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The Cauchy problem for viscous

shallow water equations

Weike Wang and Chao-Jiang Xu

Abstract
In this paper we study the Cauchy problem for viscous shallow
water equations. We work in the Sobolev spaces of index s > 2 to
obtain local solutions for any initial data, and global solutions for
small initial data.

1. Introduction

We consider in this work the following Cauchy problems for viscous shallow
water equations:

(1.1) h(us + (u- V)u) — vV - (hVu) + hVh = 0,
(1.3) Ult=o = U, hlt=0 = ho;

where h(z,t) is the height of fluid surface, u(z,t) = (u'(z,t), u?(x,t))! is the
horizontal velocity field, z = (z1,75) € R* and 0 < v < 1 is the viscous
coefficient.

These equations form a quasi-linear hyperbolic-parabolic system. For
the initial data ho(x), we shall consider small perturbations of some positive
constant hg. And we will study the Cauchy problem (1.1)-(1.3) in Sobolev
function spaces. The main theorem of this paper is the following :

Theorem 1.1 Let s > O,Uo,ho — BO € H2+8<R2), Hho — B0’|H2+s << Bo.
Then there exist a positive time T and a unique solution (u,h) of Cauchy
problem (1.1)-(1.3) such that

u, h — ho € L=([0,T]; H**%), Vu e L*([0,T); H*™).

Furthermore, there exists a constant ¢ such that if | ho— ho|| gra+s =+ || uo || 2+ <c
then we can choose T' = +00.
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In [2], it was obtained the local existence and uniqueness of classical
solutions to the Cauchy-Dirichlet problem for the shallow water equations
using Lagrangian coordinates and Holder space estimates with initial data
in C?*. Kloeden [5] and Sundbye [10] proved global existence and unique-
ness of classical solutions to the Cauchy-Dirichlet problem using Sobolev
space estimates and the energy method of Matsumura and Nishida [7, 8, 9].
Sundbye [11] proved also the existence and uniqueness of classical solutions
to the Cauchy problem using the method of [7, 8, 9]. However, these re-
sults only consider the case of small initial data. In general, the problem
of existence of solutions for large initial data is difficult, because its strong
non-linear nature. In this paper, we use the Littlewood-Paley decomposition
theory (see [1, 3]) for Sobolev spaces to obtain a losing energy estimate in
H**2 for any s > 0, which allows us to get the local existence of solution for
all initial data. Moreover, we also improve the global existence of solution
and regularity for small initial data. From this result of global existence,
we can obtain some decay estimate as in [6, 12] with the method of Green
function but, for brevity, we leave it for the future.

The structure of the paper is the following:

In section 2 we recall Littlewood-Paley theory for Sobolev spaces. In sec-
tion 3 we prove the first part of the main theorem: local existence of solution
for all size of the initial data. In section 4 we prove the global existence of
solution for small initial data. Finally, in section 5 we prove the losing energy
estimates for the nonlinear terms.

2. Littlewood-Paley theory

Let us recall Sobolev spaces and Littlewood-Paley theory (see, for example,
Bony [1] and Chemin [3]). There exist functions ¢ and ¢ in C§°(R?) such
that Supp ¢ C C = {£;5/6 < [¢] <12/5}, Supp ¢ C B = {[¢] < 2},

VE e R0}, Y o276 =1 and VEERY, (¢ + > p(27¢) = 1.

JEZ jEN

Let us note that if [j — 5| > 2, then Supp ¢©(277-) N Supp ¢(277"-) = ). We
define the following operators of localization in Fourier space

Aju=TF " p27)a(-) =227 | f(@y)ulz —y)dy, for j € Z,
R4

and ‘
Aoyu=F L @)a(), Ay = Ay, for j €N,



THE CAUCHY PROBLEM FOR VISCOUS SHALLOW WATER EQUATIONS 3

where @ denote the Fourier transformation of u, and f = F~ (). So that
for u € &, we have that Aju, A_ju € C*° N L% Then the Sobolev space is
defined, for s € R, as follows:

= 3 2 Aull3e < +oo .

j=—1

H'(R?) = {u € S'(R); |

In the low vertical frequencies estimates, we have to use the homogeneous
Sobolev spaces,

(R = {ue S®); ullf, = > 27| Ajul} < +oc}.

JEZ
For d = 2, we have that H?T*(R?) C L>(R?) for any s > —1, and
[ fll oo 2y < Coll f s m2),
where C is Sobolev constant in R?. We have also that, for any ¢ > 0,
[AgfllLee < CIV(Agf)lz2,

and

1A fllz2 < C279V (Ag f)ll 2
We set Sy(u) = > |y o Apu, then Sy 0 H® — HT,

Ap(Sg(u)Aqu) = 0, if [p — g = 4; and [[So(Vu)([Lee < 27| Squl|

For the product of two functions, we have the decomposition:

uw = Z Sq—1(u)Agv + Z Sg—1(V)Agu + Z Apul v
q q lp—al<2

= T,w+ T,u+ R(u,v),
where T, is a linear operator. We have:

if u € L, then for all s € R,
[Tl ceas, 1y < Cllullzes;
if ue H™,7 < d/2, then for all s € R,
1 Tll 2rrs, rose—arzy < Clluflar
if ue H*' v € H*?,s1 + s5 — d/2 > 0, then
[ R (u, v)|

H51+527d/2 S C“u’ Hs1 ,U‘ Hs2 .
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For the nonlinear composition, if F' € C*°(I) such that F(0) = 0, u €
H™(R?), 7 > 1 with u(z) € I for all z € R?, then there exists a function of
one variable By depending only on 7, F', I such that

(2.1) |l < Bolllullz=)llul -

In our equation, we have the products of 3 functions, so that we need
the following precise estimates:

|(ab, ¢) 2| < Cllal| L= [[bl| z2le]l 2,

(2.2) |(ab, ¢) 2| < Cllal| g2 [bll 2|l gra/2,
lallF» < llallz2Vallze.

For the detail of those results, we send to the reference [3].

In the proof of main theorem, we need to estimate the nonlinear term in
the equations, using the so-called “Losing energy estimates”.

Lemma 2.1 Let 7 > 1 and —1 < k < 400, then there exists Cy > 0 such
that for all v,Vv,g,Vg € H™, we have

\/Awwvmmwxs%ﬁr%mmmmmn
R2

with {dy.} € 02 and ||[{dx}||e < 1.

Lemma 2.2 (a) Let 7 > 2 and —1 < k < 400, then there exists Cy > 0
such that for all f,v,g,u,Vu € H™, with ||g||p~ < 1/4, we have

foE

\Y
I+g
where ||{di}||z < 1.

(b) Let 1 <71 <2 and —1 < k < 400, then there exists Cy > 0 such that
for all f,g,u,Vu,v,Vv € H™, with ||g|| L~ < 1/4, we have

foE

\%
I+yg
with [[{dg}|e <1, and

< Codi27 (| fllzz- vl (L + Nlgllzze) el s

Vu)Agu dx

Vo)Agudr| < Codi2 | fllr- (1 + gl ) Ur (u, v),

Ur(u,v) = Vol ool grrer + [Vl = (IVul [+ [ 7).
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Lemma 2.3 (a) Let 7 > 2 and —1 < k < +o00, then there exists Cy > 0
such that for all f,v,u,Vu,g1,g0 € HT, with ||g1|| >, ||g2||z < 1/4, we have

/R2 A]‘3((1 Jr(ggll)_(lgﬁ gz)Vva) Ayu da

< Codi 27" || Il lvllzllgr — gall [l zmsa,

with | {d}]|e < 1.

(b) Let 1 <7 <2 and —1 < k < 400, then there exists Cy > 0 such that
for all f,v, g1, 92,u, Vu,v,Vv € H", with ||g1| e, ||g2|| = < 1/4, we have

‘/RQAk(( (91 = 92) VfV'U)Akud:c

1+ g1)(1 + g2)

< Codi 277 fllurllgr — gall - Ur (u, 0),

with ||{dx}||e <1, and U,(u,v) is as in Lemma 2.2, (b).

In the proof of existence of global solutions, we need the following high
vertical frequencies estimates:

Lemma 2.4 Let 7 > 0, then there exists M > 0,Cy > 0 such that for all
h,u,v,Vh,Vu € H", M < k < +o0, with ||h||~ < 1/4, we have

1
/R? Ak(l n thVu)Akv dx

< Cod 272 (1 + [|hl| g0 [| Awl = [| VRl e 0] e
with |[{d} |l < 1.

Lemma 2.5 Let 7 > 0, then there exists M > 0,Cy > 0 such that for all
h € H™ with ||h||z~ < 1/4, and u € H2 M < k < +00, we have

/ Ar(div(hu)) Ap(Ah) dz

< Cod 27|V - (VR[5 + IVl Frsn),
with | {d}|le < 1.

We will prove these five lemmas in the last section.
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3. The local existence of solution

In order to study the local existence of solution, we define the function set
(f,9) € X([t1,t2], 0, By, Ey) if

(f,9) € L¥([tr, ta], HO(R?)),  Vf € L*([tr, t2], H(R?))
and
1 1 e (2 o). 2y + VIV F T2 o), 11 2y < B
g1l zoe (112 121,10 R2)) < B
The main result of this section is the following local existence theorem for

any initial data:

Theorem 3.1 Lets > 0, (Uo, hO—BQ) € HS+2(R2) with ||h[)—7lo||H2+s S 4}1699’
then there exist a positive time T and a solution

(U, h — BO) € X([()?T]’ 5+ 27E17 E2)
for the Cauchy problem (1.1)-(1.3). Here

E1 :2||U0|H5+2, E2:2Hh0—l_10’

Hs+2
and Cy 1s the Sobolev constant.

For the sake of convenience, we take hy = 1. Changing h by 1+ h in

(1.1)-(1.3), we have

(3.1) ug + (u-V)u — WjLVh—O
(3.2) hi + divu + div(hu) = 0,

(3.3) u(z,0) = ug(x), h(x,0) = ho(z).

We suppose now that hg € H52(R?), ||hol| g2+s <
E2 = 2||h0| Hs+2.

The proof of Theorem 3.1 involves the method of successive approxima-
tions. Let us define the sequence {u,, h,} by the following linear systems:

(Uh hl) = 52<u07h0)7
atun-l—l - VAun—i-l = Gl (una h’n)7
athn—i-l + uthn+1 - G2(um hn)7

(un+17 thrl) ’t:O = Sn+2(u07 h0)7

4C’ y and E1 = 2||UOHHs+2

where

G1(up, hy) 1+h —+-Vh,Vu, — u,Vu, + Vh,
Go(upn, hn) = —(1+ hy)divu,.
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Since S, are smooth operators, the initial data S,42(ug, ho) are smooth
functions. If (u,, h,) € X([0,T], s + 2, Ey, Ey) and smooth, we have
20, 1

< —

4C, — 27
then Gy(uy, h,) and Go(uy,, hy,) are also smooth functions. Note that (3.4)
is the heat equation for w,.;, while (3.5) is the transport equation for
hny1. Therefore, the existence of smooth solutions for the Cauchy prob-
lems (3.4)-(3.6) is evident. We denote by P, the application from (u, h,)
to (Upt1, hny1) the solution of problem (3.4)-(3.6).

Now the proof of Theorem 3.1 consists in two steps: “Estimates for big
norms” and “convergence for small norms”.

||hnHL°° S Cs||hnHH2+5 S CSE2 - 2Cs||h0HH2+5 S

Estimates for big norms

Proposition 3.1 Suppose that (ug, ho) € H*T2(R?) for s >0 and ||ho||gs+2 <

ﬁ, then there exists a positive time Ty such that for any n € N, P, 1is
an application from X([0,T1],s + 2, Ey, Ey) to X([0,T1],s + 2, Ey, Ey) for

E1 = 2HU0HH3+2,E2 = 2Hh0HHs+2.

Proof. For the sake of convenience, we suppose that 1 < E; (the proof for
E; < 1is easy), and remark that 0 < Ey < 1,0 < v < 1. We take now

12_N\—2 vE?
Ty = mi <_K> ) 2 )
! mm{ 5 160313;1}
where K = || F~!(p)||r:. We prove the proposition by induction. Firstly,
(Ul, hl) = SQ(U(), ho), then

o2 < ||h0|

Hs+2, ||h1|

||u1| Hs+2 S ||u0| Hs+2,

n 12
v [ IV lfyeindr < VT K P ol < ol
0

Thus (Ul, hl) c X([O, Tl], s+ 2, Ey, EQ)
Now, we assume that (u,, h,) € X([0,11], s+2, Ey, Ey) is valid and prove
that P, (un, hy) = (Uni1, hnt1) € X([0,T1], s + 2, Ey, E») is also valid.

Applying the operator Ay to the equations (3.4), (3.5), multiplying the
first by Apun41, and the second by Aph,, 1, integration over R? yields

D1l At 1 |2 20|V At 1|22 =2 / ARG (s h) At 1,
Rz
D1l At |[2=2 / Aty V1) Aho 1
]RQ

= 2/ Ang(un,hn)Akhm_ldx
R2
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Using Lemma 2.1, Lemma 2.2 (a) and hypotheses on (u,, h,), we obtain
Ol At |72 + 20| Ap(Vuups) |72 < Codi 27242
(3.7) X ([Pl o2 [IVunial[ e + Vi) ([unsall o + [[Vunia | gov2)),

Ol Axha|[22 < Cod2 272K+

(38) % (lunllmsss | [pere + (1 + Drallos) IVl st s ll1-+2),
where
3
Vi(t) = () |2 1t (8) | o2 (1 + 1P (8) [ ov2) + [|tn () [Fer2 < ZE%'

Multiplying (3.7) and (3.8) by 22+ and taking the sum over k gives
respectively

Oil[wnsillzpsre + V[Vt [Feve < fJtngal[fese + 2G5 Efv
vE? 5C2E
atHh’n+1’ ?‘Is+2 S 4E2 Hv TL’ Hs+2 + E21 th‘i’1| Hs+2:

Integrating from 0 to ¢ yields

2
H5+2 dT S

t
s ®lFers 49 [ Va7
0

< ot (0)[3sa! + te'2C3 B,

I/E2
H5+2 + 4E2/ ||V

By the definition of (w41, hpi1)|i=0 we know that

< PCREE (0 (0) NZendt)).

1 (E)17

Hs+2

[|uo

[1n11(0)] <
gs+2 < ||h0’

17241 (0)]

Hs+2 Hs+2 y

Hs+2 .

Thus, the choice of T} gives that

(VAN
3
=

[t 41 () 2o 0.z o2y + VIV Ut (T) 720 0] 142

||hn+1<t)||%°°([0,T1],H5+2) < Ej.

We have proved proposition 3.1. [ |
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Convergence for small norm

Proposition 3.2 Let (ug(x), ho(x)) € H*T2(R?) for s > 0 and ||ho|gs+2 <
ﬁ, then there exists a positive time To(< T1) which independent of n, such
that {(uy(z,t), hy(x,t))} is a Cauchy sequence in X([0,Tz],s + 1, By, Es) if
s# 1, and in X([0,T5],2 — e, Ey, Ey) for all1 > >0 if s =1.

Proof. From equations (3.4) and (3.5), we have

6
(3.9) O(Upy1 — Up) — VA (Upyy — uy) = F;,
j=1
3
(310) 8t(hn+1 — hn) -+ Unv<hn+1 — hn) = Z Jj,
=1
where
o 1
7=1
1 1 1
1 Vo) Vit + (1 T hn_1>w”‘1v“”‘1

ha,
- unv<un - unfl) - (un - unfl)vunfl + v(hn - hnfl)a

> Ty = (tn—tn_1) Vhy + (L4 h)div(u, —tn_1) + (=P )divie, 1.

Jj=1

As in the proof of Proposition 3.1, applying the operator A to the equa-
tions (3.9) and (3.10), multiplying the first by Ag (11 —uy), and the second
by Ag(hni1 — hy), then integrating over R?, we obtain

6
Dl Ak (Un1—un) H%2 +20 || Ak (tn g1 —up) “%2 =>. ApFj A (U1 —uy,)dz,
=1 JRr2

3
Ol Ak(Pg1=ln)lI72 = 32 | Ak jAp(hpy1—hy)de.
j=1 JR2

Below we only consider the case of 0 < s < 1. Using Lemma 2.1, Lemma 2.2
and Lemma 2.3, and the fact that ||u,(t)||gs+1 < Ey and ||h,(t)]| gs+1 < Ey
when ¢t < T7, we have that

2
Hs+1
hn - hn—1|

He+1 T+ HV(UTL-H - un)‘

Fon 20|V (Ungn — up)|
SAO(Hun - un—l‘

X ([[unt1 — un

aIfHunJrl - un|

Hs+1 + | H5+1)

Hs+1 ) y
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and

atth—i-l - hn‘

Hs+1

oot < Ao (s = B

+ |V (un — tn-1)]

12T{S+1 + (Hun — Up1|

Hs+1) th+1 - hn’

Hs+1 + th - hnfl‘

HS+1)7

where Ay is a constant, and 4y = O(E}{E,?). Using Cauchy-Schwarz in-
equality, we obtain
(3.11)

at||un—|—1 _un|

?;[sJﬁl + VHV(Un-H - Un)| ?;[erl
2

Fror1 70(”“71 - un—1||12'-13+1 + || e — hn—IH%ISH)a

S ||un+1 - un|

(3.12)
Ot 1 = |2 < AG|[gr —

’/Ez2 2 2
+-05 1V (un — un—1)||HS+1 + [An = Bl 3es,
AFE7

2

4—5% [t ?T{SH

2
Hst1 + - U/’I’L71|

~ E2
where A2 = 4A2%(1 + @)
We prove now that there exists a positive time Ty (< 77) such that, for
any n,
) [t — tn—1l Lo o,1), 7541y + VIV (Un — 1) || L2 (0,100, 11541) < E1277,
" 1o — il oo o,1) 151y < Ep27

We will prove (C,,) by induction on n. In fact, it is easy to see that (C}) is
valid if Ty, < Tj.

We suppose now that (C,,) holds and prove that (C),1) is valid using
the estimates (3.11) and (3.12). Taking integration from 0 to ¢t on (3.11),
we deduce

t
2 et +y/ TV (g — wn) ()] 4esadt!
0 2

A
Tree1 tetTO(Ef + E3)27,

H (Un-i-l - un) (t)‘

S 6tH(un+l - Un)(0)|

If Ty = min{Ty, v(642)~'} and ¢ < Ty, we have ¢! < 3/2, te'228 < 3/2, we
also have

“ (un-i-l - un)(o) ’

Using (C,,), we obtain

1
Hs+2 S —E12_(n+1) .

Hs+1 S 2_(n+1)HAn+1U0| 2

(3:13) [l (1 =) o 517501y F 2V (tnr =) 2 4 11001y < EF272070.
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The same calculus for (3.12) yields

| (st = P @)1 < €51 (Bros = ) (0) [ s + 2t E5272",

Finally if 7y = min{T}, v(6A2)™, A;2} and ¢ < Ty, we obtain
(3.14) [(Fen1 = B | 2o (0.1 041y < 292+,

Proposition 3.2 is proved now with Ty = O(E; **v2ES). =

Regularity and uniqueness of solutions

From Proposition 3.2, we may conclude that the approximative sequence
(Un, hy,) of problems (3.4)-(3.6) is a Cauchy sequence in X ([0, T3], s+1, Ey, Es)
with s>0. So that the limit (u, k) is a solution of Cauchy problem (1.1)-(1.3).
From Proposition 3.1, this sequence is bounded in X' ([0, 73], s + 2, E1, E3),
so that it is also the Cauchy sequence in X ([0, T3], s'+2, By, E5) for all s’ < s
(by interpolation), and the limit is in X' ([0, T3], s + 2, Ey, E3). So we have
proved the existence of solution for Theorem 3.1.

The proof of uniqueness of solution is similar to the proofs for the con-
vergence of approximative sequence. In fact, we consider

(3.15) O(u —v) —vA(u—v) = Gi(u,h) —Gi(v,9),
(3.16) Oy(h—g) —uV(h—g) = (u—v)Vg+ Gs(u,h) — Gy(v,g),

with initial data u(z,0) = v(z,0) = uo(z) € H*? and h(x,0) = g(z,0) =
ho(z) € H*T2.
Following the proof of Proposition 3.2, we obtain that

[ (uw — U)H%oo([o,TQ],HsH)JF v||V(u— U)H%Q([O,Tg],HSJrl)

quﬂ + %(”u - UH%”"([OvTﬂ’HSH)

(3.17) < 2[[(u = )(0)]

+h — g”%,oo([O,Tg],HSH) +vlu— U||2L2([0,T2},Hs+1))a
and

2

(g = h) @)1 <2[[(h — g)(0)]| 71 + 11—6(||U - U"%OO([O,TQ],HS+1)

(3.18) +||h - g”%m([O,Tg],HH’l) +vflu— UH%Q([O,TZ],HS'H))‘

This gives the uniqueness of the solutions.
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4. Global existence for small initial data

First, we prove a priori estimates for local solutions.

Theorem 4.1 (a priori estimate) Suppose that the problem (1.1)-(1.8)
has a solution (u,h) € L>([0,T], H**'), Vu € L*([0,T], H***(R?)) for some
T > 0 with initial data ug, hg € HT(R?),s > 0, and

1/2

N(T) = (Hu”%w([o,T};HsH) + ”h”%w([O,T};HHl) + VHVUH%%[O,T};HSH)) < Ey.

Then there exist positive constants € and Cy with eCy < Ey, which are
independent of T' such that, if N(T) < e, then

(4.1) N(T) < CiN(0).

A combination of local existence theorem 3.1 and above a priori estimate
give the following theorem.

Theorem 4.2 Suppose that ug,hy € H**?(R?),s > 0. Then there exists
e > 0 such that if
[uol[ 2 + |lhol| mreve < e,

then the Cauchy problem (3.1)-(3.3) has a unique global solution
(u, h) € L=([0, +oof, H**(R?)),  Vu € L*([0,00[, H*"*(R?)).

For the proof of this theorem we refer to Sundbye [11].

Remark. We get global solution with index s + 2, since we have only local
solution with index s + 2 in Theorem 3.1. But we have proved the a priori
estimate for small index s + 1, so if we can get local solution for s + 1, we
will also get global solution for small index s + 1.

We prove now Theorem 4.1. Let us linearize the equations (1.1) and (1.2)
on (h,u) = (1,0) as follows:

Uy —VAu—i—VhI H17
(42) { ht + divu = HQ,

where

1+h

Hy = +VhVu— (u-V)u,
H2 = —dIV(hU),

In the following we will estimate (u, h) under the a priori assumption

(4.3) N(T) = ||h||%°°([0,T},HS+1) + ||u||%°°([O,T],HS+1) <o,

where s > 0 and 0 < §g << 1.
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Applying the operator Ay on (4.2), multiplying the first equation of (4.2)
by Ax(u — Au+ AVh) and the second equation by Ag(h — Ah), summing
them and integrating over R? yields

1
SO llunllz + Vo) +0 Vil 7z + vl D7z + M VA I72

(4.4) _ / (AFy Ap(t— Aut AV + Ay Fy Ay (h— Ah))da
R

2

—/\/ (8tuthk - yAuthk)dx,
R2

where 0 < A << 1,u;, = Dgu, hy, = Ah.

High vertical frequencies estimates

Now we will give some estimates to the right hand of (4.4) for the case of
high vertical frequencies. This means that for some M large enough, we
study (4.4) for k > M. By lemma 2.4 we have

‘ /R2 Ar(15 VIV uyda
(4.5) < Codi27*" lull = (1 + |4l o) (| A0l 3 + I VARIIZ-),
(4.6) /R2Ak(1J+thVu)Aukdx < Cod227%5||Vh|| gs (1 + || B o) || Dul%s,
and
)\‘ /R2 Ak(133 VhVU) Vigdz
(4.7) < CoAd@ 272"V h| s (1 + || Al s ) (| Aull 3 + VRN Fe)-

We also have

/RQAk((u - V)u)Augdx

sZ(

lg—k|<N1
DY
qzk_N27]6{_17071}

< Codi 27 (||ul| 2] Avul

/ Ar(T,Vu + Tyg,u) Auyg + R(u, Vu) Augdx
R2

)

/Ak(Sunuq)Aukd:v + / Ap(S,(Vu)uy) Augdx
R2 R2

/ Ap(ugVug— ;) Augdz
R2

i [Vl V|

Aul

Hs HS)

< Cod227 % |ul o1 |Vl
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Similarly,

A < CoAdg 2™ ||ull pross (| Vel o + VA1),

/ Ax((u - V)u)Vhyda

Since || fyllms < |V fyllms for ¢ > 0, we can obtain that

< Cd2" |l |Vl

/R2 Ag((u- V)u)ugde

and

/ divAg(uh)hydz
R2

R2

< Cdp27*(full 2 + 18]l 22) (I Vullzs + [ VR]Z.).

Using lemma 2.5, we obtain

< Cd22 || V| 2+ [ Vulen).

Vi

e

/ Ay (div(hu) Ahgdzx
R2

It is easy to see that

AV AupVhidx

R2

< Covd22 25 (Y| Al % + ]| VR|5).

Noting that

R2 R2 R2

we have
A /R ZUkat(th)d$ < C/\diQ‘%S(HVuﬂ{s
(I llsss + el )1Vl + VRN,
and

A

t
0 R2

< A2 (Ju()|

Vh(t)|

Hs Hs

+Hu<o>umuw<o>um).
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Multiplying inequality (4.4) by 22*¢ and integrating over (0,¢), we obtain
(4.8)
k()17

< Cdi(|[u(0)]

%[5+1 + )\Hth(T)’ 2Hs)d7-

wer + [ (1)

t
Hs+1‘|—/<V”vuk(T)‘
0

?154-1 +5||Vh| %s)dT

i1+ (2 (0)]

Hs+l) + C)\l/d2 /(€_1||Vu|
o+ O (1o sy + Il e o 11150

2 e | VA% dr

t
i omy o+ luleqo o) [ (190
O (u(t) 3. + IO

2ein).

Low vertical frequencies estimates

Now we will consider the low vertical frequencies: denoting Say = >, _ 1, A,
applying the operator Sy, on (4.2), multiplying the first equation of (4.2) by
Sk(u+AVh)and the second equation by Sih, summing them and integrating
over R? yields

1
O lSaullzz +1Sahll72) + VIV Sarullz + AV Sarhllz:
(4.9) _ / (Sar(F1)Sar(u + AVR) + Sy (Fo)Sarh)da
R2
—)\/ (8tSMuVSMh — VASMUVSMh)d.f,
R2

where 0 < A << 1. As in the proof of (4.8), we will give some estimates to
the right hand of (4.9). It is easy to see that

1
< _— 2 oo 2
‘/R Su (5 Vu)SMudx ol e PR AZ P PR P

A

/RQ SM(%W—W V)u >SM(Vh)dx

(H—1 n hHLOOHVhH%?HVUHL”_'_HuHL‘”HVUHLQHV}L“LQ)-

Using the estimates (2.2), we have

Su((u- V)u)Syudz| < Cllull.l[Vullze < Cllullz: [ VulZ,

’R2
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and

IA

Cllwll gz all g2V A 22
Clllullzz + [Pll2)(IVullZ2 + [ VAIIZ:).

IA

Note that || Sy Aullz2 < 2M|[Sy;Vul| 2, which implies

< Cav(e | Vul2, + €| VA|2:).

/\l// Sy (Au)Sy (Vh)dz

As in the above proofs, we have

R2

< OBl + llull =) (VullZe + IV A]Z2)
+CAEe | VullZ2 + [ VA[L),

and

t
A / o [ SwuSn(Vh)dzdr| < CA(lullg=VhlLze + [u(0)] 2 VA(0)] z2).
0 R2

Integrating both sides of (4.9) over (0,t), and adding the above estimates to
the right hand of (4.9), we have

t
(ISaull7> + [|1Sahll72) +/0 W VSyull7> + A||V5Afh||%2)d7
< C([Jull o o,y m541) + HhHLw([O,T},HsH))/O (IVul| + || VA]
+ CM([u@®)]172 + [VAE)172) + C([[u(0)]172 + [[VA(0)]|72)

%{s)dT

t
+ C/\I// (e IVullZ + e VRII2)dr.
0
Since ||Sarf|las < 2M9||Sarf||z2, we can write

2 i1 + M|V Suh||%)dr
fen + VA

t
(ISarulFyess + 1SarhlFeos) + [ (IVSaru
0 t
< C(|WHL°°([0,T],HS+1)+HhHLm([O,T},HS“))/O ([[Vul
+ CM([lu®)|Fs + IVRE)I7:) + C(|w(0) |7+ + [[VA(0)]

¢
+ )\/ (e Vu|
0

4s)dT

)

2o+ €| Vh|%. ) dr.
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The inequality above, together with estimate (4.8), yield:

25)dr

t

()| + 1R8] Froa +/ (IVu()Zrs + AIVA(T)]|
0

SO 2o o,z 050yl wll oo o,z 050 I oo 0.,y HI 2w (0.0 41

< [av

+ COA([[u(?)]

Yot + |IVR||3s)dr + C(J|w(0) |31 + [|h(0)]

Hot1)

%{sﬂ—i—“h(t)‘ %15+1+6HV}Z| %{s)dT.

t
zm)wm/ (vl
0
Taking € and X\ small enough, such that C'e = % and Che™! = i, we get

23)dr

t
() o1 +||h(t)H?{s+1+/0 WIVu(T)|[si0 + A VA(7)|

<C(Ihll 2o oy, sty HI Eo o 7, mrsr 1y HIwl oo o.17, 1001y HIw  Toe (0,77, £r541))

t
« / (v Vul
0

For fixed A, taking dy small enough, such that C'dy < %min{L A}, we obtain

2 i+ MVA|% ) dT + C[w(0)]|2ess + [|2(0)]

re+1).

() ][Fs+1 + [[A(2)] 2 PN VR(T)|[ 3 ) dr

t
%Hl—l—/o (v||Vu(r)|

<C(lu(0)l[Fzs+1 + 1A O)[[Fg+1)-

This proves Theorem 4.1.

5. Losing energy estimates

We prove now the losing energy estimates of section 2. The proofs of this
section are technical.

Lemma 5.1 Let 7 > 1 and —1 < k < 400, then there exists C > 0 such

that for all v,Vv,q9,Vg € H™, we have

[ 8uwVo)rgda| < iz oo
R

with {d} € * and |[{dp}|e < 1.

Proof. Using the paraproduct calculus, we have

Ap(vVg)Argdr = /Ak(Tvgv)Akgd:C—i— Ap(T,Vg)Argdx
R2

R2 R2

—|—/ AkR(U, Vg)Akgd:E = ]1 + _[2 —+ 13.
R2



18 W. Wancg anp C-J. Xu

Then there exists N7 > 0 such that for any fixed M > N; and k > M,
ILI< >0 150Vl | Agoll 2l Al 2

lg—k|<N:
< ) 189l I8¢ (V)| 22| Akgllze < CdR2~* |l gl3- l[0l| s+
lg—k|<N:

Here we have used Sobolev inequality for ||g||L~ since 7 > 1. For k < M,
using that >7, ; <n, [194(Vg)|[r < C2M||g|| L, we get the same results.

For the term I, in order to pass the operator V from g to v, let us rewrite

I, = Z /Ak(quAq(Vg))Akgda:
R2

lg—k|<N1

— Z </ [Ak,qu]Aq(Vg)Akgd:c—l—/ (Sy — Sk)vARA(Vg)Argda
R? R?

lg—k|<N:
+/ SkvAk(Vg)Akgdx).
]RZ
Note that the operators A, are convolution operators in R?, therefore

(B, Sy018,(Vg) = 2 [ (S,0(a) = Sy f2H(a = 0)A(T0) )iy
RQ

where f(z) = (F'p)(z). Using the fact that |¢ — k| < N; and Hausdorff-

Young inequality, we have

> A SwA(Vg)lle

lg—k|<N1

<O >0 VS lm2 M) £ 1180 (V92

lg—k|<N:
<Cd 27|V ol < lgll -
A similar computation for other terms yields :
|Ia| < Cdi2™ ([ Vol - |lgll3--
Finally, for I3, there exists N7 > 0 such that
B X | aapa(Ve)agds

qzk_N27je{_17071}

<C Y 1AwIRI2-; (Vo) =l Axgll 2

q=k—N2

<Cd2 (30 427 follen gl

q>k—N2
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Denote dj, = (3 54— n, 4g2~ 7M7), then {d},} € I? since ¢ > kand 7 > 1.
For the sake of convenience, below we also denote d). by di. Thus
|| < Cdp2™|[vll o llgll%--
Lemma 5.1 is proved. |

Lemma 5.2 (a) Let 7 > 2 and —1 < k < 400, then there exists C > 0
such that for all f,v,g,u,Vu € H™, we have

/]R?Ak ( 1V+f Vv) Apudx

<Cdp 27 Ho(g)| - ol (L4 N gll o)l 1+

with {dy.} € (*, where

Ho(g) =1+ 1I(1+9) " llz= + Bolllgllz=),

and By is the function give in (2.1).
(b) Let 1 <7 <2 and —1 < k < 400, then there exists C > 0 such that
for all f,g,u,Vu,v,Vv € H”, we have

/R2 Ak<1vf Vv) Apudx

< Cdi 27 Ho(g) || f ||zt (L + gl ) U (u, v),

with {dy.} € (*, where
Ur(u,v) = Vol ool grer + [Vl = (IVul [ 4[] 2m).-

Proof. (a) As in the proof of Lemma 5.1, first we have

/ Ak( Vi w) Auds / Ak<TLf vU+TWVng +R(V—f Vv))Akudx.

R2 1 +g9 R2 T+g 1 1+
For k > M, it is easy to obtain

v
/RQAk(lefgw YAgudz| < Z|q H<N: 1—|—fg ‘LOOHAQ(VU)HLQHAkqu
= e I PN L I
— q >IV1 1+g oo q
1
< d22_2kT —‘ T T T .
< O || | 1 ol NVl
For kK < M, we have
1
’ AT Vi) Aguda| < Caz2 | —— || [1fllullollae ] -
R2 1+g 1+
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For the second term, we rewrite

Aq<%

) = 8V1) = 8y (T VI + Toy o+ RV ).

thus we have

/R2 Ay <TW 1V+fg> Apudr

< Cdi 27" Ho(9) | Vol | L= (1 + Nl gller) (I Vullzre + [lull ),

and

/R2 Ay (R(Vv, %)Akudas

S S e\

¢>k—Na,je{—1,0,1} +e

< Cdi27** Ho(@) IV 0l | f e ] s

Therefore, part (a) is proved.

(b) Let us write
Vf
/}R2 Ak<1+gV1})Akuda@ /}R2 Ak(TlvTUgi)Akudx

/R2 Ap <va 121)9) Apudz

The estimates for the first term and the third term are easy, so we discuss
only the second term for which we consider two cases:

1) k > M. We have that

/R2Ak (va 1V+’Ug> Agudz A ( 1V+'Ug>

Since 1 < 7 < 2, using the Sobolev’s inequality, we obtain

1SV )= < Y 271 flle < C27 2 flam,

p<q+2

<

Vv

/RZ A,ﬂ(m, Vf) Apuda

- +

< > I8Vl

lg—k|<N1

| Axul| 2.

L2

and

I

e IVl () <09l (15 (755) | Nl ).
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which implies

/R2Ak (va 1V+Ug> Apudx

2) k < M. It is easy to see that

/R?Ak <va 1V+vg) Arpudx

And the lemma is proved. [ |

<Cdi 27" Ho(g) 1l gllan) L f 1|z 1 Vol | V]| e

<Cdp2 " Ho(g) (1 + llgllzz ) - V0l 17 [l

Lemma 5.3 (a) Let 7 > 2 and —1 < k < 400, then there exists C > 0
such that for all f,v,u,Vu,qg1,90 € H™, we have

/R2 Ak ( (1 459911)_(19242 el VU) Ayudz

< Cdp27 Hi(gy, g2) | [ vll= lgr — gell - (I ull 11 + [l ),
with {dy.} € ¢, and

Hi(g1,92) = (L4 1+ g0) 7 < llgnlla-) (X + 11+ g2) 7 7 llg2ll17)
HI(A 4 g0) e (X + 92) e

(b) Let 1 <7 <2 and —1 < k < 400, then there exists C > 0 such that
for all f,v,g1,92,u, Vu,v,Vv € H™ ;we have

‘ /RZ ~ ( (1 Jfggllilgig 92) Vva) Audz

< Cdi27 " Hi(gu, g2)|| g1 = g2l - U (w, v),
with {dy.} € 2, and U,(u,v) as in Lemma 5.2 (b).

The proof of this lemma is similar to Lemma 5.2. Let us remark that if

F; = ﬁvﬁj = 1if'gj ( = 1,2), then we have

g1 — g2 B ) o
F = = — g F Fy = - |—F — B+ B J
(1+g1)(1+g2) (g1 — 92) FiFy = (g1 — g2)( | Y + FyF)

with the following estimates

[ Fle < Cllgr — gallzoe [ F1l| Lo || Fal e,
[AGF| 2 < Cd227%7 || gy — goll = (14 | Full 7 lgall a7 ) (1 + | F2l|F o0 [l 92| 27)-

In the following we will consider the losing energy estimate for the case of
high vertical frequencies, i. e., k > M. Here, we assume that M > Ny + Ns.
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Lemma 5.4 Let 7 > 0 and M < k < oo, then there exists C' > 0 such that
for all g,u,v,Vg,Vu € H™, we have

1
/R2 Ak(l n thVu) Apvdx
< Cdi27 Ho(h)(1 + [|Bll g+ | Aull = IV Bl e 0| a7

with {dy,} € .

The proof of this lemma is similar to the proof of lemma 5.2 and the
following lemma.

Lemma 5.5 Let 7 > 0 and M < k < oo, then there exists C' > 0 such that
for all g € H™' and w € H™"2, we have

< Cdp 2 [ Vh| - (IV Rl - + [[Vullf),

/ A(div(hu))A(Aph)dz

with {dy,} € I2.

Proof. First, let us observe that

<

/ A(div(hu))A(Aph)dz

/ Ax(Vhdivu)Ay(Vh)dz
RQ

+ +

/ Ap(hV (divi) Ay (Vh)dz

/ Ar(uVR)AR(AR)dx

It is easy to estimate the first and the second terms by
Cdi2 (| Vul = V|- + VA2 [ Aull - [V A 1r-),

while for the third term, since we cannot control Ah, it is convenient to
write

/ AT Vh)Ap(Ah)de = ) / AR(SuVhy)AR(AR)dx

lg—K|<Ny
= D / ((SquARAG(VR)) + [Ak, Sgu] Ag(Vh)) Ag(Ah)dx
lq—k|<Ny 7R
= > / ((Sy — SuARAL(VA) + [Ag, S;ul Ay (V) Ag(Ah)d
lg—k|<N1 R

R2
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Since (S, — Sp)u= =3 < cp1 Dy,
Ky < CY [Apull | VAR 2 [ AAR|
p

< Cd27M || Aull (V|| 2 VA -
As in the proof of lemma 5.1, we have
Ky < Cdi272M||Vul| < | VA%

Then, using the following computation
R2

= [, Gavsrw i - ;0j<skui>ai<Akh>aj<Akh>)dx,

we get immediately that
Ky < Cdp27 ||Vl 1= || VA~ .

and this proves the Lemma. [ |
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