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Minimal Slant Submanifolds of the
smallest dimension in S-manifolds

Alfonso Carriazo, Luis M. Fernández and Maŕıa Belén Hans-Uber

Abstract

We study slant submanifolds of S-manifolds with the smallest di-
mension, specially minimal submanifolds and establish some relations
between them and anti-invariant submanifolds in S-manifolds, simi-
lar to those ones proved by B.-Y. Chen for slant surfaces and totally
real surfaces in Kaehler manifolds.

1. Introduction

Slant immersions in complex geometry were defined by B.-Y. Chen as a
natural generalization of both holomorphic and totally real immersions [4, 6].
Recently, A. Lotta has introduced the notion of slant immersion of a Rie-
mannian manifold into an almost contact metric manifold [8]. Slant sub-
manifolds of Sasakian manifolds have been studied in [2] and a general view
about slant immersions can be found in [3].

On the other hand, for manifolds with an f -structure, D.E. Blair has in-
troduced S-manifolds as the analogue of the Kaehler structure in the almost
complex case and of Sasakian structure in the almost contact case [1].

The purpose of the present paper is to study slant submanifolds of
S-manifolds with the smallest dimension, specially, minimal slant submani-
folds. After recalling, in Section 2, some basic ideas of Riemannian geometry,
we review, in Section 3, formulas and definitions for metric f -manifolds and
their submanifolds, which we shall use later. In Section 4 we prove that the
smallest dimension of a slant submanifols in an S-manifold is 2 + s, where s
is denoting the number of structure vector fields of the ambient S-manifold
(note that s = 0 for Kaehler manifolds and s = 1 for Sasakian manifolds)
and we give some characterization theorems for these submanifolds in terms

2000 Mathematics Subject Classification: 53C25, 53C40.
Keywords : S-manifold, slant submanifold, minimal submanifold, smallest dimension.



48 A. Carriazo, L.M. Fernández and M.B. Hans-Uber

of the covariant derivatives of the f -structure projection operators on the
submanifold. Finally, in Section 5 we study minimal slant submanifolds of
the smallest dimension. In particular, we establish some relations between
minimal slant (2+s)-dimensional submanifolds and anti-invariant submani-
folds in S-manifolds, which correspond, in same sense, to those ones proved
by B.-Y. Chen in [4,6].

2. Preliminaries

In this section, we will recall some fundamental results and formulas con-
cerning Riemannian submanifolds for later use (see, e.g. [5] as a general
reference).

Let M be a Riemannian manifold isometrically immersed in a Riemann-
ian manifold M̃ . Let g denote the metric tensor of M̃ as well as the induced
metric tensor on M . Let X (M̃) be de Lie algebra of tangent vector fields on

M̃ , X (M) the Lie algebra of tangent vector fields on M and T⊥M the set of

vector fields on M̃ which are normal to M , that is, X (M̃) = X (M)⊕T⊥M .

If ∇ y ∇̃ denote the Levi-Civita connections of M and M̃ , respectively,
the Gauss-Weingarten formulas are given by

∇̃XY = ∇XY + σ(X,Y ), ∇̃XV = −AV X + DXV,

for any X,Y ∈ X (M) and any V ∈ T⊥M , where D is the normal connec-
tion, σ is the second fundamental form of the immersion and AV is the Wein-
garten endomorphism associated with V . The endomorphisms AV and σ are
related by

(2.1) g(AV X,Y ) = g(σ(X,Y ), V ),

for any X,Y ∈ X (M) and any V ∈ T⊥M .
The mean curvature vector H is defined by

H =
1

m
trace σ =

1

m

m∑
i=1

σ(ei, ei),

where dim M = m and {e1, . . . , em} is a local orthonormal basis of X (M).
M is said to be minimal if H vanishes identically or, equivalently, if

traceAV = 0, for any V ∈ T⊥M .

If dim(M̃) = m̃, a local orthonormal basis of X (M̃)

{e1, . . . , em, em+1, . . . , e�m}
can be chosen such that, restricted to M , the vector fields e1, . . . , em are tan-
gent to M and so, em+1, . . . , e�m are normal to M .
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Then, for any X ∈ X (M), it can be written that

∇̃Xei =
m∑

j=1

wj
i (X)ej +

�m∑
k=m+1

wk
i (X)ek,(2.2)

∇̃Xer =
m∑

j=1

wj
r(X)ej +

�m∑
k=m+1

wk
r (X)ek,(2.3)

for i ∈ {1, . . . ,m} and r ∈ {m + 1, . . . , m̃}. The 1-forms wj
i , wk

i , wk
r given

by equations (2.1) and (2.2) are called connection forms of M in M̃ . It is
easy to show that

(2.4) wi
j + wj

i = 0, for any i, j ∈ {1, . . . ,m}.

3. Slant submanifolds of S-manifolds

Let (M̃, g) be a (2m + s)-dimensional Riemannian manifold. Then, it is

said to be a metric f-manifold if there exist on M̃ an f -structure f , that is,
a tensor field f of type (1,1) satisfying f3 + f = 0 (see [9]), of rank 2m
and s global vector fields ξ1, . . . , ξs (called structure vector fields) such that,
if η1, . . . , ηs are the dual 1-forms of ξ1, . . . , ξs, then

fξα = 0; ηα ◦ f = 0; f2 = −I +
s∑

α=1

ηα ⊗ ξα;

g(X,Y ) = g(fX, fY ) +
s∑

α=1

ηα(X)ηα(Y ),(3.1)

for any X,Y ∈ X (M̃) and α = 1, . . . , s.

The f -structure f is normal if

[f, f ] + 2
s∑

α=1

ξα ⊗ dηα = 0,

where [f, f ] is the Nijenhuis tensor of f . Let F be the fundamental 2-form

defined by F (X,Y ) = g(X, fY ), for any X,Y ∈ X (M̃). Then, M̃ is said to
be an S-manifold if the f -structure is normal and

η1 ∧ · · · ∧ ηs ∧ (dηα)n �= 0, F = dηa,

for any α = 1, . . . , s. In this case, the structure vector fields are Killing
vector fields. When s = 1, S-manifolds are Sasakian manifolds.
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The Riemannian connection ∇̃ of an S-manifold satisfies ([1])

(3.2) ∇̃Xξα = −fX,

and

(3.3) (∇̃Xf)Y =
s∑

α=1

(g(fX, fY )ξα + ηα(Y )f2X),

for any X,Y ∈ X (M̃) and any α = 1, . . . , s.

Next, let M be a isometrically immersed submanifold of a metric f -mani-
fold M̃ . For any X ∈ X (M) we write

(3.4) fX = TX + NX,

where TX and NX are the tangential and normal components of fX, re-
spectively. Similarly, for any V ∈ T⊥M , we have

(3.5) fV = tV + nV,

where tV (resp., nV ) is the tangential component (resp., the normal com-
ponent) of fV . Since, from (3.1), the metric g satisfies that g(fX, Y ) =

−g(X, fY ), for any X,Y ∈ X (M̃), by using (3.4) and (3.5), we get

g(TX, Y ) = −g(X,TY ),(3.6)

g(nV, U) = −g(V, nU),(3.7)

g(NX,V ) = −g(X,TV ),(3.8)

for any X,Y ∈ X (M), U, V ∈ T⊥M and, by using (3.5), if the structure
vector fields are tangent to M ,

(3.9) NTX + nNX = 0,

for any X ∈ X (M). Moreover, in this last case, if M̃ is an S-manifold,
from (3.2) and (3.4) it is easy to show that

(3.10) σ(X, ξα) = −NX,

for any X ∈ X (M), α = 1, . . . , s and, consequently σ(ξα, ξβ) = 0, for
any α, β = 1, . . . , s.

The covariant derivatives of T and N are given by

(∇XT )Y = ∇XTY − T∇XY,(3.11)

(∇XN)Y = DXNY − N∇XY,(3.12)

for any X,Y ∈ X (M).
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Then, by using (3.3), (3.11), (3.12) and Gauss-Weingarten formulas, it
can be obtained that

(∇XT )Y = tσ(X,Y ) + ANY X +
s∑

α=1

(g(fX, fY )ξα + ηα(Y )f2X),(3.13)

(∇XN)Y = nσ(X,Y ) − σ(X,TY ),(3.14)

for any X,Y ∈ X (M).
Now, for later use, we establish two general lemmas for submanifolds of

S-manifolds which can be proved from (2.1) and (3.6)-(3.8) by a straight-
forward computation:

Lemma 3.1 Let M be a submanifold of an S-manifold, tangent to the struc-
ture vector fields. Then, there exists a differentiable function λ such that

(∇XT )Y = λ
s∑

α=1

(g(fX, fY )ξα + ηα(Y )f2X),

for any X,Y ∈ X (M), if and only if:

ANY X − ANXY = (λ − 1)
s∑

α=1

(ηα(Y )f2X − ηα(X)f2Y ).

Lemma 3.2 Let M be a submanifold of an S-manifold, tangent to the struc-
ture vector fields. Then,

(∇XN)Y =
s∑

α=1

(2ηα(X)NTY + ηα(Y )NTX),

for any X,Y ∈ X (M), if and only if:

AV TY + AnV Y =
s∑

α=1

(2g(Y, tnV )ξα + ηα(Y )tnV ),

for any Y ∈ X (M) and any V ∈ T⊥M .

The submanifold M is said to be invariant if N is identically zero, that is,
if fX ∈ X (M), for any X ∈ X (M). On the other hand, M is said to be an
anti-invariant submanifold if T is identically zero, that is, if fX ∈ T⊥M ,
for any X ∈ X (M).

From now on, we suppose that all the structure vector fields are tangent
to the submanifold M . Then, M is said to be a slant submanifold if for any
x ∈ M and any X ∈ TxM , linearly independent on ξ1, . . . , ξs, the Wirtinger
angle between fX and TxM is a constant θ ∈ [0, π/2], called the slant angle

of M in M̃ . Note that this definition generalizes that one given by B.-Y.
Chen ([6]) for Complex Geometry and that one given by A. Lotta ([8]) for
Contact Geometry.
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Furthermore, invariant and anti-invariant submanifolds are slant sub-
manifolds with slant angle θ = 0 and θ = π/2, respectively. A slant im-
mersion which is not invariant nor anti-invariant is called a proper slant
immersion. Observe that, for invariant submanifolds, T = f and, so

T 2 = f2 = −I +
s∑

α=1

ηα ⊗ ξα,

while for anti-invariant submanifolds, T 2 = 0. In fact, we have the following
general result whose proof can be obtained by following the same steps as
in the case s = 1 (see [2]):

Theorem 3.1 Let M be a submanifold of a metric f-manifold M̃ , tangent
to the structure vector fields. Then, M is a slant submanifold if and only if
there exists a constant λ ∈ [0, 1] such that:

T 2 = −λI + λ
s∑

α=1

ηα ⊗ ξα = λf2.

Furthermore, in such case, if θ is the slant angle of M , it satisfies that
λ = cos2 θ.

Using (3.1), (3.4), (3.6) and Theorem 3.1, a direct computation gives:

Corollary 3.1 Let M be a slant submanifold of a metric f-manifold M̃ ,
with slant angle θ. Then, for any X,Y ∈ X (M), we have:

g(TX, TY ) = cos2 θ(g(X,Y ) −
s∑

α=1

ηα(X)ηα(Y )),

g(NX,NY ) = sin2 θ(g(X,Y ) −
s∑

α=1

ηα(X)ηα(Y )).

We also have:

Corollary 3.2 Let M be a non-invariant slant (m + s)-dimensional sub-

manifold of a (2m+ s)-dimensional metric f-manifold M̃ with slant angle θ
and let {e1, . . . , em, ξ1, . . . , ξs} be a local orthonormal basis of X (M). Then,

{(csc θ)Ne1, . . . , (csc θ)Nem}
is a local orthonormal basis of T⊥M .

Proof. It is easy to show that {(csc θ)Ne1, . . . , (csc θ)Nem} is a set of m
linearly independent vector fields of T⊥M , that is, a local basis of T⊥M .
Moreover, from Corollary 3.1, we obtain that:

g((csc θ)Nei, (csc θ)Nej) = csc2 θ sin2 θg(ei, ej) = δij . �
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In a similar way, by using Theorem 3.1 and Corollary 3.1, we get:

Corollary 3.3 Let M be a non anti-invariant (2 + s)-dimensional slant
submanifold of a metric f-manifold with slant angle θ. Let e1 be a unit
vector field, tangent to M and normal to the structure vector fields and
define e2 = (sec θ)Te1. Then e1 = −(sec θ)Te2 and {e1, e2, ξ1, . . . , ξs} is a
local orthonormal basis of X (M).

Finally, combining Corollary 3.2 and Corollary 3.3 and using Theorem 3.1
again, we obtain:

Corollary 3.4 Let M be a proper (2 + s)-dimensional slant submanifold
of a (4 + s)-dimensional metric f-manifold with slant angle θ. Let e1 be a
unit vector field, tangent to M and normal to the structure vector fields and
define:

e2 = (sec θ)Te1, e3 = (csc θ)Ne1 and e4 = (csc θ)Ne2.

Then, e1 = −(sec θ)Te2 and {e1, e2, e3, e4, ξ1, . . . , ξs} is a local orthonormal

basis of X (M̃) such that e1, e2, ξ1, . . . , ξs are tangent to M and e3, e4 are
normal to M . Moreover:

te3 = − sin θe1, ne3 = − cos θe4, te4 = − sin θe2, ne4 = cos θe3.

The basis {e1, e2, e3, e4, ξ1, . . . , ξs} is said to be an adapted slant basis.

4. Slant submanifolds of the smallest dimension

Observe that 2 + s is the smallest dimension of a proper slant submanifold
in a metric f -manifold. Indeed, if we denote Q = T 2 and consider the
orthogonal decomposition

X (M) = L⊕M,

where M is the distribution spanned by the structure vector fields and L is
its complementary orthogonal distribution, then, since TL ⊆ L, Q|L is an
endomorphism on L. Furthermore, it is a symmetric endomorphism because,
from (3.6),

g(QX,Y ) = g(T 2X,Y ) = −g(TX, TY ) = g(X,T 2Y ) = g(X,QY ),

for any X,Y ∈ X (M). Consequently, for each x ∈ M , the subspace Lx

of TxM admits a decomposition of the form

Lx = L1
x ⊕ L2

x ⊕ · · · ⊕ Lk(x)
x ,

where Li
x is the proper subspace of eigenvectors associated with an eigen-

value λi of Q|L. Then, we can easily prove:
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Proposition 4.1 Let M be a submanifold of a metric f-manifold, tangent
to the structure vector fields. Then, at each point of M , we have the following
properties:

1. λi ∈ [−1, 0], for any eigenvalue λi of Q|L.

2. TX ∈ Li, for any X ∈ Li.

3. If λi �= 0, Li is of even dimension and T (Li) = Li.

Corollary 4.1 Let M be a (1 + s)-dimensional submanifold of a metric f-
manifold, tangent to the structure vector fields. Then, M is an anti-invariant
submanifold.

Proof. Since L is of odd dimension (equal to 1), from Proposition 4.1 we
get λ = 0 and M is an anti-invariant submanifold. �

From this corollary, we deduce that there are not proper slant submani-
folds of a metric f -manifold of dimension smaller than 2 + s. Now, we are
going to study submanifolds of such dimension when the ambient manifold
is an S-manifold. First, by using Theorem 3.1, if M is a slant submanifold
with slant angle θ, a direct calculation gives

(4.1) (∇XQ)Y = cos2 θ
s∑

α=1

(g(X,TY )ξα − ηα(Y )TX),

for any X,Y ∈ X (M), where we recall that

(∇XQ)Y = ∇XQY − Q∇XY.

Next, we have the following general characterization:

Theorem 4.1 Let M be a submanifold of an S-manifold, tangent to the
structure vector fields. Then, M is a slant submanifold if and only if the
following conditions are satisfied:

1. The endomorphism Q|L has only one eigenvalue at any point of M .

2. There exists a function λ : M −→ [0, 1] such that

(∇XQ)Y = λ
s∑

α=1

(g(X,TY )ξα − ηα(Y )TX),

for any X,Y ∈ X (M).

Moreover, in this case, if θ is the slant angle of M , then λ = cos2 θ.
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Proof. If M is a slant submanifold with slant angle θ, from Theorem 3.1,
we have

T 2X = QX = cos2 θf2X,

for any X ∈ X (M). Then, Q|L = − cos2 θI and λ1 = − cos2 θ is the only
eigenvalue of Q|L at any point of M . Furthermore, Condition 2 is (4.1).

Conversely, let λ1(x) be the only eigenvalue of Q|L at any point x ∈ M .
Thus, by using Condition 2 we get that λ1 is a constant. Now, let X∈X (M).
If we put

X = X̃ +
s∑

α=1

ηα(X)ξa,

where X̃ ∈ L, then QX = QX̃ = λ1X̃ and, so:

QX = λ1X − λ1

s∑
α=1

ηα(X)ξa.

By applying Theorem 3.1 we obtain that M is a slant submanifold and,
by (4.1), λ = −λ1 = cos2 θ. �

Corollary 4.2 Let M be a (2+s)-dimensional submanifold of an S-manifold
tangent to the structure vector fields. Then, M is a slant submanifold if and
only if there exists a function λ : M −→ [0, 1] such that

(4.2) (∇XQ)Y = λ
s∑

α=1

(g(X,TY )ξα − ηα(Y )TX),

for any X,Y ∈ X (M). Moreover, in this case, if θ is the slant angle of M ,
then λ = cos2 θ.

Proof. We only have to prove that Q|L has only one eigenvalue at any point
of M . But it is a direct consequence of 3. of Proposition 4.1. �

Theorem 4.2 Let M be a (2+s)-dimensional submanifold of an S-manifold,
tangent to the structure vector fields. Then, M is a slant submanifold if and
only if there exists a function λ : M −→ [0, 1] such that

(4.3) (∇XT )Y = λ
s∑

α=1

(g(fX, fY )ξα + ηα(Y )f2X),

for any X,Y ∈ X (M). Moreover, in this case, if θ is the slant angle of M ,
then λ = cos2 θ.
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Proof. First, it is easy to show that (4.3) implies (4.2). Then, we only have
to apply Corollary 4.2 to get that M is a slant submanifold. Conversely, we
can suppose that M is a proper slant submanifold because if M is an invari-
ant or an anti-invariant submanifold, we obtain (4.3) directly. Now, since
dim(M) = 2+s, from Corollary 3.3, we can choose a local orthonormal basis
of X (M), {e1, e2, ξ1, . . . , ξs}, such that e2 = (sec θ)Te1 and e1 = −(sec θ)Te2.
Thus, for any X ∈ X (M), we have

(∇XT )e1 = cos θ
s∑

α=1

wα
2 (X)ξα,

because wi
i(X) = 0 and wj

i (X) = −wi
j(X). But, by using (3.2) and (3.4),

wα
2 (X) = g(e2, TX), for any α = 1, . . . , s and so:

(4.4) (∇XT )e1 = cos θ

s∑
α=1

g(e2, TX)ξα = cos2 θ

s∑
α=1

g(X, e1)ξα.

Similarly:

(4.5) (∇XT )e2 = cos2 θ
s∑

α=1

g(X, e2)ξα.

On the other hand, for any α = 1, . . . , s:

(4.6) (∇XT )ξα = cos2 θf2X.

Now, given any Y ∈ X (M), since locally

Y = Y1e1 + Y2e2 +
s∑

α=1

ηα(Y )ξα,

we obtain that:

(4.7) (∇XT )Y = Y1(∇XT )e1 + Y2(∇XT )e2 +
s∑

α=1

ηα(Y )(∇XT )ξα.

Substituting (4.4)-(4.6) into (4.7) we conclude the proof. �

From Lemma 3.1 we get:

Corollary 4.3 Let M be a submanifold of dimension 2+s in an S-manifold,
tangent to the structure vector fields. Then, M is a slant submanifold if and
only if there exists a differentiable function µ : M −→ [0, 1] such that

ANY X − ANXY = µ
s∑

α=1

(ηα(X)f2Y − ηα(Y )f2X),

for any X,Y ∈ X (M). Moreover, in this case, if θ is the slant angle of M ,
then µ = sin2 θ.
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5. Minimal slant submanifolds of the smallest dimension

For later use, we are going to prove the following lemmas:

Lemma 5.1 Let M be a proper slant, (2 + s)-dimensional submanifold of

an S-manifold M̃ with dim(M̃) = 4 + s. If θ is the slant angle,

{e1, . . . , e4, e5 = ξ1, . . . , e4+s = ξs}
is an adapted slant basis and if we put

σr
ij = g(σ(ei, ej), er), for any i, j = 1, 2, 5, . . . , 4 + s and r = 3, 4,

then:

σ3
12 = σ4

11, σ3
22 = σ4

12,(5.1)

σ3
1(4+α) = σ4

2(4+α) = − sin θ, α = 1, . . . , s(5.2)

σ3
2(4+α) = σ4

1(4+α) = σ3
(4+α)(4+β) = σ4

(4+α)(4+β) = 0, α, β = 1, . . . , s.(5.3)

Proof. We obtain (5.1) by virtue of Corollary 4.3 while (5.2) and (5.3) hold

because M̃ is an S-manifold. �
Lemma 5.2 Let M be a (2 + s)-dimensional slant submanifold of an S-

manifold M̃ with dim(M̃) = 4+ s. Then, ∇N = 0 if and only if M is either
an invariant or an anti-invariant submanifold.

Proof. If ∇N = 0, then, by applying (3.14) we get, for any X,Y ∈ X (M),
V ∈ T⊥M :

(5.4) −g(σ(X,TY ), V ) = g(σ(X,Y ), nV ).

If we suppose that M is a proper slant submanifold with slant angle θ and
choose an adapted slant basis

{e1, . . . , e4, e5 = ξ1, . . . , e4+s = ξs},
then, from (5.4), since Te4+α = Tξα = 0, for any α = 1, . . . , s and ne4 =
cos θe3,

0 = g(σ(e1, e4+α), ne4) = cos θg(σ(e1, e4+α), e3) =

= cos θσ3
1(4+α) = − cos θ sin θ,

where we have used (5.2). But this contradicts the fact of M being a proper
slant submanifold.

Conversely, if M is an invariant submanifold, then N = 0 and so, ∇N =0.
Finally, if M is anti-invariant submanifold, then n = 0 and we only need to
apply (3.14). �
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Theorem 5.1 Let M be a (2 + s)-dimensional submanifold of a (4 + s)-

dimensional S-manifold M̃ , tangent to the structure vector fields.

1. If M is a minimal proper slant submanifold of M̃ , then

(5.5) (∇XN)Y =
s∑

α=1

(2ηα(X)NTY + ηα(Y )NTX).

for any X,Y ∈ X (M).

2. Conversely, suppose that there is an eigenvalue λ of Q|L at each point
of M such that λ ∈ (−1, 0). In this case, if (5.5) holds, M is a minimal

proper slant submanifold of M̃ .

Proof. To prove statement 1, we choose an adapted slant basis:

{e1, . . . , e4, e5 = ξ1, . . . , e4+s = ξs}.

Then, we can show that

(5.6) nσ(ei, ej) = cos θσ4
ije3 − cos θσ3

ije4,

for any i, j = 1, 2, 5, . . . , 4 + s. Moreover, since M is minimal, by using
σ(ξa, ξα) = 0 for any α = 1, . . . , s, we have:

(5.7) σ3
11 = −σ3

22, σ4
11 = −σ4

22.

Next, writing X,Y ∈ X (M) in terms of the adapted slant basis and tak-
ing into account (5.1)-(5.3), (5.6) and (5.7), we obtain (5.5) from (3.14)
and (3.9).

To prove statement 2, we can choose a unit local vector field e1 in L,
such that

T 2e1 = − cos2 θ1e1,

where θ1 = θ(e1) ∈ (0, π/2) denotes the Wirtinger angle of e1. Now, we
define e2, e3, e4 by

(5.8) e2(sec θ1)Te1, e3 = (csc θ1)Ne1, e4 = (csc θ1)Ne2

and e4+α = ξα, α = 1, . . . , s. It is easy to show that {e1, . . . , e4+s} is a local

orthonormal basis of M̃ such that:

te3 = − sin θ1e1, te4 = − sin θ1e2, ne3 = − cos θ1e4, ne4 = cos θ1e3.
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Next, from (5.8) and by using Lemma 3.2, we get:

ANe1e2 = sec θ1 sin θ1Ae3Te1 = sin θ1Ae4e1 = ANe2e1.

Furthermore, from (3.2) and Gauss-Weingarten formulas, we have, for any
α = 1, . . . , s,

ANe1e4+α = sin θ1Ae3e4+α = sin θ1te3 = − sin2 θ1e1

and
ANe2e4+α = sin θ1Ae4e4+α = sin θ1te4 = − sin2 θ1e2.

Hence, a direct computation gives that

ANY X = ANXY − sin2 θ1

s∑
α=1

(
ηa(Y )f2X − ηa(X)f2Y

)
,

for any X,Y ∈ X (M) and so, by applying Corollary 4.3, we know that M
is a proper slant submanifold, with slant angle θ1. Finally, to prove that M
is also a minimal submanifold, we only need to show that:

σ3
11 = −σ3

22, σ4
11 = −σ4

22.

But,
σ3

11 = g(σ(e1, e1), e3) = (− sec θ1)g(σ(e1, T e2), e3)

and, from (3.14) y (5.5), σ(e1, T e2) = nσ(e1, e2), which together (3.7) im-
plies:

σ3
11 = −σ4

12.

Now, since we have already proved that M is a proper slant submanifold
and the chosen basis is an adapted slant one, from Lemma 5.1 we conclude
the proof. �

Note that (5.5) holds directly in the invariant and anti-invariant cases,
since ∇N = 0. On the other hand, the above theorem is the corresponding
one to Theorem 5.5 in [6], proved by B.-Y. Chen for surfaces in 4-dimensional
Kaehler manifols.

Next, we want to establish some relations between minimal slant (2+s)-
dimensional submanifolds and anti-invariant submanifolds in S-manifolds.
First, we have the following lemma:

Lemma 5.3 Let M be a proper slant (2 + s)-dimensional submanifold in a

(4 + s)-dimensional S-manifold M̃ , with slant angle θ. Then, with respect
to an adapted slant basis {e1, . . . , e4+s}, we have

(5.9) w4
3 − w2

1 = − cot θ((trace σ3)w1 + (trace σ4)w2 −
s∑

α=1

(2 sin θ)ηα),

where w1, w2 are the dual forms of e1, e2.
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Proof. Since the local basis is an adapted slant one, then, by using (3.14):

(5.10) De1e3 = (csc θ)De1Ne1 = (csc θ)(N(∇e1e1)+nσ(e1, e1)−σ(e1, T e1)).

But, from (2.2), (2.4) and applying N , we get:

(5.11) N(∇e1e1) = w2
1(e1)Ne2 = sin θw2

1(e1)e4.

On the other hand:

nσ(e1, e1) = σ3
11ne3 + σ4

11ne4 = cos θ(−σ3
11e4 + σ4

11e3),(5.12)

σ(e1, T e1) = cos θσ(e1, e2) = cos θ(σ3
12e3 + σ4

12e4).(5.13)

Substituting (5.11)-(5.13) into (5.10),

De1e3 = w2
1(e1)e4 + cot θ(−σ3

11e4 + σ4
11e3 − σ3

12e3 − σ4
12e4),

by virtue of Lemma 5.1, since

trace σ3 =
2∑

i=1

g(σ(ei, ei), e3),

we have
De1e3 = w2

1(e1)e4 − cot θ(trace σ3)e4

and, from (2.3):

(5.14) w4
3(e1) − w2

1(e1) = − cot θ(trace σ3).

Similarly:

(5.15) w4
3(e2) − w2

1(e2) = − cot θ(trace σ).

Moreover, for any α = 1, . . . , s,

(5.16) De4+αe3 = csc θ(N(∇ξαe1) + nσ(e1, ξα) − σ(Te1, ξα)),

but, by applying (3.9) and (3.10),

nσ(e1, ξα) − σ(Te1, ξα) = −nNe1 + NTe1 = 2NTe1,

and, consequently, from Corollary 3.4, we obtain:

(5.17) nσ(e1, ξα) − σ(Te1, ξα) = 2 sin θ cos θe4.

Furthermore:

(5.18) N(∇e4+αe1) = w2
1(e4+α)Ne2 = sin θw2

1(ξα)e4.
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Thus, substituting (5.17) and (5.18) into (5.16) and taking into account that

De4+αe3 = w4
3(e4+α)e4,

we get:

(5.19) w4
3(e4+α) − w2

1(e4+α) = 2 cos θ = − cot θ(−2 sin θ).

Then, since {e1, e2, e5 . . . , e4+s} is a local orthonormal basis of X (M), dual
of {w1, w2, η1, . . . , ηs}, equation (5.9) follows from (5.14), (5.15) and (5.19).

�
Theorem 5.2 Let M be a proper slant submanifold of an S-manifold

(M̃, f, ξ1, . . . , ξs, η1, . . . , ηs, g),

with dim M = 2 + s, dim M̃ = 4 + s and slant angle θ. Suppose that there
exists on M̃ an f-structure f such that

(M̃, f , ξ1, . . . , ξs, η1, . . . , ηs, g)

is a metric f-manifold satisfying

(5.20) g((∇̃Xf)Y, Z) = 0,

for any X,Y, Z normal to the structure vector fields. If M is an anti-
invariant submanifold with respect to this structure, then M is a minimal
submanifold of M̃ .

Proof. Let {e1, . . . , e4+s} be an adapted slant basis in the S-manifold

(M̃, f, ξ1, · · · , ξs, η1, · · · , ηs, g),

being {e3, e4} a local orthonormal frame of T⊥M . Hence, since M is an
anti-invariant submanifold in

(M̃, f , ξ1, . . . , ξs, η1, . . . , ηs, g),

we have that {fe1, fe2} is another local orthonormal basis of T⊥M , by virtue
of (3.1). Consequently, there exists a function ϕ in M such that:

(5.21)
e3 = (cosϕ)fe1 + (sinϕ)fe2

e4 = −(sin ϕ)fe1 + (cos ϕ)fe2.

Consider X ∈ L. Then, we get:

w4
3(X) = g(∇̃Xe3, e4) = X(cosϕ)g(fe1, e4) + X(sinϕ)g(fe2, e4)+

+ (cosϕ)g(∇̃Xfe1, e4) + (sinϕ)g(∇̃Xfe2, e4).
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Now, since w1
1(X) = 0, fξα = 0 for any α = 1, . . . , s and g(fe4, e4) = 0, by

using (5.20) and (5.21), we obtain:

(5.22) w4
3(X) − w2

1(X) = Xϕ = dϕ(X).

Now, consider any

X = X̃ +
s∑

α=1

ηα(X)ξα ∈ X (M),

with X̃ ∈ L. We find, by using (5.19) and (5.22) that:

w4
3(X) − w2

1(X) = w4
3(X̃) − w2

1(X̃) +
s∑

α=1

ηα(X)(w4
3(ξα) − w2

1(ξα)) =

= dϕ(X̃) + 2 cos θ
s∑

α=1

ηα(X).

But,

dϕ(X̃) = dϕ(X −
s∑

α=1

ηα(X)ξα) = dϕ(X) −
s∑

α=1

ξα(ϕ)ηα(X)

and, so:

w4
3 − w2

1 = dϕ +
s∑

α=1

(2 cos θ − ξα(ϕ))ηα.

Next, taking into account (5.9) we have:

(5.23) − cot θ{(trace σ3)w1 + (trace σ4)w2} = dϕ −
s∑

α=1

ξα(ϕ)ηα.

On the other hand,

σ3
11 = g(σ(e1, e1), e3) = g(Ae3e1, e1) = −g(∇̃e1e3, e1)

and from (5.20), (5.21) and since fe1, fe2 ∈ T⊥M , we get:

σ3
11 = cosϕg(σ(e1, e1), fe1) + sinϕg(σ(e1, e2), fe1).

However, from (5.21) again:

fe1 = cos ϕe3 − sin ϕe4.

Consequently:

σ3
11 = cos2 ϕσ3

11 − cosϕ sin ϕσ4
11 + cos ϕ sin ϕσ3

12 − sin2 ϕσ4
12 =

= cos2 ϕσ3
11 − sin2 ϕσ3

22,

where we have used Lemma 5.1.
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Thus, since σ3
αα = 0, for any α = 1, . . . , s:

(5.24) sin2 ϕ(trace σ3) = 0.

Analogously:

(5.25) sin2 ϕ(trace σ4) = 0.

Now, let consider the following open subset of M :

U = {x ∈ M/H(x) �= 0}.

To conclude the proof, we only need to show that U �= ∅. If it is not the
case, then, in U ,

0 �= H =
1

2 + s
trace σ =

1

2 + s
((trace σ3)e3 + (trace σ4)e4),

and so:

(5.26) trace σ3 �= 0 or trace σ4 �= 0.

This implies, by virtue of (5.24) and (5.25), that ϕ ≡ 0 (mod π) in U . But ϕ
is a continuous function, thus ϕ ≡ 0 in U . Hence, dϕ = 0 and ξα(ϕ) = 0
in U , for any α = 1, . . . , s. Then, from (5.23),

cot θ((trace σ3)w1 + (trace σ4)w2) = 0,

and from (5.26), cot θ = 0, which is a contradiction with the fact of M being
a proper slant submanifold. So, U = ∅ and M is minimal. �

Note that the above theorem holds, in particular, if

(M̃, f , ξ1, . . . , ξs, η1, . . . , ηs, g)

is an S-structure on M̃ because, in such a case, for any X,Y, Z ∈ X (M̃),
from (3.3) we find

g((∇̃Xf)Y, Z) =
s∑

α=1

(g(fX, fY )ηα(Z) + ηα(Y )g(f2X,Z)),

vanishing this expression if Y, Z are normal to the structure vector fields. In
fact, this would be the corresponding theorem to Theorem 4.2 of [4] which
was proved by B.-Y. Chen in the Kaehlerian case. However, we have the
following proposition:
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Proposition 5.1 Let (M̃, f, ξ1, . . . , ξs, η1, . . . , ηs, g) be an S-manifold. If

there exists another f-structure f on M̃ such that

(M̃, f , ξ1, . . . , ξs, η1, . . . , ηs, g)

is a metric f-manifold with Ff = dηa, for any α = 1, . . . , s, then f = f .

Proof. The two fundamental 2-forms satisfy

Ff = dηa = Ff , for any α = 1, . . . , s.

Then, for any X,Y ∈ X (M̃),

g(X, fY ) = Ff (X,Y ) = Ff (X,Y ) = g(X, fY ),

which implies fY = fY , for any Y ∈ X (M̃). �

Consequently, Theorem 5.2 is the best possible version of Chen’s Theo-
rem for S-manifolds, because there are not different compatible S-structures
on the same manifold.

Finally, let us consider an example. Let

(R4+s, f, ξ1, . . . , ξs, η1, . . . , ηs, g)

be the usual S-structure on R
4+s (see [7] for more details) given by the

following elements

ηα =
1

2

(
dzα −

∑
2
i=1y

idxi

)
, ξα = 2

∂

∂zα
,

g =
∑

s
α=1ηα ⊗ ηα +

1

4

( ∑
2
i=1(dxi ⊗ dxi + dyi ⊗ dyi)

)
,

f

( ∑
2
i=1

(
Xi

∂

∂xi
+ Yi

∂

∂yi

)
+

∑
s
α=1Zα

∂

∂zα

)
=

=
∑

2
i=1(Yi

∂

∂xi
− Xi

∂

∂yi
) +

∑
s
α=1

2∑
i=1

Yiy
i ∂

∂zα
,

where (x1, x2, y1, y2, z1, . . . , zs) are denoting the cartesian coordinates on R
4+s.

Define on R
4+s the (1,1)-tensor field f by:

f

( 2∑
i=1

(Xi
∂

∂xi
+ Yi

∂

∂yi
) +

s∑
α=1

Zα
∂

∂zα

)
=

= −X2
∂

∂x1
+ X1

∂

∂x2
+ Y2

∂

∂y1
− Y1

∂

∂y2
+ (y2X1 − y1X2)

s∑
α=1

∂

∂zα
.
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It is easy to prove that

(R4+s, f , ξ1, . . . , ξs, η1, . . . , ηs, g)

is a metric f -manifold. Moreover,

(∇̃Xf)Y =
s∑

α=1

(2ηα(X)ffY + ηα(Y )ffX + g(X, ffY )ξα,

for any X,Y ∈ X (M̃). Then, we have (5.20).

Now, consider the (2+s)-dimensional submanifold M of R
4+s defined by

x(u, v, t1, . . . , ts) = 2(u cos θ, u sin θ, v, 0, t1, . . . , ts),

for any θ ∈ (0, π/2). Then, M is a minimal proper slant submanifold in

(R4+s, f, ξ1, . . . , ξs, η1, . . . , ηs, g)

(see [3]) and an anti-invariant submanifold in

(R4+s, f , ξ1, . . . , ξs, η1, . . . , ηs, g).
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