
Rev. Mat. Iberoamericana 21 (2005), no. 1, 25–46

Codimension one symplectic foliations

Omegar Calvo, Vicente Muñoz and Francisco Presas

Abstract

We define the concept of symplectic foliation on a symplectic man-
ifold and provide a method of constructing many examples, by using
asymptotically holomorphic techniques.

1. Introduction

During the last three decades there has been an active field of research
related to the study of holomorphic foliations over a complex manifold
[5, 7, 10, 13]. To define a codimension one holomorphic foliation we need
to fix a holomorphic line bundle L over the complex manifold M . Then we
choose a non-zero holomorphic section α ∈ H0(M,T ∗M ⊗L), satisfying the
integrability condition:

(1.1) α ∧ dα = 0.

There is an equivalence relation given by multiplication of α by no-where
zero holomorphic functions, and a holomorphic foliation is defined as an
equivalence class of such integrable 1-forms. In what follows we restrict
ourselves to the case where M is compact, so that the set of foliations is a
subset in the projective space PH0(M,T ∗M ⊗ L).

In this work, we aim to generalize this notion to the symplectic category.
We give the following definition:

Definition 1.1 A symplectic foliation α with normal line bundle L on a
symplectic manifold (M,ω) is a non-zero element of C∞(T ∗

C
M ⊗C L) which

satisfies the integrability condition (1.1). Also we impose that the set of
singularities, defined as Sα = {x ∈ M

∣∣α(x) = 0}, is a finite union of
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symplectic submanifolds of real codimension greater than or equal to four
and whose intersections are transverse and symplectic. Finally, we impose
that for any p ∈M − Sα the subspace kerα(p) ⊂ TpM is symplectic.

Two symplectic foliations α1 and α2 are considered equivalent whenever
there is an isomorphism ψ : L→ L as real plane bundles such that ψ∗α2 =α1.

To understand kerα(p) as a subspace of TpM , we look at the isomorphism
T ∗

C
M ⊗C L = T ∗M ⊗R L, where T ∗

C
M is the complexified cotangent bundle.

Therefore we may interpret α(p) : TpM → Lp as a real linear map and
kerα(p) ⊂ TpM is a codimension two subspace.

Now if α1 and α2 are equivalent then Sα1 = Sα2 and the topological
foliations coincide kerα1 = kerα2. Note that the isomorphism ψ : L → L
takes values in GL(2,R), so in particular if there is a nowhere zero complex
function f such that α1 = fα2 then the foliations are equivalent.

The simplest examples of symplectic foliations are given by the Lefschetz
pencils constructed by Donaldson [9]. A chart φ : U ⊂ M → Cn will be
called adapted at the point x ∈ U if (φ∗)xω = ω0, where ω0 is the standard
symplectic form in Cn. A symplectic Lefschetz pencil on a 2n-dimensional
symplectic manifold (M,ω) consists of a codimension 4 symplectic submani-
fold N ⊂M and a map f : M −N → CP

1 such that locally around N there
are adapted coordinates (z1, . . . , zn) with values in C

n where f is written as
z2/z1. Also f has finitely many isolated critical points around which there
are adapted coordinates where f = z2

1 + · · · + z2
n + c. Finally the fibers

of f are symplectic off their singularities. These belong to a special kind of
foliations defined as follows:

Definition 1.2 A symplectic foliation α on a 2n-dimensional symplectic
manifold (M,ω) is of Kupka type if the singular set Sα is a disjoint union of:

i. Isolated points where there are adapted charts (z1, . . . , zn) such that
α = z1dz1 + · · · + zndzn.

ii. Codimension 4 smooth symplectic submanifolds such that each point
has an adapted chart (z1, . . . , zn) with α = η(z1, z2) for a 1-form η of
two complex variables with dη(0) �= 0 and η−1(0) = {0}.

We want to show a general construction of symplectic foliations

Theorem 1.3 Let (M,ω) be a symplectic manifold. Then M admits sym-
plectic foliations of Kupka type which are not symplectic Lefschetz pencils.
Also M admits symplectic foliations not of Kupka type.

The method of construction is a generalization of the techniques devel-
oped in [12]. The structure of the paper is as follows. In section 2 we give
the basic results of the theory of holomorphic foliations. Section 3 reviews
the asymptotically holomorphic theory introduced in [8] and used in [2, 12].



Codimension one symplectic foliations 27

Next in section 4 we introduce the notion of foliation in this category
and check that asymptotically holomorphic foliations with some property of
transversality give symplectic foliations. In the following section we move on
to prove that it is possible to obtain asymptotically holomorphic foliations
by embedding M into the projective space CP

d and intersecting the image
with a given holomorphic foliation of CP

d. Finally section 6 is devoted to
giving some examples of foliations constructed with these techniques.

2. Codimension one holomorphic foliations

In this section we discuss briefly the theory of holomorphic foliations on a
compact connected complex manifold M . A codimension one holomorphic
foliation with singularities in M is an equivalence class of holomorphic α ∈
H0(M,T ∗M ⊗ L), where L is a holomorphic line bundle and α ∧ dα = 0.

Given a foliation α, we say that p ∈ M is a regular point if α(p) �= 0.
Otherwise, we say that p is singular. The set

Sα = {p ∈M |α(p) = 0}
is the singular set. If this set has components of codimension 1, let D be the
corresponding divisor. Then there exists a holomorphic section f of O(D)
such that α/f is a foliation whose singularities are of codimension two or
more. So we can always suppose that codimC Sα ≥ 2.

For a regular point p ∈ M there exists an open neighborhood U ⊂ M
of p such that α may be written as

α = h df

in U , where h and f are holomorphic functions in U . Such f is called first
integral and h an integrating factor. The leaves of the foliation in U are the
level surfaces of f . Globally, the leaves of the foliation α are the leaves of
the foliation defined in M − Sα. If V is a compact hypersurface of M such
that V − V ∩ Sα is a leaf, in general, we have V ∩ Sα �= ∅. In this case, by
abuse of language, we will say that V is a compact leaf of the foliation.

2.1. Kupka singularities

In this section, we will consider an important class of singularities which
have stability properties under deformations.

Definition 2.1 The Kupka singular set of the foliation α consists of the
points

Kα = {p ∈M
∣∣α(p) = 0, dα(p) �= 0}.
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For every connected component K ⊂ Kα, there exists a holomorphic 1-form

η = A(z1, z2) dz1 +B(z1, z2) dz2,

called the transversal type at K, defined on a neighborhood V of 0 ∈ C2 and
vanishing only at 0, an open cover {Ui} of a neighborhood of K in M and
a family of submersions ϕi : Ui → C

2, such that

ϕ−1
i (0) = K ∩ Ui, and α|Ui

= ϕ∗
i η.

A foliation α is of Kupka type if Kα is compact and connected.

The main examples of foliations of Kupka type are the following: Let L1

and L2 be holomorphic line bundles on M, such that L⊗p
1 = L⊗q

2 , where p
and q are relatively prime, positive integers. Given f1 and f2 holomorphic
sections of the line bundles L1 and L2 respectively, the holomorphic section

α = pf2 df1 − qf1 df2 ∈ H0(M,T ∗M ⊗ L1 ⊗ L2),

is a foliation. Moreover the leaves of the foliation represented by α, are
the fibers of the meromorphic map φ = fp1 /f

q
2 . We say that the map φ is a

meromorphic first integral of the foliation represented by α.

A branched Lefschetz pencil (a Lefschetz pencil if p = q = 1) is a mero-
morphic map satisfying the following conditions:

i. The holomorphic line bundles L1 and L2 are positive.

ii. The hypersurfaces {f1 = 0} and {f2 = 0} are smooth, and meet
transversely along a codimension two submanifold K.

iii. The subvarieties defined by λfp1 − µf q2 = 0 with [λ : µ] ∈ CP
1, are

smooth on M −K, except for a finite set of points, where they have
just a non-degenerate critical point.

These foliations are of Kupka type with Kα = {f1 = f2 = 0}.
Theorem 2.2 ([6]) Let α be a foliation of Kupka type in CP

n, n ≥ 3. Kα

is a complete intersection if and only if α = pf1 df2 − qf2 df1.

For foliations on CP
n, n ≥ 6, it may be shown that any foliation of

Kupka type is a branched Lefschetz pencil.

For the unbranched case, we have the following construction involving
the fundamental group [4]. Consider a family (Et, σt) of projectively flat
bundles of rank two with section such that (E0, σ0) = (L1 ⊕L1, (f1, f2)) is a
Lefschetz pencil. If L1 is sufficiently ample, then it is true that H0(Et) �= 0,
so we may consider the foliation σ∗

tHt, where Ht denotes the flat structure
on the CP

1-bundle P(Et).
It is an open question whether any foliation of Kupka type with positive

normal bundle and transversal type z2 dz1−z1 dz2 may be described as above.



Codimension one symplectic foliations 29

2.2. Logarithmic foliations

A holomorphic integrating factor of a foliation α is a holomorphic section
ϕ ∈ H0(M,L) such that the meromorphic 1-form Ω = α

ϕ
is closed.

Theorem 2.3 ([13]) Let M be a projective manifold with H1(M ; C) = 0,
and let ϕ = ϕr11 · · ·ϕrkk be an integrating factor of a foliation α. Then

Ω =
α

ϕ
=

k∑
i=1

λi
dϕi
ϕi

+ d

(
ψ

ϕr1−1
1 · · ·ϕrk−1

k

)
, where λi ∈ C

and ψ is a holomorphic section of the line bundle O
(∑k

i=1(ri−1){ϕi = 0}
)
.

From this equation, we have that the hypersurfaces Di = {ϕi = 0} are
compact leaves of the foliation α. The residue theorem implies the relation:

k∑
i=1

λi · [{ϕi = 0}] = 0 ∈ H2(M ; C).

The integrating factor is reduced if ri = 1. In this case

α = ϕ1 · · ·ϕk
( k∑
i=1

λi
dϕi
ϕi

)
,

we say that the foliation is logarithmic. The singular set is the union of
Di ∩Dj for all possible 1 ≤ i < j ≤ k. The Kupka set is

Kα = Sα −
⋃

1≤i<j<t≤k
(Di ∩Dj ∩Dt) ,

and it is therefore not compact for k ≥ 3.

3. Asymptotically holomorphic theory

Let (M,ω) be a symplectic manifold with [ω]/2π ∈ H2(M ; R) an integer
cohomology class. Such a symplectic manifold will be called of integer class.
Fix an almost complex structure J compatible with ω and denote g(u, v) =
ω(u, Jv) the associated metric. Let L → M be a hermitian line bundle
with connection whose curvature is −iω. The key for a search of symplectic
objects is to look for objects which are close to be J-holomorphic. The
asymptotically holomorphic techniques introduced by Donaldson [8] give a
method of construction of such objects by means of increasing the positivity
of the curvature of the bundles, which is achieved by twisting with L⊗k for
large k. Let us introduce the main notations following [2, 12].
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Definition 3.1 A sequence of sections sk of hermitian bundles Ek with con-
nections on M is called asymptotically holomorphic if |∇psk| = O(1) for
p ≥ 0 and |∇p−1∂̄sk| = O(k−1/2) for p ≥ 1. The norms are evaluated with
respect to the metrics gk = kg.

Definition 3.2 A section sk of the bundle Ek is η-transverse to 0 if for
every x ∈ M such that |sk(x)| < η then ∇sk(x) has a right inverse θk such
that |θk| < η−1.

This means that at a point x close to the zero set of sk the differential
∇sk(x) : TxM → (Ek)x is surjective and that, in the orthogonal to the
kernel, this map multiplies the length of the vectors at least by η. These
two conditions guarantee that Zk = Z(sk) is a submanifold with bounded
curvature RZk

(in the metric gk) uniformly on k, and that TxZk is within
distance O(k−1/2) of being a complex subspace of TxM . The condition of sk
being asymptotically holomorphic implies that Zk is symplectic for large k.

Definition 3.3 A sequence of submanifolds Sk ⊂M is called asymptotically
holomorphic if

∠M(TSk, JTSk) = O(k−1/2), |RSk
| = O(1).

The angle ∠M measures the distance, in the grassmannian, between two
subspaces [12, definition 3.1]. Thus for k large, any element of a sequence
of asymptotically holomorphic submanifolds is symplectic.

Our objective will be to define and construct asymptotically holomorphic
foliations. This will be done by embedding our manifold M into a projective
space and intersecting it with a holomorphic foliation in it.

Definition 3.4 A sequence of embeddings φk :M → CP
d is γ-asymptotically

holomorphic for some γ > 0 if it satisfies the following conditions:

i. dφk : TxM → Tφk(x)CP
d has a left inverse θk of norm less than γ−1

at every point x ∈M , i.e., dφk multiplies the length of vectors at least
by γ.

ii. |(φk)∗J − J0|gk
= O(k−1/2) on the subspace (φk)∗TxM , where J0 is the

complex structure of CP
d.

iii. |∇pφk|gk
= O(1) and |∇p−1∂̄φk|gk

= O(k−1/2), for all p ≥ 1.

Theorem 3.5 ([12]) Let (M,ω) be a closed symplectic 2n−dimensional
manifold of integer class endowed with a compatible almost complex struc-
ture J and let sk be an asymptotically holomorphic sequence of sections of
the vector bundles Cd+1 ⊗ L⊗k with d ≥ 2n + 1. Then for any α > 0 there
exists another asymptotically holomorphic sequence σk and γ > 0 such that:
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i. |sk − σk|C2,gk
< α.

ii. σk is γ-projectizable, i.e., |σk| ≥ γ on all of M , and for all k.

iii. P(σk) is a γ-asymptotically holomorphic sequence of embeddings in CP
d

for k large enough.

iv. φ∗
k[ωFS] = k[ω], where ωFS is the Fubini-Study symplectic form on CP

d.

Moreover, let us have two asymptotically holomorphic sequences φ0
k and φ1

k

of embeddings in CP
d, with respect to two compatible almost complex struc-

tures. Then for k large enough, there exists an isotopy of asymptotically
holomorphic embeddings φtk connecting φ0

k and φ1
k.

The difference with the result stated in [12] is that here we use C2-close
perturbations, but this makes no real difference. To be able to intersect the
embedded manifold with a complex submanifold of CP

d having control of
the resulting submanifold, we need a notion of estimated transversality

Definition 3.6 Let N ⊂ CP
d be a complex smooth submanifold and choose

a distribution of complex subspaces DN (y) ⊂ TyCP
d, in a neighborhood of N ,

which extends the tangent distribution to N . An embedding φk : M → CP
d

is σ-transverse to N , with σ > 0 small enough, if for all x ∈M ,

d(φk(x), N) < σ ⇒ ∠m((φk)∗(TxM), DN(φk(x))) > σ.

This angle ∠m measures the amount of transversality between two in-
tersecting vector subspaces [12, definition 3.3]. The condition above assures
that the intersection φk(M)∩N is a sequence of asymptotically holomorphic
submanifolds ofM (see [12, proposition 3.10]). Moreover, this condition may
be achieved.

Theorem 3.7 ([12]) Let φk = P(sk), where sk is a γ-projectizable asymp-
totically holomorphic sequence of sections of Cd+1 ⊗ L⊗k, d ≥ 2n + 1, such
that φk is a γ-asymptotically holomorphic sequence of embeddings, for some
γ > 0. Let N be a complex submanifold in CP

d. Then for any δ > 0 there
exists an asymptotically holomorphic sequence of sections σk of Cd+1 ⊗ L⊗k

such that

i. |σk − sk|C2,gk
< δ.

ii. ψk = P(σk) is a η-asymptotically holomorphic embedding in CP
d which

is ε-transverse to N , for some η > 0 and ε > 0, for k large enough.

Moreover, let us have two asymptotically holomorphic sequences φ0
k and φ1

k of
embeddings in CP

d, with respect to two compatible almost complex structures,
which are ε-transverse to N . Then for k large enough, there exists an isotopy
of asymptotically holomorphic embeddings φtk which are ε′-transverse to N ,
connecting φ0

k and φ1
k.
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4. Asymptotically holomorphic foliations

Consider a foliation α of M as an application α : TM → L. The line
bundle L is called the normal bundle of the foliation. Using the almost
complex structure on TM , we decompose α in complex linear and complex
anti-linear parts,

α = α1,0 + α0,1.

When α0,1(x) = 0 the subspace kerα(x) ⊂ TxM is complex. Still when
|α0,1(x)| < |α1,0(x)| the subspace kerα(x) is symplectic.

Definition 4.1 A sequence of foliations αk with hermitian normal bun-
dles Ek is asymptotically holomorphic if

|∇pαk| = O(1), |∇p(αk)0,1| = O(k−1/2), p = 0, 1, 2,

|∇p−1∂̄(αk)1,0| = O(k−1/2), p = 1, 2.

Also we need a measure of transversality for foliations. This is provided
by the following definition. As in the holomorphic case, there is a subset of
the singular case, Kαk

⊂ Sαk
which is easily controlled, and which in some

cases reduces to the Kupka set of αk.

Definition 4.2 Let γ, ε > 0. A sequence of foliations αk with hermitian
normal bundles Ek is (γ, ε)-regular if there is a subset Kαk

of Sαk
such that

i. Kαk
is a union of (closed) asymptotically holomorphic submanifolds

whose intersections are transverse and asymptotically holomorphic sub-
manifolds.

ii. Let Bk
γ be the tubular neighborhood of radius γ of Kαk

in gk-norm.
Then αk defines a regular foliation in Bk

γ − Kαk
such that for any

point x ∈ Bk
γ −Kαk

it is satisfied that

∠M(kerαk, J kerαk) = O(k−1/2),

i.e., the leaves in Bk
γ −Kαk

are asymptotically holomorphic.

iii. (αk)1,0 is ε-transverse to zero as a section of T 1,0M ∗⊗Ek over M−Bk
γ .

iv. For any point x ∈ M − Bk
γ , there is a uniform number r > 0 such

that in the ball of gk-radius r centered at x, the foliation can be written
as αk = hk dfk, for some trivialization of Ek, where hk and fk are
asymptotically holomorphic and hk is bounded above and below by a
uniform constant (independent of k and x).
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Proposition 4.3 Let αk be a sequence of asymptotically holomorphic fo-
liations with hermitian normal bundles Ek which are (γ, ε)-regular. Then
there exists an arbitrarily small C1-perturbation of αk which is a symplectic
foliation for k large enough.

Proof. For k large enough, αk defines a symplectic foliation in Bk
γ as a sim-

ple corollary of the definition (see [12, section 3.2]). In the complementary
M −Bk

γ we study the set of bad points

B(αk) = {x ∈M −Bk
γ

∣∣ |(αk)1,0(x)| ≤ |(αk)0,1(x)|}.
Notice that this is the set of points where the distribution is singular or is
not symplectic. We will say that x ∈ M − Bk

γ is a critical point of αk if
(αk)1,0(x) = 0. We want to modify the foliation so that B(αk) only consists
of finitely many isolated critical points in which the foliation has a standard
model of the form

z1dz1 + . . .+ zndzn.

Using lemma 4.4 below we can take k large enough so that the set of bad
points is included in a disjoint collection of balls of uniform size centered at
the critical points. Then we perturb the foliation in a small neighborhood of
the set of critical points, by using proposition 4.5, to obtain a new foliation
with B(αk) equal to the set of critical points and such that in a neighborhood
of a critical point it has the form αk =

∑
zidzi. �

Lemma 4.4 For k large enough the set B(αk) is contained in a finite set
of disjoint balls B(xj, c) of uniform gk-radius c around the critical points xj,
such that the balls B(xj, 2c) are disjoint and contained in M −Bk

γ/2.

Proof. Given a point x ∈ B(αk) then the distance of x to the set of
critical points is bounded above, for k large enough, by c, where c > 0 is an
arbitrarily small uniform constant. Indeed, for k large enough

|(αk)1,0(x)| ≤ |(αk)0,1(x)| ≤ Ck−1/2.

By the ε-transversality,

∇(αk)1,0(x) : TM → T ∗M ⊗ Ek

has an inverse of norm bounded by ε−1. The bounds in the second deriva-
tives of αk allows us to control the radius where the inverse function theorem
applies (see [9, lemma 8]). Therefore there must be a zero of (αk)1,0 in a
neighborhood of some uniform radius c. Again the inverse function theorem
implies that the distance between the critical points is bounded indepen-
dently of k. Moreover this c may be made as small as we please just by
increasing k. �
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Proposition 4.5 Let αk be a sequence of asymptotically holomorphic foli-
ations which is (γ, ε)-regular. Let xj ∈ M − Bk

γ be a critical point of αk
such that there are asymptotically holomorphic functions hk and fk with
hk bounded below and αk = hk dfk on a neighborhood of uniform gk-radius
B(xj, 2c). Then there exists an arbitrarily small C1-perturbation of αk sup-
ported in B(xj, 2c), which is a symplectic foliation in the annulus B(xj, 2c)−
B(xj, c) and of the form z1dz1 + · · · + zndzn in B(xj, c).

Proof. Given a critical point xj ∈ M − Bk
γ , i.e., (αk)1,0(xj) = 0, write

αk = hk dfk as in the statement. Recall that from the proof of lemma 4.4, the
constant c can be chosen arbitrarily small, just by increasing the first k sat-
isfying the property. This implies that ∇αk(p) is “approximately constant”
in that ball (by radial parallel transport). We can use an asymptotically
holomorphic chart Φk : BCn(0, 1) → Bgk

(xj, 2c) provided in [2, lemma 3]
to trivialize the manifold at a neighborhood of xj. Consider fk, hk then
as functions of z1, . . . , zn. We may suppose without loss of generality that
fk(xj) = 0 and that hk(xj) = 1.

Since (αk)1,0 is ε-transverse at xj and αk is asymptotically holomorphic,
then for k large enough

∂(αk)1,0(0) : TM → T ∗M ⊗ Ek

has an inverse of norm bounded by (ε′)−1, i.e., it multiplies the length of
vectors by an amount at least ε′, for some ε′ slightly smaller than ε. Since
∂(αk)1,0(0) = ∂∂fk(0) is the complex Hessian of fk, we define

H =
1

2

∑ ∂2fk
∂zi∂zj

(0)zizj.

Consider the following foliation in B(xj, 2c),

α̃k = hk dH.

Here dH is a holomorphic foliation with respect to the standard complex
structure J0 on the ball. Since this asymptotically holomorphic chart satis-
fies that the Nihenjius tensor has norm O(k−1/2|z|), we have that (α̃k)0,1 =
O(k−1/2|z|). We have that fk(0) = H(0) = 0, ∂fk(0) = dH(0) = 0 and
∂∂fk(0) = ∇∇H(0). Since both are asymptotically holomorphic we have
that |fk −H| = O(|z|3 + k−1/2|z|). Analogously |αk − α̃k| = O(|z|2 + k−1/2).

Now let β be a bump function such that β(x) = 1 for x ∈ B(xj, c),
β(x) = 0 for x �∈ B(xj, 3c/2) and |∇β| = O(c−1). Define the foliation in the
whole of M ,

α̂k = hk d (βfk + (1 − β)H) = βαk + (1 − β)α̃k + ∇β(fk −H).
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We want to prove that outside xj,

(4.1) |(α̂k)1,0| > |(α̂k)0,1|.
In B(xj, c), α̂k = α̃k = hk dH = hk(

∑
aijzidzj). The ε-transversality of

(αk)1,0 implies that all the eigenvalues of the symmetric matrix (aij) have
norm bigger than ε′. Therefore |α̃k| ≥ ε′|z|/2 (for c small). Also |(α̃k)0,1| ≤
Ck−1/2|z|, for some constant C, so (4.1) holds in B(xj, c). On B(xj, 3c/2)−
B(xj, c) we have

|α̂k − α̃k| ≤ |αk − α̃k| + |∇β||fk −H| = O(c2 + k−1/2).

In particular, |(α̂k)0,1| = O(c2 + k−1/2) and |(α̂k)1,0| ≥ ε′c/2−O(c2 + k−1/2).
Taking c small (but uniformly on k) and then k large enough we have (4.1).

Finally take h̃k to be equal to hk in B(xj, 2c)−B(xj, 3c/2) and equal to
1 in B(xj, c). Then

h̃k d (βfk + (1 − β)H)

satisfies the required properties and in B(xj, c) it is of the form
∑
aijzidzj.

A suitable change of coordinates transforms this into
∑
zidzi. �

Remark 4.6 Note that the perturbed foliation in the proof above is of the
form αk = hk dfk in B(xj, 2c), so the integral submanifolds are the level sets
fk = λ. In a small neighborhood of the singularity, the leaves of the foliation
are of the form

∑
z2
i = λ.

5. Construction of asymptotically holomorphic foliations

Once introduced all the asymptotically holomorphic machinery, we are ready
to perform our main construction of asymptotically holomorphic foliations,
generalizing the ideas contained in [12]. Let (M,ω, J) be a 2n-dimensional
symplectic manifold of integer class with a fixed compatible almost complex
structure. Let L→ M be the hermitian line bundle with connection whose
curvature is −iω.

Take any asymptotically holomorphic sequence of sections sk=(s0
k, . . . , s

d
k)

of Cd+1 ⊗ L⊗k such that φk = P(sk) : M → CP
d is a sequence of asymp-

totically holomorphic embeddings with φ∗
kO(1) = L⊗k, whose existence is

guaranteed by theorem 3.5.
Now fix a holomorphic foliation α ∈ H0(CP

d, T ∗CP
d ⊗ O(N)) in CP

d,
such that the singular set Sα is a union of smooth complex submanifolds
intersecting transversely. There are many examples of such foliations [3].
We want to study the restriction αk = φ∗

kα of the foliation α to the sequences
of embeddings φk and to prove that for suitable choice of embeddings we get
asymptotically holomorphic foliations which are (γ, ε)-regular.
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Proposition 5.1 Let φk be an asymptotically sequence of embeddings of M
into CP

d and let α be a foliation as above in the projective space. Then
there is a C2-close sequence of embeddings ψk which is γ-transverse to every
submanifold of the singular set Sα. Then the induced foliation αk = ψ∗

kα
in M is an asymptotically holomorphic foliation and satisfies conditions (i)
and (ii) of definition 4.2 with Kαk

= ψ−1
k (ψk(M) ∩ Sα).

Proof. Let φk be an asymptotically sequence of embeddings of M into
CP

d. Write Sα = ∪Si, where Si ⊂ CP
d are smooth complex submanifolds

of CP
d. We may apply theorem 3.7 to perturb φk to a C2-close sequence

of embeddings ψk which is γ-transverse to every submanifold Si, for some
uniform γ > 0. This implies that the submanifold ψk(M) intersects Si along
an asymptotically holomorphic submanifold by [12, proposition 3.10].

Let αk = ψ∗
kα be the induced foliation in M . Then αk is asymptotically

holomorphic using the asymptotically holomorphic bounds of ψk and the
holomorphicity of α. Note that (αk)1,0 = α ◦ ∂ψk and (αk)0,1 = α ◦ ∂̄ψk.

Now Kαk
= ψ−1

k (ψk(M)
⋂
Sα) is a finite union of asymptotically holo-

morphic submanifolds and it is included in Sαk
. The γ-transversality to Si

implies that for the points in a neighborhood of radius γ of Si, the angle
between the tangent space of ψk(M) and the distribution DSi

determined
by Si is bigger than γ. Now one may assume that DSi

(x) ⊂ kerα(x) in
a neighborhood of Si. We use a linear algebra result [12, proposition 3.5]
that says that for U, V,W subspaces of a finite dimensional euclidean vector
space with V ⊂ W it is satisfied that ∠m(U, V ) ≤ ∠m(U,W ). Therefore

∠m(kerα(x), Txφk(M)) ≥ ∠m(DSi
(x), Txψk(M)) ≥ γ,

for any x ∈ ψ−1(Bγ(Sα)). This implies that the leaves are asymptotically
holomorphic in some Bcoγ , for a constant co > 0. This gives the sought
property (maybe after multiplying γ by a suitable uniform constant). �
Theorem 5.2 Let φk be a sequence of asymptotically holomorphic embed-
dings of M into CP

d. Fix a holomorphic foliation α∈H0(CP
d, T ∗

CP
d⊗O(N))

in CP
d as above. Then there exists an arbitrarily C2-close sequence of em-

beddings ψk such that αk = ψ∗
kα is an asymptotically holomorphic sequence

of foliations of M with normal bundle L⊗Nk, which is (γ, ε)-regular for uni-
form γ, ε > 0.

Moreover any two such embeddings ψik, i = 0, 1, induce isotopic folia-
tions αik, for k large enough.

Proof. Recall that φk = P(sk) for a γ-asymptotically holomorphic sequence
of sections sk of L⊗k ⊗ C

d+1 which is γ-projectizable. The property of φk
being γ-asymptotically holomorphic is open in C1-sense, so any small per-
turbation will still be γ/2-asymptotically holomorphic.
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Using proposition 5.1 we may assume that φk is already γ-transverse to
(every submanifold in) Sα (reducing γ if necessary). The property of an
asymptotically holomorphic embedding being γ-transverse to Sα is open in
C1-sense [12, definition 3.11], so any small perturbation will still be γ/2-
transverse. Denote by Bk

γ the tubular neighborhood of radius γ of Kαk
=

φ−1
k (φk(M)

⋂
Sα) in M . We need to perturb φk to a sequence of embeddings

such that (αk)1,0 is ε-transverse to zero in M −Bk
γ/2.

We define the following property for sequences of sections sk which are
γ/2-projectizable and such that φk = P(sk) is γ/2-asymptotically holomor-
phic and γ/2-transverse to Sα: sk satisfies the property P(ε, x) if (φ∗

kα)1,0

is ε-transverse as a section of T ∗M ⊗ L⊗Nk at the point x or else x ∈ Bk
γ/2.

This property is local and open in C2-sense (for ε small).

We want to use the globalization lemma in [2, proposition 3] which states
the following: Let sk be asymptotically holomorphic sections of Ek = L⊗k⊗
C
d+1. If we can obtain for any point x ∈M and any δ > 0 an asymptotically

holomorphic sequence of sections τk,x with Gaussian decay away from x in
Cr-norm and |τk,x|Cr ,gk

< δ such that sk + τk,x satisfies the property P(σ, y)
for all y in a ball of uniform radius Bgk

(x, c), with σ = c′δ(log(δ−1))−p,
with c, c′, p independent of k, then, given any δ > 0, there exist, for all
large enough k, asymptotically holomorphic sections σk of Ek such that
|sk − σk|Cr,gk

< δ and the sections σk satisfy P(η, x) for all x ∈ M with
η > 0 independent of k.

The transversality of φk to Sα implies that

φk(M −Bk
γ/2) ⊂ CP

d −Bcoγ(Sα)

for some uniform constant co > 0. Now fix a finite covering Uj of CP
d −

Bcoγ(Sα) such that in each of the sets Uj one may write α = hj dfj where hj
is a (holomorphic) integrating factor and fj is a first integral.

Let x ∈M−Bk
γ/2. We may choose c small enough so that φk(Bgk

(x, c)) ⊂
Uj for some j (since |∇φk|gk

≤ C). Also any small perturbation will still be
inside the same open set. Define f jk = fj ◦ φk and hjk = hj ◦ φk. Both are
asymptotically holomorphic in the ball. Moreover αk = hjk df

j
k . The func-

tions hjk are bounded above and below by fixed constants. Therefore checking
transversality for (αk)1,0 is equivalent to checking transversality for ∂f jk .

With a transformation of U(d+1) in Cd+1 we may suppose that sk(x) =
(s0
k(x), 0, . . . , 0). As sk is γ-projectizable and asymptotically holomorphic,

we suppose that |s0
k| ≥ γ/2 on Bgk

(x, c) (maybe reducing c > 0). By [2,
lemma 2] there are asymptotically holomorphic sections sref

k,x of L⊗k with

Gaussian decay away from x and with |sref
k,x| ≥ c1 on Bgk

(x, c), for some
uniform c1 > 0.
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We use the standard chart Ψ0 in CP
d around p = φk(x) = [1 : 0 · · · : 0].

With respect to this trivialization the map φk is given locally as

Ψ0 ◦ φk : Bgk
(x, c) → C

d

y →
(
s1
k(y)

s0
k(y)

, . . . ,
sdk(y)

s0
k(y)

)
.

Now we can suppose that |∂fj(0)| > c2, for a universal constant c2
since we are well away from Sα. Also we may suppose that ∂fj(0) =

(0, 0, . . . , 0,
∂fj

∂wd
(0)). Therefore gj =

∂fj

∂wd
is big enough in a small neigh-

borhood.

We trivialize M at a neighborhood of x by using the asymptotically
holomorphic charts Φk : BCn(0, 1) → Bgk

(x, c) provided in [2, lemma 3].
We denote by f jk and hjk again the corresponding functions defined in a ball
of C

n, which are asymptotically holomorphic. We define the “approximately
orthogonal basis” as in [2]

(5.1) µik = ∂

(
zi
sref
k,x

s0
k

)
.

At x it is an orthogonal basis and all the forms are asymptotically holomor-
phic. We can use (5.1) to locally trivialize the cotangent bundle. In par-
ticular we may write the differential of gj as ∂gj =

∑
gj;iµ

i
k. Define t =

(t1, . . . , tn) by the formula

∂f jk =
∑

1≤l,i≤n
tl

(
gj δli + gj;i zl

sref
k,x

s0
k

)
µik,

where (δli) is the identity matrix. It is easy to check that t : BCn(0, 1) → Cn

is asymptotically holomorphic. This is because {µ1
k, · · · , µnk} is close to be

an orthogonal matrix, and so all the eigenvalues are bounded below and
above by positive uniform constants. Also the matrix in the middle is close
to being diagonal in a small ball Bgk

(x, c), so its eigenvalues are bounded
below and above uniformly. Moreover the amount of transversality of t and
of ∂f jk are related by non-zero uniform constants. So we need only to get
transversality for t.

The main local result is Donaldson’s theorem 12 in [9] stating that there
exists w = (w1, . . . , wn) ∈ C

n with |w| < δ such that t − w is σ-transverse
to 0 over the ball BCn(0, 9

10
), with σ = δ(log(δ−1))−p, for a universal p > 0

and k large enough.
Now define the perturbation

τk,x = (0, . . . , 0,−
∑

wizis
ref
k,x).
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This is asymptotically holomorphic, with Gaussian decay away from x and
norm less than δ. The asymptotically holomorphic sequence ŝk = sk + τk,x
has corresponding t̂ = t − w + O(δ2). Let us check this. The embedding
associated to ŝk will be denoted by φ̂k and f̂ jk = fj ◦ φ̂k. Then

f̂ jk = f jk + dfj(φk)

(
0, . . . , 0,−

∑
wizi

sref
k,x

s0
k

)
+O(δ2)

= f jk −
∂fj
∂wd

( ∑
wizi

sref
k,x

s0
k

)
+O(δ2),

where the term O(δ2) is bounded in C1-norm. From this one obtains

∂f̂ jk = ∂f jk −
(
gj

∑
wiµ

i
k + gj;iµ

i
k

∑
wlzl

sref
k,x

s0
k

)
+O(δ2).

from where t̂ = t− w +O(δ2). Now by construction t− w is δ(log(δ−1))−p-
transverse to 0 over the ball. It is easy to see that (for δ small enough)
the last term does not affect this property. So the induced α̂k = φ̂∗

kα satis-
fies that (α̂k)1,0 is C ′σ-transverse over Bgk

(x, c), where C ′ is again another
uniform constant. This concludes the proof.

For the one-parameter case, let ψik : M → CP
d, i = 0, 1, be two asympto-

tically holomorphic sequences of embeddings with respect to two compatible
almost complex structures Ji, which are (γ, ε)-regular, for some γ, ε > 0.
Consider a one-parameter family of compatible almost complex structures
Jt, t ∈ [0, 1], interpolating between J0 and J1 and let stk be Jt-asymptotically
holomorphic sections of L⊗k ⊗ Cd+1 such that ψ0

k = P(s0
k) and ψ1

k = P(s1
k).

We initially perturb stk using theorem 3.7 so that all ψtk = P(stk) are
asymptotically holomorphic embeddings which are γ-transverse to Sα (re-
ducing γ > 0 if necessary). Then the argument above works for one-
parameter families of sections depending on t ∈ [0, 1] since all the ingre-
dients do (see [2, 9, 12]). This means that for a given δ > 0, there exists,
for large enough k, Jt-asymptotically holomorphic sections σtk of L⊗k⊗Cd+1

such that |stk − σtk| < δ and P(σtk) are (γ/2, η)-regular asymptotically holo-
morphic embeddings in CP

d for some uniform η > 0. Taking δ > 0 very
small, the linear segment us0

k + (1 − u)σ0
k, u ∈ [0, 1], consists of sections

inducing (γ/2, ε/2)-regular maps. This provides an isotopy s′k
t between s0

k

and s1
k. The foliations αtk = (ψ′

k
t)∗α, ψ′

k
t = P(s′k

t), t ∈ [0, 1], provide an
isotopy between the initial ones, as required. �

Remark 5.3 The perturbation of the foliation carried out in section 4 can be
done in a one-parameter family αtk, as long as we start with a one-parameter
family of asymptotically holomorphic functions f tk and htk to start with.
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Therefore for a family of (γ, ε)-regular asymptotically holomorphic fo-
liations αtk, there exists a family of symplectic foliations α̂tk interpolating
between the perturbations α̂0

k, α̂
1
k of α0

k, α
1
k carried out in proposition 4.3.

So the construction of the symplectic foliations is unique up to symplectic
isotopy, for k large enough.

Remark 5.4 Suppose that (M,ω) is a symplectic manifold with [ω]/2π not
an integer cohomology class in H2(M ; R). Choose a compatible almost com-
plex structure J . We may take a small perturbation ω′ of ω which is still
symplectic and compatible with J , such that [ω′]/2π is a rational cohomol-
ogy class. Therefore there is a positive integer N such that N [ω′]/2π is an
integer cohomology class.

Applying the theorem above for Nω′ we get asymptotically holomorphic
foliations, and therefore symplectic foliations for (M,ω), with hermitian nor-
mal bundles L⊗k where c1(L) = N [ω′]/2π.

6. Examples

We can apply all the precedent constructions to any fixed foliation in the
projective space. There is a large number of examples [3, 7]. We are going
to compute explicitly some classical cases.

6.1. Application to Lefschetz pencils

First, we can recover Donaldson’s result [9] on the existence of Lefschetz
pencils. We need the following definition.

Definition 6.1 A branched (p, q) Lefschetz pencil, with p, q > 0 relatively
prime, over an oriented closed manifold M consists of the following set of
data:

i. A codimension four smooth submanifold B.

ii. A map f : M −B → CP
1 which is a submersion outside a finite set of

points ∆.

Also the data fit in the following models:

• Given a point x ∈ B, there exists a neighborhood of x with orien-
ted coordinates (z1, . . . , zn) of M where the map f can be written as
f(z1, . . . , zn) = zq2/z

p
1 .

• Given a point x ∈ ∆, there exists a neighborhood of x with ori-
ented coordinates (z1, . . . , zn) of M where the map f can be written
as f(z1, . . . , zn) = z2

1 + · · · + z2
n + c.
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A branched (1, 1) Lefschetz pencil is called a simple Lefschetz pencil (or
a Lefschetz pencil, for brevity). The main result in [9] is

Theorem 6.2 Let (M,ω) be a symplectic manifold of integer class. There
exists an integer k0 > 0 such that for any k > k0, M admits a Lefschetz
pencil structure (fk, Bk,∆k) where all the fibers of the map fk are symplectic
and Poincare dual to k[ω]/2π and Bk is also symplectic.

Donaldson constructs two asymptotically holomorphic sections s1
k, s

2
k ∈

L⊗k satisfying certain transversality properties. The map fk is defined by
fk = s2

k/s
1
k, and for k large, it satisfies the required properties. Moreover,

the form αk = s1
k ds

2
k − s2

k ds
1
k is an asymptotically holomorphic symplectic

foliation. This follows from the fact that αk is just a rescaling of the differ-
ential of fk which is obviously defining a symplectic foliation wherever it is
well defined. The rescaling is performed in order to αk be defined all over
the manifold. Moreover the foliation is as well symplectic in Bk, and so it
is symplectic all over M . We also can prove

Theorem 6.3 Let (M,ω) be a symplectic manifold of integer class. There
exists an integer k0 > 0 such that for any k > k0, M admits a branched (p, q)
Lefschetz pencil structure (fk, Bk,∆k) where all the fibers of the map fk are
symplectic and Poincare dual to k(p+ q)[ω]/2π, and Bk is also symplectic.

Proof. Fix sections s1 ∈ H0(CP
d, H⊗q) and s2 ∈ H0(CP

d, H⊗p), where H
is the hyperplane line bundle over CP

d. Moreover, suppose that these sec-
tions are transverse to zero and Z(s1) ∩ Z(s2) is a transverse intersection.
Therefore

f =
s⊗q2

s⊗p1

defines a branched (p, q) Lefschetz pencil over CP
d. Moreover

α = qs1 ds2 − ps2 ds1 ∈ H0(CP
d, T ∗

CP
d ⊗H⊗(p+q))

is a holomorphic foliation on CP
d satisfying the hypothesis required in sec-

tion 5. Then by theorem 5.2, there exists an embedding φk of M in CP
d such

that αk = φ∗
kα is an asymptotically holomorphic and (γ, ε)-regular foliation,

for uniform γ, ε > 0. The perturbation performed in proposition 4.3 takes
place well away from the singular locus and changes fk = φ∗

kf into an inte-
grating function with a suitable form around the critical points. Therefore
this perturbation may be done by perturbing either s1

k = φ∗
ks1 or s2

k = φ∗
ks2

(since one of them is non-zero). We obtain a symplectic foliation and the
map fk = (s2

k)
⊗q/(s1

k)
⊗p defines a branched (p, q) Lefschetz pencil. �
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6.2. Deformations of Lefschetz pencils with non-trivial holonomy

We may deform the Lefschetz pencils in the presence of fundamental group
as in the algebraic case. We say that a symplectic foliation α on a symplectic
manifold (M,ω) is a deformed Lefschetz pencil if there is a connected smooth
codimension four symplectic submanifold B ⊂M such that

i. Given a point x ∈ B, there are adapted coordinates (z1, . . . , zn) around
x where the leaves of the foliation are of the form z2/z1 = λ.

ii. There is a finite set of critical points xj ∈ M − B such that at any
xj there are adapted coordinates (z1, . . . , zn) where the leaves of the
foliation are of the form z2

1 + · · · + z2
n = λ.

Suppose α is a deformed Lefschetz pencil with base locus B. The holonomy
H : π1(B) → PU(2) is defined as follows. Fix p0 ∈ B and consider a small
transversal 4-dimensional disk ∆ to B. Identify P(∆) = CP

1. For any loop
ς and any λ ∈ CP

1, lift the path ς to a path in a tubular neighborhood of
B inside the leaf of α corresponding to the value λ. The endpoint is defined
to be H(ς)(λ) ∈ CP

1.

Theorem 6.4 Let (M,ω) be a symplectic manifold of integer class such
that dimM = 2n ≥ 6 and π1(M) �= 1. Let ρ : π1(M) → SU(2) be a
representation such that c2(Eρ) = 0 where Eρ → M is the flat C2-bundle
corresponding to ρ. Let L → M be the complex line bundle with c1(L) =
[ω]/2π. Then for k large enough there are deformed Lefschetz pencils αk ∈
C∞(T ∗M ⊗ L⊗k) with non-trivial holonomy.

Proof. Under the assumptions of the statement, Eρ is a topologically trivial
bundle. So we may understand Eρ = M × C

2 with a flat connection ∇ρ =
∇+�, where � ∈ Ω1(su(2)). Now |∇ρ−∇|gk

= |�|gk
= k−1/2|�|g, i.e., ∇ρ

is an “asymptotically trivial” connection.

Endow M with a compatible almost complex structure and let L → M
be the hermitian line bundle with connection with curvature −iω. As in the
previous section, there are asymptotically holomorphic sections sk = (s1

k, s
2
k)

of C2 ⊗L⊗k such that fk = s2
k/s

1
k is a symplectic Lefschetz pencil for k large

enough. Let αk be the associated foliation with base locus Bk = Z(sk).
Consider the morphism

M −Bk
(1,fk)−→ M × CP

1 ∼= P(Eρ).

We pull back the flat distribution of P(Eρ) under this map to get a foliation
α′
k in M .
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Let Kαk
= Bk be the Kupka set of αk and let Bk

γ be the neighborhood
of gk-radius γ of Kαk

. Then in M −Bk
γ the 1-form (αk)1,0 is ε-transverse to

zero. On the other hand, the horizontal distribution of M ×CP
1 is given by

α = dλ, where λ is the coordinate in the CP
1-direction, and the horizontal

distribution for P(Eρ) is given by α′ = dλ + O(k−1/2). Since αk = (1, fk)
∗α

and α′
k = (1, fk)

∗α′ (up to a factor (s1
k)

⊗2, which is uniformly bounded) we
have that |αk−α′

k|C1,gk
= O(k−1/2). So α′

k is an asymptotically holomorphic
foliation such that (α′

k)1,0 is ε/2-transverse to zero in M − Bk
γ . After the

perturbation in proposition 4.3, it defines a symplectic foliation.

Now we look at Bk
γ , where fk has transversal type z1dz2 − z2dz1. Let

us see that this is stable for small perturbations. We construct Eρ in a
different way: take the universal covering space π : M̃ → M and consider
M̃ × C2 with the trivial connection. Identify (x, f) with (h(x), ρ(h)f) for
any deck transformation h, to get Eρ → M . Consider the identification
of Eρ with the trivial bundle as a (not connection preserving) isomorphism
ψ : C

2 → Eρ. This lifts to ψ̃ : M̃ × C2 → M̃ × C2, where ψ̃∗∇ = ∇ + �̃,
�̃ = π∗�. Therefore �̃ = ψ̃−1dψ̃ and we may consider ψ̃ as a map M̃ →
SU(2) satisfying ψ̃(h(x)) = ρ(h)ψ̃(x). Look at the map

M̃ − B̃k
(1,f̃k)−→ M̃ × CP

1
ψ̃∼= M̃ × CP

1,

where f̃k = fk ◦π and B̃k = π−1(Bk). Fix a point p ∈ Bk and (z1, z2, . . . , zn)
coordinates around p such that Kαk

= {z1 = z2 = 0} and fk = z2/z1.
Looking at any point in M̃ over p we see that the leaves of α′

k are the level
sets of ψ̃ ◦ f̃k. Denoting

(
w1

w2

)
= ψ̃(z1, . . . , zn)

(
z1

z2

)
,

we have new adapted coordinates (w1, w2, z3, . . . , zn) such that the leaves
of α′

k are of the form w2/w1 = λ. Note that the change of coordinates is
asymptotically holomorphic, since |dψ̃|C1 = O(k−1/2).

We have a symplectic foliation α′
k with Kαk

= Bk a symplectic smooth
submanifold of codimension 4. Let us see that this foliation has non-trivial
holonomy (and therefore it is not a Lefschetz pencil). By the Lefschetz
theorem in [1], Bk is connected and π1(Bk) � π1(M) for k large enough.
Therefore ρ defines a non-trivial representation of π1(Bk) which determines
P(Eρ)|Bk

. Fix p ∈ Bk and ∆ a small transversal 4-dimensional disk to Bk

at p. Identify P(∆) = CP
1. Let ς ∈ π1(Bk) be a loop and λ ∈ CP

1. We
move ς into a regular leaf starting at the leaf determined by λ at p. Then
looking at the picture in M̃ we see that the end-point is ρ(ς)(λ). Note that if
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ρ(π1(M))λ ⊂ CP
1 is infinite then the leaf corresponding to λ is not compact.

Moreover if ρ is not the identity in PU(2), then (the closures of) the leaves
are not smooth at Bk and therefore α′

k does not define a Lefschetz pencil. �
The condition c2(Eρ) = 0 is satisfied very often. Since Eρ is a flat bundle,

Chern-Weil theory implies that the image of c2(Eρ) in H4(M ; R) is zero, so
c2(Eρ) is torsion. When H4(M ; Z) is torsion-free, Theorem 6.4 implies that
with any representation π1(M) → SU(2) whose image is not contained in the
center of SU(2), we can cook a deformed Lefschetz pencil with non-trivial
holonomy.

6.3. Application to asymptotically holomorphic logarithmic folia-
tions

Another useful example of foliations in the projective space are the logarith-
mic foliations as discussed in subsection 2.2.

Definition 6.5 Let M be a closed manifold, L1, . . . , Lp a family of com-
plex line bundles over M and λ1, . . . , λp ∈ C complex numbers such that∑
λic1(Li) = 0 ∈ H2(M ; C). Choose sections f1, . . . , fp of the bundles

L1, . . . , Lp. Then a logarithmic foliation with normal bundle L = L1⊗· · ·⊗Lp
is given by the twisted 1-form

α = f1 · · · fp
p∑
i=1

λi
dfi
fi

∈ C∞(T ∗
C
M ⊗C L).

The condition above ensures that in the open subset {f1 �= 0, . . . , fp �= 0}
we have α = f1 · · · fp d(logF ), where F = fλ1

1 · · · fλp
p is a function. It is easy

to see that this gives a well defined L-valued 1-form all overM . Now consider
the manifold and the sections to be holomorphic. We say that the foliation
is generic if:

i. p ≥ 3 and for any i = 1, . . . , p, the line bundle Li is positive.

ii. For any i = 1, . . . , p, the hypersurface defined by the equation {fi = 0}
is irreducible and {f1 · · · fp = 0} is a divisor with normal crossings.

In the particular case of the projective space we have that fi∈H0(CP
d,H⊗ni)

is a homogeneous polynomial of degree ni. The condition
∑
λic1(Li) = 0

translates into

(6.1)

p∑
i=1

niλi = 0.

With this kind of foliations at hand we can prove
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Theorem 6.6 Let (M,ω) be a symplectic manifold of integer class and let
L → M be a complex line bundle with c1(L) = [ω]/2π. Given (n1, . . . , np)
positive integers and (λ1, . . . , λp) satisfying the condition (6.1), then for k
large enough there exists an asymptotically holomorphic sequence of sections
(f1
k , . . . , f

p
k ) of L⊗kn1 ⊕ · · · ⊕L⊗knp such that the associated logarithmic foli-

ation

αk = f1
k · · · fpk

p∑
i=1

λi
df ik
f ik

∈ C∞(T ∗
C
M ⊗C L

⊗kN),

where N = n1 + · · · + np, is a symplectic foliation.

Proof. Choose a generic logarithmic foliation α in the projective space
with polynomials (f1, . . . , fp) of degrees (n1, . . . , np) and complex numbers
(λ1, . . . , λp) as in the statement. Then the foliation satisfies the conditions of
theorem 5.2, so there is a family of asymptotically holomorphic embeddings
in the projective space φk : M → CP

d such that the pull-back foliations
φ∗
kα give an asymptotically holomorphic sequence of foliations which are

(γ, ε)-regular. The perturbation of proposition 4.3 moves the integrating
factor log

(
(f1
k )
λ1 · · · (fpk )λp

)
, where f ik = φ∗

kfi. When the critical point is
well away from every Di

k = Z(f ik) this perturbation can be absorbed into a
perturbation of some f ik. To avoid that the critical points get close to Di

k,
just take the embeddings φk to be transverse to every Di = {fi = 0} ⊂ CP

d

by using theorem 3.7. This produces logarithmic symplectic foliations for k
large enough. �

Remark that any element of this family of foliations is not equivalent to
a Lefschetz pencil. In particular, they are not of Kupka type.
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