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Minimal Slant Submanifolds of the

smallest dimension in S-manifolds

Alfonso Carriazo, Luis M. Fernandez and Maria Belén Hans-Uber

Abstract

We study slant submanifolds of S-manifolds with the smallest di-
mension, specially minimal submanifolds and establish some relations
between them and anti-invariant submanifolds in S-manifolds, simi-
lar to those ones proved by B.-Y. Chen for slant surfaces and totally
real surfaces in Kaehler manifolds.

1. Introduction

Slant immersions in complex geometry were defined by B.-Y. Chen as a
natural generalization of both holomorphic and totally real immersions [4, 6].
Recently, A. Lotta has introduced the notion of slant immersion of a Rie-
mannian manifold into an almost contact metric manifold [8]. Slant sub-
manifolds of Sasakian manifolds have been studied in [2] and a general view
about slant immersions can be found in [3].

On the other hand, for manifolds with an f-structure, D.E. Blair has in-
troduced S-manifolds as the analogue of the Kaehler structure in the almost
complex case and of Sasakian structure in the almost contact case [1].

The purpose of the present paper is to study slant submanifolds of
S-manifolds with the smallest dimension, specially, minimal slant submani-
folds. After recalling, in Section 2, some basic ideas of Riemannian geometry,
we review, in Section 3, formulas and definitions for metric f-manifolds and
their submanifolds, which we shall use later. In Section 4 we prove that the
smallest dimension of a slant submanifols in an S-manifold is 2 + s, where s
is denoting the number of structure vector fields of the ambient S-manifold
(note that s = 0 for Kaehler manifolds and s = 1 for Sasakian manifolds)
and we give some characterization theorems for these submanifolds in terms
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of the covariant derivatives of the f-structure projection operators on the
submanifold. Finally, in Section 5 we study minimal slant submanifolds of
the smallest dimension. In particular, we establish some relations between
minimal slant (2 + s)-dimensional submanifolds and anti-invariant submani-
folds in S-manifolds, which correspond, in same sense, to those ones proved
by B.-Y. Chen in [4,6].

2. Preliminaries

In this section, we will recall some fundamental results and formulas con-
cerning Riemannian submanifolds for later use (see, e.g. [5] as a general
reference).

Let M be a Riemannian manifold isometrically immersed in a Riemann-
ian manifold M. Let g denote the metric tensor of M as well as the induced
metric tensor on M. Let X(M) be de Lie algebra of tangent vector fields on
M, X (M) the Lie algebra of tangent vector fields on M and T+ M the set of
vector fields on M which are normal to M, that is, X(M) = X (M) & T+M.

vy V denote the Levi-Civita connections of M and M , respectively,
the Gauss-Weingarten formulas are given by

VyY =VyY +0(X,Y), VxV = —AyX + DyV,

for any X,Y € X(M) and any V € T+M, where D is the normal connec-
tion, o is the second fundamental form of the immersion and Ay is the Wein-

garten endomorphism associated with V. The endomorphisms Ay and o are
related by

(2'1) g(AVXa Y) :g(U(X, Y)7V)7

for any X,Y € X(M) and any V € T+ M.
The mean curvature vector H is defined by

m

1 1
H=—trace 0 = — 3 o(es,e5),
—trace o = — 2 o(e;,e;)
where dim M = m and {ej,...,e,} is a local orthonormal basis of X' (M).

M is said to be minimal if H vanishes identically or, equivalently, if

trace Ay = 0, for any V € T+ M.

If dim(M) = m, a local orthonormal basis of X (M)

{e1, . mymit, -, €m}

can be chosen such that, restricted to M, the vector fields eq, ..., e, are tan-
gent to M and so, €,,11, ..., e are normal to M.
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Then, for any X € X (M), it can be written that

(2.2) Vxe; = wa(X)ej + Z wh(X)ex,
=1 k=m+1
(2.3) Vxe, = Zwﬁ(X)ej + Z wh(X)ex,
=1 k=m+1
fori € {1,...,m} and r € {m +1,...,m}. The I-forms w], w¥ w* given

by equations (2.1) and (2.2) are called connection forms of M in M. It is
easy to show that

(2.4) w;—l—wg =0, for any i,j € {1,...,m}.

3. Slant submanifolds of S-manifolds

Let (M ,g) be a (2m + s)-dimensional Riemannian manifold. Then, it is
said to be a metric f-manifold if there exist on M an f-structure f, that is,
a tensor field f of type (1,1) satisfying f3 + f = 0 (see [9]), of rank 2m
and s global vector fields &1, ..., & (called structure vector fields) such that,
if n1,...,ns are the dual 1-forms of &1, ..., &, then

f€a =0; Mof=0, [P=—I+) 1.®&;

a=1

(31 gLY) = gUX V) + 3 m(X)maY),

—~

forany XY € X(M) and a = 1,...,s.

The f-structure f is normal if

£/ 4+2) @ dne =0,
a=1

where [f, f] is the Nijenhuis tensor of f. Let F' be the fundamental 2-form
defined by FI(X,Y) = g(X, fY), for any X,Y € X(M). Then, M is said to
be an S-manifold if the f-structure is normal and

MA - Ang A(dne)" #0, F = dn,,

for any a = 1,...,s. In this case, the structure vector fields are Killing
vector fields. When s = 1, S-manifolds are Sasakian manifolds.
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The Riemannian connection V of an S-manifold satisfies ([1])

(3:2) Vxba = —fX,
and
(33) (VY = (9(f X, FY ) + na(Y) f2X),

—~

for any X, Y € X(M) and any a« = 1,...,s.
Next, let M be a isometrically immersed submanifold of a metric f-mani-
fold M. For any X € X(M) we write

(3.4) fX =TX + NX,

where T X and NX are the tangential and normal components of fX, re-
spectively. Similarly, for any V € T+M, we have

(3.5) fV =tV +nV,

where tV (resp., nV) is the tangential component (resp., the normal com-
ponent) of fV. Since, from (3.1), the metric ¢ satisfies that g(fX,Y) =

—g(X, fY), for any X, Y € X (M), by using (3.4) and (3.5), we get

(36) GTX,Y) = —g(X,TY),
(3.7) gnV,U) = —g(V,nU),
(3.8) g(NX, V) = —g(X,TV),

for any X,Y € X(M), U,V € T+M and, by using (3.5), if the structure
vector fields are tangent to M,

(3.9) NTX +nNX =0,

for any X € X(M). Moreover, in this last case, if M is an S-manifold,
from (3.2) and (3.4) it is easy to show that

(3.10) o(X, &) = —NX,

for any X € X(M), a = 1,...,s and, consequently o(&,,&3) = 0, for
any o, =1,...,s.
The covariant derivatives of T" and N are given by
(3.11) (VxT)Y = VxTY —TVxY,
(3.12) (VxN)Y = DxNY — NVyY,

for any X,Y € X(M).
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Then, by using (3.3), (3.11), (3.12) and Gauss-Weingarten formulas, it
can be obtained that

(3.13) (VxT)Y =to(X,Y) + Ay X + > (9(fX, fY )& +1a(Y) £7X),

a=1

(3.14) (VxN)Y =no(X,Y) - o(X,TY),

for any X, Y € X(M).

Now, for later use, we establish two general lemmas for submanifolds of
S-manifolds which can be proved from (2.1) and (3.6)-(3.8) by a straight-
forward computation:

Lemma 3.1 Let M be a submanifold of an S-manifold, tangent to the struc-
ture vector fields. Then, there exists a differentiable function \ such that

(VxT)Y =X (g(f X, fY)ea + 1a(Y) f2X),
a=1
for any X, Y € X (M), if and only if:
Any X — AnxY = (A —1) i(”a(y)fQX - 77a<X)f2Y)-
Lemma 3.2 Let M be a submamfolc;:} an S-manifold, tangent to the struc-
ture vector fields. Then,

(VxN)Y = Zs:(zna(X)NTY +n.(Y)NTX),

for any X, Y € X (M), if and only if:

AVTY + AY = (29(Y, tnV)éq + na(Y)tnV),

a=1
for anyY € X(M) and any V € T+M.

The submanifold M is said to be invariant if N is identically zero, that is,
if fX e€X(M), for any X € X(M). On the other hand, M is said to be an
anti-invariant submanifold if T is identically zero, that is, if fX € T+M,
for any X € X(M).

From now on, we suppose that all the structure vector fields are tangent
to the submanifold M. Then, M is said to be a slant submanifold if for any
x € M and any X € T, M, linearly independent on &, ..., &, the Wirtinger
angle between fX and T, M is a constant 6 € [0, 7/2], called the slant angle
of M in M. Note that this definition generalizes that one given by B.-Y.
Chen ([6]) for Complex Geometry and that one given by A. Lotta ([8]) for
Contact Geometry.
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Furthermore, invariant and anti-invariant submanifolds are slant sub-
manifolds with slant angle § = 0 and 6 = 7/2, respectively. A slant im-
mersion which is not invariant nor anti-invariant is called a proper slant
immersion. Observe that, for invariant submanifolds, 7" = f and, so

T2:f2:—I+Zna®§a,

a=1

while for anti-invariant submanifolds, 72 = 0. In fact, we have the following
general result whose proof can be obtained by following the same steps as
in the case s = 1 (see [2]):

Theorem 3.1 Let M be a submanifold of a metric f-manifold M, tangent
to the structure vector fields. Then, M s a slant submanifold if and only if
there exists a constant A € [0, 1] such that:

T? = M +A) 0. ®& = A~

a=1

Furthermore, in such case, if 0 is the slant angle of M, it satisfies that
A = cos? 6.

Using (3.1), (3.4), (3.6) and Theorem 3.1, a direct computation gives:

Corollary 3.1 Let M be a slant submanifold of a metric f-manifold ]TI/,
with slant angle 6. Then, for any X, Y € X (M), we have:

g(TX, TY) = cos*0(g Zna

g(NX,NY) = sin’6(g Zna

We also have:

Corollary 3.2 Let M be a non-invariant slant (m + s)-dimensional sub-

manifold of a (2m + s)-dimensional metric f-manifold M with slant angle 0
and let {eq,...,em,&1,..., &} be a local orthonormal basis of X (M). Then,

{(cscO)Ney,...,(cscO)Ne,,}
is a local orthonormal basis of T+M.

Proof. It is easy to show that {(cscf)Ney,...,(cscfd)Ne,,} is a set of m
linearly independent vector fields of T+ M, that is, a local basis of T+M.
Moreover, from Corollary 3.1, we obtain that:

g((csc@)Ne;, (cscO)Ne;) = csc? Osin® Og(e;, e5) = 8i;. m
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In a similar way, by using Theorem 3.1 and Corollary 3.1, we get:

Corollary 3.3 Let M be a non anti-invariant (2 + s)-dimensional slant
submanifold of a metric f-manifold with slant angle 6. Let ey be a unit
vector field, tangent to M and normal to the structure vector fields and
define es = (sec@)Te;. Then ey = —(sec)Tes and {e1,e,&1,...,&} is a
local orthonormal basis of X (M).

Finally, combining Corollary 3.2 and Corollary 3.3 and using Theorem 3.1
again, we obtain:

Corollary 3.4 Let M be a proper (2 + s)-dimensional slant submanifold
of a (4 + s)-dimensional metric f-manifold with slant angle 0. Let e; be a
unit vector field, tangent to M and normal to the structure vector fields and

define:
ey = (secl)Tey, e3 = (cscl)Ney and ey = (cscf)Nex.

Then, e; = —(secO)Tes and {ey,eq,e3,€4,&1,...,&} s a local orthonormal

basis of X (M) such that ey, es,&1,...,& are tangent to M and es, ey are
normal to M. Moreover:

tes = —sinfe;, nes = —cosbey, tey = —sinbey, ney = cosbes.

The basis {e1, es,€e3,€4,&1,...,&} is said to be an adapted slant basis.

4. Slant submanifolds of the smallest dimension

Observe that 2 4+ s is the smallest dimension of a proper slant submanifold
in a metric f-manifold. Indeed, if we denote Q = T2 and consider the
orthogonal decomposition

X(M)=LoM,

where M is the distribution spanned by the structure vector fields and L is
its complementary orthogonal distribution, then, since TL C L, Q| is an
endomorphism on £. Furthermore, it is a symmetric endomorphism because,
from (3.6),

9(QX,Y) = g(T°X,Y) = —g(TX,TY) = g(X,T?Y) = g(X,QY),

for any X,Y € X(M). Consequently, for each x € M, the subspace L,
of T,,M admits a decomposition of the form

Erzﬁi@ﬁi@...gaﬁ‘];(x)’

where L£! is the proper subspace of eigenvectors associated with an eigen-
value \; of Q|z. Then, we can easily prove:
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Proposition 4.1 Let M be a submanifold of a metric f-manifold, tangent
to the structure vector fields. Then, at each point of M , we have the following
properties:

1. X\, € [-1,0], for any eigenvalue \; of Q|-
2. TX € L, for any X € L.
3. If \i # 0, L is of even dimension and T(L") = L.

Corollary 4.1 Let M be a (1 + s)-dimensional submanifold of a metric f-
manifold, tangent to the structure vector fields. Then, M is an anti-invariant
submanifold.

Proof. Since L is of odd dimension (equal to 1), from Proposition 4.1 we
get A =0 and M is an anti-invariant submanifold. [ |

From this corollary, we deduce that there are not proper slant submani-
folds of a metric f-manifold of dimension smaller than 2 + s. Now, we are
going to study submanifolds of such dimension when the ambient manifold
is an S-manifold. First, by using Theorem 3.1, if M is a slant submanifold
with slant angle 6, a direct calculation gives

(4.1) (VxQ)Y = cos?8 > (g(X, TY )&, — na(Y)TX),

a=1
for any X,Y € X(M), where we recall that
(VxQ)Y = VxQY — QVxY.
Next, we have the following general characterization:

Theorem 4.1 Let M be a submanifold of an S-manifold, tangent to the
structure vector fields. Then, M s a slant submanifold if and only if the
following conditions are satisfied:

1. The endomorphism Q| has only one eigenvalue at any point of M.
2. There ezists a function A : M — [0, 1] such that

(VxQ)Y =AY (g(X. TY)éw — na(Y)TX),

a=1
for any X, Y € X(M).

Moreover, in this case, if 0 is the slant angle of M, then A = cos® 6.
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Proof. If M is a slant submanifold with slant angle 6, from Theorem 3.1,
we have

T?°X = QX = cos® %X,
for any X € X(M). Then, Q| = —cos?0I and \; = — cos® 6 is the only
eigenvalue of Q|, at any point of M. Furthermore, Condition 2 is (4.1).

Conversely, let A\;(z) be the only eigenvalue of Q| at any point = € M.
Thus, by using Condition 2 we get that A; is a constant. Now, let X € X (M).
If we put

X=X+ n(X).
a=1

where X € L, then QX = Q)~( =M X and, so:
QX =MX -\ Z Ma(X)Ea-
a=1

By applying Theorem 3.1 we obtain that M is a slant submanifold and,
by (4.1), A = —\; = cos? 6. |

Corollary 4.2 Let M be a (2+s)-dimensional submanifold of an S-manifold
tangent to the structure vector fields. Then, M 1is a slant submanifold if and
only if there exists a function A\ : M — [0, 1] such that

(4.2) (VxQ)Y =) (9(X,TY)é = 1a(Y)TX),

a=1

for any X, Y € X(M). Moreover, in this case, if 0 is the slant angle of M,
then \ = cos® 0.

Proof. We only have to prove that |, has only one eigenvalue at any point
of M. But it is a direct consequence of 3. of Proposition 4.1. |

Theorem 4.2 Let M be a (2+s)-dimensional submanifold of an S-manifold,
tangent to the structure vector fields. Then, M is a slant submanifold if and
only if there exists a function A\ : M — [0, 1] such that

(4.3) (VXT)Y =X (g(f X, fY)ea +na(Y) f2X),

a=1

for any X, Y € X(M). Moreover, in this case, if 0 is the slant angle of M,
then A = cos?#).
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Proof. First, it is easy to show that (4.3) implies (4.2). Then, we only have
to apply Corollary 4.2 to get that M is a slant submanifold. Conversely, we
can suppose that M is a proper slant submanifold because if M is an invari-
ant or an anti-invariant submanifold, we obtain (4.3) directly. Now, since
dim(M) = 2+s, from Corollary 3.3, we can choose a local orthonormal basis
of X(M), {e1,es,&1,...,&}, such that eo = (sec)Te; and e; = —(sec )T es.
Thus, for any X € X(M), we have

(VxT)e; = (:0592:102 Vas

because w!(X) = 0 and w! (X) = —w’(X). But, by using (3.2) and (3.4),
w3 (X) = g(e, TX), for any a = 1,..., s and so:

(44)  (VxT)er =cos0> gles, TX)&o = cos’0 Y g(X, e1)&a.

a=1 a=1

Similarly:

(4.5) (VxT)ey = cos 0 Z g(X, )&,

a=1
On the other hand, for any a =1, ..., s:
(4.6) (VxT)éy = cos? 0 X
Now, given any Y € X (M), since locally

Y =Yie; + Yaeo + Zna )a;

a=1

we obtain that:

(4.7) (VxT)Y =Y (VxT)er + Ya(VxT)es + Z% N(VxT)Ea.

a=1

Substituting (4.4)-(4.6) into (4.7) we conclude the proof. |

From Lemma 3.1 we get:

Corollary 4.3 Let M be a submanifold of dimension 2+s in an S-manifold,
tangent to the structure vector fields. Then, M is a slant submanifold if and
only if there exists a differentiable function p: M — [0, 1] such that

Any X — AnxY = MZ% f2Y 77a( )sz),

a=1

for any X, Y € X(M). Moreover, in this case, if 0 is the slant angle of M,
then p = sin?4.
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5. Minimal slant submanifolds of the smallest dimension

For later use, we are going to prove the following lemmas:

Lemma 5.1 Let M be a proper slant, (2 + s)-dimensional submanifold of
an S-manifold M with dim(M) = 4 + s. If 6 is the slant angle,

{61,...,64,65 :gl,...,€4+5 :gs}
s an adapted slant basis and if we put

o, = g(o(ei,e;), e), foranyi,j=1,25,...,4+ s andr = 3,4,

then:
(5.1) 0%y = 011, O3y = 01,
(5.2) 0?(4+a) :a§(4+a) = —sinf, a=1,...,s
3 _ 4 _ 3 _ 4 _ _
(5:3)  T3ura) = Tlute) = Tlara)ass) = Tarayars = 0 @0 =1,....s.

Proof. We obtain (5.1) by virtue of Corollary 4.3 while (5.2) and (5.3) hold
because M is an S-manifold. |

Lemma 5.2 Let M be a (2 + s)-dimensional slant submanifold of an S-
manifold M with diim(M) = 4+s. Then, VN = 0 if and only if M is either
an invariant or an anti-invariant submanifold.

Proof. If VN = 0, then, by applying (3.14) we get, for any X, Y € X (M),
VeT+M:

(5.4) —g(o(X,TY),V) = g(a(X,Y),nV).

If we suppose that M is a proper slant submanifold with slant angle # and
choose an adapted slant basis

{61,...,64,65:gl,...7€4+5253},

then, from (5.4), since Tegy = TE, = 0, for any a = 1,...,s and ney =
cos fes,

0 =g(o(er,e41a),neq) = cosbBg(o(er, €4ia),6€3) =

— 3 — ;
= €08007(444) = —cosBsinb,

where we have used (5.2). But this contradicts the fact of M being a proper
slant submanifold.

Conversely, if M is an invariant submanifold, then N = 0 and so, VN =0.
Finally, if M is anti-invariant submanifold, then n = 0 and we only need to
apply (3.14). [ |
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Theorem 5.1 Let M be a (2 + s)-dimensional submanifold of a (4 + s)-
dimensional S-manifold M, tangent to the structure vector fields.

1. If M is a minimal proper slant submanifold of M, then

(5.5) (VxN)Y = Zs:(zna(X)NTY + 7. (YINTX).

a=1
for any X,Y € X(M).

2. Conversely, suppose that there is an eigenvalue \ of Q|z at each point
of M such that X € (—1,0). In this case, if (5.5) holds, M is a minimal
proper slant submanifold of M.

Proof. To prove statement 1, we choose an adapted slant basis:
{61,...,64,65 = 51,... y €445 = 53}

Then, we can show that

(5.6) no(e;, e;) = cosfoy;es — cos0oy;ey,

for any 4,5 = 1,2,5,...,4 4+ s. Moreover, since M is minimal, by using
0(£4,€0) =0 for any a=1,..., s, we have:

(5.7) ‘7:1))1 = —032, Uﬁ = _ng

Next, writing X,Y € X(M) in terms of the adapted slant basis and tak-
ing into account (5.1)-(5.3), (5.6) and (5.7), we obtain (5.5) from (3.14)
and (3.9).

To prove statement 2, we can choose a unit local vector field e; in L,
such that

T?e; = —cos? b6,

where 6, = 6(e;) € (0,7/2) denotes the Wirtinger angle of e;. Now, we
define eq, e3, 4 by

(5.8) ex(secty)Tey, e3 = (cscby)Ney, ey = (cschi)Neg

and eqyo =&, a =1,...,s. It is easy to show that {eq,...,eqys} is a local
orthonormal basis of M such that:

tes = —sinfie;, tey = —sinfiey, nes = — cosbiey, ney, = cosbres.
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Next, from (5.8) and by using Lemma 3.2, we get:
AnNe,ea = sectysinty A, Tey =sinbA.e; = Ane, €.

Furthermore, from (3.2) and Gauss-Weingarten formulas, we have, for any
a=1,...,s,

ANe €ata = sinb1Ac,eq1q = sinbites = — sin? 0, e,

and
ApNes€ara = sinb A e41q = sinbitey, = — sin® f;es.
Hence, a direct computation gives that
Any X = AnxY — sin’ 0 Z (Ua(y)fQX - Ua(X)f2Y>a
a=1
for any X,Y € X(M) and so, by applying Corollary 4.3, we know that M
is a proper slant submanifold, with slant angle 6;. Finally, to prove that M
is also a minimal submanifold, we only need to show that:

3 _ 3 4 _ 4
011 = =099, 011 = —099.

But,
0?1 =g(o(e1,e1),e3) = (—sect)g(o(er, Tes), e3)

and, from (3.14) y (5.5), o(e1,Tes) = no(ey, es), which together (3.7) im-
plies:

Now, since we have already proved that M is a proper slant submanifold
and the chosen basis is an adapted slant one, from Lemma 5.1 we conclude
the proof. ]

Note that (5.5) holds directly in the invariant and anti-invariant cases,
since VN = (0. On the other hand, the above theorem is the corresponding
one to Theorem 5.5 in [6], proved by B.-Y. Chen for surfaces in 4-dimensional
Kaehler manifols.

Next, we want to establish some relations between minimal slant (2 + s)-
dimensional submanifolds and anti-invariant submanifolds in S-manifolds.
First, we have the following lemma:

Lemma 5.3 Let M be a proper slant (2 + s)-dimensional submanifold in a

(4 + s)-dimensional S-manifold M, with slant angle 0. Then, with respect

to an adapted slant basis {e1, ..., €415}, we have

(5.9) w; —wi = —cotO((trace o*)w' + (trace o*)w? — 2(2 sin 6)n,,),
a=1

where w', w? are the dual forms of e1, es.
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Proof. Since the local basis is an adapted slant one, then, by using (3.14):
(5.10) D, e3 = (cscB)D.,Ney = (cscl)(N(Vee1)+no(er,er)—o(er, Tey)).
But, from (2.2), (2.4) and applying N, we get:
(5.11) N (V. e1) =w?(e;)Ney = sin Ow? (e )ey.
On the other hand:
(5.12)  no(er,e;) = o} nes+ ojnes = cosf(—0oeq + 0}1e3),
(5.13)  o(e;,Te;) = cosfo(er,es) = cosf(aiyes + aimey).
Substituting (5.11)-(5.13) into (5.10),
De ez = wi(e)es + cot O(—a> ey + 065 — 023 — 01qe4),

by virtue of Lemma 5.1, since

2
trace o° = 29(0(61‘7 €i), 63)7
i=1

we have
D, e3 = w:(e1)ey — cot O(trace o2)ey

and, from (2.3):

(5.14) w3(ey) — wi(e;) = — cot O(trace o°).

Similarly:

(5.15) w3 (ey) — w?(ey) = — cot B(trace o).

Moreover, for any a = 1,... s,

(5.16) De,, e3 =cscO(N(Ve,e1) +no(er, &) —o(Ter, &),

but, by applying (3.9) and (3.10),

no(e1,&) —o(Tey, &) = —nNey + NTey = 2NTe,
and, consequently, from Corollary 3.4, we obtain:
(5.17) no(er,&,) — o(Te1, &) = 2sin 6 cos fey.
Furthermore:

(5.18) N(V&Hael) = w%(64+o¢)N62 = sin 9w%<fa)€4-
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Thus, substituting (5.17) and (5.18) into (5.16) and taking into account that

D.,,.es = 11)§(e4+a)e47

we get:

(5.19) w3(es10) — Wiegra) = 2cosh = — cot O(—2sin §).

Then, since {e1, ez, €5..., €414} is a local orthonormal basis of X' (M), dual
of {w', w? n,...,ns}, equation (5.9) follows from (5.14), (5.15) and (5.19).

[
Theorem 5.2 Let M be a proper slant submanifold of an S-manifold

(Maf>€1>"-a557771a"'77787.g)7

with dim M = 2 + s, dim M_: 4 + s and slant angle 6. Suppose that there
exists on M an f-structure f such that

(Mafaflv' .. 75377717' e 777879)
1s a metric f-manifold satisfying
(5.20) 9(VxF)Y,2Z) =0,

for any X,Y,Z normal to the structure vector fields. If M is an anti-
invariant submanifold with respect to this structure, then M 1is a minimal
submanifold of M.

Proof. Let {ej,...,es1s} be an adapted slant basis in the S-manifold

(M7f7§17"' 75377717"' 777879)7

being {es,es} a local orthonormal frame of 7M. Hence, since M is an
anti-invariant submanifold in

(Mafafla--'vfsanb'"7”879))

we have that { fe;, fes} is another local orthonormal basis of T+ M, by virtue
of (3.1). Consequently, there exists a function ¢ in M such that:

(5.21) es = (cos gp)zel + (sin (,0)7_62
e, = —(sing)fe; + (cos)fes.
Consider X € L. Then, we get:
wi(X) = g(Vxes, ex) = X(cosp)g(fer, ea) + X (sin @)g(fea, ea)+
+ (cos)g(Vx fer,ed) + (sin)g(Vx fea, e4).



62 A. CaRRriazO, L.M. FERNANDEZ AND M.B. HANs-UBER

Now, since wl(X) =0, f& =0 for any a = 1,...,s and g(fes,es) =0, by
using (5.20) and (5.21), we obtain:

(5.22) ws(X) — wi(X) = X = dp(X).
Now, consider any

X = X+Zna )E € X (M),

a=1

with X € £. We find, by using (5.19) and (5.22) that:

wi(X) - wi(X) = wj(X) +Z77a (w5(&) — wi(&)) =

= dp(X) —l—QCOSGZna(X).

a=1

But,

wy —w; = dp+ Y (20080 — £a($))na

a=1

Next, taking into account (5.9) we have:
(5.23) — cot 0f (trace o*)w" + (trace o*)w?} = dy — Z Ea(@)n

On the other hand,

oty = g(a(er, 1), e3) = g(Ager, e1) = —g(Veyes,e1)
and from (5.20), (5.21) and since fe;, fe, € T+ M, we get:

o} = cospg(o(er, er), fer) +sinpg(o(er, ea), fer).
However, from (5.21) again:

feq = cos pes — sin pey.
Consequently:
o3, = cos? po}, — cospsin poi, + cos psin poy, — sin? pof, =
= cos? po?, — sin? pad,,

where we have used Lemma 5.1.
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Thus, since 03, =0, forany a = 1,...,s:
(5.24) sin? p(trace o) = 0.
Analogously:

(5.25) sin p(trace o) = 0.

Now, let consider the following open subset of M:
U={xe M/H(x) # 0}.

To conclude the proof, we only need to show that U # (). If it is not the
case, then, in U,

1 1
0#H= T Strace o= m((traee o%)es + (trace at)ey),
and so:
(5.26) trace o® # 0 or trace o* # 0.

This implies, by virtue of (5.24) and (5.25), that ¢ =0 (mod 7) in U. But ¢
is a continuous function, thus ¢ = 0 in U. Hence, dp = 0 and &,(¢) = 0
in U, for any « = 1,...,s. Then, from (5.23),

cot O((trace o®)w' + (trace o*)w?) = 0,

and from (5.26), cot @ = 0, which is a contradiction with the fact of M being
a proper slant submanifold. So, U = () and M is minimal. |

Note that the above theorem holds, in particular, if

(Mafaflv"wf&nl?'"777879)

—

is an S-structure on M because, in such a case, for any XY, 7 € X (M),
from (3.3) we find

S

g(VxPY, Z) =D (9(f X, fY)a(2) + 1a(Y)g(f2X, 2)),

a=1

vanishing this expression if Y, Z are normal to the structure vector fields. In
fact, this would be the corresponding theorem to Theorem 4.2 of [4] which
was proved by B.-Y. Chen in the Kaehlerian case. However, we have the
following proposition:
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Proposition 5.1 Let (]Tj, £, &, m, .-, ms,9) be an S-manifold. If
there exists another f-structure f on M such that

(M, F. €0, &, -7, 9)
is a metric f-manifold with Fy = dn,, for any o =1,... s, then f = f.
Proof. The two fundamental 2-forms satisfy
Fy =dn, = Fy, forany a =1,...,s.
Then, for any X,Y € X(M),
9(X, V) = Fy(X,Y) = F;(X,Y) = g(X, TY),
which implies fY = fY, for any Y € X(M) [ |

Consequently, Theorem 5.2 is the best possible version of Chen’s Theo-
rem for S-manifolds, because there are not different compatible S-structures
on the same manifold.

Finally, let us consider an example. Let

(R4+S7f7€17"'a§sa7717"'7778ag)

be the usual S-structure on R*** (see [7] for more details) given by the
following elements

=5 (@ - L), 6 =257,
9= otlla @ T+ E(Z?zl(dxi ®dz' +dy' ® dyi)>,
f<22 (¥ +Kaii> +Z§=1Z“a%1) -

=2 (Yaiz_ E +Zalzyyaa’

where (21,22, y', 4% 2, ..., 2%) are denoting the cartesian coordinates on R**.

Define on R*** the (1,1)-tensor field f by:

_ ) 0 i o)
f(ZI(XZ% +)/ia—yi)+;2a@) =

1=

) ) ) o Lo 0
:_X26 +Xla +§/28 }qa—:ﬁ—i‘(yXl—ng);@
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It is easy to prove that

<R4+8777§17 s 75377717 s 777879)

is a metric f-manifold. Moreover,

(VDY =) (20a(X)FFY +1a(Y)FFX + g(X, F1Y)Ea.
a=1
for any XY € X(]T/f) Then, we have (5.20).
Now, consider the (2 + s)-dimensional submanifold M of R*** defined by

z(u,v,t1,...,ts) = 2(ucos@,usin@,v,0,ty,...,t5),
for any 6 € (0,7/2). Then, M is a minimal proper slant submanifold in

(R4+Saf7£17"'a5577717"'7778’9)

(see [3]) and an anti-invariant submanifold in

(R4+87T7517 s 76577717 S 777379)'
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