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Weighted Sobolev-Lieb-Thirring

inequalities

Kazuya Tachizawa

Abstract

We give a weighted version of the Sobolev-Lieb-Thirring inequal-
ity for suborthonormal functions. In the proof of our result we use
p-transform of Frazier-Jawerth.

1. Introduction

In 1994 Edmunds and Ilyin proved a generalization of the Sobolev-Lieb-
Thirring inequality.

Theorem 1.1 ([2]). Let n € N,;s > 0 and p with
n n
LY epsis
max( 19s) SPEITg

Then there exists a positive constant ¢ = c¢(p,n,s) such that for every fam-
ily {&:} Y| in H*(R™) which is orthonormal in L?*(R™), we have

2s(p—1)/n N
wn { [ sl <oy leartal?
=1

where
N
ple) = o)
i=1
In this theorem H*(R"™) denotes the Sobolev space of order s and || - || is

the norm of L?*(R"). In [8] Lieb and Thirring proved this theorem for s = 1
and applied it to the problem of the stability of matter.
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Ghidaglia, Marion and Temam proved (1.1) for s € N under the sub-
orthonormal condition on {¢;}, where {¢;}X, in L?(R") is called subortho-

normal if the inequality

N N
Z &i&i(9i, 05) < Z &
ij=1 i=1
holds for all & € C,i =1,..., N ([4]). They applied the inequality (1.1) to
the estimate of the dimension of attractors associated with partial differential
equations(c.f. [13]). In this paper we shall give a weighted version of (1.1)
under suborthonormal condition on {¢;}. In the proof of our theorem we
shall use Frazier-Jawerth’s ¢-transform ([3]).

For the statement of our result we need to recall the definition of A,-
weights (c.f. [5], [10]). By a cube in R™ we mean a cube which sides are
parallel to coordinate axes. Let w be a non-negative, locally integrable
function on R". We say that w is an A,-weight for 1 < p < oo if there exists
a positive constant C' such that

* S /(1) >,,_1
’Q‘/Qw(:c)dx<‘Q|/Qw(:c) dx <C

for all cubes Q CR™. The infimum of the constant C'is called the A,-constant
of w. For example, w(z) = |z|* is an A,-weight when —n < a < n(p —1).

We say that w is an Aj-weight if there exists a positive constant C
such that

ﬁ/cgw(y) dy < Cw(x) ae. r € Q

for all cubes @@ CR™. The infimum of the constant C'is called the A;-constant
of w. Let A, be the class of A,-weights. The inclusion A, C A, holds
for p < q.

For a nonnegative, locally integrable function w on R™ we define

LP(w) = {f : measurable on R", |f(z)Pw(x) de < oo} .
Rn

For v € Z and k € Z" the cube () defined by
Q:ka:{<l’17...,xn) : k1§2y$2<k2+17 z:l,,n}

is called a dyadic cube in R". Let Q be the set of all dyadic cubes in R™.
For any ) € Q there exists a unique @’ € Q such that Q C @’ and the
side-length of @’ is double of that of (). We call )’ the parent of Q.

For s > 0 and f € Cj°(R") we define via inverse Fourier transform

(=) f(a) = FH (€1 ().
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Let w € Ay and H*(w) be the completion of C§°(R™) with respect to the

norm
1/2
I f 1175 () {/I A2 f !(:v)dx+||f\|2}.

We remark that for f € C§°(R™) we have

- (=) f(2)Pw(z) do < o0

because c

(1 + [a])»

@) L
/Rn Mt e ™ <

(=22 f(2)] < (z € R")

and

(c.f. [10, p. 209]).
Let fe H*(w) and {f;}2, be a sequence in C§°(R") such that
If = fil
This means that there exist g, € L*(R") and g, € L?(w) such that

Ho(w) — 0 (1 — 00).

lo— fll =0 and /RJW(“’) (— A2, () Fuo(a) do — 0

as i — oo. We denote (—A)*/2f = go. We remark that g; = 0 means g, = 0.
In fact, for any ¢ € C5°(R"), we have

/ g@dr = lim [ (—A)¥2fFds = lim fi(=A)s2pdx = 0.
n i—00 Jpn i—00 Jpn
Hence we have g = 0. This means that we can identify H?®(w) as a subspace
of L*(R").
The following is the main result of this paper.

Theorem 1.2. Letn € N, s > 0, and
n n
1,—) <p<l+—.
max (150) <p <1450

Let w € Ay. If 25 < n, then we assume that w29 ¢ Anjs)- If 28 > n,
then we assume that w"/(25) ¢ A, and

(1.2) / wdxﬁQQs/wd:c
! Q

for all dyadic cubes Q € Q and its parent Q)'.
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Then there exists a positive constant ¢ such that for every family {¢;} Y,

in H*(w) which is suborthonormal in L*(R™), we have

2s(p—1)/n N
{ / ()P P~y () 5= dx}

n

where

and ¢ depends only on n, s, p, Ay-constant of w, and A, s or Ap-constant
Of w_n/(2s) .

When 2s < n, an example of weight function w is given by w(x) = |z|*
for —n + 2s < a < 2s. When 2s > n, an example of weight function w is
given by w(z) = |z|* for 0 < a < min{2s — n,n}(c.f.[12, Section 4]). When
2s = n, the condition (1.2) means w is equivalent to a constant almost
everywhere(c.f.[12, Proposition 4.1]).

2. Preliminaries

Let ¢ be a function which satisfies the following conditions.
(A1) ¢ € S(R™).

(A2) supp C {£ € R™ : L < [¢[ <2}

(A3) [d(€)]>e>0if 2 < ¢ < 3.

(A4) ) [(2°€)* = 1 for all £ # 0.

VEZL

Forv e Z, k € Z" and Q = Q,1, we set
Yola) = 272p(2a — k) (x € RY).

Let M be the Hardy-Littlewood maximal operator, that is,

M(f) () = sup ﬁ /Q F@)dy,

z€Q

where f is a locally integrable function on R™ and the supremum is taken
over all cubes () which contain z.
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Proposition 2.1. (i) Let 1 < p < oo and w be a non-negative locally
integrable function on R™. Then there exists a positive constant ¢ such
that

M(f)’wdx <c | |ffPfwdx
Rn Rr

for all f € LP(w) if and only if w € A,. The constant ¢ depends only
on n,p and A,-constant of w.

(17) Let 1 < p < oo and w € A,. Then there exists a ¢ € (1,p) such
that w € A,.

(191) Let 0 < 7 < 1 and f be a locally integrable function on R™ such
that M(f)(x) < oo a.e.. Then (M(f))” € Ay and the A;-constant of
(M(f))” depends only onn and T.

(iv) Let 1 < p < oo and w € A,. Then there exists a positive constant c

such that
/ wdr < c/ wdx
2Q Q

for all cubes QQ € R™, where 2Q) denotes the double of () and ¢ depend
only on n and A,-constant of w.

The proofs of these facts are in [5, Chapter IV] or [10, Chapter V].

3. Proof of Theorem 1.2

The suborthonormal condition on {¢;} is equivalent to the inequality

N
> 1@ NI < AP
i=1
for all f € L?(R™) (c.f.[1, p57]). We shall prove the inequality

25(p-1)/n
{ / ()P =D () 2so=1) dl,}

N
(3.1) < ek 1y / (=AY 2¢,(2)Pwlz) de
i=1 JR?
under the assumption
N
(3.2) > 1@ NP < K|

i=1

for all f € L?*(R™) where K is a positive constant.
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This is equivalent to the statement of Theorem 1.2. We remark that K
may depend on {¢;}. For example, the inequality (3.1) says that

25(p—1)/n

(33) { [P/ =g/ 2o dx} < ol [ |(-8)"6 [ wda
R" an
holds for all ¢ € H*(w) under suitable condition on s,p,n and w because

(&, P < NlolPILf11?

for all f € L*(R™).
First we assume ¢; € C°(R™),i =1,..., N. Let

Viz) = 51/)@)1/(p—1)w(x)n/(28(p—1))

where the value of the constant ; > 0 will be given later. Since
N
px) = Z |6i ()]
i=1

is a bounded function with compact support and w™ (?=1) is locally inte-
grable by the assumption w2 ¢ A,, we have

/ VPw ™™ 29 dr < .
We may also assume that

0</‘wmwmﬁm.

By (ii) of Proposition 2.1 there exists a constant x such that
l<kr<p and w2 ¢ Ap/i-

We set
v(z) = M(V*")(x)V".
Then (i) of Proposition 2.1 leads to
(3.4) / vPw )y = [ M (VPR 29 dy < cl/ VPw %) dr < oo.

n Rn

n

Furthermore v is an A;-weight by (iii) of Proposition 2.1.
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We have the following lemmas.

Lemma 3.1. For s > 0 and w € A, there exists a positive constant «
such that

O‘Z Q| 2S/"| (f, wQ /wdx</ }(—A)S/Qf}dex
QeQ |Q| "
for all f € C°(R™), where « is given by

o™ = emax |07,

and ¢ is a constant depending only on n,s and As-constant of w.

Lemma 3.2. For v € Ay there exist positive constants 3 and (3’ such that

g [ vae < [ 1vae <Y I vay [ v

QeQ QeQ
for all f € C3°(R™), where (3 is given by

B = emax 07|13,
|o|<n

and ¢ is a constant depending only on n and As-constant of v.

The proof of Lemmas 3.1 and 3.2 are in [11, Prop. 2.2 and Lemma 3.2].
We shall give the proof in Section 5 for the reader’s convenience because the
dependence of ¢ in « and [ is not explained in [11].

For f € C§°(R™) we have

[upvas< [ ifvar <0 Y (000 /

QeQ

where we used Lemma 3.2. Hence by Lemma 3.1

/ ey sfude— [ vigfas

(35) =a 3 1QI2(f, ) \2|Q‘/wdx 531/ va) P|Q,/vdx

QeQ QeQ

Now we set
(3.6) I:{QEQ : ﬁ/vdm>a\@|2s/"/wdx}.
Q Q

Let {px}1<x be the non-decreasing rearrangement of

{a\@]_%/”_l/@wdx—5|Q\_1/%de} .
Qe

We will show that this rearrangement is possible in the proof of Lemma 3.3.
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When
= alQ [ wds - giQl [ v,
Q Q

we define ¥y, = 1)g. Then we have by (3.5)
N N
3.7 — A2, 2w dx — Vigi|*d
(3.7 Z/I( PR wds =3 [ Vio s
s Q—2s/n—1 d _ﬁQ_l d }
Z (i, v0)| {a| ] /w x Q| /Qv x
Z k| ¢z>qjk Z,UkZ’ Cbu\I’k
7 k "
(3.8) > —K[I* Y ] > =Ko (ZWW) ,
k 2

where v =p —n/(2s) € (0,1] and we used (3.2).

Now the following lemma holds.

Vv

M= HMZ

1

Lemma 3.3.

> el < 0/ vPw ") de,
k R

where ¢ is given by

¢ = ¢ max |97/
jol<n

and ¢ depends only on n,s,p and w.

The proof of this lemma will be given in Section 4. By Lemma 3.3
and (3.4) the last quantity in (3.8) is estimated from below by

1/
—cK(/ VP~ (29) dx)

1/(p—n/(2s))
= —cKéf/(p_”/@s)) (/ P/ (P=1) g/ (25(p=1)) dx)
R

)

where
¢ = P a0 e 20 s
lo|<n o

and ¢ depends only on n, s, p and w. We may take the infimum of the above
constant with respect to possible ¢/ and replace ¢ by this infimum.
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Let

9

2s(p—n/(2s)—1)/n
5 = 52[(1—2510/" ( pp/(p—l)wn/(%(p—l)) dx)
Rn

where d; is a positive constant. Then we have by (3.7)
N
> (=8)¢ wdx
i=1 JR"

2s(p—1)/n
> 62K172sp/n ( pp/(p—l)wn/@s(pfl)) dl’)

Rn

2s(p—1)/n
g/ ) g 2epn ( o/ 5=1) 0/ 25(p-1) dx)

R’VL

2s(p—1)/n
= {6, — C(sg/(P*"/(QS))}KIf%p/n ( P =1)gyn/ (2s(p=1)) d:c) .

R’VL

If we take dy small enough, then we get the inequality (3.1) because

1<p/(p—n/(2s)).
Next we shall show (3.1) for ¢; € H*(w), i =1,..., N. First we show

(39) HS<U}) C L2p/(p*1) (wn/(2s(p71))).

Let h € H*(w). Then there exists a sequence {h,,}>°_; C C§°(R™) such that
|h = Pl 15wy — O (m — 00). Since we proved that (3.3) holds for h,, €
Ce(R™), we get

2s(p=1)/n
{/ ‘hm’%/(pfl)wn/(%(pfl)) dx} SCHhm!|4SP/n2/ |(—A)s/2hm}2wd:c,
R Rn

where ¢ does not depend on h,,. Since 4sp/n—2 > 0 and {h,,} is a Cauchy
sequence in H*(w), the above inequality says that {h,,} is a Cauchy sequence
in L2/ (=) (n/@s=1))) Let g be the limit of {h,,} in L2/@=1 (yn/2s®=1))),
For any compact set £ in R" we have

/ (g — Bl dz < (/ (g — B[22/ 0D/ 250-1)
E E

(p+1)/(2p)
" ( / ="/ 2s(+D) dx) '
FE

Since w"/(*) is locally integrable by the assumption w="?) € A, or
w " (28) ¢ A,, we get h,, — g in L} (R™) as m — oco. Hence we have g = h
and (3.9).

> (p—1)/(2p)
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Furthermore we have

2s(p—1)/n
(3.10) { i |22/ 1) g/ (2s(p=1) d:zc} < c||h|[4er/n=2 /R |(—A)2h[*w da.

We fix a positive number . Let xi,...,xny be functions in C§°(R")
such that
N
> i = Xill3s ) < £
i=1

Now the inequalities

N

D106 NIE <2 10— o HE+23 160 NI

N
(3.11) <2 i — GillPIFI1? + 2K fI* < 2(K +2)|| £

=1

hold for all f € L*(R™). On the other hand

N p/(p—1) 2s(p—1)/n
{/ (Z‘¢i—Xi|2> w2 =) dx}

=1
N (p—1)/p~ 2sp/n
< {Z ( / 165 — 22/ 5=/ 2sto-1) dx) }
i=1 "
N 2s(p—1)/n
< N2sp/n—1 Z ( i — Xi’2p/(p—1)wn/(25(p—1)) daz)
Bl i=1 /R
N
< CNQSP/"_IZ s — x| P/ / (=220, — (=A)*2 x| w da
]Rn
< CN2sp/n 1 23p/n 12/ s/2¢ ( s/QX‘ wdz

2 1.2
< cN2p/n=12s/n.

where we used (3.10). Therefore

N p/(p—1) 2s(p—1)/n
{ / (ZWQ) wn/@s(pl))dx}
R™ N\ =1

, ) p/(p—1) o 2s(p—1)/n
g{/( Sl +22|X1\) D st da?}
R'n

=1
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(r-1) (»—1)/p
< g¥op/n { / (ZM% xz|2) w/(2s(p_1))dx}
p/(p—1) (p—1)/p] 2P/"
{/ (Zbﬁ ) ! 2s(0-1) dm}
P , p/(p—1) Josr—1)) 2s(p—1)/n
comr{ [ () e
P N ) p/(p—1) /2s(p-1)) 2s(p—1)/n
+2 sp/n— {/ ( |XZ| ) wn s\p— dx}

(312) < 6245p/"_1N28p/n—1 2sp/n

+ C265p/n 2(K + 8 2sp/n 1 Z A)S/2Xi’2w dl‘,

=1

where we used (3.11) and (3.1) for ;. Since

Z/ 5/2 *w dx
<2Z/ Ay — (= )8/29251 wdx+22/ 5/2@ wdx
<2s—|—22/ S/2gzﬁZ wdz,

we have by (3.12)

{/ <i|¢z‘|2>p/(pl)w n/(2s(p=1)) dx}
R™ g

< C24sp/n—1N23p/n—1 2sp/n _}_026'sp/n—1(](_i_g)Zsp/n—l8

25(p—1)/n

—|—0265p/n 1(K +8 23p/n 1 Z A)s/2¢i‘2w dr.

=1

Since we can take ¢ arbitrary small, we conclude

N _ 2s(p—1)/n
(L Oy e o)
R™

N
< 626sp/n71K2sp/n71 Z \(—A)S/Q¢l|2w dr.
— Jrn

Hence we get (3.1).



78 K. TACHIZAWA

4. Proof of Lemma 3.3

The arguments of the proof are similar to those in [11] and [12]. First we
consider the case n > 2s. For A > 0 we set

(4.1) I, ={Q € Q: oz|Q|_25/"_1/ wdx —6|Q|_1/ vdr < —\}.
Q Q
Then we have for Q) € 7,
QI [ wde < Q1 [ (90 - N da,
Q Q

where
(B0 — X),(z) = mas{0, Bo(z) — A}.
Since p = n/(2s) +,7v € (0, 1], and

ﬁ_p’y/ / (Bv — NV @)=/ 29) a1\ < / vPw %) dy < oo,
0 ﬁ’U>)\ n

we have

/ (v — )\)i/(QS)w_"/(QS) dr < oo

for all A > 0. By the assumption w2 € A, 4y and (ii) of Proposi-
tion 2.1, there exists a £’ € (1,n/(2s)) such that w="/%) € A, .. We set

vi(a) = M((Bo = N)7) ().

Then

(4.2) / (v3)™ @y~ 29) g < cl/ (Bv — /\)Tfr/@s)w_”/@s) dr < o0

and v} € A; by (iii) of Proposition 2.1, where ¢; depends only on n,s and
A,,/(25)-constant of w ="/,

We can show that 7, is a finite set as follows. Let () € Z,. Then we have

a|Q|_25/”/wdx < / vy dx
Q Q

2s/n (n—2s)/n
< {/(U:k\)n/(Qs)wn/(Qs) diC} {/ wn/(nf2s) dSC} )
Q Q
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Since w25 € A, /(2s), the last quantity is bounded by

2s/n —2s/n
02{ / ()7 25) =/ (29) dx} ‘Q,< / -/ (29) dx)
Q Q

2s/n
<ef [@reumeral o [ wds
Q Q

where we used the inequality

1 1 2s/n
1< —/wdx (—/w_”/(25)d:13) )
Ql Jg Ql Jq

The above calculation says

1< 03/(1};)"/(23)11)"/(23) dx,
Q

where c3 = a9 and ¢ is the A, 5-constant of w="/(2%),
First we assume that Z, includes infinite disjoint cubes {Q;}32,. Then
we have

00221 < 203 (v5) D=/ dy < eq | (03) w9 dg < 0.
i=1 i=1 i Rr

This is a contradiction. Hence Z, does not include infinite disjoint cubes.

Next we assume that there exist infinite cubes {Q;}2; C Zy such that

Qi #Qj (i #j)and Q1 C Q2 C Q3 C ---. Let Q; be a half size dyadic
sub-cube of Q;,; such that Q; N Q; = ). Since Q;;; € Ty, we have

a|Qi+1]_23/”/ wdr < / vy dx.
Qit1 Qit1

/ vj{dmﬁ/ vidx§c4/ vy dz,
Qi+1 3Qi 2i

where we used the doubling property of v§. Since

Now we get

|Qi+1|—2s/n/ wdr > 2—25|c~2i|—25/n/~ wdx,
Qit1

i

05@1-\23/”/ wd:vg/ vy dz.

@ i

we get
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The similar calculation as before leads to

| < e / (02)/ 29y =/25) gy,

where ¢g = ¢’a=/2%) and ¢’ depends only on n, s, and w. Since {Ql 2, is
a set of infinite disjoint cubes, we have a contradiction as before. Hence any
sequence in 7, such that ); C Q2 C @3 C --- has a maximal element.
Similarly we can show that any sequence in Zy such that Q12> Q2D Q3D - - -
has a minimal element.

By these arguments the number of maximal cubes and minimal cubes
in Z, with respect to the inclusion relation is finite. Hence Z, is a finite set.
We remark that the non-decreasing rearrangement of Z in (3.6) is possible
because Z) is a finite set for every A > 0.

Let N(\) = tZ,, that is, the number of elements of Zy. Let Z, be the
set of all @) € Z, which satisfy the following condition: there exists a half
size dyadic sub-cube Q C @ such that Q ¢ Z, and Q does not contain any
dyadic cube in Z,. Then we have the following lemma.

Lemma 4.1. 7, < 247,.

Lemma 4.1 is proved in Rochberg and Taibleson’s paper ([9, Lemma 1]).

Let Q € ix\ and Q be a dyadic cube which satisfies the condition in the
definition of Z,. Then by similar calculations as before we get

1< 06/(v§)"/(28)w"/(23) dx.
Q

For every () € 7, we choose a @ as above. Let {Q]}]EJ be the set of all
such cubes Q. Then the cubes in {Q] }jes are mutually disjoint. Therefore
we get

ﬁz-)\ =1J < ZCG/ n/(QS w29 gy

jeJ

< CG/ (U;k\)n/(Zs)w—n/(ZS) dr < 07/ (Bv — )n/ 25) =1/ (29) dz,

where we used (4.2). Hence we have

N < 207/ (Bv — )n/ 20097/ 29) g,
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Therefore we conclude

Sl = [Ny i
k 0
< 207/ / (Bv — /\)z/(%)w*"/(zs) dzy A\ tdA
0 Bu>A

< Cg/ VP %) g,

where cg = a9 3P and ¢” depends only on n, s, p and w.

Next we consider the case n < 2s. We remark that v(z) > 0 for all
x € R™. In fact if v(zg) = 0 at some point zo, then by the definition of the
maximal operator we have V' =0, that is, ¢, =0,i =1,..., N.

We also remark that Z in (3.6) is not empty. In fact if Z is empty, then

we have
ﬁ/vdxgoz]@_%/”/wdx
Q Q

forall @ € Q. Let Qp € Q and Qg C Q1 C Q2 C - -+ be the infinite sequence
of dyadic cubes such that ();,; is the parent of @); for all « = 0,1,2,....
By (1.2) we have

|Q,~+1|_25/”/ wdr < |QZ~|_28/”/ wdx for all 7.
Qit+1 i
Hence we have
(4.3) ﬁ/ vdxﬁa]@or%/”/ wdx
Qi 0

for all 2. On the other hand, since v € A;, there exists a constant d > 1

such that
d/ vdr < / vdx
i Qit1

for all i (c.f. [5, p. 141]). Hence we have
di/ vdr < / vdx
0 %
and

lim vdr = 00,
1—00
Qi

which contradicts to (4.3). Therefore Z is not empty.
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Let @Q € Z and @' be the parent of (). Then we have

oz]Q’|_28/”/ wdxg04|Q\_28/"/wdac<ﬁ/vdx§6 vdz,

Q' Q Q Q'

where we used the assumption (1.2). Hence we have Q' € Z, which means
that 7 is an infinite set.

Lemma 4.2. There exists a ¢ > 0 such that
1 Y
Z (—/ vdm) < c/ VPw ™™ 29 dy,
where ¢ = a9 3729 qnd ¢ depends only on n,p,s and w.

This lemma is proved in [12, Lemma 3.3]. Let Z, be the set defined
by (4.1).

Lemma 4.3. For each A > 0, I is a finite set.

Lemma 4.3 is easily proved by Lemma 4.2 (cf. [12, Lemma 3.4]). By
Lemma 4.3 we can show that the non-decreasing rearrangement of 7 is pos-
sible.

By Lemma 4.2 we conclude

- - -1 dr — —2s/n—1 d )’Y
;qu cZ(ﬁ|Q| /Qv r—alQ| /Qw .

QeT
Y
SCZ (ﬂ]Q|_1/ vdx) gc/ vPw %) g,
QeI Q "

where ¢ = a3 3P and ¢’ depends only on n, p, s and w. This ends the
proof of Lemma 3.3.

5. Proof of Lemmas 3.1 and 3.2

In this section we give a proof of Lemmas 3.1 and 3.2. The following argu-
ment is in [11]. We use the following lemma.

Lemma 5.1. Let w € Ay and m € C"(R" \ {0}). Suppose that

a o
B = maxsu 7’2|”|_”/ (—) m
lo|<n 0<£) r<|é|<2r ¢ (S)

Then the operator T defined by ﬂ(f) = m(f)f(f) is bounded from L*(w)
to L*(w) and the operator norm ||T|| is bounded by CBY? where C is a
constant which depends only on n and w.

The proof of Lemma 5.1 is in [6] or [7].

2
d§ < .
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For v € 7Z we define ¢, (x) = 2™ (2"x). Let w € Ay and s > 0.
Frazier and Jawerth proved that there exist positive constants c; and cy
such that

c ~2s/n QL wdz Zsv| £ )2 Y w(z) dx
QI vy | wd ﬁ/Rn{Z2 % >r} (0)d

QeQ VEZ

1
<6y \@!23/"|<f,wg>12@/cgwdx

QeQ

for all f € C§°(R™) where ¢; and ¢y depend only on n, s and w ([3, Propo-
sition 10.14]).

We shall use the argument in Kurtz [6, p.242, p.243]. Let {r,(¢)} be the
Rademacher functions on [0, 1] indexed by v € Z and

Tif(@) =) r(t)f %, (x).

VEZL

Then T; satisfies the condition of Lemma 5.1. Hence
[ @ s <on [ |1e)Pul)
for all f € C5°(R™) where
M = max |07

and C is a positive constant depending only on n and w. By integrating
from 0 to 1 with respect to t, we get

/Rn { PO wymf}w(@ de < CM /R @) Pula)

By the duality argument and the fact w=! € A, we obtain

/Rn | (@) [fw(x) da < CM/Rn { L %(x)f}w(x) I

VEZL

for all f € C§°(R"). Hence we have

et [ APude < [ { S| renf fode<eor [ iftwan
R R L ez e

where c3 and ¢4 are constants depending only on n and w.
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Therefore we get

cs M1 ’(_A)S/Qf’%ud:c g/ {ZM_A)S/QJC*%/F}wdx
R VEZL

Rn

< ey M |(—A)s/2f}2w dx
Rn
for all f € C°(R™)(c.f.[11]).
Let ® € S(R") satisfy supp® C {¢ : 1/4 < |¢]| < 4} and ®(§) = 1 for
1/2 < €] < 2. For v € Z the multiplier m,(§) = 277 [£|°®(£/2Y) satisfies
the condition of Lemma 5.1. Hence we have

/n }(—A)S/Qf * wy(:p)|2w(:p) dr < c; /Rn 22s”|f * ¢V(:E)|2w(:p) dz,

where
= ¢g inf 9°||?
€5 = Co inf max 107 @[5
and cg is a positive constant depending only on n, s and w and the infimum
is taken over all possible ®.
Similarly there exists a positive constant ¢; depending only on n, s and w
such that

/Rn 22| f % ah, (x)|Pw(z) do < ¢ (=A)*2f 54, ()| Pw(z) da.

|
Rn

Hence we get

M [ AR Pwde < 3D QIS WP@ /dex

QEeQ
<coM [ (=22 f 2w dx

R’VL
for all f € C5°(R™), where ¢g and ¢y are positive constant depending only
on n,s and w. This ends the proof of Lemmas 3.1 and 3.2.
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