
Rev. Mat. Iberoamericana 21 (2005), no. 1, 111–132

Resolution of a family of Galois
embedding problems with cyclic kernel

Montserrat Vela

Abstract

In this paper we compute the obstruction and the solutions of
cyclic embedding problems given by

(E) : 0 → Z/nZ → E → Γ = Z/nZ× m)· · · ×Z/nZ → 0 ,

with Z/nZ trivial Γ-modulo, finding adequate representations of Γ in
the automorphisms group of a generalized Clifford algebra.

1. Introduction

In [7] we have studied Galois embedding problems given by central extensions
with cyclic kernel. In particular, we have computed an expression for the
obstruction to the solvability of these embedding problems in terms of Galois
symbols, generalizing the formula given by Fröhlich in [3]. To compute this
obstruction, we associate to the embedding problem a representation t of Γ
in the group of graded automorphisms of an adequate generalized Clifford
algebra with an admissible norm.

We have too given a method for constructing the solutions when these
problems are solvable, generalizing the results obtained by Crespo in [1]
and [2]. We obtain a way to compute a solution of the solvable embedding
problems of the form L( n

√
γ) where γ is a coordinate of the norm of an

adequate element in a generalized Clifford algebra.

Using this study we solve now a complete family of problems.

We recall in short the notations and results used in [7] that we need to
do this study.
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Let n ≥ 2 be an integer, K be a field of characteristic not dividing n
containing the group µn of nth roots of unity, and fix ω a primitive nth root
of unity. We denote by lg the group homomorphism lg : µn → Z/nZ where
lg(ωi) = i, the separable closure of K is denoted by Ksep and the absolute
Galois group by GK = Gal(Ksep/K).

We consider cyclic embedding problems given by

L = K( n
√
a1, . . . , n

√
am)/K, Γ � Z/nZ× m)· · · ×Z/nZ,

(E) : 0 → Z/nZ → E → Γ → 0,

with Z/nZ trivial Γ-module. Let j : GK → Γ be the surjective homomor-
phism corresponding to L/K. We consider the homomorphism between the
cohomology groups j∗2 : H2(Γ,Z/nZ) → H2(GK ,Z/nZ) induced by j and
let ε be the element in H2(Γ,Z/nZ) corresponding to (E).

The embedding problem given by L/K,Γ, (E) is solvable if and only if
j∗2(ε) = 0. The element j∗2(ε) is called the obstruction to the solvability of
the embedding problem.

We use the term generalized Clifford algebra to refer to a finite dimen-
sional K-algebra generated by elements {e1, . . . , em} with relations eni =
ai ∈ K∗ and eiej = ωejei if i < j. We denote this algebra as C(V ) for
V =< e1, . . . , em >K . We can make C(V ) into a Z/nZ-graded K-algebra

C(V ) = C(V )0 ⊕ · · · ⊕ C(V )n−1,

by setting

C(V )l =< eε11 · · · eεm
m | ε1 + · · · + εm ≡ l (mod n) >K .

If m is odd the invariant of C(V ) is

a = (−1)
(n−1)(m−1)

2 a1a
−1
2 · · · a−1

m−1am

and if m is even the invariant is

a = (−1)
(n−1)m

2 a−1
1 a2 · · · a−1

m−1am.

The Brauer invariant of C(V ) defined in [7, Definition 4.2] is the class in the
Brauer group of C(V ) if m is even or of C(V )0 if m is odd.

We call the norm of the generalized Clifford algebra C(V ) the map N :
C(V ) −→ C(V ) given by N(z) := β(z)z where

β
(∑

αε1,··· ,εme
ε1
1 · · · eεm

m

)
=

∑
αn−1
ε1,··· ,εm

eεm(n−1)
m · · · eε1(n−1)

1 , αε1,··· ,εm ∈ K .
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The norm N restricted to the subgroup

F (C(V )) :=
{
x ∈ C(V )∗ homog. s.t. N(x) ∈ K∗

and β(xy) = β(y)β(x)∀y ∈ C(V )
}

is multiplicative.

Let A be a subgroup of F (C(V )) such that K∗ ⊂ A. An admissible norm
in A is a map N : A −→ K∗ such that for a, a1, a2 ∈ A,

N (a) ∈ K∗, N (a1a2) = N (a1)N (a2) and N (λ) = λn if λ ∈ K.

In particular, for A = F (C(V )), the norm N is an admissible norm.

We recall that, given a profinite group Γ, a representation of Γ over K
is the pair given by

(1) A generalized Clifford algebra Ct = C(Vt) over K with an admissible
norm (N , A) together with

(2) A continuous homomorphism t : Γ→O(Ct)⊂Autgr(Ct), where O(Ct)=

ϕ(A) with the homomorphism {Homogeneous elements of C(V )∗} ϕ→
Autgr(C(V )) where, for all x ∈ C(V ) homogeneous,

(a) ϕ(s)(x) = sxs−1 if dim(V ) is even,

(b) ϕ(s)(x) = ω∂(s)∂(x)sxs−1 if dim(V ) is odd (where ∂ denotes the
degree).

Given a representation t : Γ → O(Ct), we use the term twisted algebra
of Ct by t to refer to the K-algebra Ct corresponding to the element

α : Γ
t→ O(Ct) → O(Ct ⊗ L) ⊂ Autgr(Ct ⊗ L) ,

σ �→ t(σ)L(x⊗ λ) = t(σ)(x) ⊗ λ

ofH1(Γ,Aut(Ct⊗L)) by the bijection given in [3, III.2] (see too [6, Chap. X]).
We have Ct � (Ct⊗L)Γ where Γ acts on Ct⊗L via t⊗ gal, i.e., σ(x⊗ λ) =
t(σ)(x) ⊗ σ(λ) and the isomorphism g : Ct ⊗ L

∼→ Ct ⊗ L, where Γ acts on
Ct ⊗ L via 1 ⊗ gal, that is, σ(x ⊗ λ) = x ⊗ σ(λ). This morphism satisfies
g−1gσ = t(σ) for each σ ∈ Γ.

We have obtained, from the diagram of [7, Proposition 5.3] the exact
sequence

1 → Z/nZ → KerNKsep → O(Ct ⊗K K
sep) → 1

where NKsep denotes the extension of N to the subgroup AKsep of

F (C(V ) ⊗K K
sep)

generated by A.
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Composing the representation t with

O(Ct) → O(Ct ⊗K K
sep) ⊂ Autgr(Ct ⊗K K

sep)

we obtain

Γ
↓ t

O(Ct)
↓

1 → Z/nZ → KerNKsep → O(Ct ⊗K K
sep) → 1

that is an extension of Γ by Z/nZ and so, an element of H2(Γ,Z/nZ).
The analogue to the second Stiefel-Whitney class, denoted by st, is this
element of H2(Γ,Z/nZ). If Γ = GK , the element st belongs to

H2(GK ,Z/nZ) = Brn(K).

To compute the obstruction to the embedding problem, we need to find a
representation t of Γ so that ε = st. From such a representation we have the
Formula [7, 6.7]:

Formula 1.1. The obstruction j∗2 is

(a) j∗2(st) = [Ct] − [Ct] + PN2[t ◦ j] if dim(Vt) is even,

(b) j∗2(st) = [Ct] − [Ct] − (at, bt◦j) + PN2[t ◦ j] if dim(Vt) is odd,

where Ct is the twisted algebra of Ct by t, at is the invariant of Ct, bt ∈
K∗/K∗n

is the element corresponding to d(t) ∈ Hom(Γ,Z/nZ) defined by
σ �→ d(t)(σ) = ∂(s(σ)) (where s(σ) ∈ ϕ−1(t(σ))) by Kummer theory and
PN2[t] ∈ Brn(K) is the class of the cocycle

(σ, τ) �→ lg
σ( n

√N (s(τ)))
n
√N (s(τ))

and can be expressed as a sum of Galois symbols ([7, Proposition 5.6]).

If we know that the embedding problem is solvable, according [7, The-
orem 8.2], the steps to be followed in order to obtain an element γ such
that L( n

√
γ) is a solution are:

1. Find a “good” representation of degree 0 such that st = ε.

2. Write down explicitly the isomorphism g : CL → CL over L such that
g−1gσ = t(σ) ∀σ ∈ Γ.
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3. Determine an isomorphism f : C → C over K such that the element z
defined in [7, Theorem 8.2] be different from 0.

4. Compute the expression of the element z in the basis of CL.

5. Compute the norm N(z) ∈ CL and consider a non-zero coordinate α
of it.

6. Find η ∈ L such that η−ση = n−1
σ , ∀σ ∈ Γ.

7. Compute the element γ = ηα−1.

(In fact, here we compute γ−1 because of the difficulty to compute α−1

from α and the fact that the field K( n
√
γ−1) is equal to K( n

√
γ)).

In this way we obtain all solutions of the embedding problem because
if L( n

√
γ) is a solution of the solvable embedding problem L/K,Γ, E, the

set { n
√
rγ | r ∈ K} contains all proper and improper solutions.

2. Representations for a family of problems

Let n be an odd integer and L = K( n
√
a1, . . . , n

√
am) be a Galois extension

of K with Galois group

Γ = Gal(L/K) � Z/nZ× m)· · · ×Z/nZ.

In particular we suppose ai /∈ Kd for all d | n, d �= 1 and the ai are indepen-
dent in K∗/K∗n

.

We compute the obstruction to the solvability of embedding problems
given by

L/K,Γ, (E) : 0 → Z/nZ → E → Γ → 0 ,

with Z/nZ trivial Γ-module, that is, where E is a central extension of Γ by
Z/nZ. Equivalently, we can consider the problem given by L/K,Γ, ε, where
ε ∈ H2(Γ,Z/nZ) is the element corresponding to (E). Let σi (1 ≤ i ≤ m)
be the automorphisms of L given by

σi( n
√
aj) = ωδij n

√
aj

such that Γ =< σ1, . . . , σm >.

We look for a representation t of Γ over K such that

ε = st ∈ H2(Γ,Z/nZ),

where st is the analogue to the second Stiefel-Whitney class.
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We begin by defining a generalization of Galois symbols.

Definition 2.1. Let L/K be a Galois extension and Γ = Gal(L/K). For
a ∈ L∗n ∩K∗ we denote by

χa ∈ Hom(Γ,Z/nZ) = H1(Γ,Z/nZ)

the corresponding element by Kummer isomorphism relative to L, that is

χa(σ) = lg(
σ( n

√
a)

n
√
a

).

For a, b ∈ L∗n ∩K∗ we define

(a, b)L := χa ∪ χb
where the cup-product is considered via the multiplication in Z.

Proposition 2.2. These symbols have the next properties:

1. They are bilineal, that is,

(aa′, b)L = (a, b)L + (a′, b)L and (a, bb′)L = (a, b)L + (a, b′)L.

2. If n is odd (a, a)L = 0 and (a, b)L + (b, a)L = 0.

Proof. 1. As χaa′(σ) = χa(σ) + χa′(σ) for all σ ∈ Γ, they are bilineal.

2. For the first equality our goal is to prove that χa ∪ χa is a coboundary,
that is, that there exists a map h : Γ → Z/nZ such that

χa(σ)χa(τ) = −h(στ) + h(σ) + h(τ) ∀σ, τ ∈ Γ.

If we consider the morphism

ψa : GK → Z/nZ, σ �→ ψa(σ) =
σ( n

√
a)

n
√
a

,

by properties of Galois symbols ([6, XIV.2, Prop. 4] and [7, Lemma 4.1]),
ψa ∪ ψa is a coboundary. Therefore, there exists a map η : GK → Z/nZ

such that

ψa(σ)ψa(τ) = −η(στ) + η(σ) + η(τ) for all σ, τ ∈ GK .

Let j : GK → Γ be the surjective morphism and we fix u a section of j.
We define the map h(σ) := η(u(σ)) for σ ∈ Γ. This map satisfies for σ, τ ∈ Γ,

ψa(u(σ))ψa(u(τ)) = −η(u(στ))+ η(u(σ))+ η(u(τ)) = −h(στ)+h(σ)+h(τ)

and, since ψa(u(σ)) = χa(σ) for all σ ∈ Γ because a ∈ L, we get the
relation (a, a)L = 0.

From the previous results, we have

0 = (ab, ab)L = (a, a)L + (a, b)L + (b, a)L + (b, b)L = (a, b)L + (b, a)L. �
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We now define some representations:

Definition 2.3. 1. For the following representations we consider the gen-
eralized Clifford algebra C(e) such that en = 1 and N = N (norm of the
algebra):

(a) For i ∈ {1, . . . ,m} we define

φi : Γ −→ Autgr(C(e))
σi −→ ϕ(e)
σr −→ 1 if r �= i

and
φki : Γ −→ Autgr(C(e))

σi −→ ϕ(ek)
σr −→ 1 if r �= i.

(b) For i1, · · · , ik ∈ {1, . . . ,m} all different we define

φi1 · · ·φik : Γ −→ Autgr(C(e))
σij −→ ϕ(e) for j = 1, . . . k
σr −→ 1 if r �= ij,

and in the same way the representation

φ
mi1
i1

· · ·φmik
ik

.

2. We now consider the generalized Clifford algebra C(v) with vn = ω, and
define the representation:

ψi : Γ −→ Autgr(C(v))
σi −→ ϕ(v)
σr −→ 1 if r �= i,

with
Aψi

= {λvr | λ ∈ K, r ∈ {0, . . . , n− 1}}
and the admissible norm N (v) = ω−1N(v) = 1.

We also define the representation

ψki : Γ −→ Autgr(C(v))
σi −→ ϕ(vk)
σr −→ 1 if r �= i.

As in the previous case we define the representations:

ψi1 · · ·ψik and ψ
mi1
i1

· · ·ψmik
ik

.
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Proposition 2.4. For these representations we have:

1. sφi
= 0 and bφi

= ai.

sφk
i

= 0 and bφk
i

= aki .

sφi1
···φik

= 0 and bφi1
···φik

= ai1 · · · aik .
s
φ

mi1
i1

···φmik
ik

= 0 and b
φ

mi1
i1

···φmik
ik

= a
mi1
i1

· · · amik
ik

.

2. We denote sψi
= (ai) ∈ H2(Γ,Z/nZ) (see Remark 2.5).Then

bψi
= ai.

sψk
i

= (aki ) and bψk
i

= aki .

sψi1
···ψik

= (ai1 · · · aik) and bψi1
···ψik

= ai1 · · · aik .
s
ψ

mi1
i1

···ψmik
ik

= (a
mi1
i1

· · · amik
ik

) and b
ψ

mi1
i1

···ψmik
ik

= a
mi1
i1

· · · amik
ik

.

Proof. To prove these results it is only necessary to apply the definition of
analogue to Stiefel-Whitney class st. �
Remark 2.5. The element (ai) defined before coincides, if n is a prime
number with the element ((ai)) defined in [5] because both are defined by
the same 2-cocycle.

Proposition 2.6. Let j be the surjective morphism j : GK → Γ and j∗2 the
homomorphism between the cohomology groups induced by j. For the above
representations we have:

1. j∗2(sφi
) = 0, j∗2(sφk

i
) = 0.

j∗2(sφiφk
) = 0, j∗2(sφi1

···φik
) = 0, j∗2(sφmi1

i1
···φmik

ik

) = 0.

2. j∗2(sψi
) = j∗2((ai)) = (ai, ω), j∗2(sψk

i
) = j∗2((a

k
i )) = (aki , ω).

j∗2(sψiψk
) = j∗2((aiak)) = (aiak, ω), j∗2(sψmi1

i1
···ψmik

ik

) = (a
mi1
i1

· · · amik
ik

, ω).

3. j∗2(sφi⊗̂φj
) = (ai, aj), that is j∗2((ai, aj)L) = (ai, aj).

Proof. If t, t1, t2 are representations of Γ, it is known that st◦j = j∗2(st) and
therefore j∗2(st1⊗̂t2) = j∗2(st1) + j∗2(st2) + (bt1, bt2) ([7, Proposition 5.5]).

1. For t a representation of 1., we have by 1.1 j∗2(st) = [Ct]− [Ct]−(at, bt)
where [Ct] = [C(e)] = 0 and the invariant at = 1. The twisted algebra Ct is
generated only by an element, so [Ct] = 0 and j∗2(st) = 0.

2. For t a representation of 2., we have, as before, j∗2(st) = [Ct] − [Ct] −
(at, bt) where [Ct] = [C(v)] = 0 and [Ct] = 0. But in this case, its invariant
at = ω. Thus, j∗2(st) = (bt, ω).

3. It is a consequence of the above equalities. �
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Theorem 2.7. A representation t of Γ such that

st =
∑

1≤i<j≤m
λi,j(ai, aj)L + µ(a

mi1
i1

· · · amik
ik

), µ = 0 or 1

is t = ρ ⊗̂µ(ρ′⊗̂ρ′′), where:

1. The representation ρ satisfies

sρ =
∑

1≤i<j≤m
λi,j(ai, aj)L =

∑
1≤i<j≤m

(ai, a
λi,j

j )L

and it is ρ = ρ1⊗̂ · · · ⊗̂ρm−1 for

ρ1 = φ1 ⊗̂φ
λ1,2

2 · · ·φλ1,m
m ,

ρi = φi ⊗̂φ
λi,i+1

i+1 · · ·φλi,m
m ⊗̂φiφ

λi,i+1

i+1 · · ·φλi,m
m ⊗̂φ

di,1

1 · · ·φdi,m
m , i > 1.

with the elements di,k:

d2,1 = 1, di+1,1 = 1 +
i∑

r=2

dr,1

d2,2 = λ1,2 di+1,2 = λ1,2 + 2 +
i∑

r=2

dr,2 if i > 1

di+1,k = λ1,k + 2
i−1∑
r=2

λr,k + 2 +
i∑

r=2

dr,k if 2 < k ≤ i

di+1,k = λ1,k + 2
i∑

r=2

λr,k +
i∑

r=2

dr,k if k > i

where λk,k = 1 and λi,j = 0 if i > j.

2. The representation ρ′ is

ρ′ = ψ
mi1
i1

· · ·ψmik
ik

.

3. The representation ρ′′ is

ρ′′ = φ
mi1
i1

· · ·φmik
ik

⊗̂φ
dm,1

1 · · ·φdm,m
m ,

where the elements dm+1,i are the ones defined above.

Remark 2.8. If n is prime, Theorem 2.7 gives a representation t such that
st = ε for all elements ε ∈ H2(Γ,Z/nZ) (see the decomposition done by
Massy [5]).
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Theorem 2.9. The obstruction to the solvability of the embedding problem
given by L/K,Γ and st ∈ H2(Γ,Z/nZ) for

st =
∑

1≤i<j≤m
λi,j(ai, aj)L + µ(a

mi1
i1

· · · amik
ik

), where µ = 0, 1

is
j∗2(st) =

∑
1≤i<j≤m

λi,j(ai, aj) + µ(a
mi1
i1

· · · amik
ik

, ω).

The last theorem is a direct consequence of Theorem 2.7 and Proposi-
tion 2.6. We will now prove Theorem 2.7.

Proof of Theorem 2.7.

Step 1: We begin to prove that the representation ρ is such that

sρ =
∑

1≤i<j≤m
(ai, a

λi,j

j )L =
m−1∑
i=1

(ai, a
λi,i+1

i+1 · · · aλi,m
m )L,

where we obtain the last equality by properties of Galois symbols.

To show it, we prove by induction on r that if tr = ρ1⊗̂ · · · ⊗̂ρr, then

str =
∑

r
i=1(ai, a

λi,i+1

i+1 · · · aλi,m
m )L.

- If r = 1,
t1 = ρ1 = φ1 ⊗̂φ

λ1,2

2 · · ·φλ1,m
m

and
sρ1 = (bφ1 , bφλ1,2

2 ···φλ1,m
m

)L = (a1, a
λ1,2

2 · · · aλ1,m
m )L

by [7, Proposition 5.5]. Moreover,

bρ1 = a1a
λ1,2

2 · · · aλ1,m
m .

- We suppose the result is true for r and we will compute str+1. We have,
for any i, that

sρi
= (ai, a

λi,i+1

i+1 · · · aλi,m
m )L + 2(aia

λi,i+1

i+1 · · · aλi,m
m , a

di,1

1 · · · adi,m
m )L,

and
bρi

= a
di,1

1 · · · adi,i−1

i−1 a
2+di,i

i a
2λi,i+1+di,i+1

i+1 · · · a2λi,m+di,m
m .
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Lemma 2.10. btr = a
dr+1,1

1 · · · adr+1,m
m .

By applying the lemma and properties of symbols, we obtain the result:

str+1 = str +sρr+1 +(btr , bρr+1)L

=
r+1∑
i=1

(ai, a
λi,i+1

i+1 · · · aλi,m
m )L + (a2

r+1a
2λr+1,r+2

r+2 · · · a2λr+1,m
m , a

dr+1,1

1 · · · adr+1,m
m )L

+ (a
dr+1,1

1 · · · adr+1,m
m , a2

r+1a
2λr+1,r+2

r+2 · · · a2λr+1,m
m )L

=
r+1∑
i=1

(ai,a
λi,i+1

i+1 · · · aλi,m
m )L.

To prove the lemma we prove by induction the formula:

btr = a
1+d2,1+···+dr,1

1

∏
2≤k<r

a
λ1,k+2λ2,k+d2,k+···+2λk−1,k+dk−1,k+2+dk,k+dk+1,k+···dr,k

k ·

aλ1,r+2λ2,r+d2,r+···+2λr−1,r+dr−1,r+2+dr,r
r ·

∏
k>r

a
λ1,k+2λ2,k+d2,k+2λ3,k+d3,k+···+2λr,k+dr,k

k .

It gives the result for the values of the exponents dr+1,k.

If µ = 0 we have proved the theorem. Now, we suppose µ = 1.

Step 2: We compute sρ⊗̂ρ′ . By lemma 2.10, bρ = a
dm,m

1 · · · adm,m
m . Then

sρ⊗̂ρ′ = sρ + s
ψ

mi1
i1

···ψmik
ik

+ (bρ, a
mi1
i1

· · · amik
ik

)L.

Step 3: In addition,

sρ′′ = (a
mi1
i1

· · · amik
ik

, a
dm,1

1 · · · adm,m
m )L,

and then, by properties of symbols,

st = sρ⊗̂ρ′ + sρ′′ + (bρ⊗̂ρ′ , bρ′′) =
∑

1≤i<j≤m
λi,j(ai, aj)L + (a

mi1
i1

· · · amik
ik

).
�

By considering the representation of degree 0 associated to the given in
Theorem 2.7 following [7, Section 6] and with the method of [7, Section 8]
we can compute the solutions of the corresponding embedding problem.
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3. An example: The exact sequence

0 → Z/nZ → G→ Z/nZ × Z/nZ × Z/nZ → 0

3.1. Computation of the obstruction

We consider n odd and K as before and the field extension

L = K( n
√
a1, n

√
a2, n

√
a3)

such that [K(
√
ai) : K] = n, i = 1, 2, 3 and [L : K] = n3 with

Γ = Gal(L/K) � Z/nZ × Z/nZ × Z/nZ.

Let σ1, σ2 and σ3 be generators of Γ determined by σi( n
√
aj) = ωδij n

√
aj.

Problem 3.1. Let us consider the embedding problem given by

L = K( n
√
a1, n

√
a2, n

√
a3)/K with Γ = Gal(L/K) � Z/nZ × Z/nZ × Z/nZ

and the exact sequence

(E) : 0 → Z/nZ
i→ G

h→ Γ → 0

where G is the group

G := < g1, g2, g3 | g1, g2 have order n, g3 has order n2,

g1g2 = g2g1g
n
3 , g1g3 = g3g1, g2g3 = g3g2 >,

and the morphisms are h(g1) = σ1, h(g2) = σ2, h(g3) = σ3 and i(lg(ω)) = gn3 .

Remark 3.2. G is a non commutative group of order n4 extension of Γ.
Other groups with these properties are E1 × Z/nZ where

E1 =< σ, τ | σ has order n, τ has order n2, στ = τn+1σ >,

and E2 × Z/nZ where

E2 =< σ, τ, ρ | σ, τ, ρ have order n, στσ−1τ−1 = ρ, σρ = ρσ, τρ = ρτ > .

If n = p prime integer, it is the Heisenberg group of degree p.

The obstruction to the solvability of the problems given by them is
(ω−1a1, a2) and (a1, a2) respectively. These obstructions are computed in
[7, Theorems 7.2 and 7.4]). If n = 2 there are not other noncommutative
groups of order n4 ([4, sec. 4]).
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Proposition 3.3. The element ε ∈ H2(Γ,Z/nZ) corresponding to the exact
sequence of the previous problem (E) is ε = (a1, a2)L + (a3).

Proof. We compute the cocycles a, a′, a′′ : Γ×Γ → Z/nZ associated to (E),
(a1, a2)L and (a3) respectively.

The one associated to (E) is

aσr
1σ

k
2σ

l
3,σ

α
1 σ

b
2σ

c
3

=

{ −kα if l + c < n
−kα + 1 if l + c ≥ n.

The cocycle associated to (a1, a2)L = −(a2, a1)L is

a′σr
1σ

k
2σ

l
3,σ

α
1 σ

b
2σ

c
3

= −kα,
and the cocycle associated to (a3) is

a′′σr
1σ

k
2σ

l
3,σ

α
1 σ

b
2σ

c
3

=

{
0 if l + c < n
1 if l + c ≥ n.

So, a = a′ + a′′ and we get the result. �
Applying Theorem 2.7, the representation corresponding to the embed-

ding problem 3.1 is
t = ρ⊗̂(ρ′⊗̂ρ′′)

where ρ = ρ1⊗̂ρ2 for ρ1 = φ1⊗̂φ2 and ρ2 = φ2⊗̂φ2⊗̂φ1φ2, ρ
′ = ψ3 and

ρ′′ = φ3⊗̂φ2
1φ

4
2.

Writing the representation in terms of generalized Clifford algebras and
morphism it is

Ct = C(e1, e2, e3, e4, e5, v, e6, e7) with eni = 1 for i = 1, . . . , 7, and vn = ω

and
t : Γ −→ Autgr(Ct)
σ1 −→ ϕ(e1e5e

2
7)

σ2 −→ ϕ(e2e3e4e5e
4
7)

σ3 −→ ϕ(ve6).

By putting u1 := e1e5e
2
7, u2 := e2e3e4e5e

4
7 and u3 := ve6, they satisfy the

next relations

uk1 = ω−5
k(k−1)

2 ek1e
k
5e

2k
7 , so un1 = 1,

uk2 = ω−22
k(k−1)

2 ek2e
k
3e
k
4e
k
5e

4k
7 , so un2 = 1,

uk3 = ω− k(k−1)
2 vkek6 = ω, so un3 = ω

and moreover the relations

u1u2 = ωu2u1, u1u3 = u3u1, and u2u3 = u3u2.

Then, we have checked again that ε = st.
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The twisted algebra by the representation t is

Ct = C(e1 ⊗ n
√
a3

1a
8
2a

2
3, e2 ⊗ n

√
a2

1a
7
2a

2
3, e3 ⊗ n

√
a2

1a
5
2a

2
3, e4 ⊗ n

√
a2

1a
3
2a

2
3,

e5 ⊗ n
√
a1a2a2

3, v ⊗ n
√
a3, e6 ⊗ n

√
a−1

3 , e7 ⊗ n
√
a−2

1 a−4
2 a−2

3 )

= C(a3
1a

8
2a

2
3, a

2
1a

7
2a

2
3, a

2
1a

5
2a

2
3, a

2
1a

3
2a

2
3, a1a2a

2
3, ωa3, a

−1
3 , a−2

1 a−4
2 a−2

3 )

because the generating elements are fixed by the action t ⊗ gal of Γ. The
element bt = a4

1a
8
2a

2
3.

Corollary 3.4. The obstruction to the solvability is

j∗2(st) = [Ct] = (a1, a2) + (a3, ω).

For instance, for n = 3,K = Q(ω) (where ω is a third root of unity)
and a1 = 2, a2 = 5 and a3 = 3 the embedding problem is solvable be-
cause (2, 5) = 0, (3, ω) = 0 and therefore j∗2(st).

The representation of degree 0 corresponding to t is

t0 : Γ −→ Autgr(Ct)
σ1 −→ ϕ(e1e5e

2
7e

−4
8 )

σ2 −→ ϕ(e2e3e4e5e
4
7e

−8
8 )

σ3 −→ ϕ(ve6e
−2
8 )

where

Ct0= C(e1, e2, e3, e4, e5, v, e6, e7, e8) with eni = 1 for i=1, . . . , 8, and vn = ω.

The twisted algebra by t0 is

Ct0 = C(e1 ⊗ n
√
a−1

1 , e2 ⊗ n
√
a−2

1 a−1
2 , e3 ⊗ n

√
a−2

1 a−3
2 , e4 ⊗ n

√
a−2

1 a−5
2 ,

e5 ⊗ n
√
a−3

1 a−7
2 , v ⊗ n

√
a−4

1 a−8
2 a−1

3 , e6 ⊗ n
√
a−4

1 a−8
2 a−3

3 ,

e7 ⊗ n
√
a−6

1 a−12
2 a−4

3 , e8 ⊗ n
√
a−4

1 a−8
2 a−2

3 )

= C(a−1
1 , a−2

1 a−1
2 , a−2

1 a−3
2 , a−2

1 a−5
2 , a−3

1 a−7
2 , ωa−4

1 a−8
2 a−1

3 , a−4
1 a−8

2 a−3
3 ,

a−6
1 a−12

2 a−4
3 , a−4

1 a−8
2 a−2

3 ).

To find the solution of the embedding problem it is only necessary determine
an isomorphism over K from Ct0 into Ct0 and compute the elements z ∈ Ct0
and γ ∈ L using the method given in [7, Section 8].

Remark 3.5. Given a embedding problem may be there is a representation
simpler than the given in Theorem 2.7, but this theorem assure the existence
of at least one.
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In order to compute an element γ ∈ L such that L( n
√
γ) is a solution of

the embedding problem and to simplify the computations, we will consider
another simpler representation T of degree 0 of Γ which allows us to deter-
mine the isomorphism over K of CT into CT more easily and then, compute
the elements z and γ.

We consider the representation (C, T ) where

C = C(e1, e2, e3, e4) = C(1, 1, 1, ω−1)

and the representation

T : Γ → O(C), σ1 �→ ϕ(e1e
−1
2 ), σ2 �→ ϕ(e1e

−1
3 ), σ3 �→ ϕ(e1e

−1
2 e3e

−1
4 ).

The twisted algebra by T is

C = C(v1, v2, v3, v4) = C(a−1
1 a−1

2 a−1
3 , a−1

1 a−2
2 a−1

3 , a−1
2 a−1

3 , ω−1a−1
3 )

because the elements

v1 = e1 ⊗ n

√
a−1

1 a−1
2 a−1

3 ,

v2 = e2 ⊗ n

√
a−1

1 a−2
2 a−1

3

v3 = e3 ⊗ n

√
a−1

2 a−1
3

v4 = e4 ⊗ n

√
a−1

3 ,

are fixed by the action T ⊗ gal. Clearly this representation is of degree 0
and it is straightforward to check that ε = sT .

The obstruction to the solvability of the considered embedding problem
is (a1, a2) + (a3, ω). We suppose the problem is solvable, that is (a1, a2) +
(a3, ω) = 0, and we want to find an element γ ∈ L∗ such that M = L( n

√
γ)

is a solution.

Moreover, to simplify the computations we suppose, that the symbols

(a1, a2) = 0, (a3, ω) = 0 and (a2, a3) = 0.

For the values a1 = 2, a2 = 5, a3 = 3 and n = 3 it is true.

3.2. The isomorphism g : CL → CL over L

Proposition 3.6. The isomorphism g : CL → CL given by:

e1 �→ n
√
a1a2a3 v1, e2 �→ n

√
a1a2

2a3 v2, e3 �→ n
√
a2a3 v3, e4 �→ n

√
a3 v4

is a graded isomorphism which satisfies g−1gτ = T (τ) for each τ ∈ Γ.

The proof is a simple computation.
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We express the isomorphism g as the composition of the three isomor-
phisms g1,g2 and g3

CL
g1� C2 = C(1, 1, a−1

3 , ω−1a−1
3 )L

g2� C3 = C(1, a−1
2 , a−1

2 a−1
3 , ω−1a−1

3 )L
g3� CL

given by

g1(e1) = u1, g1(e2) = u2, g1(e3) = n
√
a3 u3, g1(e4) = n

√
a3 u4

g2(u1) = w1, g2(u2) = n
√
a2 w2, g2(u3) = n

√
a2 w3, g2(u4) = w4

g3(w1) = n
√
a v1, g3(w2) = n

√
a v2, g3(w3) = v3, g3(w4) = v4

where a = a1a2a3 and the elements u1, u2, u3, u4 and w1, w2, w3, w4 generate
the algebras C2 = C(1, 1, a−1

3 , ω−1a−1
3 ) and C3 = C(1, a−1

2 , a−1
2 a−1

3 , ω−1a−1
3 )

respectively.
Clearly g = g3 ◦ g2 ◦ g1.

3.3. The isomorphism f : C → C over K

We know that there exists an isomorphism f defined over K from C into C.
To determine f , we express this isomorphism in terms of three easier iso-
morphisms between generalized Clifford algebras generated by two elements.
We consider the isomorphisms

C
f1� C2 = C(1, 1, a−1

3 , ω−1a−1
3 )

f2� C3 = C(1, a−1
2 , a−1

2 a−1
3 , ω−1a−1

3 )
f3� C

where they are obtained from the isomorphism C(1, β) � C(α, αβ), valid
if the symbol (α, β) = 0, α, β ∈ K. For a generalized Clifford algebra
C = C(ν1, ν2), the vector subspace of the elements of degree i of C is denoted
by Ci. We consider the following basis of the subspaces Ci for i = 0, . . . , n−1:

ωc(k)−(i−1)ken+i−k
1 ek2, k = 0, . . . , n− 1

where c(0) = 0 and c(k) = kx + k(k−1)
2

for k > 0, where x is an arbitrary
integer.

Lemma 3.7. We consider the algebras C(ν1, ν2) = C(1, β) and C(υ1, υ2) =
C(α, αβ). If the Galois symbol (α, β) = 0, there exists an isomorphism
F : C(1, β) � C(α, αβ) defined over K given by:

ν1 �→ 1

α2

n−1∑
k=0

yk ω
c(k) υn+1−k

1 υk2 , ν2 �→ 1

α2
βyn−1υ

n+1 +
n−1∑
k=1

yk−1 ω
c(k) υn+1−k

1 υk2 ,

where y0+y1
n
√
β+· · ·+yn−1

n
√
βn−1 is an element of K( n

√
β) with norm αn−1.

The proof of this lemma is similar to the proof of [7, Theorems 10.2 and 11.5].
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From the previous lemma, we can compute the isomorphisms f1, f2 and f3

over K. For the first one the values are α = a−1
3 and β = ω−1 and the

isomorphism exists because we have supposed that the symbol

(a−1
3 , ω−1) = (a3, ω) = 0.

For f2, the values are α = a−1
2 and β = a−1

3 and we have supposed that the
symbol (a2, a3) = 0.

For the last one α = a−1
1 a−1

2 a−1
3 and β = a−1

2 . The symbol

(a−1
1 a−1

2 a−1
3 , a−1

2 ) = (a1a2a3, a2) = (a1, a2) + (a2, a2) + (a3, a2) = 0

because we have supposed (a1, a2) = 0 = (a2, a3) and (a2, a2) = 0 since n
is odd.

Thus, we have the isomorphism f as composition of these isomorphisms.

In particular, for n = 3 and a1 = 2, a2 = 5, a3 = 3 we have found the
elements to determine these isomorphisms:

For f1, α = 1
3
, β = ω−1 and the element

1

3
(2 − 3

√
β − ω 3

√
β2) ∈ K( 3

√
β)

has norm 1
9
.

For f2, α = 1
5
, β = 1

3
and the element

1

25
(28 + 36 3

√
β + 57 3

√
β2) ∈ K( 3

√
β)

has norm 1
25

.

For f3, α = 1
30

, β = 1
5

and the element

1

12
(1 + 3

√
β − 3 3

√
β2) ∈ K( 3

√
β)

has norm 1
900

.

The isomorphisms are then:

f1 : C → C2, e1 �→ u1, e2 �→ u2, e3 �→ 2u3 − u4 − 3ω2u2
3u

2
4,

e4 �→ −u3 + 2u4 − 3u2
3u

2
4,

f2 : C2 → C3, u1 �→ w1, u2 �→ 5(28w2 + 36w3 + 285w2
2w

2
3),

u3 �→ 5(19w2 + 28w3 + 180w2
2w

2
3), u4 �→ w4,

f3 : C3 → C, w1 �→ 75
30

(v1 + v2 − 90v2
1v

2
2),

w2 �→ −3
2
v1 + 75

30
(v2 + 30v2

1v
2
2), w3 �→ v3 w4 �→ v4.
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3.4. The element z

From the isomorphisms f1, g1, f2, g2 and f3, g3, following [7, Theorem 8.2]
and its proof, we can compute elements z1 ∈ (C2)L, z2 ∈ (C3)L and z3 ∈ CL
such that gi(x) = zifi(x)z

−1
i for i = 1, 2, 3 and x any element of the corre-

sponding Clifford algebra. The element z = g3(g2(z1) z2) z3 ∈ CL satisfies
g(x) = zf(x)z−1 for all x ∈ CL.

We compute now the elements z1, z2 and z3. As f1(e1) = g1(e1) and
f1(e2) = g1(e2), we can express

z1 =
∑

εi∈{0,...,n−1}
g1(e3)

ε3g1(e4)
ε4f1(e4)

−ε4f1(e3)
−ε3,

as f2(u1) = g2(u1) and f2(u4) = g2(u4),

z2 =
∑

εi∈{0,...,n−1}
g2(u2)

ε2g2(u3)
ε3f2(u3)

−ε3f2(u2)
−ε2

and, as f3(w3) = g3(w3) and f3(w4) = g3(w4),

z3 =
∑

εi∈{0,...,n−1}
g3(w1)

ε1g3(w2)
ε2f3(w2)

−ε2f3(u1)
−ε1 .

We compute these elements using the package n-Clifford.

For instance, for n = 3 the coordinates of the elements z1, z2 and z3 in
the fixed basis are:

z1 =

{
ω y2

0 +
ω y0

a
2/3
3

+
ω

a
4/3
3

− y1 y2, y
2
2 +

( 1

a
2/3
3

− ω y0

)
y1,

1

a
2/3
3

(a
2/3
3 ω y2

1 − (a
2/3
3 y0 ω + ω + 1) y2)

}

where y0 + y1
3
√
ω−1 + y2

3
√
ω−2 ∈ K(

3
√
ω−1) such that N

K(
3√
ω−1)/K

(y) = a−2
3 ,

z2 =

{
a3 y

2
0 +

a3 y0

a
2/3
2

+
a3

a
4/3
2

− y1 y2,
1

a
2/3
2

(a
2/3
2 y2

2 − a3 (ω + a
2/3
2 y0 + 1) y1),

a3

(
y2

1 +
( ω

a
2/3
2

− y0

)
y2

)}

where y0 + y1
3
√
a−1

3 + y2
3
√
a−2

3 ∈ K( 3
√
a−1

3 ) such that N
K( 3

√
a−1
3 )/K

(y) = a−2
2
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and

z3 =

{
(a1 a2 a3)

4/3 y2
0 + (a1 a2 a3)

2/3 y0 − a1a3
3
√
a1 a2 a3 y1 y2 + 1,

3

√
a2

1 a2 a2
3

(
3

√
a2

1 a
2
3 y

2
2 − 3

√
a2

(
ω + 3

√
a2

1 a
2
2 a

2
3y0 + 1

)
y1

)
,

(a1 a2 a3)
4/3 y2

1 + 3

√
a2

1 a
2
2 a

2
3

(
ω − 3

√
a2

1 a
2
2 a

2
3y0

)
y2

}

where y0 + y1
3
√
a−1

2 + y2
3
√
a−2

2 ∈ K( 3
√
a−1

2 ) such that

N
K( 3

√
a−1
2 )/K

(y) = (a1a2a3)
−1.

For a1 = 2, a2 = 5, a3 = 3 the values are:

z1 = {ω(3 + 3 3
√

3 + 2 3
√

9), 3
√

3(ω − 1 − 3
√

3), 3
√

3(−ω − 2 − 3
√

3)},
z2 = {25 + 20 3

√
5 + 28 3

√
25, 3(5 3

√
5 + 12ω2 3

√
25), 3 3

√
5(−20 + 19ω 3

√
5)},

z3 = {12 + 4 3
√

30 + 3
√

900, 3
√

30(2 + ω2 3
√

30), 3
√

30(10 − 3ω 3
√

30)}.

3.5. The element γ

We look now for an element γ ∈ L such that M = L( n
√
γ) is a solution to the

embedding problem. We compute γ = γ1 γ2 γ3 where γ1 ∈ L is the element
corresponding to z1, γ2 ∈ L is the element corresponding to z2 and γ3 ∈ L is
the element corresponding to z3. We know (see the proof of [7, Theorem 8.2])
that the element bσ = zz−σg(uσ) ∈ L (where the element uσ ∈ F (CL) is
such that ϕCL

(uσ) = t(σ) ) satisfies bσb
σ
τ = aσ,τbστ (where the cocycle aσ,τ

represents ε) and the element γ that satisfies γσγ−1 = bnσ gives a solution to
the embedding problem.

We consider the associated representations to T , Ti such that g−1
i gσi =

Ti(σ) for i = 1, 2, 3. They are:

T1 : Γ → O(C), σ1 �→ Id, σ2 �→ Id, σ3 �→ ϕC(e−1
3 e4),

T2 : Γ → O(C2), σ1 �→ Id, σ2 �→ ϕC2(
n
√
a−1

3 u2u
−1
3 ), σ3 �→ Id,

T3 : Γ → O(C3), σ1 �→ ϕC3(
n
√
a−1

2 w1w
−1
2 ), σ2 �→ ϕC3(

n
√
a−1

2 w1w
−1
2 ),

σ3 �→ ϕC3(
n
√
a−1

2 w1w
−1
2 ).

For T1, we consider the elements

MT1
σ1

= MT1
σ2

= 1, MT1
σ3

= g1(e3e
−1
4 ) = u3u

−1
4

NT1
σ1

= NT1
σ2

= N(MT1
σ1

) = 1, NT1
σ3

= N(MT1
σ3

) = ω.
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For σ ∈ Γ, we consider the corresponding

MT1
σ = g1(u

T1
σ ), NT1

σ = N(MT1
σ ) and BT1

σ = z1z
−σ
1 MT1

σ ∈ L.

They satisfy N(z1) = (BT1
σ )n(NT1

σ )−1N(z1)
σ. Let α1 be a coordinate of

N(z1). The element η1 = n
√
a3 satisfies η−σ1 η1 = (NT1

σ )−1. Then, the element
γ1 = η1α

−1
1 satisfies the relation γσ1 = (BT1

σ )nγ1 for each σ ∈ Γ.

Similarly, we consider for T2,

MT2
σ1

= MT2
σ3

= 1, MT2
σ2

= g2(
n

√
a−1

3 u2u
−1
3 ) = n

√
a−1

3 w2w
−1
3 , MT2

σ = g2(u
T2
σ ),

NT2
σ = N(MT2

σ ) = 1 and BT2
σ = z2z

−σ
2 MT2

σ ∈ L, ∀σ ∈ Γ.

They satisfy N(z2) = (BT2
σ )n(NT2

σ )−1N(z2)
σ. In this case η2 = 1 and, if

α2 is a coordinate of N(z2), the element γ2 = α−1
2 satisfies the relation

γσ2 = (BT2
σ )nγ2 for each σ ∈ Γ.

In the same way, we consider for T3,

MT3
σ1

= MT3
σ3

= MT3
σ3

= g3(
n

√
a−1

2 w1w
−1
2 ) = n

√
a−1

2 v1v
−1
2 , MT3

σ = g3(u
T3
σ ),

NT3
σ = N(MT3

σ ) = 1 and BT3
σ = z3z

−σ
3 MT3

σ ∈ L, ∀σ ∈ Γ.

We have N(z3) = (BT3
σ )n(NT3

σ )−1N(z3)
σ. Now η3 = 1 and γ3 = α−1

3

(where α3 is a coordinate of N(z3)) satisfies the relation γσ3 = (BT3
σ )nγ3

for each σ ∈ Γ.

It should be noted that for the representation T , the elements

mσ = g(uσ) = g3(g2(M
T1
σ )MT2

σ )MT3
σ νσ

where νσ ∈ µn. It is not difficult to prove that bσ = BT1
σ B

T2
σ B

T3
σ ν

′
σ (ν ′σ ∈ µn),

and, therefore, bnσ = (BT1
σ B

T2
σ B

T3
σ )n.

Then, the element γ = γ1γ2γ3 satisfies γσ = bnσγ and M = L( n
√
γ) is a

solution to the embedding problem.

The general expression of the elements γ1, γ2 and γ3 for n = 3 is:

γ1 = 1

a
19/3
3

(
3 (a4

3 ω y6
1 − a

10/3
3 (1 + 2ω) y2 y

4
1 − 3 a4

3 ω y0 y2 y
4
1 + a4

3 y
3
2 y

3
1+

3 a2
3 y

3
1 + a

10/3
3 y2

0 y
3
1 + 2 a

10/3
3 ω y2

0 y
3
1 + 3 a2

3 ω y3
1 + a

8/3
3 y0 y

3
1+

2 a
8/3
3 ω y0 y

3
1 + 3 a4

3 ω y2
0 y

2
2 y

2
1 + 6 a

10/3
3 ω y0 y

2
2 y

2
1 − 2 a

10/3
3 y4

2 y1−
a

10/3
3 ω y4

2 y1 − 3 a4
3 y0 y

4
2 y1 − 3 a

8/3
3 y2

0 y2 y1 − 3 a
8/3
3 ω y2

0 y2 y1−
6 a2

3 y0 y2 y1 − 6 a2
3 ω y0 y2 y1 − a4

3 y
6
2 − a4

3 ω y6
2 − a

10/3
3 y2

0 y
3
2−

2 a
10/3
3 ω y2

0 y
3
2 − 3 a2

3 ω y3
2 − a

8/3
3 y0 y

3
2 − 2 a

8/3
3 ω y0 y

3
2+

3 a
4/3
3 y2

0 + 3 a
2/3
3 y0 + 3)

)
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where y0+y1
3
√
ω−1+y2

3
√
ω−2 ∈ K(

3
√
ω−1) is such that N

K(
3√
ω−1)/K

(y) = a−2
3 ,

γ2 = 1
a4
2

(
a4

2 a
2
3 y

6
1 − a

10/3
2 a2

3 y2 y
4
1 + a

10/3
2 a2

3 ω y2 y
4
1 − 3 a4

2 a
2
3 y0 y2 y

4
1−

3 a2
2 a

3
3 y

3
1 + a4

2 a3 y
3
2 y

3
1 − 2 a

10/3
2 a3

3 y
2
0 y

3
1 − a

10/3
2 a3

3 ω y2
0 y

3
1−

2 a
8/3
2 a3

3 y0 y
3
1 − a

8/3
2 a3

3 ω y0 y
3
1 + 3 a4

2 a
2
3 y

2
0 y

2
2 y

2
1+

6 a
10/3
2 a2

3 y0 y
2
2 y

2
1 − 2 a

10/3
2 a3 y

4
2 y1 − a

10/3
2 a3 ω y4

2 y1−
3 a4

2 a3 y0 y
4
2 y1 + 3 a

8/3
2 a3

3 y
2
0 y2 y1 + 6 a2

2 a
3
3 y0 y2 y1 + a4

2 y
6
2+

3 a4
3 − 3 a2

2 a
2
3 y

3
2 − a

10/3
2 a2

3 y
2
0 y

3
2 + a

10/3
2 a2

3 ω y2
0 y

3
2−

a
8/3
2 a2

3 y0 y
3
2 + a

8/3
2 a2

3 ω y0 y
3
2 + 3 a

4/3
2 a4

3 y
2
0 + 3 a

2/3
2 a4

3 y0

)

where y0+y1
3
√
a−1

3 +y2
3
√
a−2

3 ∈ K( 3
√
a−1

3 ) is such that N
K( 3

√
a−1
3 )/K

(y) = a−2
2

and

γ3 = a4
1 a

2
2 a

4
3 y

6
1 + a3

1a2a
3
3

3
√
a1a2a3 (ω − 1) y2 y

4
1+

a2
1 a2 a

2
3 (a2

1 a
2
3 y

3
2 − 3) y3

1 − a3
1a

3
3

3
√
a1a2a3 (ω + 2) y4

2 y1 + a4
1 a

4
3 y

6
2−

3 a2
1 a

2
3 y

3
2 + a1a2a3

3
√
a1a2a3 y

2
0 (−a2

1 a2 a
2
3 (ω + 2) y3

1+

3 a2
1a

2
3

3
√
a2

1a
2
2a

2
3 y

2
2 y

2
1 + a1a3

3
√
a1a2a3 y2 y1 + a2

1 a
2
3 (ω − 1) y3

2 + 3)−
3
√
a2

1a
2
2a

2
3 y0 (3 a3

1a
3
3

3
√
a1a2a3 y2 y

4
1 + a2

1 a2 a
2
3 (ω + 2) y3

1−
6 a2

1a
2
3

3
√
a2

1a
2
2a

2
3 y

2
2 y

2
1 + 3 a1a3

3
√
a1a2a3 y2 (a2

1 a
2
3 y

3
2 − 2) y1−

a2
1 a

2
3 (ω − 1) y3

2 − 3) + 3

where y0 + y1
3
√
a−1

2 + y2
3
√
a−2

2 ∈ K( 3
√
a−1

2 ) is such that

N
K( 3

√
a−1
2 )/K

(y) = (a1a2a3)
−1.

For a1 = 2, a2 = 5 and a3 = 3 the values are:

γ1 = 9 + 6
3
√

3 + 4
3
√

9

γ2 = 8059 + (1340 ω + 2040)
3
√

5 + (1876 ω + 2856 )
3
√

25

γ3 = 379 + (116 − 32 ω)
3
√

30 + (29 − 8 ω)
3
√

900.
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