A note on the existence of H-bubbles via perturbation methods

Veronica Felli

Abstract

We study the problem of existence of surfaces in \mathbb{R}^3 parametrized on the sphere \mathbb{S}^2 with prescribed mean curvature H in the perturbative case, i.e. for $H = H_0 + \varepsilon H_1$, where H_0 is a nonzero constant, H_1 is a C^2 function and ε is a small perturbation parameter.

1. Introduction

In this paper we are interested in the existence of H-bubbles, namely of \mathbb{S}^2 -type parametric surfaces in \mathbb{R}^3 with prescribed mean curvature H. This geometrical problem is motivated by some models describing capillarity phenomena and has the following analytical formulation: given a function $H \in C^1(\mathbb{R}^3)$, find a smooth nonconstant function $\omega : \mathbb{R}^2 \to \mathbb{R}^3$ which is conformal as a map on \mathbb{S}^2 and solves the problem

$$\begin{cases} \Delta \omega = 2H(\omega) \, \omega_x \wedge \omega_y, & \text{in } \mathbb{R}^2, \\ \int_{\mathbb{R}^2} |\nabla \omega|^2 < +\infty, \end{cases}$$

where

$$\omega_x = \left(\frac{\partial \omega_1}{\partial x}, \frac{\partial \omega_2}{\partial x}, \frac{\partial \omega_3}{\partial x}\right), \qquad \omega_y = \left(\frac{\partial \omega_1}{\partial y}, \frac{\partial \omega_2}{\partial y}, \frac{\partial \omega_3}{\partial y}\right),
\Delta\omega = \omega_{xx} + \omega_{yy}, \qquad \nabla\omega = (\omega_x, \omega_y),$$

and \wedge denotes the exterior product in \mathbb{R}^3 .

Brezis and Coron [4] proved that for constant nonzero mean curvature $H(u) \equiv H_0$ the only nonconstant solutions are spheres of radius $|H_0|^{-1}$.

2000 Mathematics Subject Classification: 53A10, 35J50, 35B20.

Keywords: H-surfaces, nonlinear elliptic systems, perturbative methods.

While the Plateau and the Dirichlet problems have been largely studied both for H constant and for H nonconstant (see [3, 4, 10, 12, 13, 14, 15, 16]), problem (P_H) in the case of nonconstant H has been investigated only recently, see [5, 6, 7]. In [5] Caldiroli and Musina proved the existence of H-bubbles with minimal energy under the assumptions that $H \in C^1(\mathbb{R}^3)$ satisfies

(i)
$$\sup_{u \in \mathbb{R}^3} |\nabla H(u+\xi) \cdot u \, u| < 1$$
 for some $\xi \in \mathbb{R}^3$,

(ii)
$$H(u) \to H_{\infty}$$
 as $|u| \to \infty$ for some $H_{\infty} \in \mathbb{R}$,

(iii)
$$c_H = \inf_{\substack{u \in C_c^1(\mathbb{R}^2, \mathbb{R}^3) \\ u \neq 0}} \sup_{s>0} \mathcal{E}_H(su) < \frac{4\pi}{3H_\infty^2}$$

where

$$\mathcal{E}_H(u) = \frac{1}{2} \int_{\mathbb{R}^2} |\nabla u|^2 + 2 \int_{\mathbb{R}^2} Q(u) \cdot u_x \wedge u_y$$

and $Q: \mathbb{R}^3 \to \mathbb{R}^3$ is any vector field such that $\operatorname{div} Q = H$.

The perturbative method introduced by Ambrosetti and Badiale [1, 2] was used in [7] to treat the case in which H is a small perturbation of a constant, namely

$$H(u) = H_{\varepsilon}(u) = H_0 + \varepsilon H_1(u),$$

where $H_0 \in \mathbb{R} \setminus \{0\}$, $H_1 \in C^2(\mathbb{R}^3)$, and ε is a small real parameter. This method allows to find critical points of a functional f_{ε} of the type $f_{\varepsilon}(u) = f_0(u) - \varepsilon G(u)$ in a Banach space by studying a finite dimensional problem. More precisely, if the unperturbed functional f_0 has a finite dimensional manifold of critical points Z which satisfies a nondegeneracy condition, it is possible to prove, for $|\varepsilon|$ sufficiently small, the existence of a smooth function $\eta_{\varepsilon}(z): Z \to (T_z Z)^{\perp}$ such that any critical point $\bar{z} \in Z$ of the function

$$\Phi_{\varepsilon}: Z \to \mathbb{R}, \quad \Phi_{\varepsilon}(z) = f_{\varepsilon}(z + \eta_{\varepsilon}(z))$$

gives rise to a critical point $u_{\varepsilon} = \bar{z} + \eta_{\varepsilon}(\bar{z})$ of f_{ε} , i.e. the perturbed manifold $Z_{\varepsilon} := \{z + \eta_{\varepsilon}(z) : z \in Z\}$ is a natural constraint for f_{ε} . Furthermore Φ_{ε} can be expanded as

(1.1)
$$\Phi_{\varepsilon}(z) = b - \varepsilon \Gamma(z) + o(\varepsilon) \quad \text{as } \varepsilon \to 0$$

where $b = f_0(z)$ and Γ is the Melnikov function defined as the restriction of the perturbation G on Z, namely $\Gamma = G|_{Z}$. For problem $(P_{H_{\varepsilon}})$, Γ is given by

$$\Gamma: \mathbb{R}^3 \to \mathbb{R}, \quad \Gamma(p) = \int_{|p-q| < \frac{1}{|H_0|}} H_1(q) \, dq.$$

In [7] Caldiroli and Musina studied the functional Γ giving some existence results in the perturbative setting for problem $(P_{H_{\varepsilon}})$. They prove that for $|\varepsilon|$ small there exists a smooth H_{ε} -bubble if one of the following conditions holds

- 1) H_1 has a nondegenerate stationary point and $|H_0|$ is large;
- 2) $\max_{p \in \partial K} H_1(p) < \max_{p \in K} H_1(p)$ or $\min_{p \in \partial K} H_1(p) > \min_{p \in K} H_1(p)$ for some non-empty compact set $K \subset \mathbb{R}^3$ and $|H_0|$ is large;
- 3) $H_1 \in L^r(\mathbb{R}^3)$ for some $r \in [1, 2]$.

They prove that critical points of Γ give rise to solutions to $(P_{H_{\varepsilon}})$ for ε sufficiently small. Precisely the assumption that H_0 is large required in cases 1) and 2) ensures that if H_1 is not constant then Γ is not identically constant. If we let this assumption drop, it may happen that Γ is constant even if H_1 is not. This fact produces some loss of information because the first order expansion (1.1) is not sufficient to deduce the existence of critical points of Φ_{ε} from the existence of critical points of Γ . Instead of studying Γ we perform a direct study of Φ_{ε} which allows us to prove some new results. In the first one, we assume that H_1 vanishes at ∞ and has bounded gradient, and prove the existence of a solution without branch points. Let us recall that a branch point for a solution ω to (P_H) is a point where $\nabla \omega = 0$, i.e. a point where the surface parametrized by ω fails to be immersed.

Theorem 1.1 Let $H_0 \in \mathbb{R} \setminus \{0\}$, $H_1 \in C^2(\mathbb{R}^3)$ such that

$$(H1) \quad \lim_{|p| \to \infty} H_1(p) = 0;$$

$$(H2) \quad \nabla H_1 \in L^{\infty}(\mathbb{R}^3, \mathbb{R}^3).$$

$$(H2) \quad \nabla H_1 \in L^{\infty}(\mathbb{R}^3, \mathbb{R}^3).$$

Let $H_{\varepsilon} = H_0 + \varepsilon H_1$. Then for $|\varepsilon|$ sufficiently small there exists a smooth H_{ε} -bubble without branch points.

With respect to case 1) of [7] we require neither nondegeneracy of critical points of H_1 nor largeness of H_0 . With respect to case 2) we do not assume that H_0 is large; on the other hand our assumption (H1) implies 2). Moreover we do not assume any integrability condition of type 3). With respect to the result proved in [5], we have the same kind of behavior of H_1 at ∞ (see (ii) and assumption (H1)) but we do not need any assumption of type (iii); on the other hand in [5] it is not required that the prescribed curvature is a small perturbation of a constant.

The following results give some conditions on H_1 in order to have two or three solutions.

Theorem 1.2 Let $H_0 \in \mathbb{R} \setminus \{0\}$, $H_1 \in C^2(\mathbb{R}^3)$ such that (H_1) , (H_2) ,

- (H3) Hess $H_1(p)$ is positive definite for any $p \in B_{1/|H_0|}(0)$,
- (H4) $H_1(p) > 0 \text{ in } B_{1/|H_0|}(0),$

hold. Then for $|\varepsilon|$ sufficiently small there exist at least three smooth H_{ε} -bubbles without branch points.

Remark 1.3 If we assume (H1), (H2), and, instead of (H3) – (H4), that $H_1(0) > 0$ and Hess $H_1(0)$ is positive definite, then we can prove that for $|H_0|$ sufficiently large and $|\varepsilon|$ sufficiently small there exist at least three smooth H_{ε} -bubbles without branch points.

Theorem 1.4 Let $H_0 \in \mathbb{R} \setminus \{0\}$, $H_1 \in C^2(\mathbb{R}^3)$ such that (H1) and (H2) hold. Assume that there exist $p_1, p_2 \in \mathbb{R}^3$ such that

(H5)
$$\int_{B(p_1,1/|H_0|)} H_1(\xi) d\xi > 0 \quad and \quad \int_{B(p_2,1/|H_0|)} H_1(\xi) d\xi < 0.$$

Then for $|\varepsilon|$ sufficiently small there exist at least two smooth H_{ε} -bubbles without branch points.

Remark 1.5 If we assume (H1), (H2), and, instead of (H5), that there exist $p_1, p_2 \in \mathbb{R}^3$ such that $H_1(p_1) > 0$ and $H_1(p_2) < 0$, then we can prove that for $|H_0|$ sufficiently large and $|\varepsilon|$ sufficiently small there exist at least two smooth H_{ε} -bubbles without branch points.

The present paper is organized as follows. In Section 2 we introduce some notation and recall some known facts whereas Section 3 is devoted to the proof of Theorems 1.1, 1.2, and 1.4.

2. Notation and known facts

In the sequel we will take $H_0 = 1$; this is not restrictive since we can do the change $H_1(u) = H_0 \widetilde{H}_1(H_0 u)$. Hence we will always write

$$H_{\varepsilon}(u) = 1 + \varepsilon H(u),$$

where $H \in C^2(\mathbb{R}^3)$. Let us denote by ω the function $\omega : \mathbb{R}^2 \to \mathbb{S}^2$ defined as

$$\omega(x,y) = (\mu(x,y)x, \mu(x,y)y, 1 - \mu(x,y)), \text{ where } \mu(x,y) = \frac{2}{1 + x^2 + y^2}.$$

Note that ω is a conformal parametrization of the unit sphere and solves

(2.1)
$$\begin{cases} \Delta \omega = 2 \,\omega_x \wedge \omega_y & \text{on } \mathbb{R}^2 \\ \int_{\mathbb{R}^2} |\nabla \omega|^2 < +\infty. \end{cases}$$

Problem (2.1) has in fact a family of solutions of the form $\omega \circ \phi + p$ where $p \in \mathbb{R}^3$ and ϕ is any conformal diffeomorphism of $\mathbb{R}^2 \cup \{\infty\}$. For $s \in (1, +\infty)$, we will set $L^s := L^s(\mathbb{S}^2, \mathbb{R}^3)$, where any map $v \in L^s$ is identified with the map $v \circ \omega : \mathbb{R}^2 \to \mathbb{R}^3$ which satisfies

$$\int_{\mathbb{R}^2} |v \circ \omega|^s \mu^2 = \int_{\mathbb{S}^2} |v|^s.$$

We will use the same notation for v and $v \circ \omega$. By $W^{1,s}$ we denote the Sobolev space $W^{1,s}(\mathbb{S}^2, \mathbb{R}^3)$ endowed (according to the above identification) with the norm

$$||v||_{W^{1,s}} = \left[\int_{\mathbb{R}^2} |\nabla v|^s \mu^{2-s} \right]^{1/s} + \left[\int_{\mathbb{R}^2} |v|^s \mu^2 \right]^{1/s}.$$

If s' is the conjugate exponent of s, i.e. 1/s + 1/s' = 1, the duality product between $W^{1,s}$ and $W^{1,s'}$ is given by

$$\langle v, \varphi \rangle = \int_{\mathbb{R}^2} \nabla v \cdot \nabla \varphi + \int_{\mathbb{R}^2} v \cdot \varphi \, \mu^2 \quad \text{for any } v \in W^{1,s} \text{ and } \varphi \in W^{1,s'}.$$

Let Q be any smooth vector field on \mathbb{R}^3 such that $\operatorname{div} Q = H$. The energy functional associated to problem

$$\begin{cases} \Delta u = 2(1 + \varepsilon H(u)) u_x \wedge u_y, & \text{in } \mathbb{R}^2, \\ \int_{\mathbb{R}^2} |\nabla u|^2 < +\infty, \end{cases}$$

is given by

$$\mathcal{E}_{\varepsilon}(u) = \frac{1}{2} \int_{\mathbb{R}^2} |\nabla u|^2 + 2\mathcal{V}_1(u) + 2\varepsilon \mathcal{V}_H(u), \quad u \in W^{1,3},$$

where

$$\mathcal{V}_H(u) = \int_{\mathbb{R}^2} Q(u) \cdot u_x \wedge u_y$$

has the meaning of an algebraic volume enclosed by the surface parametrized by u with weight H (it is independent of the choice of Q); in particular

$$\mathcal{V}_1(u) = \frac{1}{3} \int_{\mathbb{R}^2} u \cdot u_x \wedge u_y.$$

In [7], Caldiroli and Musina studied some regularity properties of \mathcal{V}_H on the space $W^{1,3}$. In particular they proved the following properties.

a) For $H \in C^1(\mathbb{R}^3)$, the functional \mathcal{V}_H is of class C^1 on $W^{1,3}$ and the Fréchet differential of \mathcal{V}_H at $u \in W^{1,3}$ is given by

(2.2)
$$d\mathcal{V}_H(u)\varphi = \int_{\mathbb{R}^2} H(u) \varphi \cdot u_x \wedge u_y \quad \text{for any } \varphi \in W^{1,3}$$

and admits a unique continuous and linear extension on $W^{1,3/2}$ defined by (2.2). Moreover for every $u \in W^{1,3}$ there exists $\mathcal{V}'_H(u) \in W^{1,3}$ such that

(2.3)
$$\langle \mathcal{V}'_H(u), \varphi \rangle = \int_{\mathbb{R}^2} H(u) \varphi \cdot u_x \wedge u_y \text{ for any } \varphi \in W^{1,3/2}.$$

b) For $H \in C^2(\mathbb{R}^3)$, the map $\mathcal{V}_H': W^{1,3} \to W^{1,3}$ is of class C^1 and

$$\langle \mathcal{V}''_{H}(u) \cdot \eta, \varphi \rangle = \int_{\mathbb{R}^{2}} H(u) \varphi \cdot (\eta_{x} \wedge u_{y} + u_{x} \wedge \eta_{y}) + \int_{\mathbb{R}^{2}} (\nabla H(u) \cdot \eta) \varphi \cdot (u_{x} \wedge u_{y})$$
(2.4) for any $u, \eta \in W^{1,3}$ and $\varphi \in W^{1,3/2}$.

Hence for all $u \in W^{1,3}$, $\mathcal{E}'_{\varepsilon}(u) \in W^{1,3}$ and for any $\varphi \in W^{1,3/2}$

$$\langle \mathcal{E}'_{\varepsilon}(u), \varphi \rangle = \int_{\mathbb{R}^2} \nabla u \cdot \nabla \varphi + 2 \int_{\mathbb{R}^2} \varphi \cdot u_x \wedge u_y + 2\varepsilon \int_{\mathbb{R}^2} H(u) \varphi \cdot u_x \wedge u_y.$$

As remarked in [7], critical points of $\mathcal{E}_{\varepsilon}$ in $W^{1,3}$ give rise to bounded weak solutions to (P_{ε}) and hence by the regularity theory for H-systems (see [9]) to classical conformal solutions which are $C^{3,\alpha}$ as maps on \mathbb{S}^2 .

The unperturbed problem, i.e. (P_{ε}) for $\varepsilon = 0$, has a 9-dimensional manifold of solutions given by

$$Z = \{R\omega \circ L_{\lambda,\xi} + p : R \in SO(3), \ \lambda > 0, \ \xi \in \mathbb{R}^2, \ p \in \mathbb{R}^3\}$$

where $L_{\lambda,\xi}z = \lambda(z - \xi)$ (see [11]). In [11] the nondegeneracy condition $T_uZ = \ker \mathcal{E}_0''(u)$ for any $u \in Z$ (where T_uZ denotes the tangent space of Z at u) is proved (see also [8]).

As observed in [7], in performing the finite dimensional reduction, the dependence on the 6-dimensional conformal group can be neglected since any H-system is conformally invariant. Hence we look for critical points of $\mathcal{E}_{\varepsilon}$ constrained on a three-dimensional manifold Z_{ε} just depending on the translation variable $p \in \mathbb{R}^3$.

3. Proof of Theorem 1.1

We start by constructing a perturbed manifold which is a natural constraint for $\mathcal{E}_{\varepsilon}$.

Lemma 3.1 Assume $H \in C^2(\mathbb{R}^3) \cap L^{\infty}(\mathbb{R}^3)$ and $\nabla H \in L^{\infty}(\mathbb{R}^3, \mathbb{R}^3)$. Then there exist $\varepsilon_0 > 0$, $C_1 > 0$, and a C^1 map $\eta : (-\varepsilon_0, \varepsilon_0) \times \mathbb{R}^3 \to W^{1,3}$ such that for any $p \in \mathbb{R}^3$ and $\varepsilon \in (-\varepsilon_0, \varepsilon_0)$

$$\mathcal{E}_{\varepsilon}'(\omega + p + \eta(\varepsilon, p)) \in T_{\omega}Z,$$

$$(3.2) \eta(\varepsilon, p) \in (T_{\omega}Z)^{\perp},$$

$$(3.3) \qquad \int_{\mathbb{S}^2} \eta(\varepsilon, p) = 0,$$

Moreover if we assume that the limit of H at ∞ exists and

$$\lim_{|p| \to \infty} H(p) = 0$$

we have that $\eta(\varepsilon, p)$ converges to 0 in $W^{1,3}$ as $|p| \to \infty$ uniformly with respect to $|\varepsilon| < \varepsilon_0$.

Proof. Let us define the map

$$F = (F_1, F_2) : \mathbb{R} \times \mathbb{R}^3 \times W^{1,3} \times \mathbb{R}^6 \times \mathbb{R}^3 \to W^{1,3} \times \mathbb{R}^6 \times \mathbb{R}^3$$

given by

$$\langle F_1(\varepsilon, p, \eta, \lambda, \alpha), \varphi \rangle = \langle \mathcal{E}'_{\varepsilon}(\omega + p + \eta), \varphi \rangle - \sum_{i=1}^6 \lambda_i \int_{\mathbb{R}^2} \nabla \varphi \cdot \nabla \tau_i + \alpha \cdot \int_{\mathbb{S}^2} \varphi,$$

for all $\varphi \in W^{1,3/2}$ and

$$F_2(\varepsilon, p, \eta, \lambda, \alpha) = \left(\int_{\mathbb{R}^2} \nabla \eta \cdot \nabla \tau_1, \dots, \int_{\mathbb{R}^2} \nabla \eta \cdot \nabla \tau_6, \int_{\mathbb{S}^2} \eta \right)$$

where τ_1, \ldots, τ_6 are chosen in $T_{\omega}Z$ such that

$$\int_{\mathbb{R}^2} \nabla \tau_i \cdot \nabla \tau_j = \delta_{ij} \quad \text{and} \quad \int_{\mathbb{S}^2} \tau_i = 0 \quad i, j = 1, \dots, 6$$

so that $T_{\omega}Z$ is spanned by $\tau_1, \ldots, \tau_6, e_1, e_2, e_3$. It has been proved by Caldiroli and Musina [7] that F is of class C^1 and that the linear continuous operator

$$\mathcal{L}: W^{1,3} \times \mathbb{R}^6 \times \mathbb{R}^3 \to W^{1,3} \times \mathbb{R}^6 \times \mathbb{R}^3$$
$$\mathcal{L} = \frac{\partial F}{\partial (n, \lambda, \alpha)} (0, p, 0, 0, 0)$$

i.e.

$$\langle \mathcal{L}_1(v,\mu,\beta), \varphi \rangle = \langle \mathcal{E}_0''(\omega) \cdot v, \varphi \rangle - \sum_{i=1}^6 \mu_i \int_{\mathbb{R}^2} \nabla \varphi \cdot \tau_i - \beta \int_{\mathbb{S}^2} \varphi$$

for all $\varphi \in W^{1,3/2}$ and

$$\mathcal{L}_2(v,\mu,\beta) = \left(\int_{\mathbb{R}^2} \nabla v \cdot \nabla \tau_1, \dots, \int_{\mathbb{R}^2} \nabla v \cdot \nabla \tau_6, \int_{\mathbb{S}^2} v\right)$$

is invertible. Caldiroli and Musina applied the Implicit Function Theorem to solve the equation $F(\varepsilon, p, \eta, \lambda, \alpha) = 0$ locally with respect to the variables ε, p , thus finding a C^1 -function η on a neighborhood $(-\varepsilon_0, \varepsilon_0) \times B_R \subset \mathbb{R} \times \mathbb{R}^3$ satisfying (3.1), (3.2), and (3.3). We will use instead the Contraction Mapping Theorem, which allows to prove the existence of such a function η globally on \mathbb{R}^3 , thanks to the fact that the operator \mathcal{L} does not depend on p and hence it is invertible uniformly with respect to $p \in \mathbb{R}^3$.

We have that $F(\varepsilon, p, \eta, \lambda, \alpha) = 0$ if and only if (η, λ, α) is a fixed point of the map $T_{\varepsilon,p}$ defined as

$$T_{\varepsilon,p}(\eta,\lambda,\alpha) = -\mathcal{L}^{-1}F(\varepsilon,p,\eta,\lambda,\alpha) + (\eta,\lambda,\alpha).$$

To prove the existence of η satisfying (3.1), (3.2), and (3.3), it is enough to prove that $T_{\varepsilon,p}$ is a contraction in some ball $B_{\rho}(0)$ with $\rho = \rho(\varepsilon) > 0$ independent of p, whereas the regularity of $\eta(\varepsilon,p)$ follows from the Implicit Function Theorem.

We have that if $\|\eta\|_{W^{1,3}} \leq \rho$

$$||T_{\varepsilon,p}(\eta,\lambda,\alpha)||_{W^{1,3}\times\mathbb{R}^{6}\times\mathbb{R}^{3}} \leq C_{2}||F(\varepsilon,p,\eta,\lambda,\alpha) - \mathcal{L}(\eta,\lambda,\alpha)||_{W^{1,3}\times\mathbb{R}^{6}\times\mathbb{R}^{3}} \\ \leq C_{2}||\mathcal{E}'_{\varepsilon}(\omega+p+\eta) - \mathcal{E}''_{0}(\omega)\eta||_{W^{1,3}} \\ \leq C_{2}(||\mathcal{E}'_{0}(\omega+\eta) - \mathcal{E}''_{0}(\omega)\eta||_{W^{1,3}} + 2|\varepsilon|||\mathcal{V}'_{H}(\omega+p+\eta)||_{W^{1,3}}) \\ \leq C_{2}\left(\int_{0}^{1}||\mathcal{E}''_{0}(\omega+t\eta) - \mathcal{E}''_{0}(\omega)||_{W^{1,3/2}}dt||\eta||_{W^{1,3}} + 2|\varepsilon|||\mathcal{V}'_{H}(\omega+p+\eta)||_{W^{1,3}}\right) \\ \leq C_{2}\rho \sup_{\|\eta\|_{W^{1,3}}\leq\rho} ||\mathcal{E}''_{0}(\omega+\eta) - \mathcal{E}''_{0}(\omega)||_{W^{1,3/2}} \\ + 2C_{2}|\varepsilon| \sup_{\|\eta\|_{W^{1,3}}\leq\rho} ||\mathcal{V}'_{H}(\omega+p+\eta)||_{W^{1,3}}$$

$$(3.6)$$

where $C_2 = \|\mathcal{L}^{-1}\|_{\mathcal{L}(W^{1,3} \times \mathbb{R}^6 \times \mathbb{R}^3)}$.

For
$$(\eta_{1}, \lambda_{1}, \alpha_{1})$$
, $(\eta_{2}, \lambda_{2}, \alpha_{2}) \in B_{\rho}(0) \subset W^{1,3} \times \mathbb{R}^{6} \times \mathbb{R}^{3}$ we have
$$\frac{\|T_{\varepsilon,p}(\eta_{1}, \lambda_{1}, \alpha_{1}) - T_{\varepsilon,p}(\eta_{2}, \lambda_{2}, \alpha_{2})\|_{W^{1,3} \times \mathbb{R}^{6} \times \mathbb{R}^{3}}}{C_{2} \|\eta_{1} - \eta_{2}\|_{W^{1,3}}}$$

$$\leq \frac{\|\mathcal{E}'_{\varepsilon}(\omega + p + \eta_{1}) - \mathcal{E}'_{\varepsilon}(\omega + p + \eta_{2}) - \mathcal{E}''_{0}(\omega)(\eta_{1} - \eta_{2})\|_{W^{1,3}}}{C_{2} \|\eta_{1} - \eta_{2}\|_{W^{1,3}}}$$

$$\leq \int_{0}^{1} \|\mathcal{E}''_{\varepsilon}(\omega + p + \eta_{2} + t(\eta_{1} - \eta_{2})) - \mathcal{E}''_{0}(\omega)\|_{W^{1,3/2}} dt$$

$$\leq \int_{0}^{1} \|\mathcal{E}''_{0}(\omega + p + \eta_{2} + t(\eta_{1} - \eta_{2})) - \mathcal{E}''_{0}(\omega)\|_{W^{1,3/2}} dt$$

$$\leq \sup_{\|\eta\|_{W^{1,3} \leq 3\rho}} \|\mathcal{E}''_{0}(\omega + \eta) - \mathcal{E}''_{0}(\omega)\|_{W^{1,3/2} + 2|\varepsilon|} \sup_{\|\eta\|_{W^{1,3} \leq 3\rho}} \|\mathcal{V}''_{H}(\omega + p + \eta)\|_{W^{1,3/2}}.$$

From (2.3), (2.4), and the Hölder inequality it follows that there exists a positive constant C_3 such that for any $\eta \in W^{1,3}$, $p \in \mathbb{R}^3$

$$(3.7) \|\mathcal{V}_{H}'(\omega+p+\eta)\|_{W^{1,3}} \leq C_{3} \left[\left(\int_{\mathbb{R}^{2}} |H(\omega+p+\eta)|^{3/2} |\nabla \omega|^{3} \mu^{-1} \right)^{2/3} + \|\eta\|_{W^{1,3}}^{2} \right]$$

and

$$\|\mathcal{V}_{H}''(\omega+p+\eta)\|_{W^{1,3/2}} \leq C_{3} \left[\left(\int_{\mathbb{R}^{2}} |H(\omega+p+\eta)|^{2} |\nabla(\omega+\eta)|^{2} \right)^{1/2} + \left(\int_{\mathbb{R}^{2}} |\nabla H(\omega+p+\eta)|^{3/2} |\nabla(\omega+\eta)|^{3} \mu^{-1} \right)^{2/3} \right].$$
(3.8)

Choosing $\rho_0 > 0$ such that

$$C_2 \sup_{\|\eta\|_{W^{1,3}} \le 3\rho_0} \|\mathcal{E}_0''(\omega + \eta) - \mathcal{E}_0''(\omega)\|_{W^{1,3/2}} < \frac{1}{2}$$

and $\varepsilon_0 > 0$ such that

$$(3.9) 8C_2C_3\varepsilon_0\|H\|_{L^{\infty}(\mathbb{R}^3)}\|\omega\|_{W^{1,3}}^2 < \min\left\{1, \rho_0, \frac{1}{8C_2C_3\varepsilon_0}\right\},$$

(3.10)
$$\sup_{\substack{\|\eta\|_{W^{1,3} \le \rho_0} \\ p \in \mathbb{R}^3}} \|\mathcal{V}'_H(\omega + p + \eta)\|_{W^{1,3}} < \frac{\rho_0}{6\varepsilon_0 C_2},$$

(3.11)
$$\sup_{\|\eta\|_{W^{1,3} \le 3\rho_0} \atop p \in \mathbb{R}^3} \|\mathcal{V}_H''(\omega + p + \eta)\|_{W^{1,3/2}} < \frac{1}{8\varepsilon_0 C_2},$$

we obtain that $T_{\varepsilon,p}$ maps the ball $\overline{B_{\rho_0}(0)}$ into itself for any $|\varepsilon| < \varepsilon_0$, $p \in \mathbb{R}^3$, and is a contraction there.

Hence it has a unique fixed point $(\eta(\varepsilon, p), \lambda(\varepsilon, p), \alpha(\varepsilon, p)) \in \overline{B_{\rho_0}(0)}$. From (3.6) we have that the following property holds

(*)
$$T_{\varepsilon,p}$$
 maps a ball $\overline{B_{\rho}(0)} \subset W^{1,3} \times \mathbb{R}^6 \times \mathbb{R}^3$ into itself whenever $\rho \leq \rho_0$ and $\rho > 4|\varepsilon|C_2 \sup_{\|\eta\|_{W^{1,3}} \leq \rho} \|\mathcal{V}'_H(\omega + p + \eta)\|_{W^{1,3}}$.

In particular let us set

(3.12)
$$\rho_{\varepsilon} = 5|\varepsilon|C_2 \sup_{\|\eta\|_{W^{1,3} \leq \rho_0}} \|\mathcal{V}'_H(\omega + p + \eta)\|_{W^{1,3}}.$$

In view of (3.10) and (3.12), we have that for any $|\varepsilon| < \varepsilon_0$ and for any $p \in \mathbb{R}^3$

$$\rho_{\varepsilon} \leq \rho_0 \quad \text{and} \quad \rho_{\varepsilon} > 4|\varepsilon| C_2 \sup_{\|\eta\|_{W^{1,3}} \leq \rho_{\varepsilon}} \|\mathcal{V}_H'(\omega + p + \eta)\|_{W^{1,3}}$$

so that, due to (*), $T_{\varepsilon,p}$ maps $\overline{B_{\rho_{\varepsilon}}(0)}$ into itself. From the uniqueness of the fixed point we have that for any $|\varepsilon| < \varepsilon_0$ and $p \in \mathbb{R}^3$

for some positive constant C_1 independent of p and hence $\|\eta(\varepsilon, p)\|_{W^{1,3}} \le \rho_{\varepsilon} \le C_1|\varepsilon|$ thus proving (3.4). Assume now (3.5) and set for any $p \in \mathbb{R}^3$

$$\rho_p = 8C_2 C_3 \varepsilon_0 \left(\int_{\mathbb{R}^2} \sup_{|q-p| < 1 + C_0} |H(q)|^{3/2} |\nabla \omega|^3 \mu^{-1} \right)^{2/3}$$

where C_0 is a positive constant such that $||u||_{L^{\infty}} \leq C_0 ||u||_{W^{1,3}}$ for any $u \in W^{1,3}$. From (3.9) we have that

$$\rho_p < \min\left\{1, \rho_0, \frac{1}{8C_2C_3\varepsilon_0}\right\}.$$

Hence, due to (3.7), we have that for $|\varepsilon| < \varepsilon_0$ and $||\eta||_{W^{1,3}} \le \rho_p$

$$4|\varepsilon|C_2||\mathcal{V}_H'(\omega+p+\eta)||_{W^{1,3}}$$

$$\leq 4\varepsilon_0 C_2 C_3 \left(\int_{\mathbb{R}^2} \sup_{|q-p| \leq 1 + C_0} |H(q)|^{3/2} |\nabla \omega|^3 \mu^{-1} \right)^{2/3} + 4\varepsilon_0 C_2 C_3 \rho_p^2 < \rho_p.$$

From (*) and the uniqueness of the fixed point, we deduce that

$$\|\eta(\varepsilon,p)\|_{W^{1,3}} \le \rho_p$$

for any $|\varepsilon| < \varepsilon_0$ and $p \in \mathbb{R}^3$. On the other hand, since H vanishes at ∞ , by the definition of ρ_p we have that $\rho_p \to 0$ as $|p| \to \infty$, hence

$$\lim_{|p|\to\infty} \eta(\varepsilon, p) = 0 \quad \text{in } W^{1,3} \text{ uniformly for } |\varepsilon| < \varepsilon_0.$$

The proof of Lemma 3.1 is now complete.

Remark 3.2 The map η given in Lemma 3.1 satisfies

$$\langle \mathcal{E}'_{\varepsilon}(\omega + p + \eta(\varepsilon, p)), \varphi \rangle - \sum_{i=1}^{6} \lambda_{i}(\varepsilon, p) \int_{\mathbb{R}^{2}} \nabla \varphi \cdot \nabla \tau_{i} + \alpha(\varepsilon, p) \cdot \int_{\mathbb{S}^{2}} \varphi, \quad \forall \varphi \in W^{1,3/2}$$

where $(\eta(\varepsilon, p), \lambda(\varepsilon, p), \alpha(\varepsilon, p)) \in \overline{B_{\rho_{\varepsilon}}(0)} \subset W^{1,3} \times \mathbb{R}^6 \times \mathbb{R}^3$ being ρ_{ε} given in (3.12), hence

$$\int_{\mathbb{R}^{2}} \nabla(\omega + \eta(\varepsilon, p)) \cdot \nabla\varphi + 2 \int_{\mathbb{R}^{2}} \varphi \cdot (\omega + \eta(\varepsilon, p))_{x} \wedge (\omega + \eta(\varepsilon, p))_{y}
+ 2\varepsilon \int_{\mathbb{R}^{2}} H(\omega + p + \eta(\varepsilon, p)) \varphi \cdot (\omega + \eta(\varepsilon, p))_{x} \wedge (\omega + \eta(\varepsilon, p))_{y}
= \sum_{i=1}^{6} \lambda_{i}(\varepsilon, p) \int_{\mathbb{R}^{2}} \nabla\varphi \cdot \nabla\tau_{i} - \alpha(\varepsilon, p) \cdot \int_{\mathbb{S}^{2}} \varphi, \quad \forall \varphi \in W^{1,3/2},$$

i.e. $\eta(\varepsilon, p)$ satisfies the equation

$$\Delta \eta(\varepsilon, p) = F(\varepsilon, p)$$

where

$$F(\varepsilon, p) = 2(\omega + \eta(\varepsilon, p))_x \wedge (\omega + \eta(\varepsilon, p))_y - 2\omega_x \wedge \omega_y + \lambda(\varepsilon, p) \cdot \Delta \tau - \alpha(\varepsilon, p)\mu^2 + 2\varepsilon H(\omega + p + \eta(\varepsilon, p))(\omega + \eta(\varepsilon, p))_x \wedge (\omega + \eta(\varepsilon, p))_y$$

in \mathbb{R}^2 . Since $F(\varepsilon, p) \in L^{3/2}$ and, in view of (3.4) and (3.13), $F(\varepsilon, p) \to 0$ in $L^{3/2}$ as $\varepsilon \to 0$ uniformly with respect to p, by regularity we have that

$$\eta(\varepsilon, p) \in W^{2,3/2}$$
 and $\eta(\varepsilon, p) \to 0$ in $W^{2,3/2}$

hence, by Sobolev embeddings, $F(\varepsilon, p) \in L^3$ and $F(\varepsilon, p) \to 0$ in L^3 as $\varepsilon \to 0$ uniformly with respect to p. Again by regularity

$$\eta(\varepsilon, p) \in W^{2,3}$$
 and $\eta(\varepsilon, p) \to 0$ in $W^{2,3}$

hence $\eta(\varepsilon, p) \in C^{1,1/3}$ and

(3.14)
$$\eta(\varepsilon, p) \to 0$$
 in $C^{1,1/3}$ as $\varepsilon \to 0$ uniformly with respect to p .

For any $\varepsilon \in (-\varepsilon_0, \varepsilon_0)$, let us define the perturbed manifold

$$Z_{\varepsilon} := \{ \omega + p + \eta(\varepsilon, p) : p \in \mathbb{R}^3 \}.$$

From [7], we have that Z_{ε} is a natural constraint for $\mathcal{E}_{\varepsilon}$, namely any critical point $p \in \mathbb{R}^3$ of the functional

$$\Phi_{\varepsilon}: \mathbb{R}^3 \to \mathbb{R}, \qquad \Phi_{\varepsilon}(p) = \mathcal{E}_{\varepsilon}(\omega + p + \eta(\varepsilon, p))$$

gives rise to a critical point $u_{\varepsilon} = \omega + p + \eta(\varepsilon, p)$ of $\mathcal{E}_{\varepsilon}$.

Proposition 3.3 Assume $H \in C^2(\mathbb{R}^3)$, $\nabla H \in L^{\infty}(\mathbb{R}^3, \mathbb{R}^3)$, and

$$\lim_{|p| \to \infty} H(p) = 0$$

Then for any $|\varepsilon| < \varepsilon_0$

$$\lim_{|p|\to\infty} \Phi_{\varepsilon}(p) = \text{const} = \mathcal{E}_0(\omega).$$

Proof. We have that

$$\begin{split} \Phi_{\varepsilon}(p) &= \mathcal{E}_{\varepsilon} \left(\omega + p + \eta(\varepsilon, p) \right) \\ &= \mathcal{E}_{0} \left(\omega + p + \eta(\varepsilon, p) \right) + 2\varepsilon \mathcal{V}_{H} \left(\omega + p + \eta(\varepsilon, p) \right) \\ &= \frac{1}{2} \int_{\mathbb{R}^{2}} \left| \nabla \omega \right|^{2} + \frac{1}{2} \int_{\mathbb{R}^{2}} \left| \nabla \eta(\varepsilon, p) \right|^{2} + \int_{\mathbb{R}^{2}} \nabla \omega \cdot \nabla \eta(\varepsilon, p) \\ &+ \frac{2}{3} \int_{\mathbb{R}^{2}} \left(\omega + p + \eta(\varepsilon, p) \right) \cdot \left(\omega + \eta(\varepsilon, p) \right)_{x} \wedge \left(\omega + \eta(\varepsilon, p) \right)_{y} \\ &+ 2\varepsilon \left[\mathcal{V}_{H} (\omega + p) + \left\langle \mathcal{V}'_{H} (\omega + p), \eta(\varepsilon, p) \right\rangle + o\left(\| \eta(\varepsilon, p) \|_{W^{1,3}} \right) \right] \\ &= \frac{1}{2} \int_{\mathbb{R}^{2}} \left| \nabla \omega \right|^{2} + \frac{2}{3} \int_{\mathbb{R}^{2}} \omega \cdot \omega_{x} \wedge \omega_{y} + \frac{1}{2} \int_{\mathbb{R}^{2}} \left| \nabla \eta(\varepsilon, p) \right|^{2} \\ &+ \int_{\mathbb{R}^{2}} \nabla \omega \cdot \nabla \eta(\varepsilon, p) + \frac{2}{3} \int_{\mathbb{R}^{2}} \omega \cdot \left(\omega_{x} \wedge \eta(\varepsilon, p)_{y} + \eta(\varepsilon, p)_{x} \wedge \omega_{y} \right) \\ &+ \frac{2}{3} \int_{\mathbb{R}^{2}} \omega \cdot \eta(\varepsilon, p)_{x} \wedge \eta(\varepsilon, p)_{y} \\ &+ \frac{2}{3} \int_{\mathbb{R}^{2}} \eta(\varepsilon, p) \cdot \left(\omega + \eta(\varepsilon, p) \right)_{x} \wedge \left(\omega + \eta(\varepsilon, p) \right)_{y} \\ &+ 2\varepsilon \mathcal{V}_{H} (\omega + p) + 2\varepsilon \langle \mathcal{V}'_{H} (\omega + p), \eta(\varepsilon, p) \rangle + 2\varepsilon o\left(\| \eta(\varepsilon, p) \|_{W^{1,3}} \right) \end{split}$$

$$(3.15)$$

where we have used the fact that

$$\int_{\mathbb{R}^2} p \cdot u_x \wedge u_y = 0 \quad \forall \, p \in \mathbb{R}^3, \ u \in W^{1,3},$$

(see [7], Lemma A.3). Notice that from Lemma 3.1 we have that

(3.16)
$$\int_{\mathbb{R}^2} |\nabla \eta(\varepsilon, p)|^2 \le \sqrt[3]{4\pi} ||\eta(\varepsilon, p)||_{W^{1,3}}^2 \underset{|p| \to \infty}{\longrightarrow} 0,$$

$$(3.17) \qquad \left| \int_{\mathbb{R}^2} \nabla \omega \cdot \nabla \eta(\varepsilon, p) \right| \leq \sqrt[6]{4\pi} \left(\int_{\mathbb{R}^2} |\nabla \omega|^2 \right)^{1/2} \|\eta(\varepsilon, p)\|_{W^{1,3}} \underset{|p| \to \infty}{\longrightarrow} 0,$$

and, by the Hölder inequality and Lemma 3.1,

$$(3.18) \left| \int_{\mathbb{R}^2} \omega \cdot (\omega_x \wedge \eta(\varepsilon, p)_y + \eta(\varepsilon, p)_x \wedge \omega_y) \right| \le 2\|\omega\|_{W^{1,3}}^2 \|\eta(\varepsilon, p)\|_{W^{1,3}} \underset{|p| \to \infty}{\longrightarrow} 0,$$

$$(3.19) \qquad \left| \int_{\mathbb{R}^2} \omega \cdot (\eta(\varepsilon, p)_x \wedge \eta(\varepsilon, p)_y) \right| \leq \|\omega\|_{W^{1,3}} \|\eta(\varepsilon, p)\|_{W^{1,3}}^2 \underset{|p| \to \infty}{\longrightarrow} 0,$$

and

$$\left| \int_{\mathbb{R}^2} \eta(\varepsilon, p) \cdot (\omega + \eta(\varepsilon, p))_x \wedge (\omega + \eta(\varepsilon, p))_y \right|$$

$$\leq \|\omega + \eta(\varepsilon, p)\|_{W^{1,3}}^2 \|\eta(\varepsilon, p)\|_{W^{1,3}} \underset{|p| \to \infty}{\longrightarrow} 0.$$

Moreover the Gauss-Green Theorem yields

$$\mathcal{V}_H(\omega + p) = -\int_{B_1} H(\xi + p) \, d\xi$$

so that by the Dominated Convergence Theorem we have that

(3.21)
$$\lim_{|p| \to \infty} \mathcal{V}_H(\omega + p) = 0.$$

From (2.3), Hölder's inequality, and Lemma 3.1, we have that

$$|\langle \mathcal{V}'_{H}(\omega+p), \eta(\varepsilon, p) \rangle| = \left| \int_{\mathbb{R}^{2}} H(\omega+p) \, \eta(\varepsilon, p) \cdot \omega_{x} \wedge \omega_{y} \right|$$

$$\leq ||H||_{L^{\infty}(\mathbb{R}^{3})} ||\omega||_{W^{1,3}}^{2} ||\eta(\varepsilon, p)||_{W^{1,3}} \underset{|p| \to \infty}{\longrightarrow} 0.$$

From (3.15)–(3.22), it follows that

$$\lim_{|p|\to\infty} \Phi_{\varepsilon}(p) = \frac{1}{2} \int_{\mathbb{R}^2} |\nabla \omega|^2 + \frac{2}{3} \int_{\mathbb{R}^2} \omega \cdot \omega_x \wedge \omega_y = \mathcal{E}_0(\omega).$$

The proposition is thereby proved.

Proof of Theorem 1.1. As already observed at the beginning of Section 2, it is not restrictive to take $H_0 = 1$. From Proposition 3.3 it follows that for $|\varepsilon| < \varepsilon_0$ either Φ_{ε} is constant (and hence we have infinitely many critical points) or it has a global maximum or minimum point. In any case Φ_{ε} has a critical point. Since Z_{ε} is a natural constraint for $\mathcal{E}_{\varepsilon}$, we deduce the existence of a critical point of $\mathcal{E}_{\varepsilon}$ for $|\varepsilon| < \varepsilon_0$ and hence of a solution to (P_{ε}) . The H_{ε} -bubble ω_{ε} found in this way is of the form $\omega + p^{\varepsilon} + \eta(\varepsilon, p^{\varepsilon})$ for some $p^{\varepsilon} \in \mathbb{R}^3$ where η is as in Lemma 3.1. Remark 3.2 yields that ω_{ε} is closed in $C^{1,1/3}(\mathbb{S}^2, \mathbb{R}^3)$ -norm to the manifold $\{\omega + p : p \in \mathbb{R}^3\}$ for ε small. Since ω has no branch points, we deduce that ω_{ε} has no branch points.

To prove Theorems 1.2 and 1.4, we need the following expansion for Φ_{ε} :

(3.23)
$$\Phi_{\varepsilon}(p) = \mathcal{E}_0(\omega) - 2\varepsilon\Gamma(p) + O(\varepsilon^2)$$

as $\varepsilon \to 0$ uniformly in $p \in \mathbb{R}^3$ (see [7]).

Proof of Theorem 1.2. Let $\varepsilon > 0$ small. Assumption (H4) implies that $\Gamma(0) > 0$ and hence from (3.23) we have that for ε small

$$\Phi_{\varepsilon}(0) < \mathcal{E}_0(\omega),$$

whereas from assumption (H3) we have that Hess $\Gamma(0)$ is positive definite so that Γ has a strict local minimum in 0 and hence from (3.23) Φ_{ε} has a strict local maximum in $B_r(0)$ for some r > 0 such that

$$\Phi_{\varepsilon}(p) < \Phi_{\varepsilon}(0) - c_{\varepsilon} < \mathcal{E}_0(\omega)$$

for |p| = r, where c_{ε} is some positive constant depending on ε . In particular Φ_{ε} has a mountain pass geometry. Moreover by Theorem 1.1,

$$\Phi_{\varepsilon}(p) \to \mathcal{E}_0(\omega)$$
 as $|p| \to \infty$,

and so Φ_{ε} must have a global minimum point. If the minimum point and the mountain pass point coincide then Φ_{ε} has infinitely many critical points. Otherwise Φ_{ε} has at least three critical points: a local maximum point, a global minimum point, and a mountain pass. If $\varepsilon < 0$ we find the inverse inequalities and hence we find that Φ_{ε} has a local minimum point, a global maximum point, and a mountain pass. As a consequence (P_{ε}) has at least three solutions provided $|\varepsilon|$ is sufficiently small.

As observed in Remark 1.3, if $H_1(0) > 0$ and $\operatorname{Hess} H_1(0)$ is positive definite, by continuity we have that for H_0 sufficiently large $\Gamma(0) > 0$ and $\operatorname{Hess} \Gamma(0)$ is positive definite, so that we can still prove the existence of three solutions arguing as above.

Proof of Theorem 1.4. Assumption (H5) implies that $\Gamma(p_1) > 0$ and $\Gamma(p_2) < 0$. Since

$$\Phi_{\varepsilon}(p) = \mathcal{E}_0(\omega) + 2\varepsilon \left(-\Gamma(p) + o(1)\right) \text{ as } \varepsilon \to 0,$$

we have for ε sufficiently small

$$\Phi_{\varepsilon}(p_1) < \mathcal{E}_0(\omega)$$
 and $\Phi_{\varepsilon}(p_2) > \mathcal{E}_0(\omega)$

if $\varepsilon > 0$ and the inverse inequalities if $\varepsilon < 0$. Since by Theorem 1.1

$$\Phi_{\varepsilon}(p) \to \mathcal{E}_0(\omega)$$
 as $|p| \to \infty$,

we conclude that Φ_{ε} must have a global maximum point and a global minimum point in \mathbb{R}^3 . Since Z_{ε} is a natural constraint for $\mathcal{E}_{\varepsilon}$, we deduce the existence of two critical points of $\mathcal{E}_{\varepsilon}$ for $|\varepsilon|$ sufficiently small and hence of two solutions to (P_{ε}) .

As observed in Remark 1.5, if $H_1(p_1) > 0$ and $H_1(p_2) < 0$, by continuity we have that for H_0 sufficiently large $\Gamma(p_1) > 0$ and $\Gamma(p_2) < 0$, so that we can still prove the existence of two solutions arguing as above.

References

- [1] Ambrosetti, A. and Badiale, M.: Homoclinics: Poincaré-Melnikov type results via a variational approach. Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998), no. 2, 233–252.
- [2] Ambrosetti, A. and Badiale. M.: Variational perturbative methods and bifurcation of bound states from the essential spectrum. *Proc. Roy. Soc. Edinburgh Sect. A* **128** (1998), 1131–1161.
- [3] Brezis, H. and Coron, J. M.: Multiple solutions of *H*-systems and Rellich's conjecture. *Comm. Pure Appl. Math.* **37** (1984), no. 2, 149–187.
- [4] Brezis, H. and Coron, J. M.: Convergence of solutions of *H*-systems or how to blow bubbles. *Arch. Rational Mech. Anal.* **89** (1985), no. 1, 21–56.
- [5] Caldiroli, P. and Musina, R.: Existence of minimal *H*-bubbles. Commun. Contemp. Math. 4 (2002), no. 2, 177–210.
- [6] Caldiroli, P. and Musina, R.: Existence of *H*-bubbles in a perturbative setting. Rev. Mat. Iberoamericana **20** (2004), no. 2, 611–626.
- [7] Caldiroli, P. and Musina, R.: *H*-bubbles in a perturbative setting: the finite-dimensional reduction method. *Duke Math. J.* **122** (2004), no. 3, 457–484.
- [8] Chanillo, S. and Malchiodi, A.: Asymptotic Morse theory for the equation $\Delta u = 2u_x \wedge u_y$. Comm. Anal. Geom. 13 (2005), no. 1, 187–251.
- [9] Grüter, M.: Regularity of weak *H*-surfaces. *J. Reine Angew. Math.* **329** (1981), 1–15.
- [10] HILDEBRANDT, S.: Randwertprobleme für Flächen mit vorgeschriebener mittlerer Krümmung und Anwendungen auf die Kapillaritätstheorie. I: Fest vorgegebener Rand. *Math. Z.* **112** (1969), 205–213.
- [11] ISOBE, T.: On the asymptotic analysis of *H*-systems, I: asymptotic behavior of large solutions. *Adv. Differential Equations* **6** (2001), no. 5, 513–546.
- [12] Jakobowsky, N.: A perturbation result concerning a second solution to the Dirichlet problem for the equation of the prescribed mean curvature. J. Reine Angew. Math. 457 (1994), 1–21.
- [13] Jakobowsky, N.: Multiple surfaces of non-constant mean curvature. *Math. Z.* **217** (1994), no. 3, 497–512.

- [14] Steffen, K.: On the existence of surfaces with prescribed mean curvature and boundary. *Math. Z.* **146** (1976), no. 2, 113–135.
- [15] Struwe, M.: Large H-surface via the mountain-pass lemma. *Math. Ann.* **270** (1985), no. 3, 441–459.
- [16] Struwe, M.: Plateau's problem and the calculus of variations. Mathematical Notes **35**. Princeton University Press, Princeton, NJ, 1988.

Recibido: 29 de enero de 2003.

Veronica Felli Dipartimento di Matematica e Applicazioni Università di Milano-Bicocca Via Cozzi 53 20125 Milano, Italy veronica.felli@unimib.it

The author wishes to thank Professor A. Ambrosetti and Professor R. Musina for many helpful suggestions. Supported by MIUR, national project "Variational Methods and Nonlinear Differential Equations".