
terized by a non-cyclic action which has been chosen so that the subvariety is
non-normal. We find defining equations of a family of curves which corre-
spond to a one-dimensional submanifold formed by non-normal points of
this subvariety.

A basic ingredient to study conformal conjugacy of automorphism groups
of a given surface is the knowledge of the full automorphism group of the
surface in question. This leads to the problem of extendability of group
actions, that is, the problem of deciding whether a finite group acting on
a surface is its full automorphism group. This question has been stud-
ied in detail for the family of hyperelliptic Riemann surfaces in [2] where,
using Fuchsian groups and Teichmüller theory, it is computed the list of
groups acting as the full automorphism group of some hyperelliptic surface.
However, there is a gap in this list since there it is claimed that C2 × C4

never acts as the full automorphism group in genus 3. We correct this mis-
take here and describe explicitly the family of genus 3 hyperelliptic Riemann
surfaces whose full automorphism group is C2 ×C4. This completes the list.
This family constitutes a one-dimensional submanifold of the non-normal
subvariety mentioned above.

2. Preliminaries

Let H0 be a group of automorphisms of a compact Riemann surface X0 of
genus g ≥ 2. A Riemann surface X is said to have H0-symmetry if there
exists a homeomorphism φ : X0 → X such that φH0φ

−1 is a group of auto-
morphisms of X. The set Mg(H0) of isomorphism classes of Riemann sur-
faces with H0-symmetry is an irreducible subvariety of the moduli space Mg

of Riemann surfaces of genus g, see [6, Theorem 1]. In general, Mg(H0) is
non-normal. Indeed, it fails to be normal if and only if there exists a Riemann
surface X ∈ Mg(H0) whose full automorphism group AutX contains a sub-
group H which is topologically but not conformally conjugate to φH0φ

−1.
Riemann surfaces satisfying this property correspond to non-normal points
of Mg(H0).

Every compact Riemann surface can be written as the quotient U/Λ
of the hyperbolic plane U under the action of a surface Fuchsian group,
that is, a Fuchsian group without elliptic elements. A finite group H acts
as a group of automorphisms of U/Λ if and only if there exist a Fuchsian
group Γ containing Λ as a normal subgroup, and an epimorphism θ : Γ → H
whose kernel is Λ. An epimorphism with a surface Fuchsian group as a kernel
is called smooth. Every Fuchsian group has a presentation of the following
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form. It has generators a1, b1, . . . , aγ , bγ , x1, . . . , xr and defining relations

xm1
1 = · · · = xmr

r = 1,
r∏

j=1

xj

γ∏
i=1

[ai, bi] = 1 .

A Fuchsian group Γ with this presentation is said to have signature σ(Γ) =
(γ;m1, . . . ,mr). The integers mi are called proper periods, and γ is the genus
of the quotient orbifold U/Γ.

A genus 3 hyperelliptic surface X is represented by y2 = P (x) where P
is a monic polynomial of degree 7 or 8 with no multiple root. The branch
point set BX of X consists of the roots of P if deg P = 8 or the roots of
P together with ∞ if deg P = 7. The hyperellipticity of X is characterized
by the existence of an involution, called hyperelliptic, which fixes 8 points.
It is a central element in the full group AutX of all automorphisms of X,
and its formula is (x, y) �→ (x,−y). If Y is another such curve then each

isomorphism f : X → Y induces a unique Möbius transformation f̂ in the
Riemann sphere Ĉ = C ∪ {∞} which maps BX onto BY . Conversely, each
such a Möbius transformation lifts to two isomorphisms f1, f2 : X → Y
which coincide up to the hyperelliptic involution, see [3]. We will denote by

AutX
Ĉ

the (finite) group of Möbius transformations induced in Ĉ by the
full group AutX of automorphisms of X.

3. Results

Let X0 : y2 = x8 − 1 be the Accola-Maclachlan curve of genus 3, and let

AutX0 = 〈u, v | u4 = v8 = (uv)2 = [u2, v] = 1〉
be its full automorphism group [1, 10]. It has order 32 and explicit generators

u(x, y) = (1/x, iy/x4) and v(x, y) = (xeπi/4, y).

The hyperelliptic involution

u2(x, y) = (x,−y)

and
v4(x, y) = (−x, y)

generate the center of AutX0, which is a non-cyclic group of order 4.

Theorem 1 The moduli space M3(〈u2, v4〉) of curves with 〈u2, v4〉-symmetry
is a non-normal irreducible subvariety of M3 of complex dimension 3, and
it consists of the isomorphism classes of the curves given by

y2 = (x2−1)(x2−α2
1)(x

2−α2
2)(x

2−α2
3) with α2

i 	= α2
j and αi ∈ C − {0,±1}.



956 F. J. Cirre

Proof . Let the (isomorphism class of the) curve X be in M3(〈u2, v4〉) and
let φ : X0 → X be a homeomorphism such that φH0φ

−1 is a group of auto-
morphisms of X, where H0 = 〈u2, v4〉. Since the hyperelliptic involution u2

fixes 8 points, the same happens to φu2φ−1 and so X is hyperelliptic. Anal-
ogously, the Möbius transformation induced by φv4φ−1 in Ĉ is a rotation (of
order 2) which fixes no branch point of X. We may suppose that such a ro-
tation is x �→ −x, and that ±1 are branch points of X. Therefore, X has the
form prescribed in the theorem, and M3(〈u2, v4〉) has complex dimension 3.

We now prove that this space is not normal. Let us consider the group
〈u2, v2〉 
 C2 × C4. Although 〈u2, v4〉 is its unique subgroup isomorphic
to C2 × C2, we shall see that the curves with 〈u2, v2〉-symmetry also have
another (C2 × C2)-symmetry which, in addition, is topologically but not
conformally conjugate to 〈u2, v4〉. The point here is that 〈u2, v2〉 is not the
full automorphism group of a curve with 〈u2, v2〉-symmetry, that is, the
action of this group on the curve always extends to a larger group. To see
this, observe that a curve X with 〈u2, v2〉-symmetry is hyperelliptic and its
branch point set is preserved by a rotation of order 4 (induced by v2) which
fixes none of them; therefore, it has equation

Xλ : y2 = (x4 − 1)(x4 − λ4) with λ4 ∈ C − {0, 1}.
Clearly, each Xλ admits the “extra” automorphism

s : (x, y) �→ (λ/x, yλ2/x4)

which together with u2 and v2 generate the direct product

〈u2〉 × 〈v2, s〉 
 C2 × D4 .

This is the full automorphism group of Xλ for all values of λ except for a finite
number of them. Indeed, the unique hyperelliptic curves of genus 3 whose full
automorphism group contains C2 × D4 properly are the Accola-Maclachlan
curve, which corresponds to λ4 = −1, and the curves with AutXλ = C2×S4,
which are isomorphic to y2 = x8 + 14x4 + 1 and correspond to λ4 = 2±√

3.
So, except for these values,

AutXλ = 〈u2〉 × 〈v2, s〉 
 C2 × D4 .

Let us consider the following subgroups of AutXλ:

H1 := 〈u2, v4〉 and H2 := 〈u2, s〉.
Both are isomorphic to C2 × C2; however, they are not conjugate within
AutXλ since the first one is central. Our purpose is to show that they
are topologically conjugate. This will prove the non-normality of the subva-
riety M3(〈u2, v4〉).
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Let us write Xλ = U/Λ and 〈u2〉 × 〈v2, s〉 = Γ/Λ for some Fuchsian
groups Λ and Γ. It is shown in [2] that Γ has signature σ(Γ) = (0; 2, 2, 2, 4).
Let {x1, x2, x3, x4} be a canonical set of generators for Γ. After composing
with an automorphism on the target, we may suppose that the smooth
epimorphism θ : Γ → 〈u2〉 × 〈v2, s〉 with ker θ = Λ is given by

θ(x1) = u2, θ(x2) = u2sv2, θ(x3) = s, θ(x4) = v2.

Here we are using that x1, x2 or x3 has to be mapped to u2 since otherwise
the signature of θ−1(〈u2〉) would not have eight proper periods equal to
2, as it has to be since u2 is the hyperelliptic involution, see [11]. Let
us define Γ1 := θ−1(H1) and Γ2 := θ−1(H2). Using the Riemann-Hurwitz
formula and the fact that Xλ/Hi has genus zero for i = 1, 2, it is easy to see
that both groups have the same signature, namely (0; 2, 2, 2, 2, 2, 2). Hence
they are isomorphic. Now, any isomorphism φ : Γ1 → Γ2 can be realized
geometrically, that is, there is a homeomorphism f of the hyperbolic plane
such that the conjugation map φf : γ1 �→ fγ1f

−1 coincides with φ, see
Theorem 3 in [9].

We claim the existence of an isomorphism φ : Γ1 → Γ2 such that the
corresponding φf preserves ker θ. In such a case, f induces a homeomorphism
on the surface U/ ker θ which conjugates H1 and H2.

To prove the claim let us consider the restriction of θ to Γ1. If {y1, . . . , y6}
is a canonical set of generators for Γ1 then each involution yi has to be
conjugate within Γ to x1 or x2

4 since x2 and x3 do not belong to Γ1, which
is normal in Γ. Those yi conjugate to x1 are mapped by θ to u2 since u2 is
central in C2×D4. For the same reason, those yi conjugate to x2

4 are mapped
by θ to v4. It follows from the relation y1 · · · y6 = 1 that either four or two of
the elements yi are mapped to u2 (and the other to v4). The possibility of two
elements mapped to u2 cannot occur for otherwise the signature of θ−1(〈u2〉)
would not have eight proper periods equal to 2. Therefore, after reordering
the generators yi by means of conjugation (see [9]), we may suppose that the
restriction of θ to Γ1 is given by θ(yi) = u2 for 1 ≤ i ≤ 4 and θ(yi) = v4 for
i = 5, 6. Analogous arguments yield that for some canonical set of generators
{z1, . . . , z6} for Γ2, the restriction of θ to Γ2 is given by θ(zi) = u2 for
1 ≤ i ≤ 4 and θ(zi) = s for i = 5, 6. The assignment yi �→ zi for i = 1, . . . , 6 is
an isomorphism φ : Γ1 → Γ2, and the corresponding geometrical realization
φf preserves ker θ. Indeed, there is an obvious isomorphism

Φ : 〈u2〉 × 〈v4〉 → 〈u2〉 × 〈s〉
such that Φ ◦θ = θ ◦φf . Therefore, H1 and H2 are topologically conjugate,
and the theorem is proved. �
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Remark 2 We have just seen that the modular subvariety M3(〈u2, v2, s〉)
lies in the non-normal locus of M3(〈u2, v4〉). It turns out that M3(〈u2, v2, s〉)
is a one-dimensional manifold since it has no non-normal points. Indeed,
the unique curves with 〈u2, v2, s〉-symmetry whose automorphism groups
may admit two non-conjugate subgroups isomorphic to C2 × D4 are the
Accola-Maclachlan curve X0 and the curve whose full automorphism group
is C2×S4. However, 〈u2, v2, uv〉 is the unique subgroup isomorphic to C2×D4

contained in AutX0, while C2 × S4 also contains a unique conjugacy class
of subgroups of order 16 by Sylow theorem.

There is another interesting modular subvariety of M3(〈u2, v4〉) consist-
ing also of curves with a (C2 ×C4)-symmetry. Namely, M3(〈u, v4〉). Again,
the action of u2 assures that these curves are hyperelliptic. Unlike the pre-
ceding case, this (C2×C4)-action is non-extendable. In fact, using algebraic
equations we show that this is the full automorphism group of all but finitely
many of the points in this subvariety. This fills in the gap in [2], where deeper
techniques of Fuchsian groups and Teichmüller theory are employed.

Theorem 3 The subvariety M3(〈u, v4〉) consists of the curves of the form

y2 = (x4 − 1)(x2 − ω2)(x2 − 1/ω2) with ω(ω4 − 1) 	= 0.

If ω12 − 193ω8 − 193ω4 + 1 	= 0, then 〈u, v4〉 
 C2 ×C4 is the full automor-
phism group of the curve.

Proof . We write f instead of v4 to simplify. A curve X ∈ M3(〈u, f〉) is
hyperelliptic and the induced group of Möbius transformations 〈u, f〉/〈u2〉 

C2×C2 can be chosen to be generated by f̂ : x �→ −x and û : x �→ 1/x. Some

of the 8 branch points must be fixed by a rotation in 〈f̂ , û〉 since otherwise X
would be of the form

y2 = (x2 − α2)(x2 − 1/α2)(x2 − β2)(x2 − 1/β2) ,

which does not admit an automorphism of order 4. Adding up lengths of
〈f̂ , û〉-orbits gives that there are exactly 4 branch points fixed by elements

of 〈f̂ , û〉. We may suppose that they are the fixed points of û and f̂ û. So

X = {y2 = (x4 − 1)(x2 − ω2)(x2 − 1/ω2)}.
Assume now that ω12 − 193ω8 − 193ω4 + 1 	= 0. We show that X admits
no more automorphisms than those in 〈u, f〉 or equivalently, that the group
AutX

Ĉ
of Möbius transformations induced in the sphere, coincides with

〈û, f̂〉 
 C2 × C2. If this is not so then AutX
Ĉ

= A4, A5, (alternating
groups), S4 (symmetric group) or Dn (dihedral group).
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We first discard the possibility A4. An easy computation shows that
the rotations m̂ of order 3 such that m̂f̂ and m̂û also have order 3 do not
preserve the branch point set BX = {±1,±i,±ω,±1/ω}. Therefore AutX

Ĉ

cannot contain A4 as a subgroup and this also discards the possibilities S4

and A5. If 〈f̂ , û〉 ⊂ Dn then the central element of Dn would coincide with

f̂ , û or ûf̂ . In these cases, a dihedral group may preserve BX but it is
easy to check that this only happens if ω4 + 1 = 0, ω4 − 14ω2 + 1 = 0 or
ω4 + 14ω2 + 1 = 0, respectively, and these are the values excluded in the
statement of the theorem. �

Remarks 4 (1)The Accola-Maclachlan curve is the only point in M3(〈u, v4〉)
with two different conjugacy classes of automorphism subgroups isomorphic
to C2 × C4. However, they are not topologically conjugate, as can be seen
by analyzing the corresponding smooth epimorphisms as in the proof of
Theorem 1. Hence, M3(〈u, v4〉) is normal and in fact, a manifold.

(2) The curves described in Theorem 3 are the unique hyperelliptic curves
of genus 3 such that AutX = C2 × C4. Indeed, if X is such a curve then
either AutX

Ĉ
= C2 × C2 or C4. The first possibility gives curves as in

Theorem 3. The second one gives X = {y2 = (x4 − 1)(x4 − λ4)}, which we
have seen in the proof of Theorem 1 to have an “extra” automorphism.

(3) Unlike M3(〈u2, v2, s〉), the manifold M3(〈u, v4〉) does not lie in the
non-normal locus of M3(〈u2, v4〉). However, it lies in the non-normal locus
of another subvariety consisting of curves with a cyclic symmetry, namely,
M3(〈u〉) (see [7, Remark 1]).
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