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Resolution of a family of Galois

embedding problems with cyclic kernel

Montserrat Vela

Abstract

In this paper we compute the obstruction and the solutions of
cyclic embedding problems given by

(B): 0—Z/mZ —E—T =2Z/mZx " xZ/nZ — 0,

with Z/nZ trivial I'-modulo, finding adequate representations of I" in
the automorphisms group of a generalized Clifford algebra.

1. Introduction

In [7] we have studied Galois embedding problems given by central extensions
with cyclic kernel. In particular, we have computed an expression for the
obstruction to the solvability of these embedding problems in terms of Galois
symbols, generalizing the formula given by Frohlich in [3]. To compute this
obstruction, we associate to the embedding problem a representation ¢ of I'
in the group of graded automorphisms of an adequate generalized Clifford
algebra with an admissible norm.

We have too given a method for constructing the solutions when these
problems are solvable, generalizing the results obtained by Crespo in [1]
and [2]. We obtain a way to compute a solution of the solvable embedding
problems of the form L({/y) where v is a coordinate of the norm of an
adequate element in a generalized Clifford algebra.

Using this study we solve now a complete family of problems.

We recall in short the notations and results used in [7] that we need to
do this study.

2000 Mathematics Subject Classification: 12F12, 11R32, 11ES88.
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Let n > 2 be an integer, K be a field of characteristic not dividing n
containing the group p, of nth roots of unity, and fix w a primitive nth root
of unity. We denote by lg the group homomorphism lg : i, — Z/nZ where
lg(w') = 14, the separable closure of K is denoted by K*® and the absolute
Galois group by G = Gal(K* /K).

We consider cyclic embedding problems given by

L=K(a,...,van)/K, T~Z/nZx " xZ/nZ,
(E): 0—Z/nZ —E—T —0,

with Z/nZ trivial T-module. Let j : Gx — T' be the surjective homomor-
phism corresponding to L/K. We consider the homomorphism between the
cohomology groups ji : H*(I',Z/nZ) — H*(Gr,Z/nZ) induced by j and
let € be the element in H?(T',Z/nZ) corresponding to (E).

The embedding problem given by L/K,T', (F) is solvable if and only if
Ja(e) = 0. The element jj(e) is called the obstruction to the solvability of
the embedding problem.

We use the term generalized Clifford algebra to refer to a finite dimen-
sional K-algebra generated by elements {ei,..., e} with relations e =
a; € K* and e;e; = weje; if i < j. We denote this algebra as C (V) for
V =<e,...,e, >k. We can make C(V) into a Z/nZ-graded K-algebra

CV)=C(V)o®---aC(V)pi,
by setting
C(Vy=<ej'-em|eg+ +en=10 (modn)>g.

If m is odd the invariant of C'(V) is

(n—1)(m-—1) 1

a= (=12 aay'--a jan

and if m is even the invariant is
(n—1)m _1

a= (-1 2 ajlay---a anm.

The Brauer invariant of C'(V') defined in [7, Definition 4.2] is the class in the
Brauer group of C (V) if m is even or of C'(V) if m is odd.

We call the norm of the generalized Clifford algebra C' (V') the map N :
C(V) — C(V) given by N(z) := ((z)z where

£1 e _ n—1 em(n—1 e1(n—1)
ﬁ( E Qeq,oem €1 "'en;n> = E :aal,u-,amer;bn( ) T ;o Oy, € K
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The norm N restricted to the subgroup
F(C(V)) :={z € C(V)" homog. s.t. N(z) € K*
and 3(zy) = By)B(x) ¥y € C(V)}

is multiplicative.

Let A be a subgroup of F(C(V)) such that K* C A. An admissible norm
in AisamapN : A— K* such that for a,a;,as € A,

N(a) € K*, N(aaz) =N(a;)N(az) and NN =A"if e K.

In particular, for A = F(C(V)), the norm N is an admissible norm.

We recall that, given a profinite group I', a representation of I'" over K
is the pair given by

(1) A generalized Clifford algebra C; = C'(V;) over K with an admissible
norm (N, A) together with
(2) A continuous homomorphism ¢ : I' = O(C;) C Autgr(C), where O(CY)

©(A) with the homomorphism {Homogeneous elements of C'(V)*}
Autgr(C(V)) where, for all z € C'(V) homogeneous,

s

(a) p(s)(z) = sws™? if dim(V) is even,
() p(s)(x) = w9 @szs if dim(V) is odd (where O denotes the

degree).
Given a representation ¢t : I' — O(Cy), we use the term twisted algebra
of C; by t to refer to the K-algebra &, corresponding to the element

t

a:I' = OC) - O0(C;y® L) C Autgr(Cy ® L),
o — to)(r@N) =t(o)(r) @A

of HY(T', Aut(Cy;®L)) by the bijection given in [3, II1.2] (see too [6, Chap. X]).
We have €; ~ (C; ® L)' where T acts on C; ® L via t ® gal, i.e., o(z @ \) =
t(o)(x) ® o(\) and the isomorphism ¢ : € ® L = C; ® L, where I" acts on
Cy ® L via 1 ® gal, that is, o(z ® \) = v ® o(\). This morphism satisfies
g 197 = t(o) for each o € T.

We have obtained, from the diagram of [7, Proposition 5.3] the exact

sequence
1 — Z/nZ — KerNgser — O(Cy @ K*P) — 1

where Nser denotes the extension of A to the subgroup Agser of
F(C(V)®g K*P)

generated by A.
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Composing the representation ¢ with
O(Cy) — O(Cy @k K*P) C Autgr(C; @ K°P)

we obtain

r
L1
O(C)

!
1 - Z/nZ — KertNgse» — O(C; @ K5?) — 1

that is an extension of I' by Z/nZ and so, an element of H?*(T',Z/nZ).
The analogue to the second Stiefel-Whitney class, denoted by s;, is this
element of H*(T',Z/nZ). If T = G, the element s; belongs to

H*(Gg,7Z/n7) = Br,(K).

To compute the obstruction to the embedding problem, we need to find a
representation ¢t of I" so that € = s;. From such a representation we have the
Formula [7, 6.7]:

Formula 1.1. The obstruction j3 is
(a) j3(st) = [€] — [Cy] + PNt o ] if dim(V;) is even,
(b) 53(st) = (€] — [Ce] — (ar, beoj) + PNa[t o j] if dim(V;) is odd,

where €, is the twisted algebra of C; by ¢, a; is the invariant of C;, b; €
K*/K*" is the element corresponding to d(t) € Hom(T',Z/nZ) defined by
o +— d(t)(o) = 9(s(a)) (where s(o) € p~(t(c))) by Kummer theory and
PANLt] € Br,(K) is the class of the cocycle

o (/N (s(r)))

)= )

and can be expressed as a sum of Galois symbols ([7, Proposition 5.6]).

If we know that the embedding problem is solvable, according [7, The-
orem 8.2], the steps to be followed in order to obtain an element v such
that L({/7) is a solution are:

1. Find a “good” representation of degree 0 such that s, = e.

2. Write down explicitly the isomorphism ¢ : C, — € over L such that
g lg° =t(o) Vo €T.
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3. Determine an isomorphism f : C'— € over K such that the element 2
defined in [7, Theorem 8.2] be different from 0.

4. Compute the expression of the element z in the basis of €.

5. Compute the norm N(z) € €, and consider a non-zero coordinate o
of it.

6. Find € L such that n=°n=n_!, Vo €.

7. Compute the element v = na~!.

(In fact, here we compute 7! because of the difficulty to compute a™*

from o and the fact that the field K ({/7~!) is equal to K({/7)).

In this way we obtain all solutions of the embedding problem because
if L(3/7) is a solution of the solvable embedding problem L/K,T',E, the
set { ¢/ry | r € K} contains all proper and improper solutions.

2. Representations for a family of problems

Let n be an odd integer and L = K({/a1, ..., {/a,) be a Galois extension
of K with Galois group

[ = Gal(L/K) ~ Z/nZx " xZ/nZ.
In particular we suppose a; ¢ K¢ for all d | n, d # 1 and the a; are indepen-
dent in K*/K*".
We compute the obstruction to the solvability of embedding problems

given by
L/K,T'(E): 0—Z/nZ —-E—-T —0,

with Z/nZ trivial I'-module, that is, where E is a central extension of I' by
Z/nZ. Equivalently, we can consider the problem given by L/K, T, e, where
e € H*(T',Z/nZ) is the element corresponding to (E). Let o; (1 < i < m)
be the automorphisms of L given by

o) = W 3/
such that I' =< oy, ...,0, >.

We look for a representation ¢ of I' over K such that
e=s € HYT,Z/n7Z),

where s; is the analogue to the second Stiefel-Whitney class.
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We begin by defining a generalization of Galois symbols.

Definition 2.1. Let L/K be a Galois extension and I' = Gal(L/K). For
a € L*" N K* we denote by

Xa € Hom(T,Z/nZ) = H' (T, Z/nZ)
the corresponding element by Kummer isomorphism relative to L, that is

\alo) = 19Ty

Va
For a,b e L* N K* we define

(a,0)r = Xa U Xb
where the cup-product is considered via the multiplication in Z.
Proposition 2.2. These symbols have the next properties:
1. They are bilineal, that is,
(ad',b)p = (a,b)r, + (a',b)r and (a,bb")p = (a,b)r, + (a,V)L.

2. If nis odd (a,a)r, =0 and (a,b) + (b,a)r = 0.
Proof. 1. As Xuw(0) = Xa(0) + X (0) for all o € T, they are bilineal.

2. For the first equality our goal is to prove that x, U x, is a coboundary,
that is, that there exists a map h : I' — Z/nZ such that

Xa(g)Xa(T) = _h(UT) + h(O') + h(T) Vo, 7 €T.

If we consider the morphism

Ve : Gg = Z/nZ, 0 — Y,(0) =

by properties of Galois symbols ([6, XIV.2, Prop.4] and [7, Lemma 4.1]),
1, U1, is a coboundary. Therefore, there exists a map n : Gx — Z/nZ
such that

Yo (0)o(T) = —n(oT) + (o) + n(1) for all 0,7 € Gk.

Let j: Gg — T be the surjective morphism and we fix u a section of j.
We define the map h(o) := n(u(o)) for o € I'. This map satisfies for o, 7 € T,

Ya(u(0))Palu(r)) = —n(u(or)) +n(u(o)) +n(u(r)) = —h(oT) + h(o) + h(7)
and, since ¥,(u(c)) = xq(0o) for all ¢ € I' because a € L, we get the
relation (a,a); = 0.

From the previous results, we have

0= (ab,ab)r, = (a,a)r + (a,b)r + (b,a)r + (b,b)r = (a,b)p + (b,a)L. W
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We now define some representations:

Definition 2.3. 1. For the following representations we consider the gen-
eralized Clifford algebra C(e) such that €* = 1 and N = N (norm of the
algebra):

(a) Forie {l,...,m} we define

¢i: ' — Autgr(C(e))
o — (e)
o, — 1 ifr #1
and
oF T — Autgr(C(e))
o; — p(e)
o, — 1 ifr=#£i.
(b) Foriy,--- i € {1,...,m} all different we define
Giy i, I — Autgr(C(e))
o, —@le) forj=1,..k
o, —1 if v # 1y,
and in the same way the representation

m;
¢i121 - (bZk k'

2. We now consider the generalized Clifford algebra C(v) with v" = w, and
define the representation:

;' — Autgr(C(v))
o — ¢(v)
o, —1 if v # 1,
with
Ay, ={W" | e K,re{0,...,n—1}}
and the admissible norm N'(v) = w™'N(v) = 1.
We also define the representation
VE T — Autgr(C(v))
o; — p(v")
o, —1 if r £
As in the previous case we define the representations:

m;

iy -y, and 77[]:1%1 ces ¢Zk ko
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Proposition 2.4. For these representations we have:
1. 54, =0 and by, = a;.
Sgp =0 and by = ar.
Sty =0 and by, g = Qi - Ay
L my;

8 mit ik = 0 and bmi mi =a;" - --a;
11 lk 11 'Lk

2. We denote sy, = (a;) € H*(I',Z/nZ) (see Remark 2.5). Then

k

b%. = Q;.
— (K d b.x = k
syr = (a7) and byr = aj.
Sipiy iy, — (ail T aik) and bwil“'wik = Qg vt Qg

=(a;," ++-a;, ") and b =a, '--a; *.

% 1. k 7 )
1 iy Ly, 1 k

Proof. To prove these results it is only necessary to apply the definition of
analogue to Stiefel-Whitney class s;. [

Remark 2.5. The element (a;) defined before coincides, if n is a prime
number with the element ((a;)) defined in [5] because both are defined by
the same 2-cocycle.

Proposition 2.6. Let j be the surjective morphism j : G — I and j; the
homomorphism between the cohomology groups induced by j. For the above
representations we have:

1. ]S(S@) =0, ];(S(bf) =0. .
j;(8¢i¢k) =0, j§(S¢i1"'¢ik) =0, ];(S¢Ti1..4¢mik) = 0.
21 Zk,

2 J3lse) = (@) = (anw),  G3(sye) = 3((a")) = (ak,w).
F5(s0em) = B3((@ia)) = (@), j3(s o ma) = (@ )
11 ’Lk

5. J5(8g.00,) = (i a;), that is j5((ai, aj)r) = (a;, ;).
Proof. If t,t;,, are representations of I', it is known that s,,; = j;(s;) and
therefore 73 (s, 44,) = 73 (5,) + J5(5t,) + (bt,, be,) ([7, Proposition 5.5]).

1. For t a representation of 1., we have by 1.1 j3(s;) = [€;] — [Cy] — (a¢, by)
where [Cy] = [C(e)] = 0 and the invariant a; = 1. The twisted algebra &, is
generated only by an element, so [€;] = 0 and j5(s;) = 0.

2. For t a representation of 2., we have, as before, j;(s;) = [&;] — [Cy] —
(at, by) where [Cy] = [C(v)] = 0 and [€;] = 0. But in this case, its invariant
a; = w. Thus, j3(s¢) = (b, w).

3. It is a consequence of the above equalities. [ |
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Theorem 2.7. A representation t of I' such that

St = Z Aijlai, ;) + M(a?fil "'azik)a p=0orl

1<i<j<m
ist = p@u(p'®p"), where:

1. The representation p satisfies

A
so= > Aglana)= Y (a,0")p

1<i<j<m 1<i<j<m
and it is p = P&« Qpp_1 for
£ A A
pro=g1@¢y"
A i Xim 2 Aii Nim 2 di d; .
i =G RGIT  ImT R BN G RGP, 0> 1

with the elements d; j:
doyy =1, diprg=1+ Zdr,l
r=2

deo =MNg2 diy12=Mo+2+ de ifi>1

o r=2

i—1 A
R QZAT,]@ +2+ Zdr,k if2<k<i
r=2 r=2

divie = e +2) Mg+ dg ik >
r=2 r=2

where A\, =1 and \;; =0 of 7> j.

2. The representation p' is
o=
3. The representation p’ is
= G gl g,
where the elements d,,+1, are the ones defined above.

Remark 2.8. If n is prime, Theorem 2.7 gives a representation ¢ such that
sy = ¢ for all elements ¢ € H*(T,Z/nZ) (see the decomposition done by
Massy [5]).
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Theorem 2.9. The obstruction to the solvability of the embedding problem
giwen by L/K,T and s; € H*(T,Z/nZ) for

S = Z Nij(ai, a;)p + plag™ - ~azi’“), where ;1 = 0,1
1<i<j<m
18 _ _
j;(st) = Z )\i,j(ai,aj) + :u’(az'lll '”aiklk7w)'

1<i<j<m

The last theorem is a direct consequence of Theorem 2.7 and Proposi-
tion 2.6. We will now prove Theorem 2.7.

Proof of Theorem 2.7.
Step 1: We begin to prove that the representation p is such that

-1

N \ |
Sp = Z (ai,ajw)L — (ai’aiiiﬂ "'ai\,i’m)L,

1<i<j<m i=1

3

where we obtain the last equality by properties of Galois symbols.

To show it, we prove by induction on 7 that if {, = p1® - - - ®p,, then

Ai i v
_ T . 1,141 - A R
S, = § iz (ai, a; )y ap™ )L

- Ifr=1,
by =p1= ¢ ®¢5\1’2 Ll
and
Sp1 = (bgy b¢;1,2,,,¢jn1,m)L = (a1, (15\172 T a;};’m)L
by [7, Proposition 5.5]. Moreover,
by, = ajayt? - g,

- We suppose the result is true for r and we will compute s, . We have,
for any i, that

o Aiyit1 \; Adyitl \; d;1 d;
Spr = (@i, a7 a4 2(aiaiy e ayt e am )
and
di1 diji—1 24diq 2XMiiv1itdiivy 20 tdim

bpy =a1" a4,y q i+1 A,
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d d
Lemma 2.10. b, = a;""™"" - - ay ™.

By applying the lemma and properties of symbols, we obtain the result:

StT+1 - Str +8p,r+1 + (btr7 prJrl )L
r+1
= it Ag 2 2Xrt1r42 211 dry1,1 dri1
= E :(ai, QA ) (A @y T ey a T e ag )
=1
dr1,1 degim 2 2Ar+1r42 2Ari1m
%—(al ceeayy NS ceean )L
r+1
E : Aiyit1 i
frg (al7al+1 ”'a"rr;’m)L'
=1

To prove the lemma we prove by induction the formula:

_ 14deattdrn A +H2X0 ptdo gt 201 g Hdg—1 ke H2+de pHdg g w e dr g
b, = ay ay, :

2<k<r

a)\l,7‘+2)\2,T+d2,r+'"+2)\r71,r+d'r71,r+2+dr,7‘ . a)‘l,k+2A2,k+d2,k+2)‘3,k+d3,k+"'+2)\7',k+dr,k
r k .

k>r
It gives the result for the values of the exponents d, .

If i = 0 we have proved the theorem. Now, we suppose p = 1.
Step 2: We compute s,3,. By lemma 2.10, b, = acll’"’m --am™ Then

‘ miy miy,
wmil w;’"zk + (bP7 ail T aik )L'
k

i1

Spap = Sp + s

Step 3: In addition,

— (i My, dm,1 dm,
Spr = (a; " ---ay "t a™ - apmm)

and then, by properties of symbols,

St = Spep T Spr + (bpé@p/’ byr) = Z Aij(ais aj)r + (a;’fil a:k)
1<i<j<m [ |

By considering the representation of degree 0 associated to the given in
Theorem 2.7 following [7, Section 6] and with the method of [7, Section §]
we can compute the solutions of the corresponding embedding problem.
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3. An example: The exact sequence

0—Z/nZ — G — Z/nZ X Z/nZ x Z/nZ — 0

3.1. Computation of the obstruction

We consider n odd and K as before and the field extension

L = K(/ar, 3/a, ¥as)
such that [K(/a;) : K] =n,i=1,2,3 and [L : K] = n® with
['=Ga(L/K) ~7Z/nZ X Z/nZ x Z|nZ.
Let 01,05 and o3 be generators of I' determined by o;( /a@;) = wois a.
Problem 3.1. Let us consider the embedding problem given by
L = K(/ay, az, Wa3)/K withT' = Gal(L/K) ~ Z/nZ x Z/nZ x Z/nZ
and the exact sequence
(E): 0-Z/mZ-5GLT =0
where G is the group

G:= < g1,92,93 | 91,92 have order n, gz has order n?,

9192 = 929193, 9193 = 9391, 9293 = 9392 >,

n

and the morphisms are h(gy) = o1, h(g2) = 02, h(g3) = o3 and i(lg(w)) = ¢5.

Remark 3.2. G is a non commutative group of order n* extension of T
Other groups with these properties are Fy x Z/nZ where

E, =< 0,7 | ¢ has order n, 7 has order n* o7 = "o >,

and Fy x Z/nZ where

1

Ey=<o,7,p|0,7,phave order n, oo 77t = p,op = po,Tp = pr > .

If n = p prime integer, it is the Heisenberg group of degree p.

The obstruction to the solvability of the problems given by them is
(w™tay,as) and (ay,as) respectively. These obstructions are computed in
[7, Theorems 7.2 and 7.4]). If n =2 there are not other noncommutative
groups of order n* ([4, sec.4]).
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Proposition 3.3. The element e € H*(T',Z/nZ) corresponding to the exact
sequence of the previous problem (E) is € = (a1,az2)r + (as).

Proof. We compute the cocycles a,a’,a” : I'xI' — Z/nZ associated to (F),
(ay,a9)r, and (as) respectively.
The one associated to (E) is

| —ka ifl+c<n
Gojobobototes = 1 —ka+1 ifl+c>n.
The cocycle associated to (a1, as)r = —(az,a1)g is
/
aofagoé,of‘ogog = —k?O[,
and the cocycle associated to (as) is
y 0 ifl4+c<n
A _r k 1 _a boc — .
0109203,01 09203 1 ifl+c>n.
So, a = a’ + a” and we get the result. [

Applying Theorem 2.7, the representation corresponding to the embed-
ding problem 3.1 is
t = p(p'@p")
where p = p1®@py for p1 = ¢1Q¢y and py = G3®P2@P1hy, p' = 1b3 and
p' = G007 ¢;.
Writing the representation in terms of generalized Clifford algebras and
morphism it is

Cy = C(eq, eq,€3,64,€5,0,€6,¢7) with el =1 fori=1,...,7, and v" = w

and
t: T — Autgr(Cy)

01
02
03

By putting u; := ejese2, up := egezeqeser and uz := veg, they satisfy the

next relations

- ¢(€1€563)
— p(egezeqes€d)
— p(veg).

uf = w‘sMe’fe’gegk, so uy =1,
uk = w_22k(kil)e§e§eielge§k, so uy =1,
uf = w_k(k;)vkelg =w, SOuUy=w
and moreover the relations
UUg = WU2UT, U1Uz = Uzuy, and U2U3 = U3U2.

Then, we have checked again that € = s;.
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The twisted algebra by the representation ¢ is

¢, = Cler® {/a3ala3, ea ® {/alaba3, ez ® {/ a%agag,@ & \”/ atajal,
es ® \/a1a2a3,v® Jag, e6 @ v/ ag ,e7® a; a2 a3
— 3,8.2 2272 252 23 2 2 -1 -2 —4 -2
= C(alaSa?, a2ala2, a?a5a?, a2a3a?, ayaza2, was, az ', ay?ay *az?)

because the generating elements are fixed by the action ¢t ® gal of I'. The

_ 4.8 2
element b, = ajasas.

Corollary 3.4. The obstruction to the solvability is
Ja(se) = [&] = (a1, a2) + (az, w).

For instance, for n = 3, K = Q(w) (where w is a third root of unity)
and a1 = 2,a, = 5 and a3 = 3 the embedding problem is solvable be-
cause (2,5) =0, (3,w) = 0 and therefore j5(s;).

The representation of degree 0 corresponding to ¢ is

to: ' — Autgr(Cy)
o — @(6165e$e§4)
oy — g0(626364e5e‘%68_8)
o3 — go(ve(;egQ)

where
Cio= Cle1, eq,€3,e4,€5,0,€5,€7,e8) with ' =1 for i=1,...,8, and v" = w.

The twisted algebra by tg is

= Cleg® Vay ,€2® Yaa; ,63® Ya%ay?, e, @ \/a1 %a,”,
1 1
es @ v/ ay a2 ,v® a; a2 a3 ,66® ay Qy a3 ,
er @ v/ ay a2 a3 ,eg® a, a2 a3
_ -1 -2 -1 -2 -3 -2 -5 -3 -7 -4 -8 —1 _—4 —8 —3
= Clay',a%ay" a%ay”, a7%ay° a7 %ay T way ey Pyt ay ey Pag”,
6 —12 —4 —4 -8

- —2
aj ay as,ayag as”).

To find the solution of the embedding problem it is only necessary determine

an isomorphism over K from C, into €;, and compute the elements z € €,

and v € L using the method given in [7, Section §].

Remark 3.5. Given a embedding problem may be there is a representation
simpler than the given in Theorem 2.7, but this theorem assure the existence
of at least one.
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In order to compute an element v € L such that L({/7) is a solution of
the embedding problem and to simplify the computations, we will consider
another simpler representation 7" of degree 0 of I' which allows us to deter-
mine the isomorphism over K of Cr into € more easily and then, compute
the elements z and ~.

We consider the representation (C,T") where

C = COley, ey, e3,e4) = C(1,1,1,w™ )
and the representation
T:T—0(0), o1+ plerest), oo — p(erezh), o3 pleey tesert).
The twisted algebra by T is

2

1 1,1 1 -2 -1 1 -1 1 —1
C = C(vy,v9,v3,04) = Clay ay a3 ,ay ay-az ,a5 a3 ,w az )

vy =e1 ® {/ al_la;lagl,
Vg = €3 ® 4/ ay'ay’ag’
v3=e3® {/a;'az’

Vg =e4® (/E?

are fixed by the action T'® gal. Clearly this representation is of degree 0
and it is straightforward to check that ¢ = syp.

because the elements

The obstruction to the solvability of the considered embedding problem
is (a1, as) + (as,w). We suppose the problem is solvable, that is (a1, as) +
(as,w) = 0, and we want to find an element v € L* such that M = L({/7)
is a solution.

Moreover, to simplify the computations we suppose, that the symbols
(ay,a2) =0, (az,w) = 0 and (ag, az) = 0.

For the values a; = 2,a5 = 5,a3 = 3 and n = 3 it is true.

3.2. The isomorphism g : C; — €, over L

Proposition 3.6. The isomorphism g : Cp — € given by:

e — /ajazaz vy, €3+ Ay a1a§a3 Vg, €3+ {/Gga3 U3, €4+t /a3 Uy

is a graded isomorphism which satisfies g~'g™ = T(7) for each T € T.

The proof is a simple computation.
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We express the isomorphism ¢ as the composition of the three isomor-
phisms g;,92 and g3

91 -1, -1, -1y 22 -1 -1 -1 -1 -1\ B
Cr>Cy=C(1,1,a3 ,w a3 ) =Cy=C(1l,ay a5 a3 ,w a3 )L =€

given by
91(61) = Uy, 91(62) = Uy, 91(63) = \T/@ us, 91<€4) = (L/@ Ug
ga(ur) = wy, Ga(ug) = /az wa, go(us) = Yag ws, ga(ug) = wy
g3(w1) = Ya vi, gs(wa)= Ya vy,  g3(ws)=vs, 93(ws) = vy

where a = ajasas and the elements uq, us, u3, us and wy, wq, w3, ws generate
the algebras Cy, = C(1,1,a3",w taz') and Cs = C(1,a5",ay a3 ', wtaz )
respectively.

Clearly g = g3 0 g3 0 g1.

3.3. The isomorphism f:(C — € over K

We know that there exists an isomorphism f defined over K from C into €.
To determine f, we express this isomorphism in terms of three easier iso-
morphisms between generalized Clifford algebras generated by two elements.
We consider the isomorphisms

T 1 -1 -1y S 1 -1 -1 -1 -1y
C=~Cy=C,1,a3  wlaz!) 205 = C(1,a5%, a5 a3 w taz) 2 €

where they are obtained from the isomorphism C(1,3) ~ C(«,af), valid
if the symbol (o, ) = 0, o, € K. For a generalized Clifford algebra
C = C(vy, 1), the vector subspace of the elements of degree i of C'is denoted
by C;. We consider the following basis of the subspaces C; fori =0,...,n—1:

wek)—(=Dkgnti=k ok k=0,....,n—1
where ¢(0) = 0 and ¢(k) = kz + @ for k£ > 0, where x is an arbitrary
integer.

Lemma 3.7. We consider the algebras C(vy, 1) = C(1,3) and C(v1,v5) =
C(a,af). If the Galois symbol (o, 3) = 0, there exists an isomorphism
F:C(1,8) ~ C(a,af) defined over K given by:

1 n—1 1 n—1

c(k n+l—~k, k n+1 c(k n+l—k, k

V1'—>§§ ykw()vl Vg VzHgﬁyn—w +E yk—lw()U1 Vg
k=0 k=1

where yo+y1 B+ -+ yn_1 /671 is an element of K(/B) with norm ™!,
The proof of this lemma is similar to the proof of [7, Theorems 10.2 and 11.5].
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From the previous lemma, we can compute the isomorphisms f;, f and f3
over K. For the first one the values are a = a3' and 8 = w™! and the
isomorphism exists because we have supposed that the symbol

(a3t w™) = (az,w) = 0.

For f,, the values are o = a,' and 3 = a3’ and we have supposed that the
symbol (az,as) = 0.

For the last one a = a;*

ay'az’ and B = a;*'. The symbol
(aytastazt, ayl) = (aragas, az) = (a1, az) + (ag, az) + (as,az) = 0

because we have supposed (a1, as) = 0 = (ag,as) and (az,a2) = 0 since n
is odd.
Thus, we have the isomorphism f as composition of these isomorphisms.
In particular, for n = 3 and a; = 2,as = 5,a3 = 3 we have found the
elements to determine these isomorphisms:

For fi, « = 5, 8 =w™! and the element

S = Vi) € K(YD)

has norm %.

For f5, a = %, 6= é and the element

21—5(28+ 363/ +57/32) € K(3/3)

1
has norm 2%

For f3, a = %, b= % and the element

S0+ /535 € K(Y/B)

1
has norm 500"

The isomorphisms are then:
fi:C — Cy, €1 > Uy, €9+ Uy, €3 — Uz — Uy — 3w2u§uﬁ,
ey — —ug + 2ug — 3udu?,
f2 . 02 — 03, Uy — Wi, U+ 5(28’(1]2 + 36UJ3 + 285'11}%’(1]%),
uz — 5(19wy + 28wz + 180wiw?),  uy — wy,
f3:C3 =& wy— (v 4 v2 — 90v03),

Wo > _731)1 + %(vg + 301;%1)%), W3 — Vg Wy > Vg
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3.4. The element z

From the isomorphisms fi, g1, f2, g2 and f3, g3, following [7, Theorem 8.2]
and its proof, we can compute elements z; € (Cy)y, 20 € (C3)r, and 23 € €
such that g;(z) = zfi(v)z; ! for i = 1,2,3 and  any element of the corre-
sponding Clifford algebra. The element z = g3(ga2(21) 22) 23 € € satisfies
g(z) = zf(x)z7! for all z € Cf.

We compute now the elements 21,25 and z3. As fi(e1) = gi1(e1) and
fi(e2) = g1(e2), we can express

2= Y giles)®gilea) filed) " files) ™,

61'6{0,...,71—1}
as fo(ur) = go(u1) and fo(ug) = go(ua),

= Y ga(ua)?gaus)® folus) " folus) ™

€.€{0,....,n—1}
and, as fg(wg) = g3<w3) and f3(w4) = gg(w4),

23 = Z g3(w1) " g3(w2)? f3(wa) ™2 fa(ur) ™.

€;,€{0,...,n—1}
We compute these elements using the package n-Clifford.
For instance, for n = 3 the coordinates of the elements 2, z5 and z3 in

the fixed basis are:

2, Wl w 2 1
A= Wyt st E Tyt (5 W Yo) v
as as as

L o

2/3
7@ Wyl = (@ g w w1 yz)}
as

where yo + 11 Vw ™! + ya Vw2 € K(Vw™!) such that NK(?/F)/K(?J) = a3’

as Yo as 1 2/3 2/3
z = {ag Yot 55t as W yz,Q—/?,(ag/ 2 —az (w+a3” yo+1) y),
ay Qg ay

2 w
o (o1 + (57 —0) )
ag

where yo + y1 Va3 '+ y2 /a3 € K({/a3") such that NK(:{/F)/K(y) = ay?

3
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and

3 = {(GM a2 a3)4/3 yS + (al a2 a3)2/3 Yo — a1G3 {”/m y1 Y2 + 1,
{’/a% as a3 (f/a% a2 ys — {*/a_2<w+ v/a? a3 adyo + 1) Z/1),
(0 00)" o2+ {3 (o 3/t )
where yo + 11 Va3t + 123/ % € K(3/ay ") such that

_ -1
Nicrg/azmyW) = (@mazas) =

For a; = 2,a5 = 5, a3 = 3 the values are:

2= {w(B+3V3+2V9), V3w —1—V3),V3(~w—2—V3)},
2o = {25+ 20V/5 + 28v/25,3(5v/5 + 12w24/25), 3v/5(—20 + 19wv/5)},
75 = {12+ 4/30 + /900, ¥/30(2 + w?{/30), v/30(10 — 3w+/30)}.

3.5. The element ~

We look now for an element v € L such that M = L({/7) is a solution to the
embedding problem. We compute v = 7, 72 3 where v; € L is the element
corresponding to z1, 72 € L is the element corresponding to z; and v3 € L is
the element corresponding to z3. We know (see the proof of [7, Theorem 8.2])
that the element b, = 227%¢g(u,) € L (where the element u, € F(Cp) is
such that ¢¢, (u,) = t(o) ) satisfies b,b7 = @, byr (Where the cocycle a,,
represents €) and the element ~y that satisfies y7y~! = b7 gives a solution to
the embedding problem.

We consider the associated representations to T, T; such that g; 'g7 =
T;(o) for i = 1,2,3. They are:

T, : T — O(0), o1 Id, oy Id, o3+ pc(es'es),
Ty:T — O(Cy), o1 Id, 03— @c, (/a3 upuzt), o3 +— Id,
T3:T — O(Cs), o1 pc,(Vay wiwyt), 09— o, (/ay wiwy ),
a3 = 9oy (¥ ag wiwy ).
For T7, we consider the elements
M =MD =1, M} = gi(ese;’) = uguy’

N} =ND=NMM) =1, NIV = N(M) =w.
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For o € T", we consider the corresponding

M7t =gi(uf)), Nyt =N and  BJ' ="M e L

g

They satisfy N(z;) = (BI)"(N')"IN(z)°. Let a; be a coordinate of
N(z1). The element n; = {/az satisfies n; “m = (N21)~!. Then, the element
71 = ma; ! satisfies the relation ¢ = (B1)"y, for each o € T.

Similarly, we consider for T,

Ty _ Ty _ Ty nf —1 -1\ _ n/ -1 -1 Ty _ Ty
My2 = M,2 =1, M;? = ga(\/ a3 uguz ) = \/az wows, My> = ga(u,?),

NP =NMP*) =1 and B> =22,"M* € L,Vo eT.

They satisfy N(zp) = (B2)"(NX2)"1N(z)°. In this case 7o = 1 and, if
ap is a coordinate of N(z), the element v, = a5’ satisfies the relation
7§ = (BX2)"q for each o € T.

In the same way, we consider for T,

Ts Ty Ty nf —1 -1\ _ n/ -1 —1 Ts Ts
My2 = M,? = M,? = g3s(\/ay wiwy ) = {/ay vivy -, M;* = g3(u,*),

NB =NMP)=1 and B =z2;"M* € L, Vo €T.

We have N(z3) = (BL)"(NP*)7IN(z)’. Now 73 = 1 and 73 = az"
(where a3z is a coordinate of N(z3)) satisfies the relation 7§ = (B1*)"y3
for each o € T.

It should be noted that for the representation 7', the elements
my = g(us) = g3(g2(M; )M )M v,

where v, € p,. It is not difficult to prove that b, = BI*B2BTs)! (V) € pu,),
and, therefore, b = (Bl BI: BI3)n,

Then, the element v = ;7573 satisfies v7 = b}y and M = L({/7) is a
solution to the embedding problem.

The general expression of the elements v, v, and 73 for n = 3 is:
10/3
N = (3 (af w o — a5 (1+20) yo ! =3 af wyo yo yt +ad 3 yi+

10/3 10/3 8/3
3al P +ay Ry +2a” wyd P +3adwyd +ay yo yit

8/3 10/3 10/3
23;,3/ wyoyi”+3a§wy§y§yf+6/a3/ wyo 2y —2 ay® yd yi—
1

8/3 8/3
ay’ Wby —3ad yo vb i —3 a3 2 y2 91 — 3 ay® w iy yo i —

10/3
6a§0y§ Y2 y1 — 6 a3 w Yo Y2 Y1 8—3a§ ys — a3 wg%g—ag/ Yo v —
1
2a3/ wy§y§—3a§wy§’—a3/ y0y§—2a3/ w Yo Yo+

3a§/3 y§+3a§/3 yo+3)>
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where yo+y; Vw1 +ya Vw2 € K(Vw™1) is such that N (\/—)/K(y) as”?,

Lo/3 10/3
Yo =7 (azagzh 2% a2 gy yt 0y a2 w oy vt — 3 ad a2 yo ya yi—
10/3 10/3
3“2a3yl+a2‘13?/291_2“ a3y0y1_a2 a3wy0y1

3 8/3
2a2/ a3y0y1—a2/ a3wy0y1+3a2 a3 yo y2 y1+

10 0 0/3
6 ay”® a3y0y2y1—2a2/ as Yt y1 — ab"? as w yd yi—
3 ad as yo yd v + 3 ay® a3 y2 yo y1 + 6 a3 a yo yo y1 + ad Y5+
10/3 10/3
3a3—3a2a3y2—a2/ a§y§y§’+a2/ agwygyg—

a5 a2 yo y3 + a5y a3 wyo v +3 ay” ad 42 + 3 a? o yo)
where yo+y1 /a3 +y2/a32 € K(3/az") is such that N (F)/K(y) ay’
and h
o = b of + alosed g (9~ 1) oyl
aj a2 a§ (a% a3 ys —3) yi — a?ag \3/a1a2a3 (w+2) ys y1 +ai a3 yS—
3 al a3 y2 + a1a2a3 ,3/a1a2a3 ye (—a? ag a3 (w+2) yi+
3 ajaj v ajaza; Y5 yi + aras V010203 Y2 Y1 + ai a3 (w—1) y3 +3)—
atada2 yo (3 atad ajazaz yo yi + at ag ai (w+2) yi—
6 atay v/aiaza3 y3 yi + 3 araz Yarazaz ya (af a3 y5 —2) y1—
a?ai(w—1)ys—-3)+3

where yo + y1 v/ ay " +ya/ay” € K(/ay") is such that
_ —1
N Ww(y) = (m10:05)

For a1 = 2,a5 = 5 and a3 = 3 the values are:

Mm=9 +6 V3+4V9
vy = 8059 + (1340 w + 2040)V/5 + (1876 w + 2856 )v/25
v3 =379 + (116 — 32 w)V/30 + (29 — 8 w)v/900.
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