Weighted Sobolev-Lieb-Thirring inequalities

Kazuya Tachizawa

Abstract

We give a weighted version of the Sobolev-Lieb-Thirring inequality for suborthonormal functions. In the proof of our result we use φ -transform of Frazier-Jawerth.

1. Introduction

In 1994 Edmunds and Ilyin proved a generalization of the Sobolev-Lieb-Thirring inequality.

Theorem 1.1 ([2]). Let $n \in \mathbb{N}$, s > 0 and p with

$$\max\left(1, \frac{n}{2s}\right)$$

Then there exists a positive constant c = c(p, n, s) such that for every family $\{\phi_i\}_{i=1}^N$ in $H^s(\mathbb{R}^n)$ which is orthonormal in $L^2(\mathbb{R}^n)$, we have

(1.1)
$$\left\{ \int_{\mathbb{R}^n} \rho(x)^{p/(p-1)} dx \right\}^{2s(p-1)/n} \le c \sum_{i=1}^N \|(-\Delta)^{s/2} \phi_i\|^2$$

where

$$\rho(x) = \sum_{i=1}^{N} |\phi_i(x)|^2.$$

In this theorem $H^s(\mathbb{R}^n)$ denotes the Sobolev space of order s and $\|\cdot\|$ is the norm of $L^2(\mathbb{R}^n)$. In [8] Lieb and Thirring proved this theorem for s=1 and applied it to the problem of the stability of matter.

2000 Mathematics Subject Classification: 26D15, 42B25, 42C15.

Keywords: Sobolev-Lieb-Thirring inequalities, φ -transform, A_p -weights.

Ghidaglia, Marion and Temam proved (1.1) for $s \in \mathbb{N}$ under the suborthonormal condition on $\{\phi_i\}$, where $\{\phi_i\}_{i=1}^N$ in $L^2(\mathbb{R}^n)$ is called suborthonormal if the inequality

$$\sum_{i,j=1}^{N} \xi_i \overline{\xi_j}(\phi_i, \phi_j) \le \sum_{i=1}^{N} |\xi_i|^2$$

holds for all $\xi_i \in \mathbb{C}$, i = 1, ..., N ([4]). They applied the inequality (1.1) to the estimate of the dimension of attractors associated with partial differential equations (c.f. [13]). In this paper we shall give a weighted version of (1.1) under suborthonormal condition on $\{\phi_i\}$. In the proof of our theorem we shall use Frazier-Jawerth's φ -transform ([3]).

For the statement of our result we need to recall the definition of A_p -weights (c.f. [5], [10]). By a cube in \mathbb{R}^n we mean a cube which sides are parallel to coordinate axes. Let w be a non-negative, locally integrable function on \mathbb{R}^n . We say that w is an A_p -weight for 1 if there exists a positive constant <math>C such that

$$\frac{1}{|Q|} \int_{Q} w(x) \, dx \left(\frac{1}{|Q|} \int_{Q} w(x)^{-1/(p-1)} dx \right)^{p-1} \le C$$

for all cubes $Q \subset \mathbb{R}^n$. The infimum of the constant C is called the A_p -constant of w. For example, $w(x) = |x|^{\alpha}$ is an A_p -weight when $-n < \alpha < n(p-1)$.

We say that w is an A_1 -weight if there exists a positive constant C such that

$$\frac{1}{|Q|} \int_{Q} w(y) \, dy \le Cw(x) \qquad a.e. \ x \in Q$$

for all cubes $Q \subset \mathbb{R}^n$. The infimum of the constant C is called the A_1 -constant of w. Let A_p be the class of A_p -weights. The inclusion $A_p \subset A_q$ holds for p < q.

For a nonnegative, locally integrable function w on \mathbb{R}^n we define

$$L^p(w) = \left\{ f : \text{ measurable on } \mathbb{R}^n, \int_{\mathbb{R}^n} |f(x)|^p w(x) \, dx < \infty \right\}.$$

For $\nu \in \mathbb{Z}$ and $k \in \mathbb{Z}^n$ the cube Q defined by

$$Q = Q_{\nu k} = \{(x_1, \dots, x_n) : k_i \le 2^{\nu} x_i < k_i + 1, \ i = 1, \dots, n\}$$

is called a dyadic cube in \mathbb{R}^n . Let \mathcal{Q} be the set of all dyadic cubes in \mathbb{R}^n . For any $Q \in \mathcal{Q}$ there exists a unique $Q' \in \mathcal{Q}$ such that $Q \subset Q'$ and the side-length of Q' is double of that of Q. We call Q' the parent of Q.

For s>0 and $f\in C_0^\infty(\mathbb{R}^n)$ we define via inverse Fourier transform

$$(-\Delta)^{s/2} f(x) = \mathcal{F}^{-1}(|\xi|^s \hat{f})(x).$$

Let $w \in A_2$ and $\mathcal{H}^s(w)$ be the completion of $C_0^{\infty}(\mathbb{R}^n)$ with respect to the norm

$$||f||_{\mathcal{H}^{s}(w)} = \left\{ \int_{\mathbb{R}^{n}} |(-\Delta)^{s/2} f(x)|^{2} w(x) \, dx + ||f||^{2} \right\}^{1/2}.$$

We remark that for $f \in C_0^{\infty}(\mathbb{R}^n)$ we have

$$\int_{\mathbb{R}^n} |(-\Delta)^{s/2} f(x)|^2 w(x) \, dx < \infty$$

because

$$|(-\Delta)^{s/2}f(x)| \le \frac{c}{(1+|x|)^n} \quad (x \in \mathbb{R}^n)$$

and

$$\int_{\mathbb{R}^n} \frac{w(x)}{(1+|x|)^{2n}} \, dx < \infty$$

(c.f. [10, p. 209]).

Let $f \in \mathcal{H}^s(w)$ and $\{f_i\}_{i=1}^{\infty}$ be a sequence in $C_0^{\infty}(\mathbb{R}^n)$ such that

$$||f - f_i||_{\mathcal{H}^s(w)} \to 0 \ (i \to \infty).$$

This means that there exist $g_1 \in L^2(\mathbb{R}^n)$ and $g_2 \in L^2(w)$ such that

$$||g_1 - f_i|| \to 0$$
 and $\int_{\mathbb{R}^n} |g_2(x) - (-\Delta)^{s/2} f_i(x)|^2 w(x) dx \to 0$

as $i \to \infty$. We denote $(-\Delta)^{s/2} f = g_2$. We remark that $g_1 \equiv 0$ means $g_2 \equiv 0$. In fact, for any $\varphi \in C_0^{\infty}(\mathbb{R}^n)$, we have

$$\int_{\mathbb{R}^n} g_2 \overline{\varphi} \, dx = \lim_{i \to \infty} \int_{\mathbb{R}^n} (-\Delta)^{s/2} f_i \overline{\varphi} \, dx = \lim_{i \to \infty} \int_{\mathbb{R}^n} f_i \overline{(-\Delta)^{s/2} \varphi} \, dx = 0.$$

Hence we have $g_2 \equiv 0$. This means that we can identify $\mathcal{H}^s(w)$ as a subspace of $L^2(\mathbb{R}^n)$.

The following is the main result of this paper.

Theorem 1.2. Let $n \in \mathbb{N}$, s > 0, and

$$\max\left(1, \frac{n}{2s}\right)$$

Let $w \in A_2$. If 2s < n, then we assume that $w^{-n/(2s)} \in A_{n/(2s)}$. If $2s \ge n$, then we assume that $w^{-n/(2s)} \in A_p$ and

$$(1.2) \qquad \int_{Q'} w \, dx \le 2^{2s} \int_{Q} w \, dx$$

for all dyadic cubes $Q \in \mathcal{Q}$ and its parent Q'.

Then there exists a positive constant c such that for every family $\{\phi_i\}_{i=1}^N$ in $\mathcal{H}^s(w)$ which is suborthonormal in $L^2(\mathbb{R}^n)$, we have

$$\left\{ \int_{\mathbb{R}^n} \rho(x)^{p/(p-1)} w(x)^{n/(2s(p-1))} dx \right\}^{2s(p-1)/n} \le c \sum_{i=1}^N \int_{\mathbb{R}^n} \left| (-\Delta)^{s/2} \phi_i(x) \right|^2 w(x) dx,$$

where

$$\rho(x) = \sum_{i=1}^{N} |\phi_i(x)|^2$$

and c depends only on n, s, p, A_2 -constant of w, and $A_{n/(2s)}$ or A_p -constant of $w^{-n/(2s)}$.

When 2s < n, an example of weight function w is given by $w(x) = |x|^{\alpha}$ for $-n + 2s < \alpha < 2s$. When 2s > n, an example of weight function w is given by $w(x) = |x|^{\alpha}$ for $0 \le \alpha < \min\{2s - n, n\}$ (c.f. [12, Section 4]). When 2s = n, the condition (1.2) means w is equivalent to a constant almost everywhere (c.f. [12, Proposition 4.1]).

2. Preliminaries

Let ψ be a function which satisfies the following conditions.

- (A1) $\psi \in \mathcal{S}(\mathbb{R}^n)$.
- (A2) supp $\hat{\psi} \subset \{\xi \in \mathbb{R}^n : \frac{1}{2} \le |\xi| \le 2\}$
- (A3) $|\hat{\psi}(\xi)| \ge c > 0$ if $\frac{3}{5} \le |\xi| \le \frac{5}{3}$.

(A4)
$$\sum_{\nu \in \mathbb{Z}} |\hat{\psi}(2^{\nu}\xi)|^2 = 1 \text{ for all } \xi \neq 0.$$

For $\nu \in \mathbb{Z}, k \in \mathbb{Z}^n$ and $Q = Q_{\nu k}$, we set

$$\psi_Q(x) = 2^{\nu n/2} \psi(2^{\nu} x - k) \quad (x \in \mathbb{R}^n).$$

Let M be the Hardy-Littlewood maximal operator, that is,

$$M(f)(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_{Q} |f(y)| dy,$$

where f is a locally integrable function on \mathbb{R}^n and the supremum is taken over all cubes Q which contain x.

Proposition 2.1. (i) Let 1 and <math>w be a non-negative locally integrable function on \mathbb{R}^n . Then there exists a positive constant c such that

$$\int_{\mathbb{R}^n} M(f)^p w \, dx \le c \int_{\mathbb{R}^n} |f|^p w \, dx$$

for all $f \in L^p(w)$ if and only if $w \in A_p$. The constant c depends only on n, p and A_p -constant of w.

- (ii) Let $1 and <math>w \in A_p$. Then there exists a $q \in (1,p)$ such that $w \in A_q$.
- (iii) Let $0 < \tau < 1$ and f be a locally integrable function on \mathbb{R}^n such that $M(f)(x) < \infty$ a.e.. Then $(M(f))^{\tau} \in A_1$ and the A_1 -constant of $(M(f))^{\tau}$ depends only on n and τ .
- (iv) Let $1 \leq p < \infty$ and $w \in A_p$. Then there exists a positive constant c such that

$$\int_{2Q} w \, dx \le c \int_{Q} w \, dx$$

for all cubes $Q \in \mathbb{R}^n$, where 2Q denotes the double of Q and c depend only on n and A_p -constant of w.

The proofs of these facts are in [5, Chapter IV] or [10, Chapter V].

3. Proof of Theorem 1.2

The suborthonormal condition on $\{\phi_i\}$ is equivalent to the inequality

$$\sum_{i=1}^{N} |(\phi_i, f)|^2 \le ||f||^2$$

for all $f \in L^2(\mathbb{R}^n)$ (c.f.[1, p57]). We shall prove the inequality

$$\left\{ \int_{\mathbb{R}^n} \rho(x)^{p/(p-1)} w(x)^{n/(2s(p-1))} dx \right\}^{2s(p-1)/n} \\
\leq cK^{2sp/n-1} \sum_{i=1}^N \int_{\mathbb{R}^n} \left| (-\Delta)^{s/2} \phi_i(x) \right|^2 w(x) dx$$

under the assumption

(3.2)
$$\sum_{i=1}^{N} |(\phi_i, f)|^2 \le K ||f||^2$$

for all $f \in L^2(\mathbb{R}^n)$ where K is a positive constant.

This is equivalent to the statement of Theorem 1.2. We remark that K may depend on $\{\phi_i\}$. For example, the inequality (3.1) says that

$$(3.3) \left\{ \int_{\mathbb{R}^n} |\phi|^{2p/(p-1)} w^{n/(2s(p-1))} dx \right\}^{2s(p-1)/n} \le c \|\phi\|^{4sp/n-2} \int_{\mathbb{R}^n} \left| (-\Delta)^{s/2} \phi \right|^2 w dx$$

holds for all $\phi \in \mathcal{H}^s(w)$ under suitable condition on s, p, n and w because

$$|(\phi, f)|^2 < \|\phi\|^2 \|f\|^2$$

for all $f \in L^2(\mathbb{R}^n)$.

First we assume $\phi_i \in C_0^{\infty}(\mathbb{R}^n), i = 1, \dots, N$. Let

$$V(x) = \delta_1 \rho(x)^{1/(p-1)} w(x)^{n/(2s(p-1))}$$

where the value of the constant $\delta_1 > 0$ will be given later. Since

$$\rho(x) = \sum_{i=1}^{N} |\phi_i(x)|^2$$

is a bounded function with compact support and $w^{n/(2s(p-1))}$ is locally integrable by the assumption $w^{-n/(2s)} \in A_p$, we have

$$\int_{\mathbb{R}^n} V^p w^{-n/(2s)} \, dx < \infty.$$

We may also assume that

$$0 < \int_{\mathbb{R}^n} V^p w^{-n/(2s)} \, dx.$$

By (ii) of Proposition 2.1 there exists a constant κ such that

$$1 < \kappa < p$$
 and $w^{-n/(2s)} \in A_{p/\kappa}$.

We set

$$v(x) = M(V^{\kappa})(x)^{1/\kappa}.$$

Then (i) of Proposition 2.1 leads to

$$(3.4) \int_{\mathbb{R}^n} v^p w^{-n/(2s)} dx = \int_{\mathbb{R}^n} M(V^{\kappa})^{p/\kappa} w^{-n/(2s)} dx \le c_1 \int_{\mathbb{R}^n} V^p w^{-n/(2s)} dx < \infty.$$

Furthermore v is an A_1 -weight by (iii) of Proposition 2.1.

We have the following lemmas.

Lemma 3.1. For s > 0 and $w \in A_2$ there exists a positive constant α such that

$$\alpha \sum_{Q \in \mathcal{Q}} |Q|^{-2s/n} |(f, \psi_Q)|^2 \frac{1}{|Q|} \int_Q w \, dx \le \int_{\mathbb{R}^n} \left| (-\Delta)^{s/2} f \right|^2 w \, dx$$

for all $f \in C_0^{\infty}(\mathbb{R}^n)$, where α is given by

$$\alpha^{-1} = c \max_{|\sigma| \le n} \|\partial^{\sigma} \hat{\psi}\|_{\infty}^{2}$$

and c is a constant depending only on n, s and A_2 -constant of w.

Lemma 3.2. For $v \in A_2$ there exist positive constants β and β' such that

$$\beta' \sum_{Q \in \mathcal{Q}} |(f, \psi_Q)|^2 \frac{1}{|Q|} \int_Q v \, dx \le \int_{\mathbb{R}^n} |f|^2 v \, dx \le \beta \sum_{Q \in \mathcal{Q}} |(f, \psi_Q)|^2 \frac{1}{|Q|} \int_Q v \, dx$$

for all $f \in C_0^{\infty}(\mathbb{R}^n)$, where β is given by

$$\beta = c \max_{|\sigma| \le n} \|\partial^{\sigma} \hat{\psi}\|_{\infty}^{2}$$

and c is a constant depending only on n and A_2 -constant of v.

The proof of Lemmas 3.1 and 3.2 are in [11, Prop. 2.2 and Lemma 3.2]. We shall give the proof in Section 5 for the reader's convenience because the dependence of ψ in α and β is not explained in [11].

For $f \in C_0^{\infty}(\mathbb{R}^n)$ we have

$$\int_{\mathbb{R}^n} |f|^2 V \, dx \le \int_{\mathbb{R}^n} |f|^2 v \, dx \le \beta \sum_{Q \in \mathcal{Q}} |(f, \psi_Q)|^2 \frac{1}{|Q|} \int_Q v \, dx,$$

where we used Lemma 3.2. Hence by Lemma 3.1

$$\int_{\mathbb{R}^n} \left| (-\Delta)^{s/2} f \right|^2 w \, dx - \int_{\mathbb{R}^n} V |f|^2 \, dx$$

$$(3.5) \geq \alpha \sum_{Q \in \mathcal{Q}} |Q|^{-2s/n} |(f, \psi_Q)|^2 \frac{1}{|Q|} \int_Q w \, dx - \beta \sum_{Q \in \mathcal{Q}} |(f, \psi_Q)|^2 \frac{1}{|Q|} \int_Q v \, dx.$$

Now we set

(3.6)
$$\mathcal{I} = \left\{ Q \in \mathcal{Q} : \beta \int_{\mathcal{Q}} v \, dx > \alpha |Q|^{-2s/n} \int_{\mathcal{Q}} w \, dx \right\}.$$

Let $\{\mu_k\}_{1\leq k}$ be the non-decreasing rearrangement of

$$\left\{\alpha|Q|^{-2s/n-1}\int_{Q}w\,dx-\beta|Q|^{-1}\int_{Q}v\,dx\right\}_{Q\in\mathcal{I}}.$$

We will show that this rearrangement is possible in the proof of Lemma 3.3.

When

$$\mu_k = \alpha |Q|^{-2s/n-1} \int_Q w \, dx - \beta |Q|^{-1} \int_Q v \, dx,$$

we define $\Psi_k = \psi_Q$. Then we have by (3.5)

$$(3.7) \sum_{i=1}^{N} \int_{\mathbb{R}^{n}} |(-\Delta)^{s/2} \phi_{i}|^{2} w \, dx - \sum_{i=1}^{N} \int_{\mathbb{R}^{n}} V |\phi_{i}|^{2} \, dx$$

$$\geq \sum_{i=1}^{N} \sum_{Q \in \mathcal{Q}} |(\phi_{i}, \psi_{Q})|^{2} \left\{ \alpha |Q|^{-2s/n-1} \int_{Q} w \, dx - \beta |Q|^{-1} \int_{Q} v \, dx \right\}$$

$$\geq \sum_{i=1}^{N} \sum_{k} \mu_{k} |(\phi_{i}, \Psi_{k})|^{2} = \sum_{k} \mu_{k} \sum_{i=1}^{N} |(\phi_{i}, \Psi_{k})|^{2}$$

$$\geq -K \|\psi\|^{2} \sum_{k} |\mu_{k}| \geq -K \|\psi\|^{2} \left(\sum_{k} |\mu_{k}|^{\gamma} \right)^{1/\gamma},$$

$$(3.8)$$

where $\gamma = p - n/(2s) \in (0,1]$ and we used (3.2).

Now the following lemma holds.

Lemma 3.3.

$$\sum_{k} |\mu_k|^{\gamma} \le c \int_{\mathbb{R}^n} v^p w^{-n/(2s)} \, dx,$$

where c is given by

$$c = c' \max_{|\sigma| \le n} \|\partial^{\sigma} \hat{\psi}\|_{\infty}^{n/s + 2p}$$

and c' depends only on n, s, p and w.

The proof of this lemma will be given in Section 4. By Lemma 3.3 and (3.4) the last quantity in (3.8) is estimated from below by

$$-cK \left(\int_{\mathbb{R}^n} V^p w^{-n/(2s)} dx \right)^{1/\gamma}$$

$$= -cK \delta_1^{p/(p-n/(2s))} \left(\int_{\mathbb{R}^n} \rho^{p/(p-1)} w^{n/(2s(p-1))} dx \right)^{1/(p-n/(2s))}$$

where

$$c = c' \|\psi\|^2 \max_{|\sigma| \le n} \|\partial^{\sigma} \hat{\psi}\|_{\infty}^{(4ps+2n)/(2ps-n)}$$

and c' depends only on n, s, p and w. We may take the infimum of the above constant with respect to possible ψ and replace c by this infimum.

Let

$$\delta_1 = \delta_2 K^{1-2sp/n} \left(\int_{\mathbb{R}^n} \rho^{p/(p-1)} w^{n/(2s(p-1))} dx \right)^{2s(p-n/(2s)-1)/n},$$

where δ_2 is a positive constant. Then we have by (3.7)

$$\sum_{i=1}^{N} \int_{\mathbb{R}^{n}} |(-\Delta)^{s/2} \phi_{i}|^{2} w \, dx$$

$$\geq \delta_{2} K^{1-2sp/n} \left(\int_{\mathbb{R}^{n}} \rho^{p/(p-1)} w^{n/(2s(p-1))} \, dx \right)^{2s(p-1)/n}$$

$$- cK \delta_{2}^{p/(p-n/(2s))} K^{-2sp/n} \left(\int_{\mathbb{R}^{n}} \rho^{p/(p-1)} w^{n/(2s(p-1))} \, dx \right)^{2s(p-1)/n}$$

$$= \{ \delta_{2} - c \delta_{2}^{p/(p-n/(2s))} \} K^{1-2sp/n} \left(\int_{\mathbb{R}^{n}} \rho^{p/(p-1)} w^{n/(2s(p-1))} \, dx \right)^{2s(p-1)/n}.$$

If we take δ_2 small enough, then we get the inequality (3.1) because 1 < p/(p - n/(2s)).

Next we shall show (3.1) for $\phi_i \in \mathcal{H}^s(w)$, i = 1, ..., N. First we show

(3.9)
$$\mathcal{H}^{s}(w) \subset L^{2p/(p-1)}(w^{n/(2s(p-1))}).$$

Let $h \in \mathcal{H}^s(w)$. Then there exists a sequence $\{h_m\}_{m=1}^{\infty} \subset C_0^{\infty}(\mathbb{R}^n)$ such that $||h - h_m||_{\mathcal{H}^s(w)} \to 0 \ (m \to \infty)$. Since we proved that (3.3) holds for $h_m \in C_0^{\infty}(\mathbb{R}^n)$, we get

$$\left\{ \int_{\mathbb{R}^n} |h_m|^{2p/(p-1)} w^{n/(2s(p-1))} dx \right\}^{2s(p-1)/n} \le c \|h_m\|^{4sp/n-2} \int_{\mathbb{R}^n} \left| (-\Delta)^{s/2} h_m \right|^2 w dx,$$

where c does not depend on h_m . Since 4sp/n-2>0 and $\{h_m\}$ is a Cauchy sequence in $\mathcal{H}^s(w)$, the above inequality says that $\{h_m\}$ is a Cauchy sequence in $L^{2p/(p-1)}(w^{n/(2s(p-1))})$. Let g be the limit of $\{h_m\}$ in $L^{2p/(p-1)}(w^{n/(2s(p-1))})$. For any compact set E in \mathbb{R}^n we have

$$\int_{E} |g - h_{m}| dx \le \left(\int_{E} |g - h_{m}|^{2p/(p-1)} w^{n/(2s(p-1))} dx \right)^{(p-1)/(2p)} \times \left(\int_{E} w^{-n/(2s(p+1))} dx \right)^{(p+1)/(2p)}.$$

Since $w^{-n/(2s)}$ is locally integrable by the assumption $w^{-n/(2s)} \in A_{n/(2s)}$ or $w^{-n/(2s)} \in A_p$, we get $h_m \to g$ in $L^1_{loc}(\mathbb{R}^n)$ as $m \to \infty$. Hence we have g = h and (3.9).

Furthermore we have

$$(3.10) \left\{ \int_{\mathbb{R}^n} |h|^{2p/(p-1)} w^{n/(2s(p-1))} dx \right\}^{2s(p-1)/n} \le c ||h||^{4sp/n-2} \int_{\mathbb{R}^n} |(-\Delta)^{s/2} h|^2 w dx.$$

We fix a positive number ε . Let χ_1, \ldots, χ_N be functions in $C_0^{\infty}(\mathbb{R}^n)$ such that

$$\sum_{i=1}^{N} \|\phi_i - \chi_i\|_{\mathcal{H}^s(w)}^2 < \varepsilon.$$

Now the inequalities

$$\sum_{i=1}^{N} |(\chi_i, f)|^2 \le 2 \sum_{i=1}^{N} |(\chi_i - \phi_i, f)|^2 + 2 \sum_{i=1}^{N} |(\phi_i, f)|^2$$

$$(3.11) \qquad \le 2 \sum_{i=1}^{N} ||\chi_i - \phi_i||^2 ||f||^2 + 2K ||f||^2 \le 2(K + \varepsilon) ||f||^2$$

hold for all $f \in L^2(\mathbb{R}^n)$. On the other hand

$$\begin{split} & \left\{ \int_{\mathbb{R}^n} \left(\sum_{i=1}^N |\phi_i - \chi_i|^2 \right)^{p/(p-1)} w^{n/(2s(p-1))} \, dx \right\}^{2s(p-1)/n} \\ & \leq \left\{ \sum_{i=1}^N \left(\int_{\mathbb{R}^n} |\phi_i - \chi_i|^{2p/(p-1)} w^{n/(2s(p-1))} \, dx \right)^{(p-1)/p} \right\}^{2sp/n} \\ & \leq N^{2sp/n-1} \sum_{i=1}^N \left(\int_{\mathbb{R}^n} |\phi_i - \chi_i|^{2p/(p-1)} w^{n/(2s(p-1))} \, dx \right)^{2s(p-1)/n} \\ & \leq c N^{2sp/n-1} \sum_{i=1}^N \|\phi_i - \chi_i\|^{4sp/n-2} \int_{\mathbb{R}^n} \left| (-\Delta)^{s/2} \phi_i - (-\Delta)^{s/2} \chi_i \right|^2 w \, dx \\ & \leq c N^{2sp/n-1} \varepsilon^{2sp/n-1} \sum_{i=1}^N \int_{\mathbb{R}^n} \left| (-\Delta)^{s/2} \phi_i - (-\Delta)^{s/2} \chi_i \right|^2 w \, dx \\ & \leq c N^{2sp/n-1} \varepsilon^{2sp/n}, \end{split}$$

where we used (3.10). Therefore

$$\begin{split} \bigg\{ \int_{\mathbb{R}^n} \bigg(\sum_{i=1}^N |\phi_i|^2 \bigg)^{p/(p-1)} w^{n/(2s(p-1))} \, dx \bigg\}^{2s(p-1)/n} \\ & \leq \bigg\{ \int_{\mathbb{R}^n} \bigg(2 \sum_{i=1}^N |\phi_i - \chi_i|^2 + 2 \sum_{i=1}^N |\chi_i|^2 \bigg)^{p/(p-1)} w^{n/(2s(p-1))} \, dx \bigg\}^{2s(p-1)/n} \end{split}$$

$$\leq 2^{2sp/n} \left[\left\{ \int_{\mathbb{R}^n} \left(\sum_{i=1}^N |\phi_i - \chi_i|^2 \right)^{p/(p-1)} w^{n/(2s(p-1))} dx \right\}^{(p-1)/p} \\
+ \left\{ \int_{\mathbb{R}^n} \left(\sum_{i=1}^N |\chi_i|^2 \right)^{p/(p-1)} w^{n/(2s(p-1))} dx \right\}^{(p-1)/p} \right]^{2sp/n} \\
\leq 2^{4sp/n-1} \left\{ \int_{\mathbb{R}^n} \left(\sum_{i=1}^N |\phi_i - \chi_i|^2 \right)^{p/(p-1)} w^{n/(2s(p-1))} dx \right\}^{2s(p-1)/n} \\
+ 2^{4sp/n-1} \left\{ \int_{\mathbb{R}^n} \left(\sum_{i=1}^N |\chi_i|^2 \right)^{p/(p-1)} w^{n/(2s(p-1))} dx \right\}^{2s(p-1)/n} \\
+ 2^{4sp/n-1} e^{2sp/n} \\
+ c 2^{6sp/n-2} (K + \varepsilon)^{2sp/n-1} \sum_{i=1}^N \int_{\mathbb{R}^n} |(-\Delta)^{s/2} \chi_i|^2 w dx,$$

where we used (3.11) and (3.1) for χ_i . Since

$$\begin{split} & \sum_{i=1}^{N} \int_{\mathbb{R}^{n}} |(-\Delta)^{s/2} \chi_{i}|^{2} w \, dx \\ & \leq 2 \sum_{i=1}^{N} \int_{\mathbb{R}^{n}} \left| (-\Delta)^{s/2} \chi_{i} - (-\Delta)^{s/2} \phi_{i} \right|^{2} w \, dx + 2 \sum_{i=1}^{N} \int_{\mathbb{R}^{n}} \left| (-\Delta)^{s/2} \phi_{i} \right|^{2} w \, dx \\ & \leq 2 \varepsilon + 2 \sum_{i=1}^{N} \int_{\mathbb{R}^{n}} \left| (-\Delta)^{s/2} \phi_{i} \right|^{2} w \, dx, \end{split}$$

we have by (3.12)

$$\left\{ \int_{\mathbb{R}^n} \left(\sum_{i=1}^N |\phi_i|^2 \right)^{p/(p-1)} w^{n/(2s(p-1))} dx \right\}^{2s(p-1)/n} \\
\leq c 2^{4sp/n-1} N^{2sp/n-1} \varepsilon^{2sp/n} + c 2^{6sp/n-1} (K+\varepsilon)^{2sp/n-1} \varepsilon \\
+ c 2^{6sp/n-1} (K+\varepsilon)^{2sp/n-1} \sum_{i=1}^N \int_{\mathbb{R}^n} |(-\Delta)^{s/2} \phi_i|^2 w \, dx.$$

Since we can take ε arbitrary small, we conclude

$$\left\{ \int_{\mathbb{R}^n} \left(\sum_{i=1}^N |\phi_i|^2 \right)^{p/(p-1)} w^{n/(2s(p-1))} dx \right\}^{2s(p-1)/n} \\
\leq c 2^{6sp/n-1} K^{2sp/n-1} \sum_{i=1}^N \int_{\mathbb{R}^n} |(-\Delta)^{s/2} \phi_i|^2 w dx.$$

Hence we get (3.1).

4. Proof of Lemma 3.3

The arguments of the proof are similar to those in [11] and [12]. First we consider the case n > 2s. For $\lambda > 0$ we set

(4.1)
$$\mathcal{I}_{\lambda} = \{ Q \in \mathcal{Q} : \alpha |Q|^{-2s/n-1} \int_{Q} w \, dx - \beta |Q|^{-1} \int_{Q} v \, dx < -\lambda \}.$$

Then we have for $Q \in \mathcal{I}_{\lambda}$

$$\alpha |Q|^{-2s/n-1} \int_{Q} w \, dx < |Q|^{-1} \int_{Q} (\beta v - \lambda)_{+} \, dx,$$

where

$$(\beta v - \lambda)_{+}(x) = \max\{0, \beta v(x) - \lambda\}.$$

Since $p = n/(2s) + \gamma, \gamma \in (0, 1]$, and

$$\beta^{-p}\gamma \int_0^\infty \int_{\beta v > \lambda} (\beta v - \lambda)^{n/(2s)} w^{-n/(2s)} dx \lambda^{\gamma - 1} d\lambda \le \int_{\mathbb{R}^n} v^p w^{-n/(2s)} dx < \infty,$$

we have

$$\int_{\mathbb{R}^n} (\beta v - \lambda)_+^{n/(2s)} w^{-n/(2s)} dx < \infty$$

for all $\lambda > 0$. By the assumption $w^{-n/(2s)} \in A_{n/(2s)}$ and (ii) of Proposition 2.1, there exists a $\kappa' \in (1, n/(2s))$ such that $w^{-n/(2s)} \in A_{n/(2s\kappa')}$. We set

$$v_{\lambda}^*(x) = M((\beta v - \lambda)_+^{\kappa'})(x)^{1/\kappa'}.$$

Then

$$(4.2) \qquad \int_{\mathbb{R}^n} (v_{\lambda}^*)^{n/(2s)} w^{-n/(2s)} \, dx \le c_1 \int_{\mathbb{R}^n} (\beta v - \lambda)_+^{n/(2s)} w^{-n/(2s)} \, dx < \infty$$

and $v_{\lambda}^* \in A_1$ by (iii) of Proposition 2.1, where c_1 depends only on n, s and $A_{n/(2s)}$ -constant of $w^{-n/(2s)}$.

We can show that \mathcal{I}_{λ} is a finite set as follows. Let $Q \in \mathcal{I}_{\lambda}$. Then we have

$$\alpha |Q|^{-2s/n} \int_{Q} w \, dx \le \int_{Q} v_{\lambda}^{*} \, dx$$

$$\le \left\{ \int_{Q} (v_{\lambda}^{*})^{n/(2s)} w^{-n/(2s)} \, dx \right\}^{2s/n} \left\{ \int_{Q} w^{n/(n-2s)} \, dx \right\}^{(n-2s)/n}$$

Since $w^{-n/(2s)} \in A_{n/(2s)}$, the last quantity is bounded by

$$c_2 \left\{ \int_Q (v_\lambda^*)^{n/(2s)} w^{-n/(2s)} dx \right\}^{2s/n} |Q| \left(\int_Q w^{-n/(2s)} dx \right)^{-2s/n}$$

$$\leq c_2 \left\{ \int_Q (v_\lambda^*)^{n/(2s)} w^{-n/(2s)} dx \right\}^{2s/n} |Q|^{-2s/n} \int_Q w dx,$$

where we used the inequality

$$1 \le \frac{1}{|Q|} \int_{Q} w \, dx \left(\frac{1}{|Q|} \int_{Q} w^{-n/(2s)} \, dx \right)^{2s/n}.$$

The above calculation says

$$1 \le c_3 \int_Q (v_\lambda^*)^{n/(2s)} w^{-n/(2s)} dx,$$

where $c_3 = c'\alpha^{-n/(2s)}$ and c' is the $A_{n/(2s)}$ -constant of $w^{-n/(2s)}$.

First we assume that \mathcal{I}_{λ} includes infinite disjoint cubes $\{Q_i\}_{i=1}^{\infty}$. Then we have

$$\infty = \sum_{i=1}^{\infty} 1 \le \sum_{i=1}^{\infty} c_3 \int_{Q_i} (v_{\lambda}^*)^{n/(2s)} w^{-n/(2s)} dx \le c_3 \int_{\mathbb{R}^n} (v_{\lambda}^*)^{n/(2s)} w^{-n/(2s)} dx < \infty.$$

This is a contradiction. Hence \mathcal{I}_{λ} does not include infinite disjoint cubes.

Next we assume that there exist infinite cubes $\{Q_i\}_{i=1}^{\infty} \subset \mathcal{I}_{\lambda}$ such that $Q_i \neq Q_j \ (i \neq j)$ and $Q_1 \subset Q_2 \subset Q_3 \subset \cdots$. Let \tilde{Q}_i be a half size dyadic sub-cube of Q_{i+1} such that $Q_i \cap \tilde{Q}_i = \emptyset$. Since $Q_{i+1} \in \mathcal{I}_{\lambda}$, we have

$$\alpha |Q_{i+1}|^{-2s/n} \int_{Q_{i+1}} w \, dx \le \int_{Q_{i+1}} v_{\lambda}^* \, dx.$$

Now we get

$$\int_{Q_{i+1}} v_{\lambda}^* dx \le \int_{3\tilde{Q}_i} v_{\lambda}^* dx \le c_4 \int_{\tilde{Q}_i} v_{\lambda}^* dx,$$

where we used the doubling property of v_{λ}^* . Since

$$|Q_{i+1}|^{-2s/n} \int_{Q_{i+1}} w \, dx \ge 2^{-2s} |\tilde{Q}_i|^{-2s/n} \int_{\tilde{Q}_i} w \, dx,$$

we get

$$c_5|\tilde{Q}_i|^{-2s/n} \int_{\tilde{Q}_i} w \, dx \le \int_{\tilde{Q}_i} v_{\lambda}^* \, dx.$$

The similar calculation as before leads to

$$1 \le c_6 \int_{\tilde{O}_i} (v_{\lambda}^*)^{n/(2s)} w^{-n/(2s)} \, dx,$$

where $c_6 = c''\alpha^{-n/(2s)}$ and c'' depends only on n, s, and w. Since $\{\tilde{Q}_i\}_{i=1}^{\infty}$ is a set of infinite disjoint cubes, we have a contradiction as before. Hence any sequence in \mathcal{I}_{λ} such that $Q_1 \subset Q_2 \subset Q_3 \subset \cdots$ has a maximal element. Similarly we can show that any sequence in \mathcal{I}_{λ} such that $Q_1 \supset Q_2 \supset Q_3 \supset \cdots$ has a minimal element.

By these arguments the number of maximal cubes and minimal cubes in \mathcal{I}_{λ} with respect to the inclusion relation is finite. Hence \mathcal{I}_{λ} is a finite set. We remark that the non-decreasing rearrangement of \mathcal{I} in (3.6) is possible because \mathcal{I}_{λ} is a finite set for every $\lambda > 0$.

Let $N(\lambda) = \sharp \mathcal{I}_{\lambda}$, that is, the number of elements of \mathcal{I}_{λ} . Let $\tilde{\mathcal{I}}_{\lambda}$ be the set of all $Q \in \mathcal{I}_{\lambda}$ which satisfy the following condition: there exists a half size dyadic sub-cube $\tilde{Q} \subset Q$ such that $\tilde{Q} \notin \mathcal{I}_{\lambda}$ and \tilde{Q} does not contain any dyadic cube in \mathcal{I}_{λ} . Then we have the following lemma.

Lemma 4.1. $\sharp \mathcal{I}_{\lambda} \leq 2 \sharp \tilde{\mathcal{I}}_{\lambda}$.

Lemma 4.1 is proved in Rochberg and Taibleson's paper ([9, Lemma 1]).

Let $Q \in \tilde{\mathcal{I}}_{\lambda}$ and \tilde{Q} be a dyadic cube which satisfies the condition in the definition of $\tilde{\mathcal{I}}_{\lambda}$. Then by similar calculations as before we get

$$1 \le c_6 \int_{\tilde{Q}} (v_{\lambda}^*)^{n/(2s)} w^{-n/(2s)} \, dx.$$

For every $Q \in \tilde{\mathcal{I}}_{\lambda}$ we choose a \tilde{Q} as above. Let $\{\tilde{Q}_j\}_{j \in J}$ be the set of all such cubes \tilde{Q} . Then the cubes in $\{\tilde{Q}_j\}_{j \in J}$ are mutually disjoint. Therefore we get

$$\sharp \tilde{\mathcal{I}}_{\lambda} = \sharp J \le \sum_{j \in J} c_6 \int_{\tilde{Q}_j} (v_{\lambda}^*)^{n/(2s)} w^{-n/(2s)} dx$$

$$\le c_6 \int_{\mathbb{R}^n} (v_{\lambda}^*)^{n/(2s)} w^{-n/(2s)} dx \le c_7 \int_{\mathbb{R}^n} (\beta v - \lambda)_+^{n/(2s)} w^{-n/(2s)} dx,$$

where we used (4.2). Hence we have

$$N(\lambda) \le 2c_7 \int_{\mathbb{R}^n} (\beta v - \lambda)_+^{n/(2s)} w^{-n/(2s)} dx.$$

Therefore we conclude

$$\sum_{k} |\mu_{k}|^{\gamma} = \int_{0}^{\infty} \gamma \lambda^{\gamma - 1} N(\lambda) d\lambda$$

$$\leq 2c_{7} \int_{0}^{\infty} \int_{\beta v > \lambda} (\beta v - \lambda)_{+}^{n/(2s)} w^{-n/(2s)} dx \gamma \lambda^{\gamma - 1} d\lambda$$

$$\leq c_{8} \int_{\mathbb{R}^{n}} v^{p} w^{-n/(2s)} dx,$$

where $c_8 = c'''\alpha^{-n/(2s)}\beta^p$ and c''' depends only on n, s, p and w.

Next we consider the case $n \leq 2s$. We remark that v(x) > 0 for all $x \in \mathbb{R}^n$. In fact if $v(x_0) = 0$ at some point x_0 , then by the definition of the maximal operator we have $V \equiv 0$, that is, $\phi_i \equiv 0, i = 1, \ldots, N$.

We also remark that \mathcal{I} in (3.6) is not empty. In fact if \mathcal{I} is empty, then we have

$$\beta \int_{Q} v \, dx \le \alpha |Q|^{-2s/n} \int_{Q} w \, dx$$

for all $Q \in \mathcal{Q}$. Let $Q_0 \in \mathcal{Q}$ and $Q_0 \subset Q_1 \subset Q_2 \subset \cdots$ be the infinite sequence of dyadic cubes such that Q_{i+1} is the parent of Q_i for all $i = 0, 1, 2, \ldots$ By (1.2) we have

$$|Q_{i+1}|^{-2s/n} \int_{Q_{i+1}} w \, dx \le |Q_i|^{-2s/n} \int_{Q_i} w \, dx$$
 for all i

Hence we have

$$\beta \int_{Q_i} v \, dx \le \alpha |Q_0|^{-2s/n} \int_{Q_0} w \, dx$$

for all i. On the other hand, since $v \in A_1$, there exists a constant d > 1 such that

$$d\int_{Q_i} v \, dx \le \int_{Q_{i+1}} v \, dx$$

for all i (c.f. [5, p. 141]). Hence we have

$$d^i \int_{Q_0} v \, dx \le \int_{Q_i} v \, dx$$

and

$$\lim_{i \to \infty} \int_{O_i} v \, dx = \infty,$$

which contradicts to (4.3). Therefore \mathcal{I} is not empty.

Let $Q \in \mathcal{I}$ and Q' be the parent of Q. Then we have

$$\alpha |Q'|^{-2s/n} \int_{Q'} w \, dx \le \alpha |Q|^{-2s/n} \int_{Q} w \, dx < \beta \int_{Q} v \, dx \le \beta \int_{Q'} v \, dx,$$

where we used the assumption (1.2). Hence we have $Q' \in \mathcal{I}$, which means that \mathcal{I} is an infinite set.

Lemma 4.2. There exists a c > 0 such that

$$\sum_{Q \in \mathcal{I}} \left(\frac{1}{|Q|} \int_{Q} v \, dx \right)^{\gamma} \le c \int_{\mathbb{R}^{n}} v^{p} w^{-n/(2s)} \, dx,$$

where $c = c'\alpha^{-n/(2s)}\beta^{n/(2s)}$ and c' depends only on n, p, s and w.

This lemma is proved in [12, Lemma 3.3]. Let \mathcal{I}_{λ} be the set defined by (4.1).

Lemma 4.3. For each $\lambda > 0$, \mathcal{I}_{λ} is a finite set.

Lemma 4.3 is easily proved by Lemma 4.2 (cf. [12, Lemma 3.4]). By Lemma 4.3 we can show that the non-decreasing rearrangement of \mathcal{I} is possible.

By Lemma 4.2 we conclude

$$\sum_{k=1}^{\infty} |\mu_k|^{\gamma} = c \sum_{Q \in \mathcal{I}} \left(\beta |Q|^{-1} \int_Q v \, dx - \alpha |Q|^{-2s/n-1} \int_Q w \, dx \right)^{\gamma}$$

$$\leq c \sum_{Q \in \mathcal{I}} \left(\beta |Q|^{-1} \int_Q v \, dx \right)^{\gamma} \leq c \int_{\mathbb{R}^n} v^p w^{-n/(2s)} \, dx,$$

where $c = c''\alpha^{-n/(2s)}\beta^p$ and c'' depends only on n, p, s and w. This ends the proof of Lemma 3.3.

5. Proof of Lemmas 3.1 and 3.2

In this section we give a proof of Lemmas 3.1 and 3.2. The following argument is in [11]. We use the following lemma.

Lemma 5.1. Let $w \in A_2$ and $m \in C^n(\mathbb{R}^n \setminus \{0\})$. Suppose that

$$B = \max_{|\sigma| \le n} \sup_{0 < r} r^{2|\sigma| - n} \int_{r < |\xi| < 2r} \left| \left(\frac{\partial}{\partial \xi} \right)^{\sigma} m(\xi) \right|^{2} d\xi < \infty.$$

Then the operator T defined by $\widehat{Tf}(\xi) = m(\xi)\widehat{f}(\xi)$ is bounded from $L^2(w)$ to $L^2(w)$ and the operator norm ||T|| is bounded by $CB^{1/2}$ where C is a constant which depends only on n and w.

The proof of Lemma 5.1 is in [6] or [7].

For $\nu \in \mathbb{Z}$ we define $\psi_{\nu}(x) = 2^{n\nu}\psi(2^{\nu}x)$. Let $w \in A_2$ and $s \geq 0$. Frazier and Jawerth proved that there exist positive constants c_1 and c_2 such that

$$c_1 \sum_{Q \in \mathcal{Q}} |Q|^{-2s/n} |(f, \psi_Q)|^2 \frac{1}{|Q|} \int_Q w \, dx \le \int_{\mathbb{R}^n} \left\{ \sum_{\nu \in \mathbb{Z}} 2^{2s\nu} |f * \psi_\nu(x)|^2 \right\} w(x) \, dx$$
$$\le c_2 \sum_{Q \in \mathcal{Q}} |Q|^{-2s/n} |(f, \psi_Q)|^2 \frac{1}{|Q|} \int_Q w \, dx$$

for all $f \in C_0^{\infty}(\mathbb{R}^n)$ where c_1 and c_2 depend only on n, s and w ([3, Proposition 10.14]).

We shall use the argument in Kurtz [6, p.242, p.243]. Let $\{r_{\nu}(t)\}$ be the Rademacher functions on [0, 1] indexed by $\nu \in \mathbb{Z}$ and

$$T_t f(x) = \sum_{\nu \in \mathbb{Z}} r_{\nu}(t) f * \psi_{\nu}(x).$$

Then T_t satisfies the condition of Lemma 5.1. Hence

$$\int_{\mathbb{R}^n} |T_t f(x)|^2 w(x) \, dx \le CM \int_{\mathbb{R}^n} |f(x)|^2 w(x) \, dx,$$

for all $f \in C_0^{\infty}(\mathbb{R}^n)$ where

$$M = \max_{|\sigma| < n} \|\partial^{\sigma} \hat{\psi}\|_{\infty}^{2}$$

and C is a positive constant depending only on n and w. By integrating from 0 to 1 with respect to t, we get

$$\int_{\mathbb{R}^n} \left\{ \sum_{\nu \in \mathbb{Z}} \left| f * \psi_{\nu}(x) \right|^2 \right\} w(x) \, dx \le CM \int_{\mathbb{R}^n} \left| f(x) \right|^2 w(x) \, dx.$$

By the duality argument and the fact $w^{-1} \in A_2$ we obtain

$$\int_{\mathbb{R}^n} |f(x)|^2 w(x) \, dx \le CM \int_{\mathbb{R}^n} \left\{ \sum_{\nu \in \mathbb{Z}} |f * \psi_{\nu}(x)|^2 \right\} w(x) \, dx$$

for all $f \in C_0^{\infty}(\mathbb{R}^n)$. Hence we have

$$c_3 M^{-1} \int_{\mathbb{R}^n} |f|^2 w \, dx \le \int_{\mathbb{R}^n} \left\{ \sum_{\nu \in \mathbb{Z}} |f * \psi_{\nu}|^2 \right\} w \, dx \le c_4 M \int_{\mathbb{R}^n} |f|^2 w \, dx,$$

where c_3 and c_4 are constants depending only on n and w.

Therefore we get

$$c_{3}M^{-1} \int_{\mathbb{R}^{n}} |(-\Delta)^{s/2} f|^{2} w \, dx \le \int_{\mathbb{R}^{n}} \left\{ \sum_{\nu \in \mathbb{Z}} |(-\Delta)^{s/2} f * \psi_{\nu}|^{2} \right\} w \, dx$$
$$\le c_{4}M \int_{\mathbb{R}^{n}} |(-\Delta)^{s/2} f|^{2} w \, dx$$

for all $f \in C_0^{\infty}(\mathbb{R}^n)$ (c.f.[11]).

Let $\Phi \in \mathcal{S}(\mathbb{R}^n)$ satisfy supp $\Phi \subset \{\xi : 1/4 \le |\xi| \le 4\}$ and $\Phi(\xi) = 1$ for $1/2 \le |\xi| \le 2$. For $\nu \in \mathbb{Z}$ the multiplier $m_{\nu}(\xi) = 2^{-s\nu} |\xi|^s \Phi(\xi/2^{\nu})$ satisfies the condition of Lemma 5.1. Hence we have

$$\int_{\mathbb{R}^n} \left| (-\Delta)^{s/2} f * \psi_{\nu}(x) \right|^2 w(x) \, dx \le c_5 \int_{\mathbb{R}^n} 2^{2s\nu} \left| f * \psi_{\nu}(x) \right|^2 w(x) \, dx,$$

where

$$c_5 = c_6 \inf_{\Phi} \max_{|\sigma| \le n} \|\partial^{\sigma} \Phi\|_{\infty}^2$$

and c_6 is a positive constant depending only on n, s and w and the infimum is taken over all possible Φ .

Similarly there exists a positive constant c_7 depending only on n, s and w such that

$$\int_{\mathbb{R}^n} 2^{2s\nu} |f * \psi_{\nu}(x)|^2 w(x) \, dx \le c_7 \int_{\mathbb{R}^n} |(-\Delta)^{s/2} f * \psi_{\nu}(x)|^2 w(x) \, dx.$$

Hence we get

$$c_8 M^{-1} \int_{\mathbb{R}^n} |(-\Delta)^{s/2} f|^2 w \, dx \le \sum_{Q \in \mathcal{Q}} |Q|^{-2s/n} |(f, \psi_Q)|^2 \frac{1}{|Q|} \int_Q w \, dx$$
$$\le c_9 M \int_{\mathbb{R}^n} |(-\Delta)^{s/2} f|^2 w \, dx$$

for all $f \in C_0^{\infty}(\mathbb{R}^n)$, where c_8 and c_9 are positive constant depending only on n, s and w. This ends the proof of Lemmas 3.1 and 3.2.

References

- [1] Daubechies, I.: Ten lectures on wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics **61**. SIAM, 1992.
- [2] EDMUNDS, D. E. AND ILYIN, A. A.: On some multiplicative inequalities and approximation numbers. *Quart. J. Math. Oxford Ser.* (2) **45** (1994) 159–179.

- [3] Frazier, M. and Jawerth, B.: A discrete transform and decompositions of distribution spaces. *J. Funct. Anal.* **93** (1990), 34–170.
- [4] Ghidaglia, J.-M., Marion, M. and Temam, R.: Generalization of the Sobolev-Lieb-Thirring inequalities and applications to the dimension of attractors. *Differential Integral Equations* 1 (1988), 1–21.
- [5] GARCÍA-CUERVA, J. AND RUBIO DE FRANCIA, J. L.: Weighted norm inequalities and related topics. North-Holland Mathematics Studies 116. North-Holland Publishing Co., Amsterdam, 1985.
- [6] Kurtz, D. S.: Littlewood-Paley and multiplier theorems on weighted L^p spaces. Trans. Amer. Math. Soc. **259** (1980), 235–254.
- [7] KURTZ, D. S. AND WHEEDEN, R. L.: Results on weighted norm inequalities for multipliers. Trans. Amer. Math. Soc. 255 (1979), 343–362.
- [8] Lieb, E. and Thirring, W.: Inequalities for the moments of the eigenvalues of the Schrödinger hamiltonian and their relation to Sobolev inequalities. In *Studies in Mathematical Physics*, 269–303. Princeton University Press, 1976.
- [9] ROCHBERG, R. AND TAIBLESON, M.: An averaging operator on a tree. In Harmonic analysis and partial differential equations (El Escorial), 207–213. Lecture Notes in Math. 1384. Springer-Verlag, 1989.
- [10] Stein, E. M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton Mathematical Series 43. Monographs in Harmonic Analysis, III. Princeton University Press, 1993.
- [11] Tachizawa, K.: On the moments of negative eigenvalues of elliptic operators. J. Fourier Anal. Appl. 8 (2002), 233–244.
- [12] Tachizawa, K.: A generalization of the Lieb-Thirring inequalities in low dimensions. *Hokkaido Math. J.* **32** (2003), 383–399.
- [13] Temam, R.: Infinite-dimensional dynamical systems in mechanics and physics. Applied Mathematical Sciences 68. Springer, New York, 1988.

Recibido: 25 de octubre de 2002 Revisado: 22 de septiembre de 2003

> Kazuya Tachizawa Department of Mathematics Faculty of Science, Hokkaido University Sapporo 060-0810 Japan

tachizaw@math.sci.hokudai.ac.jp

The author was partly supported by the Grants-in-Aid for Scientific Research, The Ministry of Education, Science, Sports and Culture of Japan.