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A multiple set version
of the 3k−3 Theorem

Yahya ould Hamidoune and Alain Plagne

Abstract

In 1959, Freiman demonstrated his famous 3k−4 Theorem which
was to be a cornerstone in inverse additive number theory. This result
was soon followed by a 3k−3 Theorem, proved again by Freiman. This
result describes the sets of integers A such that |A + A| ≤ 3|A| − 3.
In the present paper, we prove a 3k − 3 -like Theorem in the context
of multiple set addition and describe, for any positive integer j, the
sets of integers A such that the inequality |jA| ≤ j(j + 1)(|A| − 1)/2
holds. Freiman’s 3k − 3 Theorem is the special case j = 2 of our
result. This result implies, for example, the best known results on a
function related to the Diophantine Frobenius number. Actually, our
main theorem follows from a more general result on the border of jA.

1. Introduction

The (Minkowski) sumset C + D of any two subsets C and D of some (addi-
tively written) (semi-) group is classically defined as

C + D = {c+ d, where c ∈ C, d ∈ D}.

We denote C + C by 2C and, more generally, hC is recursively defined
as (h− 1)C + C.

In additive number theory, the following formula, valid for any two non-
empty sets of integers C,D ⊂ Z,

(1.1) |C + D| ≥ |C| + |D| − 1,
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is the simplest one. This result is optimal. Indeed, it is easily seen that,
if |C| = 1 (and D is arbitrary), or if |D| = 1 (and C is arbitrary), or if C
and D are arithmetic progressions with the same difference, inequality (1.1)
is an equality. Recall that, for the present purpose, arithmetic progressions
will be always finite so that the third possible case is that one in which C
and D are of the form

C = {c+(i−1)r, where 1 ≤ i ≤ l} and D = {d+(i−1)r, where 1 ≤ i ≤ l′},

for an integer r (the common difference) and some positive integers l and l′

(called the lengths of the arithmetic progressions). Conversely, it is a well-
known fact that, in any other case than those above-mentioned, we can
improve inequality (1.1) in

(1.2) |C + D| ≥ |C| + |D|.

For any non-zero real h (usually, we shall have h ∈ N) and a given set C
of integers, we also define h.C to be

(1.3) h.C = {hc, where c ∈ C},

a set which, in the case when h is an integer, has in general nothing to do
with hC. However, since there is no risk of confusion, we will keep, here and
thereafter, the classical notation Z/MZ for what we should write Z/M.Z,
according to this notation.

Freiman [5] (see also [8]) went a step beyond (1.1) by showing that if A
is a set of integers such that |A + A| ≤ 3|A| − 4, then A is a subset of a
short arithmetic progression; more precisely there are integers a and r such
that

A ⊂ {a+ (i− 1)r, where 1 ≤ i ≤ l},
where the length l of the arithmetic progression is less than or equal to
|A + A| − |A| + 1. This result is now called the 3k − 4 Theorem after
the early notation of Freiman which was to put k = |A|. Freiman’s 3k − 4
Theorem was further generalized and reproved among others by Steinig, Lev
and Smeliansky (see [6, 13, 17]). About the 3k − 4 Theorem, the reader is
also referred to the fundamental book by Freiman himself [7] and to the
general account given by Nathanson [16].

Freiman pursued a bit further by showing a 3k−3 Theorem [5]. Namely,
he characterized all the sets of integers A satisfying the equality |A + A| =
3|A| − 3. Together with the 3k − 4 Theorem, this gives the following.
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Theorem 1 (Freiman’s 3k−3 Theorem [5]) Let A be a set of non-neg-
ative integers containing 0 and satisfying gcd(A) = 1. Define M = max(A).
If the upper bound

|2A| ≤ 3|A| − 3

holds, then one of the following happens:

• |A| ≥ 1 +M/2,

• A is the union of two arithmetic progressions with the same common
difference,

• M is even and A is of the form A = {0,M/2,M, x, x+M/2, 2x} for
some positive integer x < M/2.

Note that the sets of the form A = {0,M/2,M, x, x+M/2, 2x} (for some
positive integer x < M/2) which appear in the third possible conclusion of
the 3k − 3 Theorem are called K6 by Freiman.

In [11], the authors could both obtain a new proof and generalize Freiman’s
3k − 3 Theorem to the case of A + A′ with A′ = j.A (for j, an integer).

Let us state a simple remark. It is clear that, for any two sets C
and D of integers, neither |C| nor |C + D| is changed by a translation or
an integral dilatation. This remark allows us to consider instead of A
itself, the set 1

gcd(A)
.(A − min(A)) ⊂ N, where we have used the nota-

tion (1.3) and where gcd(A) denotes the greatest common divisor of the
elements of A. In particular, this remark shows that the assumptions on
the set A (0 ∈ A and gcd(A) = 1) appearing in Theorem 1 are not at
all constraining and can be added without loss of generality. In the same
way, this remark allows us to consider only in the sequel sets of the form
A = {a1, . . . , an} having the following properties: 0 = a1 < a2 < · · · < an

and gcd(A) = gcd(a1, a2, . . . , an) = 1. Such sets will be called normal.
Motivated by the application to the Diophantine Frobenius problem,

Lev [14] generalized the 3k − 4 Theorem to multiple set addition. In this
respect, his result is essentially the following.

Theorem 2 (Corollary 1 of Lev’s [14]) Let A be a set of non-negative
integers containing 0 and satisfying gcd(A) = 1. Define M = max(A). Let j
be any integer greater than or equal to 2. If the upper bound

|jA| ≤ j(j + 1)

2
(|A| − 1) − j(j − 1)

2

holds, then |A| ≥ 2 +M/j.

In this paper, we generalize in a similar way Freiman’s 3k − 3 Theorem
to multiple set addition. Our result is the following.
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Theorem 3 Let A be a set of non-negative integers containing 0 and sat-
isfying gcd(A) = 1. Define M = max(A). Let j be any integer greater than
or equal to 2. If the upper bound

|jA| ≤ j(j + 1)

2
(|A| − 1)

holds, then one of the following happens:

• |A| ≥ 1 +M/j,

• A is the union of two arithmetic progressions with the same common
difference,

• A is an arithmetic progression modulo M ,

• M is even and A is of the form A = {0,M/2,M, x, x+M/2, 2x} for
some positive integer x < M/2.

Compared to Freiman’s 3k − 3 Theorem, a new kind of exceptional sets
arises: arithmetic progressions modulo M . Since an arithmetic progression
modulo M is a special case of union of arithmetic progressions with the same
difference, it can be seen as a generalization of the second type of exceptions
(unions of two arithmetic progressions with the same common difference)
which appeared already in the 3k − 3 Theorem. However, notice that there
exist sets which are a union of two arithmetic progressions with the same
difference which are not an arithmetic progression modulo M .

In the same fashion as Lev in [14], Theorem 3 is obtained through a more
powerful result on the border of jA defined by

B = (jA) \ (
(j − 1)A)

.

To state the result in a clear way, we need to define first a class of sets for
which our result does not apply. We therefore let F denote the set of all
subsets of integers A such that one of the following structural conditions
holds :

• A is the union of two arithmetic progressions with the same common
difference,

• A is an arithmetic progression modulo M ,

• A is of the form

{0, e, 2e, . . . ,M − 2e,M − e,M} ∪ {b, b+ se, . . . , b+ use},
for some integer M = max(A) and where e, b, s and u are positive
integers subject to e|M , 1 < e < M and s ≥ 2,
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• there exist four non-negative integers e, b, u and k such that e divides
M = max(A), b belongs to {1, 2, . . . , e−1} and is coprime to M , u ≥ 2
and k ∈ {0, 1, . . . ,M/e− 1}, such that A is of the form

A = {0, e, 2e, . . . ,M − e,M} ∪ {b, b+ e, b+ 2e, . . . , b+M − e}
∪ {b2, b2 + e, . . . , b2+M−e} ∪ · · · ∪ {bu−2, bu−2 + e, . . . , bu−2 +M−e}
∪ {bu−1, bu−1 + e, bu−1 + 2e, . . . , bu−1 +M − e} ∪ {bu + ke},
where bi denotes the unique integer ≡ ib modulo e in {0, 1, . . . , e− 1}.

In what follows, we shall refer to these four types of exceptions as excep-
tions of Type I, II, III or IV, respectively.

Notice that Type II exceptions are not obligatorily of Type IV. Also it
is possible to be a union of two arithmetic progressions (Type I) with the
same common difference without being an arithmetic progression modulo M
(Type II), as mentioned before.

We notice that the sets appearing in Type IV exceptions are a natural
generalization of the K6 sets. In the case of Type IV exceptions, we may
equivalently reformulate the description of the sets appearing as follows:
there is a subgroup H of Z/max(A)Z such that the projection of A modulo
H, ψ(A), is an arithmetic progression (say, 0, b, 2b, . . . , ub) modulo H, start-
ing from 0 and having at least 3 elements (u ≥ 2). Moreover, A is composed
of the following union of preimages:

u−1⋃
i=0

(
ψ−1(id) ∩ {0, 1, . . . ,max(A)})

together with one element belonging to ψ−1(ud). That is, except the u-th
one which has one element, all the H-cosets are full: they all possess |H|
elements except the first one, that of 0, which has |H| + 1 elements.

Theorem 4 Let A be a set of non-negative integers containing 0 and sat-
isfying gcd(A) = 1. Define M = max(A). Let j be any integer larger than
or equal to 2. Assume that A is not in F , then it verifies

|(jA) \ (
(j − 1)A)| ≥ min(M − 1, j(|A| − 1)).

The outline of this paper is the following: in Section 2, we introduce
the needed prerequisites. In Section 3, we proceed with the core of the
paper, namely the proof of Theorem 4. In Section 4, we show how to recover
Theorem 3 from Theorem 4. Finally, in Section 5, we illustrate the potential
applications of this result by reproving in an efficient way a result on the
Frobenius problem obtained in [10].
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2. Preliminary

Several easy lemmata will be needed in what follows. We start by stating
them and recalling some standard definitions.

Our first lemma is sometimes referred to as the Prehistorical lemma and
is nothing else than an application of the pigeon-hole principle.

Lemma 5 (Prehistorical lemma) Let H be a subgroup of some given fi-
nite Abelian group G. Let C and D be two subsets of G, each being included
in a coset modulo H. If |C| + |D| > |H| then C + D is equal to a coset
modulo H.

We shall say that the coset C +D is complete (or full). Indeed, any coset
is by definition full but when a set C is only known to be included in a coset
a+H, that will mean that C = a+H.

In what follows, we use the following definition: for H a subgroup of G,
we shall say that a subset C of G is H-periodic if it verifies C + H = C or,
equivalently, if it is a union of cosets modulo H. The period of a set C is the
largest subgroup H such that C is H-periodic.

Now, we come to a lemma generalizing formula (1.1).

Lemma 6 Let m ∈ Z, m �= 0. Let C ⊂ m.Z and D ⊂ Z be two non-empty
sets. Then

|C + D| ≥ |φ(D)| (|C| − 1) + |D|,
where φ denotes the canonical projection from Z onto Z/mZ.

Moreover, if C is not an arithmetic progression, this inequality can be
improved to

|C + D| ≥ |φ(D)| (|C| − 1) + |D| + |{j ∈ Z/mZ : |φ−1(j) ∩ D| > 1}|.

Proof. We define a partition (into non-empty subsets) of D according to
the cosets modulo m.Z:

D = D1 ∪ · · · ∪ Dk,

with k = |φ(D)|. Since for any integers i1 �= i2, the intersection (C + Di1) ∩
(C + Di2) is empty, we have

|C + D| = |(C + D1) ∪ · · · ∪ (C + Dk)| = |C + D1| + · · · + |C + Dk|.
Let i ∈ {1, 2, . . . , k}. By (1.1), we always have

(2.1) |C + Di| ≥ |C| + |Di| − 1.
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Summing these contributions gives

|C + D| ≥ (|C| + |D1| − 1) + · · · + (|C| + |Dk| − 1)

= k(|C| − 1) + |D| = |φ(D)| (|C| − 1) + |D|.

Suppose now that C is not an arithmetic progression (in particular |C|>1),
we may improve (2.1) when |Di| �= 1 by using (1.2) instead of (1.1),

|C + Di| ≥ |C| + |Di|.

Summing these contributions implies

|C + D| ≥ (|C| + |D1| − 1) + · · · + (|C| + |Dk| − 1) +
∑

1≤i≤k, |Di|�=1

1

which gives the result. �
From this we are able to deduce the following corollary.

Corollary 7 Let C be a finite set of integers containing 0 and M be the
largest element of C. Denote again with a bar the reduction modulo M .
Then, for any positive integer h, we have

|hC| ≥ |(h− 1)C| + |hC|.

Proof. Let D = (h− 1)C. Applying Lemma 6 with m = M yields

|{0,M} + D| ≥ |D| + |D|.

Now, in hC = C + D, there are elements which do not belong to D (observe
that {0,M} + D = D) when projected onto Z/MZ. The number of these
elements is at least |(C + D) \ D|. Adding everything together yields the
result announced. �

We go on in these prerequisites by stating a generalization of Vosper’s
theorem that we obtained recently in [12]. Recall that inequality (1.1) is
true in cyclic groups of prime order, at the price of a trivially necessary
modification of the formula: what we can prove is that, if C and D are two
non-empty subsets of Z/pZ, then

|C + D| ≥ min(p, |C| + |D| − 1).

This result is called the Cauchy-Davenport theorem [1, 2]. Vosper’s theo-
rem [19] corresponds to inequality (1.2) and is therefore concerned with the
cases in which the Cauchy-Davenport inequality is in fact an equality.
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For stating the result obtained in [12], we shall need some natural nota-
tions. First, we shall say that a subset C of a finite Abelian group G is a
Vosper subset of G if for any D ⊂ G, with |D| ≥ 2, the inequality

|C + D| ≥ min(|G| − 1, |C| + |D|)
holds. Notice that a Vosper subset with cardinality one cannot exist in a
group with cardinality four or more.

In a similar way, we shall say that a subset C of G is a Cauchy subset if
for any non-empty D ⊂ G, the inequality

|C + D| ≥ min(|G|, |C| + |D| − 1)

holds. The following lemma on Vosper and Cauchy subsets will be needed.

Lemma 8 Any Vosper subset is a Cauchy subset.

Proof. Suppose that the result is false and let C be a Vosper subset of some
finite Abelian group G such that there is a D ⊂ G satisfying (notice that
necessarily |D| > 1)

(2.2) |C + D| < min(|G|, |C| + |D| − 1).

In particular,

(2.3) |C + D| ≤ |C| + |D| − 2

which implies, by the Vosper property (applied with the set D, of cardinality
at least two), |C+D| ≥ |G|−1. Again by (2.2), this implies |C+D| = |G|−1.
But, then, inequality (2.3) yields |C|+|D| ≥ |G|+1, and, by the Prehistorical
lemma, C + D = G, a contradiction. �

As our last result on Vosper sets, let us now mention a trivial necessary
condition for being a Vosper subset, which will be needed in the sequel. The
proof follows directly from the definition by a trivial induction argument.

Corollary 9 Let G be any finite Abelian group and C be a Vosper subset
with cardinality at least two of G. Let h be any positive integer, then

|hC| ≥ min(|G| − 1, h|C|) .
Finally, for a subset C of any Abelian group G and any subgroup H of G, we
shall denote by C/H the subset ψ(C) of G/H, where ψ denotes the canonical
projection from G onto G/H. Evidently, one has (C +H)/H = C/H.

We are now ready to enunciate the Theorem we obtained in [12]. The
result we could obtain expresses, roughly speaking, the fact that, in any finite
Abelian group, there is a strict subgroup (by which we mean a subgroup
different from the ambient group itself) such that, modulo this subgroup,
Vosper’s theorem applies.
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Theorem 10 (proved in [12]) Let G be any finite Abelian group and C be
a generating subset of G containing 0 such that |C| ≤ |G|/2. Then, there
exists a subgroup H of G with

(2.4) |C +H| < min(|G|, |H| + |C|)

such that (C +H)/H is either an arithmetic progression or a Vosper subset
(in G/H).

As mentioned above, inequality (2.4) forces H to be different from G.

3. The proof of Theorem 4

3.1. Starting the proof

We consider a normal set A not in F and let M = max(A). Our aim is to
prove that the lower bound

(3.1) |(jA) \ (
(j − 1)A)| ≥ min(M − 1, j(|A| − 1))

holds for any integer j ≥ 2.

The case j = 2 is implied by the 3k− 3 Theorem, so we shall assume, all
along the proof, that j > 2 or

j ≥ 3.

Notice that the method proposed here could also work when j = 2 (but at
the price of technicalities).

We shall denote by B the border of jA,

B = (jA) \ (
(j − 1)A)

.

Notice that, since 0 belongs to A, (j − 1)A ⊂ jA which implies

|B| = |jA| − |(j − 1)A|.

We denoteG = Z/MZ the cyclic group withM elements (notice that it is
easy to check that the assumption A �∈ F implies M ≥ 6, while {0, 1, 3, 5, 6}
does not belong to F). We let ψ denote the canonical projection from Z

onto G. In what follows, we shall also denote with a bar the projection ψ.

The method of proof relies on first reducing the problem modulo M and
obtaining a modular set A. Observe immediately that

|A| = |A| − 1.
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At several places in the following, we will consider a partition of the
border of jA into two parts (referred to as the interior I and the exterior J ),

(3.2) B = I ∪ J ,
in the following manner. Let x be in B; if ψ(x) ∈ (j − 1)A then x ∈ I,
otherwise x ∈ J . Let us rephrase this by saying that J is composed of the
elements from jA belonging to a class modulo M not yet present in (j−1)A.

Notice that we may assume that

(3.3) |jA| ≤ j|A| − 1

and

(3.4) |jA| ≤M − 2.

Otherwise, using Corollary 7, we get

|jA| ≥ |(j − 1)A| + |jA| ≥ |(j − 1)A| + min(M − 1, j|A|),
which implies (3.1) and the Theorem. In particular, we have

(3.5) jA �= G.

Notice that since j ≥ 2, by the Prehistorical lemma, this implies

(3.6) |A| ≤M/2.

3.2. Factorizing

We now apply Theorem 10 to A ⊂ G = Z/MZ. The conditions of appli-
cation of this result are easily seen to be fulfilled in view of |A| ≤ M/2
(equation (3.6)) and the fact that A is normal (which implies A to be a
generating set). Therefore, there exists a strict subgroup H of G with

(3.7) |A +H| < min(|G|, |H| + |A|)

such that A, which is by definition the set of classes modulo H which are
present in A, or in other terms

A = (A +H)/H

verifies

Lemma 11 The set A is either an arithmetic progression or a Vosper subset
(in G/H).
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Notice that H, as a subgroup of G = Z/MZ is of the shape eZ/MZ 	
Z/(M/e)Z for some integer e dividing M . This implies that G/H is simply
Z/eZ. Since H is a strict subgroup of G, we have

e > 1.

To proceed further in our proof, we shall need to decompose our set A
according to a so-called H-tiling, or more prosaically, to residues modulo e.
We start by defining

u = |A| − 1

and by partitioning A (and A) into subsets of cosets modulo H (the H-
tiling): in other words, we write

A = A0 ∪ A1 ∪ · · · ∪ Au

with u ≥ 1 (since 0 ∈ A and gcd(A) = 1) and where each Ai is exactly
the intersection of A with an arithmetic progression with difference e. This
implies (with evident notations) trivially

A = A0 ∪ A1 ∪ · · · ∪ Au
and A = {A0

,A1
, . . . ,Au}.

Notice that we have
|A +H| = (u+ 1)|H|.

We may now suppose, without loss of generality, that

(3.8) |A0| ≥ |A1| ≥ · · · ≥ |Au−1| ≥ |Au|.
With the convention (3.8), we readily see that for any pair of integers (i1, i2),
except possibly if (i1, i2) = (u, u), we have

(3.9) |Ai1 | + |Ai2 | ≥ |Au−1| + |Au| ≥ |H| + 1,

since (3.7) implies

(3.10) u|H| + 1 ≤
u∑

i=0

|Ai|.

An application of the Prehistorical lemma (Lemma 5) proves then that for
any pair of integers (i1, i2), except possibly the pair (u, u), we have

(3.11) |Ai1
+ Ai2 | = |H|,

or, equivalently, that Ai1
+ Ai2

is a (full) coset modulo H. More gener-
ally, we may enunciate the following lemma which will be very useful in
several places.
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Lemma 12 In the above-mentioned conditions, if we let h be any integer
larger than or equal to 2, then the h-fold sumset hA is composed as a union
of (full) cosets modulo H and hAu

.

In the same spirit, another useful lemma is this:

Lemma 13 In the above-mentioned conditions, one has

|(j − 1)A| + |A| ≤ |G/H| + 1.

Proof. Suppose this is false. It follows

|(j − 1)A| + ∣∣A \ {Au}∣∣ ≥ |G/H| + 2 − 1 > |G/H|
and the Prehistorical lemma gives

(j − 1)A +
(A \ {Au}) = G/H.

Now, since the set (j − 1)A +
(A \ {Au}) is a union of complete cosets

modulo H (once again, by Lemma 12: we removed Au
from A in the sec-

ond summand for this very reason), we deduce jA = G, in contradiction
with (3.5). �

More generally, this decomposition (H-tiling) will be the key tool in the
following and the notation defined here will be retained from now on in the
whole paper.

In the following subsections, we continue our proof of Theorem 4. We
will use several times inequalities (3.3) and (3.4). As noted above, if one of
these two inequalities is false, then (3.1) follows immediately.

3.3. Discarding the case where A is not an arithmetic progression

Let us accomplish the program given by the title of this section and prove

the Theorem in the case where the set A is not an arithmetic progression,

which we assume in this section. In particular, we have u = |A| − 1 ≥ 2
(any set with one or two elements is an arithmetic progression). In view

of Lemma 11, this means that A has to be a Vosper subset.

The case H = {0} cannot occur. Indeed, in that case, the set A coincides
with A, G/H = G and the set A cannot be a Vosper subset of G because

Corollary 9 implies (since |A| = |A| ≥ 2)

|jA| ≥ min(|G| − 1, j|A|)
contrarily to (3.3) and (3.4). Therefore we have H �= {0}.
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We shall need the H-tiling defined above. As announced, we retain the

then-defined notation. Since A is a Vosper subset, it is also a Cauchy subset
by Lemma 8, therefore

(3.12) |jA| ≥ min(|G/H|, |(j − 1)A| + |A| − 1).

In fact, we even have the more precise inequality

|jA| ≥ |(j − 1)A| + |A| − 1.

Indeed, assume the contrary, then on the one hand we have, by inequal-
ity (3.12),

|jA| = |G/H| ≤ |(j − 1)A| + |A| − 2.

Again, since A is also a Cauchy set, we have

|((j−1)A\{(j−1)Au})+A| ≥ min
(|G/H|, (|(j−1)A|−1)+|A|−1

)
= |G/H|.

Therefore

jA ⊃ (
(j − 1)A \ {(j − 1)Au}) + A ⊃ G/H.

Since all the cosets corresponding to the elements of(
(j − 1)A \ {(j − 1)Au}) + A

are full (in the same fashion as in the proof of Lemma 13), we get jA = G,
a contradiction with (3.5).

Thus, we obtain

(3.13) |jA| ≥ |(j − 1)A| + |A| − 1 = |(j − 1)A| + u.

It follows, using Lemma 12 (recall that j ≥ 2 holds),

|jA| ≥ (|(j − 1)A| + u− 1)|H| + |jAu|
≥ (|(j − 1)A| − 1)|H| + |(j − 1)Au| + u|H|
≥ |(j − 1)A| + u|H|.(3.14)

We now appeal to Lemma 13, which yields

(3.15) |(j − 1)A| ≤ |G/H| + 1 − |A| = |G/H| + 1 − (u+ 1) ≤ |G/H| − 2,

since u ≥ 2.
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Coming back to the bare bone of our approach, we apply Corollary 9 to

(j − 1)A (let us recall that A is a Vosper set). By (3.15), we get

|(j − 1)A| ≥ min(|G/H| − 1, (j − 1)|A|) = (j − 1)|A| = (j − 1)(u+ 1)

from which we obtain

(3.16) |(j − 1)A| ≥ (
(j − 1)(u+ 1) − 1

)|H| + |(j − 1)Au|.
This, with (3.14), shows, in the case when

|Au| ≤ j − 2

j − 1
|H|,

that

|jA| ≥ (
(j − 1)(u+ 1) − 1

)|H| + |(j − 1)Au| + u|H|
≥ (ju+ j − 2)|H| + |(j − 1)Au|
≥ ju|H| + (j − 2)|H| + |Au|
≥ ju|H| + j|Au|
= j(u|H| + |Au|) ≥ j|A|

contradicting (3.3). Since j ≥ 3 implies (j − 2)/(j − 1) ≥ 1/2, until the end
of this subsection, we may therefore assume

(3.17) |Au| > |H|
2
.

This supplementary hypothesis implies in particular, by Lemma 12 and the
Prehistorical lemma (for hAu

), that all the cosets met by hA are full (for
h ≥ 2). In other words, hA is H-periodic for h ≥ 2.

We now use the partition of B into I ∪J introduced in (3.2). Evidently,
we have

(3.18)
(
(j − 1)A + {0,M}) \ (

(j − 1)A) ⊂ I.
By equation (3.16) and H-periodicity, we have

|(j − 1)A| ≥ (j − 1)(u+ 1)|H| ≥ (j − 1)|A| = (j − 1)(|A| − 1).

Lemma 6 (with m = M , C = {0,M} and D = (j − 1)A) then yields

|(j− 1)A+ {0,M}| ≥ |(j− 1)A|+ |(j− 1)A| ≥ |(j− 1)A|+(j− 1)(|A|− 1).

With (3.18), this gives

(3.19) |I| ≥ (j − 1)(|A| − 1).
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Concerning J , by (3.13), we may select u distinct sums si +ai (with si ∈
(j−1)A, ai ∈ A, 1 ≤ i ≤ u) in

(
jA)\((j−1)A)

. Since (j−1)A isH-periodic,
for any 1 ≤ i ≤ u, there is a set Si ⊂ (j − 1)A with cardinality |Si| = |H|
such that all its elements are in the coset of si modulo H (or, equivalently,
in the same residue class modulo e). We denote by Ati the class in which
ai falls. Now the sets of integers Ati + Si are disjoint subsets of J (their
projection in G/H are by definition different) therefore, using (1.1), (3.8)
and (3.17), we obtain

|J | ≥
u∑

i=1

|Ati + Si|

≥
u∑

i=1

(|Ati| + |Si| − 1)

≥ u(|Au| + |H| − 1)

≥ u((|H| + 1)/2 + |H| − 1)

= u(3|H|/2 − 1/2)

≥ (u+ 1)|H| − 1 ≥ |A| − 1.(3.20)

Collecting the different contributions in (3.2) given by (3.19) and (3.20),
we get

|B| = |I| + |J | ≥ j(|A| − 1),

that is (3.1) and the Theorem is proved in the case where A is not an
arithmetic progression.

From now on, we are reduced to and therefore assume that

A is an arithmetic progression.

The case where H is trivial (H = {0}) is excluded since in that case,
A would be an arithmetic progression modulo M , which is not allowed for
A ∈ F (exceptions of Type II).

From now on, we will therefore assume that

|H| ≥ 2.

3.4. New additional conditions on A
Recall that we are now reduced to the case where |H| ≥ 2 and the set A is
an arithmetic progression in G/H = Z/eZ. Let us recall also that e > 1.
Let d be an integer (with 1 ≤ d < M), the projection (on G/H) of which is

a difference of the arithmetic progression A. Since gcd(A) = 1 and 0 ∈ A,
it follows that gcd(d, e) = 1.
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We will use an H-tiling as defined in Section 3.2. The partition used here
is obtained by defining Ai as the subset of A composed with its elements
equal to id modulo e

Ai = {a ∈ A such that a ≡ id mod e}.
This is a special case of H-tiling as defined above. Notice however that the
notation used here is slightly different from that used there: for instance,
there is no reason why Ai = Ai should hold. But this is just a matter of
indexation.

By assumption, 0 belongs to A and therefore A0 is not empty. Since A is
an arithmetic progression modulo e, what we get is that the non-empty Ai’s
correspond to values of i in an interval of integers containing 0. Conse-
quently, there exist two non-negative integers v and w such that

A =
⋃

−v≤i≤w

Ai.

With the preceding notation, we have Ai = (id mod e) ∈ Z/eZ = G/H and
we can rephrase the preceding assertion with the formula

A = {−vd, . . . , 0, d, . . . , wd} mod e = d.{−v, . . . , 0, 1, . . . , w} mod e.

If v = w = 0, 1 �= e|a for any element a of A, a situation which cannot
occur because gcd(A) = 1. Therefore, we may assume

u = v + w ≥ 1.

Changing if needed d into M − d, we may assume

w ≥ 1.

In the case where also v ≥ 1, there will be no loss of generality in
assuming additionally that

(3.21) |Aw| ≤ |A−v|
and defining

χ = |A−v| − |Aw| ≥ 0.

Evidently, since in this case v and w are non-zero, the same inequality should
hold with bars. In the case where v = 0, we define arbitrarily χ to be zero.

Let us set

(3.22) δ = |A0| + |Aw| − 2 − |H|.
By (3.9), it follows that

δ = |A0| + |Aw| − (|H| + 1) ≥ 0.
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We define also

ε =

{
1 if A0 is not an arithmetic progression,
0 otherwise.

Once again, we use the partition B = I ∪ J defined in (3.2). Let us prove
that

(3.23) |I| ≥ |(j − 1)A| (|A0| + ε− 1).

We clearly have

(3.24) |I| ≥ |(j − 1)A + A0| − |(j − 1)A|.
Let us apply the first part of Lemma 6 withm = e, C = A0 ⊂{0, e, 2e, . . . ,M}
and D = (j − 1)A, φ being the projection modulo e. Since φ((j − 1)A) =

(j − 1)A, we obtain

(3.25) |(j − 1)A + A0| ≥ |(j − 1)A|(|A0| − 1) + |(j − 1)A|.
If ε = 0, formula (3.23) follows immediately from (3.24) and (3.25).

Suppose now ε = 1, that is A0 is not an arithmetic progression. In this
case, one has |A0| ≤ |H| − 1 which implies, by (3.10), |Ai| = |Ai| ≥ 2 for
any i �= 0. Since we also have |A0| ≥ 2, we deduce that any set of the form
Ai1 + · · · + Aij−1

has at least two elements. Now, for any residue class x
modulo e, if the set φ−1(x) ∩ (j − 1)A is non-empty, it must contain some
such sum and therefore has at least two elements. Consequently,

|{x ∈ Z/eZ : φ−1(x) ∩ (j − 1)A �= ∅}| = |(j − 1)A|.
Using this formula when applying the second part of Lemma 6 gives

|(j − 1)A + A0| ≥ |(j − 1)A|(|A0| − 1) + |(j − 1)A| + |(j − 1)A|,
which implies formula (3.23).

As a consequence of (3.23), and since A is an arithmetic progression, we
obtain

|I| ≥ (
(j − 1)(|A| − 1) + 1

)
(|A0| + ε− 1)

=
(
(j − 1)u+ 1

)
(|A0| + ε− 1).(3.26)

What about J ? For sure, it contains

(j − 1)Aw + A1, . . . , (j − 1)Aw + Aw−1, jAw

and, additionally in the case v < 0,

(j − 1)A−v + A−1, . . . , (j − 1)A−v + A−v+1, jA−v.
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And all the two-by-two intersections of these sets are empty because their
projection modulo e belong to distinct H-cosets. This follows easily from

(j − 1)A = d.{−(j − 1)v, . . . , 0, 1, . . . , (j − 1)w} mod e,

jA = d.{−jv, . . . , 0, 1, . . . , jw} mod e,

and 1 + j(v + w) ≤ e (by Lemma 13).
Thus, applying repetitively (1.1) yields (notice that if v = 0, the second

sum is zero)

|J | ≥
w∑

s=1

|(j − 1)Aw + As| +
∑

1≤t≤v

|(j − 1)A−v + A−t|

≥
w∑

s=1

(
(j − 1)(|Aw| − 1) + |As|

)
+

∑
1≤t≤v

(
(j − 1)(|A−v| − 1) + |A−t|

)
= (j − 1)w(|Aw| − 1) + (j − 1)v(|A−v| − 1) + (|A| − |A0|)
= (j − 1)w(|Aw| − 1) + (j − 1)v(|Aw| + χ− 1) + (|A| − |A0|)
= (j − 1)u(|Aw| − 1) + (j − 1)vχ+ |A| − |A0|.(3.27)

We notice that, using the definition (3.22) of δ, we can write

u(|A0| + |Aw| − 2) = (u− 1)(|H| + δ) + (|A0| + |Aw| − 2)

= (|A0| + (u− 1)|H| + |Aw|) + (u− 1)δ − 2

≥ |A| + (u− 1)δ − 2.

Using this, (3.26) and (3.27), we obtain

|I| + |J | ≥ ((j − 1)u+ 1)(|A0| + ε− 1) + (j − 1)u(|Aw| − 1)

+ (j − 1)vχ+ |A| − |A0|
= (|A| − 1) + (j − 1)u(|A0| + ε− 1 + |Aw| − 1) + ε+ (j − 1)vχ

= (|A| − 1) + (j − 1)
(
u(|A0| + |Aw| − 2) + uε+ vχ

)
+ ε

≥ (|A| − 1) + (j − 1)
(|A| + (u− 1)δ − 2 + uε+ vχ

)
+ ε

= j(|A| − 1) + (j − 1)
(
(u− 1)δ + uε+ vχ− 1

)
+ ε

≥ j(|A| − 1) + (j − 1)
(
(u− 1)δ + vχ+ ε− 1

)
+ ε.(3.28)

A look at (3.1) shows that we are done except if

(3.29) (j − 1)((u− 1)δ + vχ+ ε− 1) + ε < 0,

which we assume thereafter. This implies (since j ≥ 3) that

ε = 0.
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Therefore, from now on, we assume that A0 is an arithmetic progression.
Since 0 and M are in A0, the fact that A0 is an arithmetic progression of
integers implies that A0 is a subgroup of H.

Moreover, inequality (3.29) implies also

(u− 1)δ = vχ = 0.

Therefore either u = 1 (in which case v = 0) or u ≥ 2: in this latter case,
δ = 0 and either v = 0, or v > 0 and |A−v| = |Aw| (equivalently χ = 0).

We shall now prove that

(3.30) |Ai| = |H|,
for any value of i different from 0 and w. Equality (3.30) is obviously true
in the case u = 1 since the existence of a value of i �= 0, w implies that
u = v + w ≥ 2. Now, if u ≥ 2, by δ = 0, we get

(3.31) |A0| + |Aw| = |H| + 1.

Since (u+ 1)|H| = |A +H| ≤ |A| + |H| − 1, equation (3.31) implies

|A−v| + · · · + |A−1| + |A1| + · · · + |Aw−1| ≥ (u− 1)|H|
and equality (3.30) holds necessarily.

3.5. Discarding the case |A0| < |H| + 1

Here, the subgroup A0 has to be strict in view of the hypothesis of the
subsection. In particular, we get

|A0| ≤ |H|/2.
In other words A0 is of the form

A0 = {0, λe, 2λe, . . . ,M}
for some integer λ ≥ 2 dividing M/e.

By (3.9), for any value of i different from 0, we have

|Ai| ≥ |H| + 1 − |A0| ≥ |H|/2 + 1 > |A0|.
Hence Ai meets at least two distinct A0-cosets. Equivalently, each Ai con-
tains at least two different values modulo λe.

So we may improve on (3.26) by using again (the first part of) Lemma 6
but with the following parameters : m = λe, C = A0 ⊂ {0, λe, 2λe, . . . ,M}
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and D = (j − 1)A, φ being now the projection modulo λe. In the same way
as in (3.26), we obtain

|I| ≥ |(j − 1)A + A0| − |(j − 1)A| ≥ |φ((j − 1)A)|(|A0| − 1).

Since each Ai contains at least two values different modulo λe, any element
of Ai1 + · · · + Aij−1

(with (i1, . . . , ij−1) �= (0, . . . , 0)) contains at least two

different elements modulo λe. On the other hand, (j−1)A0 contains exactly
one element modulo λe. Thus

|φ((j − 1)A)| ≥ 2|(j − 1)A| − 1

and we get

|I| ≥
(
2
(
(j − 1)u+ 1

) − 1
)
(|A0| − 1) = (2(j − 1)u+ 1)(|A0| − 1)

which leads, restarting from (3.28) and using u ≥ 1, |A0| ≥ 2, to

|I| + |J | ≥ j(|A| − 1) − (j − 1) + (j − 1)u(|A0| − 1)

= j(|A| − 1) + (j − 1)
(
u(|A0| − 1) − 1)

≥ j(|A| − 1),

which implies (3.1).
From now on, we consequently assume that

(3.32) |A0| = |H| + 1,

that is to say A0 = H. Notice that this implies

v = 0

and, as a consequence, w=u. Indeed, suppose that v>0. Since |A0|= |H|+1,
then by δ = 0 and χv = 0, we have |A−v| = |Aw| = 1 contrary to (3.30)
for i = −v.

3.6. Conclusion of the proof

Suppose first that u ≥ 2. In that case, A is an arithmetic progression modulo
H of length at least 3 and, since we must have δ = 0, we obtain by (3.32)
and (3.31) that |Au| = 1. But, with (3.30), this is exactly the description of
an exception of Type IV, leading to a contradiction in view of A �∈ F .

Therefore, we shall assume that

u = 1.

In this case, we have A = A0∪A1. Since A �∈ F , the case where |A1| = 1
cannot happen. Otherwise, A1 could be seen as an arithmetic progression
with the same difference as that of A0 (and lead to a Type I exception); so
we assume |A1| ≥ 2.
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Assume now that the set A1 is not an arithmetic progression. Then,
since the residue class of jA1 is not in (j−1)A, we have, with the preceding
notation and by (1.2),

|J | ≥ |jA1| ≥ j|A1|.
Adding this and (3.26) yields

|B| ≥ j(|A0| − 1) + j|A1| = j(|A| − 1),

that implies (3.1).
So, until the end of this section, we assume that A1 is an arithmetic

progression. This means that we are in the following situation: the difference
of the arithmetic progression A1 is a multiple (say, s) of that of A0 (that
is e). In this situation, A is of the form

A = {0, e, 2e, . . . ,M − e,M}︸ ︷︷ ︸
A0

∪{b, b+ se, . . . , b+ use}︸ ︷︷ ︸
A1

,

where e divides M (e �= 1,M), b is coprime to e and s and u are two positive
integers subject to b+ use < M .

If s = 1, A is the union of two arithmetic progressions with the same
common difference, which leads again to a Type I exception. If s ≥ 2, we
are led to a Type III exception. The Theorem is proved.

4. Recovering Theorem 3

The case j = 2 of Theorem 3 is implied by the 3k − 3 Theorem. Let j be
an integer greater than or equal to 3. We assume the result to be proved up
to j − 1 and want to prove its validity for j. We proceed by induction.

Let A be a normal set of non-negative integers and M = max(A). We
assume that A verifies |A| < 1 + M/j, that A is not the union of two
arithmetic progressions with the same common difference, nor an arithmetic
progression modulo M nor of the form A = {0,M/2,M, x, x+M/2, 2x} for
some positive integer x < M/2 (and M even).

We distinguish two cases according to whether or not A belongs to F .
If A belongs to F , since by assumption A cannot be composed of two arith-
metic progressions with the same common difference nor be an arithmetic
progression modulo its maximal element, only two cases remain to be inves-
tigated: Type III and Type IV exceptions. This will be done in Section 4.1
and 4.2 respectively. The case when A does not belong to F will be treated
in Section 4.3. As it will turn out, the induction hypothesis will be used
only in this last case.
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4.1. Type III exceptions

This case leads us to some kind of addendum to Section 3.6. We have
A = A0 ∪ A1 with A0 and A1 two arithmetic progressions, the difference
of A1 being a strict multiple of that of A0. Recall also that we may assume
|A0| ≥ 3 and |A1| ≥ 2.

Evidently, if we replace A0 by one of its multiples sA0 and A1 by one
of its multiples tA1, both sets are still arithmetic progressions and their
differences are unchanged.

We shall need the following lemma which expresses that in such a situa-
tion, the sumset is large.

Lemma 14 Let C and D be two arithmetic progressions of integers of length
at least two, such that the difference of D is equal to q times that of C. Then,

|C + D| =

{
|C| × |D| if |C| ≤ q,

|C| + q(|D| − 1) otherwise.

In particular, if q ≥ 2,

|C + D| ≥ |C| + 2(|D| − 1).

Proof. By translation and integral dilatation, it is sufficient to observe
that the result holds in the case where C = {0, 1, . . . , c − 1} and D =
{0, q, . . . , (d− 1)q}. But we can compute immediately that if c ≤ q, then

C + D = {0, 1, . . . , c− 1, q, q + 1, . . . , q + c− 1, 2q, . . . , (d− 1)q + c− 1}

which has cardinality cd = |C| × |D|. Otherwise, that is if c > q,

C + D = {0, 1, . . . , (d− 1)q + c− 1}

and
|C + D| = (d− 1)q + c = |C| + q(|D| − 1).

There remains to check that the final lower bound holds. Indeed if |C| ≤ q,
this follows from

|C| × |D| ≥ |C| + 2(|D| − 1),

an inequality equivalent to

(|C| − 2)(|D| − 1) ≥ 0.

Otherwise, this follows simply from q ≥ 2. �
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Applying this shows that, for any positive integers s and t, we have

|sA0 + tA1| ≥ |sA0| + 2(|tA1| − 1).

This yields, using again the partition into disjoint subsets

j⋃
s=0

(
(j − s)A0 + sA1

)
and inequality (1.1),

|jA| ≥ |jA0| +
j−1∑
s=1

(|(j − s)A0| + 2(|sA1| − 1)
)

+ |jA1|

≥ (
j(|A0| − 1) + 1

)
+ j

(|A1| − 1
)

+ 1

+

j−1∑
s=1

((
(j − s)(|A0| − 1) + 1

)
+ 2

(
s(|A1| − 1) + 1

) − 2
)

= j(|A0| + |A1| − 2) +
j(j − 1)

2

(|A0| − 1 + 2(|A1| − 1)
)

+ j + 1

=
j(j + 1)

2

(|A| − 2
)

+
j(j − 1)

2
(|A1| − 1) + j + 1

≥ j(j + 1)

2

(|A| − 2
)

+
j(j − 1)

2
+ j + 1

=
j(j + 1)

2

(|A| − 1
)

+ 1

and the conclusion follows.

4.2. Type IV exceptions

This section, devoted to the study of Type IV exceptions, leads us to some
kind of addendum to Section 3.4 in the special case

u ≥ 2.

We may come back to the proof and the notation of this section. Recall
(that was (3.30)) that we have

|Ai| = |H|
for any i different from 0 and u. Recall also that

|A0| = |H| + 1 and |Au| = 1.

Also, we have
|H| ≥ 2.



156 Y. ould Hamidoune and A. Plagne

Now, observe (just consider the associated residue classes) that the sets
in the following list are two-by-two disjoints:

jA0,
(j − 1)A0 + A1, (j − 1)A0 + A2, . . . , (j − 1)A0 + Au−1,

(j − 2)A0 + A1 + Au−1, (j − 2)A0 + A2 + Au−1, . . . , (j − 2)A0 + 2Au−1,
(j − 3)A0 + A1 + 2Au−1, (j − 3)A0 + A2 + 2Au−1, . . . , (j − 3)A0 + 3Au−1,

...
A0 + A1 + (j − 2)Au−1, A0 + A2 + (j − 2)Au−1, . . . , A0 + (j − 1)Au−1,

A1 + (j − 1)Au−1, A2 + (j − 1)Au−1, . . . , jAu−1,
(j − 1)Au−1 + Au, (j − 2)Au−1 + 2Au, . . . , jAu.

We count the number of elements of each sum in this list using what we
just mentioned. Since all the Ai’s are arithmetic progressions with the same
common difference, the cardinality of each element from this list is easily
calculated.

We have
|jA0| = j|H| + 1.

On the second line, each sum (there are u− 1 such sums) has

(j − 1)|H| + (|H| − 1) + 1 = j|H|
elements. On the third line (there are also u−1 terms) each term has j|H|−1
elements and so on. On the last but one line, every set has j|H| − j + 1
elements. Concerning the last line, the s-th sumset (1 ≤ s ≤ j) has
(j − s)(|H| − 1) + 1 elements.

So, the total number of elements in jA is at least

|jA| ≥ (j|H| + 1) + (u− 1)

j−1∑
i=0

(
j|H| − i

)
+

j∑
s=1

(
(j − s)(|H| − 1) + 1

)
= j|H| + 1 + (u− 1)

(
j2|H| − j(j − 1)

2

)
+
j(j − 1)

2
(|H| − 1) + j.

Therefore,

|jA| −
( j(j + 1)

2
(|A| − 1) + 1

)
=

= |jA| −
(j(j + 1)

2

(
(|H| + 1) + (u− 1)|H| + 1 − 1

)
+ 1

)
≥ j|H| + 1 + (u− 1)

(
j2|H| − j(j − 1)

2

)
+
j(j − 1)

2
(|H| − 1) + j −

(j(j + 1)

2
(u|H| + 1) + 1

)
= j(j − 1)

((u− 1)(|H| − 1)

2
− 1

)
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and the result follows unless u = |H| = 2. In this case, we are led to sets
A = A0 ∪ A1 ∪ A2, with |A1| = 2 and |A2| = 1, that is to a set A of the
form

A = {0,M/2,M, x, x+M/2, 2x},
a case excluded by hypothesis.

4.3. The generic case

Assume that A is not in F and apply Theorem 4. The numerical bound
must hold

|B| = |(jA) \ (
(j − 1)A)| ≥ min(M − 1, j(|A| − 1)) = j(|A| − 1),

on recalling |A| < 1 + M/j. On the other hand, the same bound on |A|
implies that we have |A| ≤ (M − 1)/j + 1 ≤ (M − 1)/(j − 1) + 1 and we
can apply the induction hypothesis which gives

|(j − 1)A| ≥ j(j − 1)

2
(|A| − 1) + 1.

Adding these two bounds together gives

|jA| = |(j − 1)A| + |B|
≥

(j(j − 1)

2
(|A| − 1) + 1

)
+ j(|A| − 1)

=
j(j + 1)

2
(|A| − 1) + 1

and Theorem 3 is proved.

5. A Frobenius corollary

In the light of Theorem 3, we may revisit the Frobenius problem. Indeed, as
a corollary of Theorem 3, we obtain a new proof of a result on the Frobenius
problem (the best known of this nature).

Let A be a set of positive integers. It is a well known fact that, if
gcd(A) = 1, then every sufficiently large integer can be written as a sum
of elements from A (with repetitions allowed). The Diophantine Frobenius
problem consists in determining the largest integer, denoted by G(A), not
representable in such a form. Sylvester [18] already knew that

G({a1, a2}) = (a1 − 1)(a2 − 1) − 1.

However, as soon as |A| ≥ 3, computing this number is, in general, a difficult
problem.
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Here, we are interested in the following problem: given two positive
integers n and M , with 3 ≤ n ≤ M , what is the maximal value of G(A)
for A ⊂ {1, . . . ,M}, gcd(A) = 1 and |A| = n. Notice that the problem is
trivial if n = M .

Erdös and Graham [4] proved that this maximal value is less than or
equal to 2M 2/n and conjectured that this upper bound could be replaced
by M 2/(n− 1). This conjecture was finally proved by Dixmier [3].

Theorem 15 (Dixmier’s Theorem 3 in [3]) Let A be a set of positive
integers such that gcd(A) = 1. Define M = max(A), n = |A| and assume
2 ≤ n < M . Then, letting

r = (n− 1)

([
M − 1

n− 1

]
+ 1

)
− (M − 1),

the unique integer, 1 ≤ r ≤ n− 1, equal to −(M − 1) modulo n− 1, one has

G(A) ≤
[
M − 1

n− 1

]
(M − r − 1) − 1.

A new proof of Dixmier’s theorem was obtained by Lev [14] as an ap-
plication of his multiple set version of the 3k − 4 Theorem quoted in the
Introduction (Theorem 2). The following improvement was first obtained
in [9]. As shown in this paper, it implies Lewin’s conjecture [15].

Corollary 16 (of our Theorem 3) Let A be a set of positive integers sat-
isfying gcd(A) = 1. Define M = max(A), n = |A| and assume that 3 ≤
|A| ≤ M/2. Assume also that A ∪ {0} is neither the union of two arith-
metic progressions with the same common difference, nor of the form A =
{0,M/2,M, x, x + M/2, 2x} for some positive integer x < M/2. Define
r = n([M/n] + 1) −M . If r �= n, then one has

G(A) ≤
[
M

n

]
(M − r) − 1.

Here, we present a new proof of it, as an immediate corollary of our The-
orem 3. In this sense, our approach generalizes that of Lev. We will need two
lemmata. First, a slight generalization of a lemma by Dixmier [3] (Dixmier
proved it only in a special case but the reader may observe that the following
statement boils down to the original Dixmier’s lemma):

Lemma 17 (Dixmier’s lemma) Let N be a positive integer and let C ⊂
{1, . . . , N}. If N/2 < |C| < N , then

G(C) ≤ 2(N − |C|) − 1.
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For stating the second lemma, we need a definition. A set of positive
integers A with maximum M is said to be saturated if for any x, y in A,
either x+ y ∈ A or x+ y > M . The requested lemma is the following.

Lemma 18 (Lemma 11.3 in [9]) Let B be a saturated set of positive in-
tegers. Assume that gcd(B) = 1, that |B| ≤ max(B)/2 and that B is an
arithmetic progression modulo max(B). Then B ∪ {0} is the union of two
arithmetic progressions with the same common difference.

We are now ready to come to the proof of our Frobenius Corollary.

Proof of Corollary 16. Let us set s = [M/n]+1 ≥ 3, so that sn = M + r.
We stress the fact that r satisfies a priori 1 ≤ r ≤ n, but here we assume
r < n. We define A′ = A∪{0}. Notice that A′ and A coincide moduloM but

|A′| = |A| + 1 = n+ 1.

We now distinguish two cases depending on the structure of A moduloM .

Assume first that A is not an arithmetic progression modulo M . We
have (s− 1)(|A′| − 1) = sn− n < sn− r = M . In view of the assumptions
on A′ in Corollary 16, Theorem 3 implies

|(s− 1)A′| ≥ s(s− 1)

2
n+ 1.

Putting

C =
(
(s− 1)A′) \ {0} =

s−1⋃
j=1

jA ⊂ {1, 2, . . . , (s− 1)M},

it follows that

|C| ≥ s(s− 1)

2
n =

(M + r)(s− 1)

2
=
M(s− 1)

2
+
r(s− 1)

2
.

We may assume that |C| < (s − 1)M (otherwise A must contain 1 and
G(A) = 0). Since r(s− 1) > 0, using Dixmier’s lemma, we infer that

G(A) = G(C) ≤ (s− 1)(M − r) − 1 =

[
M

n

]
(M − r) − 1,

which proves the result.
We now assume that A is an arithmetic progression modulo M . The

set A cannot be saturated. Otherwise, by Lemma 18, A′ must be a union of
two arithmetic progressions with the same common difference, a case which
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is excluded by assumption. So, there are x, y in A, with x + y �∈ A and
x + y < M . Let us define A′′ = A ∪ {x + y} ⊂ {1, 2, . . . ,M}, a set with
|A′′| = n + 1 elements. We clearly have G(A ∪ {x + y}) = G(A). On the
other hand, we have r = n([M/n] + 1) −M which yields

r + 1 = n

([
M

n

]
+ 1

)
− (M − 1)

= (|A′′| − 1)

([
M

|A′′| − 1

]
+ 1

)
− (M − 1)

= (|A′′| − 1)

([
M − 1

|A′′| − 1

]
+ 1

)
− (M − 1),

since M/(|A′′|− 1) = M/n cannot be an integer (otherwise r = n). We may
thus apply Dixmier’s theorem to A′′. Since G(A) = G(A′′), we obtain:

G(A) ≤
[
M − 1

|A′′| − 1

]
(M − (r + 1) − 1) − 1

=

[
M − 1

n

]
(M − r − 2) − 1 ≤

[
M

n

]
(M − r) − 1.

Hence the result. �
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99–123.

[2] Davenport, H.: On the addition of residue classes. J. London Math.
Soc. 10 (1935), 30–32.

[3] Dixmier, J.: Proof of a conjecture by Erdös and Graham concerning the
problem of Frobenius. J. Number Theory 34 (1990), 198–209.

[4] Erdös, P., Graham, R. L.: On a linear Diophantine problem of Frobe-
nius. Acta Arith. 21 (1972), 399–408.

[5] Freiman, G.A.: On the addition of finite sets. I. Izv. Vysš. Učebn. Zaved.
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Université Pierre et Marie Curie
Case 189, 4 place Jussieu

75005 Paris, France
yha@ccr.jussieu.fr

Alain Plagne
CMLS
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