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A Simplified Proof of Desingularization
and Applications
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Abstract
This paper contains a short and simplified proof of desingulariza-

tion over fields of characteristic zero, together with various applica-
tions to other problems in algebraic geometry (among others, the
study of the behavior of desingularization of families of embedded
schemes, and a formulation of desingularization which is stronger
than Hironaka’s). Our proof avoids the use of the Hilbert-Samuel
function and Hironaka’s notion of normal flatness: First we define a
procedure for principalization of ideals (i. e. a procedure to make an
ideal invertible), and then we show that desingularization of a closed
subscheme X is achieved by using the procedure of principalization
for the ideal I(X) associated to the embedded scheme X. The paper
intends to be an introduction to the subject, focused on the motiva-
tion of ideas used in this new approach, and particularly on applica-
tions, some of which do not follow from Hironaka’s proof.

Part I. Introduction

1. Introduction

We present a unified proof, for the case of schemes over a field of characteris-
tic zero and of compact analytic spaces, of two central theorems in algebraic
geometry: The resolution of singularities of schemes, and the principaliza-
tion of ideals (see Section 2 for precise statements of our results). The exist-
ence of resolution of singularities is one of the most important results in
the area, due to its large number of applications, while principalization of
ideals is related to the classical problem of elimination of base points of a
linear system.
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Resolution of singularities of schemes. Given a reduced scheme X of
finite type over a field of characteristic zero, find a proper and birational
morphism

π : X ′ → X,

such that X ′ is non-singular and π induces an isomorphism over the regular
points of X.

Principalization. Given a non zero sheaf of ideals J in non-singular vari-
ety W , find a proper and birational morphism,

π : W ′ → W,

such that W ′ is non-singular and JOW ′ is locally principal.

The purpose of this paper is threefold: We present a simplified proof
of both theorems, already indicated in [18], see also [19] (this is done in
Parts II and V of this manuscript); we summarize some applications of our
approach, together with new results (see Part III); and finally, in Part IV,
we motivate the main ideas behind the invariants that we use in this proof
of desingularization (this part is purely expository). Our very short proof
of desingularization presented in 5.8, makes use of the algorithm developed
essentially in Part V (and recently implemented in MAPLE). This provides
a proof of desingularization that does not exceed thirty pages.

What makes this work different from other approaches to desingularization?

In his monumental work ([23]), Hironaka gave an existential proof of
resolution of singularities, and, in so doing, he also provided an existential
proof for principalization of ideals. Hironaka’s approach is based in two
main ideas: Reduction to the hypersurface case, and induction on the di-
mension. As for the reduction to the hypersurface case, he shows that given
a variety X, it is possible to describe it as an intersection of a finite number
of hypersurfaces {Hi}i∈I , in such a way that the intersection of the worst
singularities of the hypersurfaces {Hi}i∈I is the set of the worst singulari-
ties of X. Then he proves, using an existential argument, that there is a
sequence of blowing-ups such that the singularities of the hypersurfaces are
better, and hence the singularities of X are better too.

To find the hypersurfaces Hi, Hironaka considers a stratification of X by
means of the Hilbert-Samuel function. The worst singularities of X corre-
spond to the stratum of points where this function is maximum. He then pro-
vides an existential argument to show that by blowing-up at smooth centers
contained in the maximum stratum of the Hilbert-Samuel function, the max-
imum drops (the containment condition over the centers is usually referred
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as normal flatness). Once this maximum drops, new hypersurfaces Hi have
to be chosen. All this requires the use of standard bases, algorithms of di-
vision and the notion of strict transform of ideals (see [26], [32] and [20] for
more information on Hironaka’s line of proof, and also Section 7, where the
notion of strict transform of an ideal is defined).

During the eighties and nineties, the first constructive proofs of resolution
of singularities appeared: [7], [34] (and [35]), [17] (see also [8]). However,
all of them were based on Hironaka’s approach. These proofs provided a
general algorithm of desingularization indicating where to blow-up in order
to eliminate the singularities in a step by step procedure. The idea is to
define invariants of singular points, and to show that these invariants im-
prove when blowing up the set of worst points. Embedded desingularization
is then achieved by repeatedly blowing up the set of worst points. All al-
gorithmic procedures mentioned above, make use, as Hironaka did in his
original work, of the Hilbert Samuel function and the strict transform of
ideals. From an algorithmic point of view, the notion of strict transform of
an ideal is quite complicated, except in the case of a hypersurface.

What makes this present proof different from the previous ones is that
we show that embedded desingularization can be achieved avoiding the use
of Hilbert Samuel functions and the control of strict transforms of ideals.
Instead of using a standard basis we take any set of generators of an ideal,
and we do not need to change these generators in the procedure of desingu-
larization.

Our strategy is based in the fact that embedded desingularization turns
out to be a straightforward corollary of a simpler result: The Algorithmic
Resolution of Basic Objects. While related to Hironaka’s idealistic expo-
nents (see [24]), the notion of basic object is different and easier to work
with. Our approach follows from the study of local properties of the algo-
rithmic resolution process for basic objects developed in [35] and [18] and
also included in this paper. In fact the algorithm of desingularization in [35]
was also obtained by a suitable application of this same algorithm of resolu-
tion of basic objects but in a different manner, and our proof of equivariance
(compatibility with group actions) is also similar to the proof in that paper.
Furthermore, our new proof coincides with that from [35] in the hypersurface
case, so explicit examples for algorithmic desingularization of hypersurfaces
can be found in [35, Section 8] and in [36] (Hilbert-Samuel functions were
not required in Hironaka’s proof in the hypersurface case).

Among other applications, this algorithm of resolution of basic objects
has been implemented as a computer program by G. Bodnár and J. Schicho.
As a consequence these authors have developed a program which resolves
singularities of hypersurfaces (see [10] and [11]). The proof of resolution
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of singularities that we give in 5.8 shows that that this implemented algo-
rithm of resolution of basic objects, as it stands, also applies for embedded
desingularization of any scheme, even if not a hypersurface (see Section 11).

This new approach to resolution of singularities also allows us to go
beyond Hironaka’s desingularization: Based on the ideas developed here,
in [13] we present a stronger formulation of desingularization (see Section 7
for a precise statement of this result, as well as additional applications).
See also Part III for more applications.

Finally, there are other results in desingularization within this new frame-
work and related to this one: For instance, Matsuki’s lucid presentation of
the ideas behind the algorithms of desingularization in [28], which is based
in the work developed in [19]; or [15], where an algorithm of principalization
and of desingularization is stated from a different point of view, using a new
presentation of the local invariant.

We also should mention the papers [2], [3] and [12], where a completely
different proof of resolution of singularities it is given, leading to the so called
weak desingularization of varieties. As opposed to the algorithms mentioned
before, in the weak desingularization approach regular points of the variety
may be modified in the desingularization process. More generally, see [22]
for an interesting introduction to the problem of desingularization.

As indicated above, this manuscript is a self contained presentation which
intends to provide an introduction to the subject, particularly focused in the
motivation of the main ideas, and hopefully a reference for future applica-
tions. To this end we have organized the paper so that the reader can easily
get into the statement of the main results and some of their applications
without having to go through the technicalities of the proofs.

More precisely, the paper is organized as follows: In the next section,
the last of Part I, we state the theorems of resolution of singularities and
principalization of ideals that we are going to prove.

Part II is devoted to presenting the theory of basic objects: This notion
is introduced in Section 3, and those of equivariance, and of algorithmic res-
olution of basic objects, in Sections 4 and 5. After presenting the properties
of this implemented algorithm of resolution of basic objects, in 5.8 we give
a short proof of desingularization for equidimensional schemes (in [13] we
provide a proof which works in the general case). In Section 6 we intro-
duce the two main equivariant functions involved in the construction of the
algorithms of resolution.

In Part III we present applications of our results: In Section 7 the notions
of weak and strict transforms of ideals are discussed, and a stronger version
of Hironaka’s Theorem is stated; in Section 8 we discuss the extension of
our results to a wider class of schemes (which are not necessarily of finite
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type over a field); Sections 9 and 10 deal respectively with resolution of
locally embedded varieties and resolution in families of varieties; finally, in
Section 11 there are some indications on how the algorithm of desingulariza-
tion can be implemented as a computer program which works for arbitrary
varieties (and not only in the hypersurface case).

Part IV is devoted to giving a flavor of how the algorithm of resolution
of basic objects works. The algorithm is described in Part V.

Acknowledgments. Part of the material contained in this manuscript
has been presented in a series of seminars at the University of Purdue, during
the Spring in 2001. We profited from discussions with Gabrielov, Matsuki,
Moh and Nobile.

2. Formulation of the Theorems

The main point in the statement of the problems of resolution of singular-
ities and principalization of ideals is the construction of a birational mor-
phism of regular schemes π : W ′ → W . This morphism will be defined as
a composition of monoidal transformations at closed and regular centers.
If e1 : W1 −→ W is a monoidal transformation with center Z, then the
exceptional locus H1 ⊂W1 is a regular hypersurface, and if

W2
e2−→ W1

e1−→W

is a composition of monoidal transformations with centers Z ⊂ W and
Z1 ⊂ W1, then the exceptional locus of e1 ◦ e2 : W2 −→ W is the union of
the strict transform of H1 with the exceptional locus H2 of e2 : W2 −→ W1.
Both Theorems 2.4 and 2.5 require the exceptional locus of π : W ′ −→ W
to have normal crossings (see Definition 2.1 below), and to achieve this
condition we will have to impose some constraints on the regular centers
Z ⊂ W and Z1 ⊂ W1. With this purpose we introduce the notions of pairs
and transformation of pairs which are suitable for the formulation of both
Embedded Desingularization and Principalization of Ideals.

Definition 2.1. Let W be a regular scheme and let Y1, . . . , Yk ⊂ W be a
set of closed subschemes. We say that Y1∪ . . .∪Yk have normal crossings at
a point ξ ∈ W if there exists a regular system of parameters {x1, . . . , xd} ⊂
OW,ξ, such that for each i ∈ {1, . . . , k}, either I(Yi)ξ = OW,ξ, or

I(Yi)ξ = 〈xi1 , . . . , xisi
〉

for some xi1, . . . , xisi
∈ {x1, . . . , xd}. We say that Y1 ∪ . . . ∪ Yk have normal

crossings in W if they have normal crossings at any point of W .
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Definition 2.2. Let W be a pure dimensional scheme, smooth over a field k
of characteristic zero, and let E = {H1, . . . , Hr} be a set of smooth hyper-
surfaces in W with normal crossings. The couple (W,E) is said to be a pair.

2.3. Transformation of pairs ([18, 2.10], [35, 1.1]) A regular closed sub-
scheme Y ⊂ W is said to be permissible for the pair (W,E) if Y has normal
crossings with E, (i.e. if Y has normal crossings with E = {H1, . . . , Hr}).
If Y ⊂ W is permissible for a pair (W,E), we define a transformation of
pairs in the following way: Consider the blowing-up with center Y ,

W
Π←−W1,

and define E1 = {H ′
1, . . . , H

′
r, H

′
r+1}, where H ′

i denotes the strict trans-
form of Hi, and H ′

r+1 denotes Π−1(Y ), the exceptional hypersurface in W1.
Note that W1 is smooth and that E1 has normal crossings. We say that
(W,E)←− (W1, E1) is a transformation of the pair (W,E).

Now we state the two theorems that we prove:

Theorem 2.4 (Embedded resolution of singularities). Let (W0, E0 =∅)
be a pair and let X0 ⊂W0 be a closed equidimensional subscheme defined by
I(X0) ⊂ OW0. Assume that the open set Reg(X) of regular points of X is
dense in X. Then there exists a finite sequence of transformations of pairs

(W0, E0 = ∅)←− . . .←− (Wr, Er),

inducing a proper birational morphism Πr : Wr −→ W0, such that if Er =
{H1, . . . , Hr} is the exceptional locus of Πr then:

(i) The strict transform of X in Wr, Xr, is regular in Wr, and

Wr \
r⋃

i=1

Hi 
 W0 − Sing(X) .

In particular,

Reg(X) ∼= Π−1
r (Reg(X)) ⊂ Xr via Πr.

(ii) The scheme Xr has normal crossings with Er =
⋃r

i=1 Hi.

(iii) (Equivariance) If a group acting on W is also acting on X0 ⊂ W0,
then the action can be lifted to one on Xr ⊂Wr.



A Simplified Proof of Desingularization and Applications 355

Theorem 2.5 (Embedded Principalization of ideals). Let (W0, E0) be
a pair and let I ⊂ OW0 be a non zero sheaf of ideals. Then there exists an
embedded principalization of I, i.e. there is a finite sequence of transforma-
tions of pairs

(2.5.1) (W0, E0 = ∅) = (W,E)←− . . .←− (Wr, Er),

at smooth centers Yi ⊂Wi, such that:

(i) The morphism Wr → W defines an isomorphism over the open subset

W \ V (I).

(ii) The ideal IOWr is invertible and supported on a divisor with normal
crossings, i.e.,

(2.5.2) L = IOWr = I(H1)
c1 · . . . · I(Hs)

cs ,

where
E ′ = {H1, H2, . . . , Hs}

are regular hypersurfaces with normal crossings, ci ≥ 1 for i = 1, . . . , s,
and

E ′ = Er

if V (I) has no components of codimension 1.

(iii) (Equivariance) If a group G acts on W0 and on the ideal I, then it
acts on each center Yi for i = 0, . . . , r− 1, and the action can be lifted
at each step of the resolution.

Remark 2.6. In particular, if W = An
k , or any toric variety, J is a monomial

ideal and

(2.6.1) (W0, E0 = ∅) = (W,E)←− . . .←− (Wr, Er),

is an embedded principalization of J , obtained by blowing up at smooth
centers Yi ⊂ Wi as indicated in Theorem 2.5, then all the ideals I(Yi) are
monomial ideals, because the sequence of transformations is equivariant, and
the torus acts on W and J , and hence on the centers Yi, for i = 0, 1, . . . , r−1.

The proofs of Theorems 2.4 and 2.5 will be given in 5.8 and 5.9, where it
will be shown that both theorems are a direct consequence of the existence
of an algorithm of resolution of basic objects. Basic objects and algorithms
of resolution of basic objects are discussed in the upcoming sections.
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Part II. Basic objects

3. Basic objects

In this section we recall the definitions of basic objects and resolution of
basic objects (Definitions 3.1 and 3.8, see also [18]). Both Embedded Desin-
gularization and Strong Principalization of Ideals can be obtained from a
resolution of suitably defined basic objects.

Definition 3.1. A basic object is a triple that consists of a pair (W,E), an
ideal J ⊂ OW such that (J)ξ = 0 for any ξ ∈ W , and a positive integer b.
It is denoted by (W, (J, b), E). If the dimension of W is d, then (W, (J, b), E)
is said to be a d-dimensional basic object.

Definition 3.2. The singular locus of a basic object is the closed subset
of W ,

Sing(J, b) = {ξ ∈W | νJ(ξ) ≥ b} ⊂W,

where νJ(ξ) denotes the order of the ideal J at the local regular ring OW,ξ.
Sometimes we will use the notation

(W, (J, b), E)
∪

Sing(J, b)

to refer to the basic object (W, (J, b), E) together with the closed subset
Sing(J, b), meaning that Sing(J, b) ⊂W .

Example 3.3. If X ⊂ W is a hypersurface and J is its defining ideal, then
Sing(J, b) is the set of points of X where the multiplicity is greater than or
equal to b.

Example 3.4. If J ⊂ OW is an arbitrary non-zero sheaf of ideals, then
Sing(J, b) is the set of points of W where the order of J is greater than or
equal to b.

Definition 3.5. A regular closed subscheme Y ⊂ W is permissible for
(W, (J, b), E) if Y is permissible for the pair (W,E) and Y ⊂ Sing(J, b).

3.6. Permissible transformations of basic objects. Let (W, (J, b), E =
{H1, . . . , Hr}) be a basic object and let Y ⊂ Sing(J, b) be a permissi-
ble center. Consider W ←− W1 the monoidal transformation with center Y .
This induces a transformation of pairs,

(W,E = {H1, . . . , Hr})←− (W1, E1 = {H1, . . . , Hr, Hr+1}),

where Hr+1 ⊂W1 is the exceptional divisor (see Definition 2.2).
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Now, since Y ⊂ Sing(J, b),

(3.6.1) JOW1 = I(Hr+1)
bJ1,

for some J1 ⊂ OW1. Then we define

(W, (J, b), E)←− (W1, (J1, b), E1)

as the permissible transformation of the basic object (W, (J, b), E).

Remark 3.7. In general, given a sequence of transformations of basic ob-
jects

(3.7.1)
(W0, (J0, b), E0)←− (W1, (J1, b), E1)←− . . . ←− (Wk, (Jk, b), Ek)

∪ ∪ ∪
Sing(J0, b) Sing(J1, b) . . . Sing(Jk, b)

at centers Yi ⊂ Sing(Ji, b), i = 0, 1, . . . k − 1, we obtain expressions

(3.7.2) J0OWi
= I(Hr+1)

cr+1 · . . . · I(Hr+i)
cr+iJi.

Note here that cr+1 = · · · = cr+i = b if none of the centers Yi are included
in any of the exceptional divisors Hj.

Definition 3.8. A finite sequence transformation of basic objects as (3.7.1)
is a resolution of (W0, (J0, b), E0) if Sing(Jk, b) = ∅.

Remark 3.9. Note that:

1. If sequence (3.7.1) is a resolution of the basic object (W0, (J0, b), E0),
then Wk −→ W0 defines an isomorphism over W0\V (J0), and J0OWk

=
MkJk, whereMk is an invertible sheaf of ideals, and Jk has no points
of order ≥ b in Wk.

2. The ideal Jk is not the strict transform of J0, an ideal which is far more
complicated to define (see Section 7 for a discussion on this matter).
However it is so in some particular cases. In fact, if X0 ⊂ W0 is a
closed smooth subscheme, and J0 = I(X), then Sing(J0, 1) = X, and
given any sequence of transformations of basic objects

(W0, (J0, 1), E0)←− (W1, (J1, 1), E1)←− . . .←− (Wk, (Jk, 1), Ek)

the ideal Jk is the ideal of a smooth subscheme Xk ⊂ Wk, which is the
strict transform of X ⊂W0.
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Theorem 3.10. [35, Theorem 7.3] [18, Theorem 7.13] Given a basic object
(W, (J, b), E) where W is smooth over a field of characteristic zero, there is
a resolution, i.e. there is a finite sequence of monoidal transformations at
permissible centers Yi ⊂Wi,

(3.10.1)

(W, (J, b), E)=(W0, (J0, b), E0)← (W1, (J1, b), E1)← . . .← (Wk, (Jk, b), Ek),

such that Sing(Jk, b) = ∅.
Remark 3.11. Note that:

(i) Theorem 3.10 is existential. It claims that given (W, (J, b), E) there ex-
ists a resolution. However we shall give a constructive proof (the same
as in [35, Theorem 7.3], [18, Theorem 7.13]), so that given (W, (J, b), E)
we will define one particular resolution.

(ii) We will show in 5.8 and 5.9 that a constructive proof of Theorem 3.10
will lead us to simple constructive proofs of Theorems 2.4 and 2.5.

A central point in our constructive proof of Theorem 3.10, and hence of
Theorems 2.4 and 2.5, relies on the fact that all the invariants involved in
the algorithmic resolution of a basic object (W, (J, b), E), will be defined in
terms of the closed sets of the form F = Sing(J, b). The definition of these
invariants will be addressed in Sections 6 and 17. As it turns out, the invari-
ants that we are aiming to use do not behave well if only transformations as
the ones of Definition 3.6 were allowed (see Section 4 for equivariance, and
Remark 6.9 where this fact is illustrated). This forces us to enlarge the class
of transformations of basic objects by including the projections.

3.12. Projections. Let (W, (J, b), E) be a basic object. We will define a
new notion of transformation of pairs and of basic objects as follows: Set

W1 = W × A1
k

and consider the natural projection p : W1 −→ W. Then define

J1 = JOW1 and E1 = p−1(E).

This gives us a transformation of pairs

(W,E)←− (W1, E1),

and a transformation of basic objects,

(W, (J, b), E)←− (W1, (J1, b), E1).

In this case the closed subset in W1 is F1 = Sing(J1, b) = p−1(Sing(J, b)).
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In what follows, unless otherwise specified, whenever we mention a trans-
formation or a sequence of transformations of basic objects, we will refer to
both the permissible transformations introduced in Definition 3.6 and the
projections that we have just defined. In both cases we will use the same
notation,

(3.12.1)
(W0, (J0, b), E0)←− (W1, (J1, b), E1)←− . . . ←− (Wk, (Jk, b), Ek)

∪ ∪ ∪
Sing(J0, b) Sing(J1, b) . . . Sing(Jk, b),

and we will assume that both kinds of transformations can be used in the
same sequence.

4. Equivariance

An important outcome of constructive desingularization is the lifting of any
group action on a subscheme X ⊂ W , all the way up to the desingularization.
Since our desingularization theorem will follow from a suitably defined res-
olution of basic objects, in this section we present and discuss the notion of
equivariance in the context of basic objects. We should point out that we will
work with isomorphisms Θ : W →W ′ which may be not necessarily defined
over the base field k over which the smooth schemes W and W ′ are defined.

Definition 4.1. An isomorphism of pairs

Θ : (W,E = {H1, . . . , Hk}) −→ (W ′, E ′ = {H ′
1, . . . , H

′
k})

is an isomorphism Θ : W −→W ′ such that Θ(Hi) = H ′
i for all i = 1, . . . , k.

Lemma 4.2. Let Θ : (W,E) −→ (W ′, E ′) be an isomorphism of pairs,
let Y be a permissible center for (W,E) and set Y ′ = Θ(Y ). Consider the
transformations of pairs with centers Y ,

(W,E)←− (W1, E1),

and Y ′,
(W ′, E ′)←− (W ′

1, E
′
1).

Then there is a natural lifting of the isomorphism Θ : (W,E) −→ (W ′, E ′)
to an isomorphism

(4.2.1) Θ1 : (W1, E1) −→ (W ′
1, E

′
1)

such that the diagram

(W,E) ←− (W1, E1)
Θ ↓ ↓ Θ1

(W ′, E ′) ←− (W ′
1, E

′
1)

commutes.
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Proof: The map Θ : (W,E) −→ (W ′, E ′) induces an isomorphism of the
corresponding structural sheaves OW and OW ′, and extends naturally to an
isomorphism

Θ̂ : W × Ak1 −→ W ′ × Ak1 ,

i.e. an isomorphism between OW [Z] and OW ′[Z ′], where Z and Z ′ are inde-
terminates and Θ(Z) = Z ′.

Since Θ(Y )=Y ′, the sheaf of ideals I(Y )⊂OW is mapped to I(Y ′)⊂OW ′ .
As a consequence, Θ induces an isomorphism OW [I(Y )Z] 
 OW ′ [I(Y ′)Z ′]
which preserves the grading. Therefore we get an isomorphism

W1 = Proj (OW [I(Y )Z]) 
W ′
1 = Proj (OW ′[I(Y ′)Z ′]) .

We finally check that this isomorphism maps the exceptional hypersurface
of one to that of the other, defining Θ1 : (W1, E1) −→ (W ′

1, E
′
1). �

Remark 4.3. Let Θ : (W,E) → (W ′, E ′) be an isomorphism of pairs. Set
W1 = W ×A1

k, W ′
1 = W ′×A1

k, both as in 3.12; and set Θ1 = Θ× IdA1
k
. Note

that Θ1 : (W1, E1)→ (W ′
1, E

′
1) is an isomorphism of pairs.

Remark 4.4. Fix an isomorphism Θ : (W,E) −→ (W ′, E ′) and a sequence

(4.4.1) (W,E) ←− (W1, E1) ←− . . . ←− (Wk, Ek),

where each transformations of pairs is either as in 2.3 or as in 3.12. Then
Lemma 4.2 and Remark 4.3 assert that Θ : W −→ W ′ defines a unique
sequence of transformation of pairs,

(4.4.2) (W ′, E ′) ←− (W ′
1, E

′
1) ←− . . . ←− (W ′

k, E
′
k).

together with isomorphisms Θi : (Wi, Ei) −→ (W ′
i , E

′
i), for i = 1, . . . , k.

Remark 4.5. Let B = (W, (J, b), E) be a basic object. If U ⊂ W is
an open set, then we set the restriction of the basic object to be B|U =
(U, (J |U , b), EU ), where J |U is the restriction of the sheaf of ideal to U and
EU = {H ∩ U | H ∈ E}.

Definition 4.6. Let (W, (J, b), E) and (W ′, (J ′, b′), E ′) be two basic objects
and let

Θ : (W,E)→ (W ′, E ′)

be an isomorphism of pairs. We will say that Θ induces an isomorphism of
basic objects,

Θ : (W, (J, b), E)→ (W ′, (J ′, b′), E ′),

if the following conditions hold:
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(i) The isomorphism Θ : W → W ′ induces an isomorphism of the closed
subsets defined by the basic objects

Θ : F = Sing(J, b) ∼= F ′ = Sing(J ′, b′).

(ii) Given a sequence of transformations of basic objects as in 3.6 or 3.12,

(4.6.1) (W, (J, b), E)←− (W1, (J1, b), E1)←− . . .←− (Wk, (Jk, b), Ek),

together with the corresponding sequence of transformation of pairs

(W,E) ←− (W1, E1) ←− . . . ←− (Wk, Ek)

then:

(a) The corresponding induced sequence, as in Remark 4.4,

(W ′, E ′) ←− (W ′
1, E

′
1) ←− . . . ←− (W ′

k, E
′
k),

defines a sequence of transformation of basic objects,

(4.6.2) (W ′, (J ′, b′), E ′)← (W ′
1, (J

′
1, b

′), E ′
1)← · · · ← (W ′

k, (J
′
k, b

′), E ′
k)

(b) The isomorphisms Θi : (Wi, Ei)→ (W ′
i , E

′
i) defined in remark 4.4,

induce an isomorphism of the closed subsets defined by the basic ob-
jects,

Θi : Sing(Ji, b) ∼= Sing(J ′
i , b

′) for all i = 1, . . . , k.

(iii) For any open set U , set U ′ = Θ(U) and consider the restrictions
(U, (J |U , b), EU ) and (U ′, (J ′|U ′ , b′), E ′

U ). We require that properties (i)
and (ii) hold for these restrictions.

Example 4.7. Let Θ : (W,E)→ (W ′, E ′) be an isomorphism of pairs, fix a
basic object (W, (J, b), E) and let J ′ be the image of J in O′

W under Θ, i.e.
J ′ = Θ(J) ⊂ OW ′. Then we claim that

Θ : (W, (J, b), E)→ (W ′, (J ′, b), E ′)

is an isomorphism of basic objects: Clearly Θ : W → W ′ maps Sing(J, b)
isomorphically into Sing(J ′, b). To check that condition (ii) of Definition 4.6
holds, note that if

(4.7.1) (W, (J, b), E)←− (W1, (J1, b), E1)

is a transformation of basic objects as the ones defined in 3.12, then the
corresponding transformation of basic objects over (W ′, (J ′, b), E ′),

(W ′, (J ′, b), E ′)←− (W ′
1, (J

′
1, b), E

′
1)
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is such that the there is a natural way to define an isomorphism

Θ1 : W1 → W ′
1,

which maps Sing(J1, b) isomorphically into Sing(J ′
1, b). In fact, Θ1 maps

J1 = JOW1 into J ′
1 = J ′OW ′

1
.

Now if

(4.7.2) (W, (J, b), E)←− (W1, (J1, b), E1)

is a transformation of basic objects with center Y as in Definition 3.6, and if

(W ′, (J ′, b), E ′)←− (W ′
1, (J

′
1, b), E

′
1)

is a transformation of basic objects with center Y ′= Θ(Y ), then by Lemma 4.2
we obtain an isomorphism of pairs

Θ1 : (W1, E1)→ (W ′
1, E

′
1).

Since Θ1 : W1
∼= W ′

1 is compatible with Θ : W ∼= W ′ it follows that

Θ1(JOW1) = J ′OW ′
1
.

In particular, by (3.6.1), Θ1(J1)=J ′
1, and hence Θ1(Sing(J1, b))=Sing(J ′

1, b).

Example 4.8. The identity map induces an isomorphism of the basic ob-
jects,

Id : (W, (J, b), E)→ (W, (J2, 2b), E),

(see also Example 12.6).

Remark 4.9. Note that if two basic objects are isomorphic, then there
might be may different isomorphisms between them. We are interested in
resolutions which are compatible with any of these isomorphisms. This is
the philosophy behind the next definition.

Definition 4.10. Let (W, (J, b), E) be a basic object. We will say that a
sequence of transformations of basic objects,

(W, (J, b), E)←− (W1, (J1, b), E1)←− . . .←− (Wk, (Jk, b), E1)

is equivariant, if for any isomorphic basic object (W ′, (J ′, b), E ′), the induced
sequence of transformations defined as in (4.6.2),

(4.10.1) (W ′, (J ′, b′), E ′)←− (W ′
1, (J

′
1, b

′), E ′
1)←− . . .←− (W ′

k, (J
′
k, b

′), E ′
1),

is independent of the isomorphism Θ : (W, (J, b), E)→ (W ′, (J ′, b′), E ′) that
we take.
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4.11. What does equivariance mean? In Section 5 we will introduce
the notion of algorithm of resolution of basic objects. The algorithm will
provide, for each basic object, a resolution which is equivariant, i.e., let

(4.11.1)
(W0, (J0, b), E0)←−(W1, (J1, b), E1)←−. . .←−(Wk, (Jk, b), Ek)

∪ ∪ ∪
Sing(J0, b) Sing(J1, b) . . . Sing(Jk, b) = ∅

be the resolution of B = (W0, (J0, b), E0) provided by the algorithm, and let

(4.11.2)
(W ′

0, (J
′
0, b

′), E ′
0)←−(W ′

1, (J
′
1, b), E

′
1)←−. . .←−(W ′

k′ , (J ′
k′ , b′), Ek′)

∪ ∪ ∪
Sing(J ′

0, b
′) Sing(J ′

1, b
′) . . . Sing(J ′

k′ , b′) = ∅

be that of B′ = (W ′
0, (J

′
0, b

′), E ′). We require that if B and B′ are isomorphic,
i.e. if

Θ : (W0, (J0, b), E0)→ (W ′
0, (J

′
0, b), E

′
0)

is an isomorphism, then sequence (4.10.1) induced by (4.11.1) is precisely
the sequence (4.11.2), and hence the isomorphism can be lifted along the
resolutions (4.11.1) and (4.11.2).

Since the resolutions are equivariant, Θ can be lifted, and furthermore,
any other isomorphism Γ : B → B′ can also be lifted. An algorithm with this
property is said to be an equivariant algorithm. This property, and others,
will arise, in a very simple manner, by defining the resolution in terms of
upper semi-continuous functions with suitable properties.

5. The algorithmic proof of Theorems 2.5 and 2.4

In this section we explain what we mean by a constructive or algorithmic
proof of Theorem 3.10. This constructive proof will be done in terms of
an algorithm of resolution of basic objects (see Definition 5.5). In order to
define such an algorithm we first introduce a totally ordered set, and then we
attach to each basic object an upper semi-continuous function with values
on this ordered set. These upper semi-continuous functions will define a
resolution for each basic object (W, (J, b), E), whenever W is defined over a
field of characteristic zero. We will refer to this resolution as the resolution
defined by the algorithm. At the end of the section we will indicate why an
algorithm of resolution of basic objects as the one described in Definition 5.5
already provides a proof of Theorems 2.4 and 2.5 (see 5.8 and 5.9).
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Definition 5.1. Let X be a topological space, let (T,≥) be a totally ordered
set, and let g : X −→ T be an upper semi-continuous function. Assume
that g takes only finitely many values. Then the largest value achieved by g
will be denoted by

max g.

Clearly the set
Max g = {x ∈ X : g(x) = max g}

is a closed subset of X.

Definition 5.2. Let T be a totally ordered set. Assume that for any basic
object B = (W, (J, b), E) there is an upper semi-continuous function

fB : Sing(J, b)→ T

associated to it. This is what we will call a family of functions with values
on T . Given a sequence of transformations of basic objects,

(Wk, (Jk, b), Ek)←− . . .←− (W1, (J1, b), E1)←− (W0, (J0, b), E0),

we will denote by fi the corresponding function

fBi
: Sing(Ji, b)→ T

associated to Bi = (Wi, (Ji, b), Ei).

Definition 5.3. A family of functions is said to be equivariant if for any
isomorphism of basic objects

Θ : B = (W, (J, b), E)→ B′ = (W ′, (J ′, b), E ′),

we have that

(5.3.1) fB′ ◦Θ = fB.

Remark 5.4. A family of functions with values on T attaches to each basic
object a unique function. An isomorphism Θ as in Definition 5.3 defines an
isomorphism W ∼= W ′ mapping the domain of fB into the domain of fB′ ,
and in particular, mapping

Sing(J, b) ⊂W

isomorphically into
Sing(J ′, b) ⊂W ′

so formula (5.3.1) makes sense.
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Definition 5.5. An algorithm of resolution of d-dimensional basic objects
consists of:

(A) A totally ordered set (Id,≤).

(B) A family of functions with values on (Id,≤),

fB : Sing(J, b)→ Id,

which satisfies the following properties:

(a) The closed subset
Max fB

is a smooth permissible center for (W, (J, b), E), and it therefore defines
a transformation of basic objects

(W, (J, b), E)←− (W1, (J1, b), E1).

Hence, given a basic object (W0, (J0, b), E0), by this property we always
get a finite sequence of transformations of basic objects

(5.5.1)
(W0, (J0, b), E0)←−(W1, (J1, b), E1)←−. . .←−(Wk, (Jk, b), Ek)

∪ ∪ ∪
Sing(J0, b) Sing(J1, b) . . . Sing(Jk, b),

with centers Max fi ⊂ Sing(Ji, b).

(b) For any sequence as (5.5.1) we have that

max f0 > max f1 > · · · > max fk.

(c) For any sequence as (5.5.1) there is an index N , depending on

(W0, (J0, b), E0), such that

Sing(JN , b) = ∅.

(d) If X0 is a regular pure dimensional subscheme of dimension r then
there is a value a(r) ∈ Id so that if J0 = I(X0), b = 1 and E0 = ∅,
then the function f0 is constant and equal to a(r).

(e) If ξ ∈ Sing(Ji, b) and ξ ∈ Max fi for i = 0, . . . , k − 1, then fi(ξ) =
fi+1(ξ

′) via the natural identification of the point ξ with a point ξ′

of Sing(Ji+1, b).

(f) The family of functions fB is equivariant: If

Θ : (W, (J, b), E) −→ (W ′, (J ′, b′)E ′)

is an isomorphism of basic objects, then the functions given by the
algorithm

f : Sing(J, b)→ T and f ′ : Sing(J ′, b)→ T

are such that f ′ ◦Θ = f .
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5.6. Some comments on the properties of the algorithm.

(1) Property (c) says that for i = 0, 1, . . . , k, the functions

fi : Sing(Ji, b)→ Id

define a resolution of the basic object (W0, (J0, b), E0). We will refer
to it as the resolution defined by the algorithm.

(2) Compatibility with open restrictions: Let U ⊂ W be an open subset
and let

(W, (J, b), E)U = (U, (J |U , b), EU )

be the restriction to U of (W, (J, b), E). Property (e) asserts that the
restriction to U of the resolution of (W, (J, b), E) defined by the algo-
rithm, coincides with the resolution of the basic object (W, (J, b), E)U

defined by the algorithm.

(3) Let

(5.6.1) Θ0 : (W0, (J0, b), E0)→ (W ′
0, (J

′
0, b

′), E ′
0)

be an isomorphism of basic objects. Now consider on the one hand
the resolution of (W0, (J0, b), E0),

(5.6.2)
(W0, (J0, b), E0)←−(W1, (J1, b), E1)←−. . .←−(Wk, (Jk, b), Ek)

∪ ∪ ∪
Sing(J0, b) Sing(J1, b) . . . Sing(Jk, b) = ∅,

defined by the upper semi-continuous functions

fi : Sing(Ji, b)→ Id,

and on the other hand the resolution of (W ′
0, (J

′
0, b

′), E ′
0),

(5.6.3)
(W ′

0, (J
′
0, b

′), E ′
0)←−(W ′

1, (J
′
1, b

′), E ′
1)←−. . .←−(W ′

k, (J
′
k, b), E

′
k)

∪ ∪ ∪
Sing(J ′

0, b
′) Sing(J ′

1, b
′) . . . Sing(J ′

k, b
′) = ∅,

defined by the upper semi-continuous functions

f ′
i : Sing(Ji, b)→ Id.

Then condition (f) asserts that

(5.6.4) fi(x) = f ′
i(Θi(x))
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for all x ∈ Sing(Ji, b) and in particular

Θi : Max fi → Max fi

is an isomorphism. Note that this guarantees that

Θi : (Wi, (Ji, b), Ei)→ (W ′
i , (J

′
i , b

′), E ′
i)

lifts to an isomorphism

Θi+1 : (Wi+1, (Ji+1, b), Ei+1) −→ (W ′
i+1, (J

′
i+1, b

′)E ′
i+1).

Therefore sequences (5.6.2) and (5.6.3) are linked as (4.6.2) is to (4.6.1).
Furthermore, the same holds for any isomorphism Γ : B → B′.

Note that the previous isomorphism Θi in (5.6.4) links functions on
two basic objects, both with the same index i.

Remark 5.7. The construction of the i-th function

fi : Sing(Ji, b)→ Id

defined by the algorithm depends on the previous functions fj : Sing(Jj, b)→
Id, for j ∈ {0, 1, . . . , i − 1}. This is not explicitly said in the definition of
algorithm, but this is only a technical fact. Note that in any case the previous
isomorphism Θi in (5.6.4) links functions on two basic objects, both with
the same index i.

5.8. Proof of Theorem 2.4. With the same notation as in Theorem 2.4,
consider the basic object

(W0, (J0, 1), E0),

where W0 = W , J0 = I(X) and E0 = ∅. Clearly X = Sing(J0, 1).

By Definition 5.5 (d) and 5.6 (2), the function

f0 : Sing(J0, 1)→ (Id,≤)

is constant on the restriction of (W0, (J0, 1), E0) to U = W \ Sing(X).
Let a(d) denote this constant value along the points in U ∩X.

By Definition 5.5 (c), we know that the algorithm provides a resolution
of the basic object (W0, (J0, 1), E0) by means of a finite sequence of blow-ups

(5.8.1) (W0, (J0, 1), E0)←− (W1, (J1, 1), E1)←− . . .←− (WN , (JN , 1), EN ),

at permissible centers Yi ⊂ Sing(Ji, b) for i = 0, 1, . . . , N − 1. Therefore,
there must be an index k ∈ {0, 1, . . . , N} such that max fk = a(d), and by
Definition 5.5 (b), there is a unique index k with this condition.
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Now U can be identified with an open set, say U again, of Wk (note that
the centers of the transformations in sequence (5.8.1) are defined by Max fi

and max fi > a(d) for i < k). If Xk denotes the strict transform of X in Wk,

Xk ∩ U = X ∩ U = Max fk ∩ U.

Since X ∩U = Reg(X) is dense in X, it follows that Xk is the union of some
of the components of Max fk, and hence it is regular and has normal cross-
ings with the exceptional components by Definition 5.5 (a). This proves (i)
and (ii) of Theorem 2.4.

Now it only remains to show that the resolution of singularities of X
that we have achieved is equivariant. An argument similar to the one in the
proof of Lemma 4.2 shows that if a group G acts on W0, and Θ(Y0) = Y0

for all Θ ∈ G, then the group G acts on the ideal I(Y ) ⊂ OW , and hence
on the blow-up W1. So in order to lift the action of G to Wk, it suffices
to lift the action of all the elements of the group Θ ∈ G, step by step, to
an isomorphism on Wk. By assumption Θ(X0) = X0 so we can argue as in
Example 4.7 to show that each element Θ ∈ G defines an isomorphism of
the basic object (W0, (J0, 1), E0) into itself. Hence part (iii) of Theorem 2.4
follows from 5.6 (3). �
5.9. Proof of Theorem 2.5. With the notation of Theorem 2.5, it is
enough to consider the resolution of the basic object (W, (I, 1), E) provided
by Theorem 3.10 (see also Remark 3.9 (1)).

To show that the embedded principalization is equivariant we argue as
in 5.8, where now each element Θ ∈ G defines an isomorphism of the basic
object (W0, (J0, 1), E0) = (W, (I, 1), E) into itself. �

6. The two main families of equivariant functions

In Section 5 we have introduced the notion of resolution of basic objects, and
we have shown how such a resolution can be applied to give a constructive
proof of Theorems 2.4 and 2.5. A resolution of basic objects is built by
defining a suitable family of equivariant functions fB. In this section we will
introduce the two main invariants used to construct these functions.

6.1. The function ord. Let B = (W, (J, b), E) be a d−dimensional basic
object. Then define the function

ordd
B : Sing(J, b) → Q

x −→ νJ (x)
b

,

where νJ(x) denotes the order of the ideal JOW,x at OW,x. Note that ordd
B

is an upper semi-continuous function with values in Q. We will use the
notation ord when the basic object is understood.
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6.2. The function n. Let B = (W, (J, b), E) be a d−dimensional basic
object, and let E = {H1, . . . , Hl}. Define

nd
B : Sing(J, b) → N

x −→ n(x) = �{Hi ⊂ E : x ∈ Hi}.

Note that nd
B is an upper semi-continuous function with values in N. We will

use the notation n when the basic object is understood.

Now we want to study some of the properties of these functions, for
instance, equivariance. To do so, we first need to introduce some auxiliary
definitions:

6.3. The class of extendable transformations. Given a basic ob-
ject (W, (J, b), E) and an open set U ⊂ W , consider the restriction of
(W, (J, b), E) to U , (U, (A, b), EU ).

Each sequence of transformations of basic objects over (W, (J, b), E),

(6.3.1) (W, (J, b), E)←− (W1, (J1, b), E1)←− . . . ←− (Wk, (Jk, b), Ek),

induces a sequence of transformations of basic objects over (U, (A, b), EU ),

(6.3.2) (U, (A, b), EU )←− (U1, (A1, b), EU1)←− . . . ←− (Uk, (Ak, b), EUk
),

where each Ui is an open subset of Wi, and (Ui, (Ai, b), EUi
) is the restriction

of (Wi, (Ji, b), Ei) to Ui. In fact, sequence (6.3.2) can be defined by setting Ui

as the pull-back of U ⊂W via W ←−Wi for each index i in sequence (6.3.1),
and by taking the corresponding restriction to Ui. It is natural to ask if the
converse holds:

Given a sequence as (6.3.2), is there a sequence as (6.3.1) which is a
natural extension of the first?.

The answer is no. In fact if we consider a transformation on (U, (A, b), EU )
as in Definition 3.6 with a smooth center Y ⊂ U , it might occur that the
closure of Y in W , Y ⊂ W , is no longer smooth. However, if we consider
transformations over (U, (A, b), EU ) as the ones introduced in 3.12, then the
extension can be obtained in a very natural way.

Definition 6.4. Let B=(W, (J, b), E) be a basic object and let x0∈Sing(J, b)
be a point. We say that sequence (6.3.1) is x0-extendable if and only if the
following condition holds:

“Whenever (Wi, (Ji, b), Ei) ←− (Wi+1, (Ji+1, b), Ei+1) is a permissible
transformation with center Yi ⊂ Wi as in 3.6, the center Yi is mapped to
x0 ∈W via Wi → W .”

We will denote by Cx0(B) the class of all x0-extendable sequences over
(W, (J, b), E).
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Remark 6.5. Themainpropertyofx0-extendable sequences canbe statedas
follows: Let (U, (A, b), EU ) be the restriction of (W, (J, b), E) to U . Assume
now that x0 ∈ Sing(A, b), and that the sequence (6.3.2) is x0-extendable.
Then condition of Definition 6.4 guarantees that we can always extend
sequence (6.3.2) to a sequence (6.3.1) so that the former is a restriction
of the later.

In particular note that if sequence (6.3.1) is x0-extendable, setting U =
W \ {x0}, the restricted sequence (6.3.2) induces by composition the trans-
formation,

(U, (A, b), EU )←− (Uk, (Ak, b), (Ek)U)

which is either the identity map, or a composition of projections as in 3.12.

Remark 6.6. Let Θ : B = (W, (J, b), E) → B′ = (W ′, (J ′, b′), E ′) be an
isomorphism of basic objects. Fix x0 ∈ Sing(J, b) and set x′

0 = Θ0(x0). It is
easy to check that Θ defines a natural bijection

αΘ : Cx0(B)→ Cx′
0
(B′).

Lemma 6.7. The upper semi-continuous functions ordd
B and nd

B verify prop-
erties (e) and (f) of Definition 5.5.

Proof: Clearly if (U, (A, b), EU ) is the restriction of B = (W, (J, b), E) to
an open set U , and x0 ∈ Sing(A, b), the values of both functions at x0 are
independent of U . This shows that both ordd

B and nd
B satisfy property (e) of

Definition 5.5.

The property of equivariance of the family of functions nd
B follows from

the way isomorphisms of pairs and basic objects are defined (see Defini-
tions 4.1 and 4.6).

The property of equivariance of the functions ord is a key point in our
development, and the proof is based on a very elementary and enlightening
idea which we present below (see Appendix 21 for a short and formal proof
of this fact):

Let B = (W0, (J0, b), E0) be a basic object and consider a sequence of
transformations of basic objects,

(6.7.1)
(W0, E0) ←− (W1, E1) ←−· · · ←− (Wk, Ek)
∪ ∪ ∪

F0 = Sing(J0, b) F1 = Sing(J1, b) . . . Fk = Sing(Jk, b).

Now fix a point x0 ∈ Sing(J0, b) ⊂W0. Note that the morphisms Wk →W0

maps Sing(Ji, b) → Sing(J0, b), and hence defines a fiber Sing(Ji, b)x0 ⊂
Sing(Ji, b) over x0. The point is that the rational number ordd(x0) can be
defined in terms of:
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1. The dimension of W , say d.

2. The dimension of the fibers Sing(Ji, b)x0 , whenever sequence (6.7.1)
runs over the x0-extendable sequences (sequences in Cx0(B)).

This already proves that the family of functions ordd is equivariant:
Fix an isomorphism Θ : B = (W, (J, b), E)→ B′ = (W ′, (J ′, b′), E ′), and let
x′

0 = Θ0(x0) ∈ Sing(J ′, b′). By Definition 4.6 (ii) a sequence of transform-
ations over (W, (J, b), E) defines, via Θ, a sequence over (W ′, (J ′, b′), E ′).
By Remark 6.6, this correspondence maps x0-extendable sequences into x′

0-
extendable sequences of transformations defining the bijection αΘ :Cx0(B)→
Cx′

0
(B′) (see Remark 6.6). Each isomorphism Θi : Sing(Ji, b) ∼= Sing(J ′

i, b
′)

maps fibers to fibers,

(6.7.2) Sing(Ji, b)x0
∼= Sing(J ′

i , b
′)x′

0
;

so both fibers have the same dimensions, and hence the rational numbers
ordd

B(x0) will coincide with ordd
B′(x′

0). �
Remark 6.8. Since the functions fi(x) which appear in Definition 5.5 will
be defined in terms of the functions ordd

B and nd
B, they will ultimately inherit

the properties of equivariance required in Definition 5.5 (e) and compatibility
with open restrictions in 5.6 (2).

Remark 6.9. The notion of transformation of basic object defined in 3.12
is introduced precisely in order to ensure that ordd

B is an equivariant family
of functions. As an example to illustrate this fact, let

W = A2
k = Spec(k[x, y]),

and set J =< x, y >. If transformations as the ones described in 3.12 were
not introduced, then the identity would induce an isomorphism of basic
objects

Id : B = (W, (J5, 4), ∅) ∼= B′ = (W, (J5, 5), ∅).
Note that for both basic objects the singular locus is the origin (0, 0), and
that both are resolvable by one quadratic transformation. Note also that
those would be the only transformations of basic objects if only transforma-
tions as the ones introduced in 3.6 were allowed. Now

ord2
B((0, 0)) = 5/4 and ord2

B′((0, 0)) = 1,

so the family of functions ordd
B would not be compatible with the identity.

The law of transformation introduced in 3.12 enlarges the class of all possible
transformations, and therefore makes the notion of isomorphism of basic
objects stronger. In the case of our example, it turns out that the identity
map is not an isomorphism of basic objects when adding 3.12 as possible
law of transformation.
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Part III. Applications

7. Weak and strict transforms of ideals: Strong Factor-
izing Desingularization

In this section we discuss the difference between the notions of weak and
strict transforms of ideals. As a related matter we establish Theorem 7.3
which says that given a variety we can resolve its singularities, and in ad-
dition require a very natural algebraic condition on the lifting of the ideal
defining the variety (see Theorem 7.3 (iii)). We finish this section by pre-
senting some applications of this result.

Definition 7.1. Let J ⊂ OW be a non-zero sheaf of ideals, and let

W ←W1 ← . . .← Wk

be a sequence of blowing-ups at regular centers. Then for each i ∈ {1, . . . , k}
there is an intrinsic factorization

JOWi
= LiJ i,

where:

(a) The sheaf of ideals Li is locally principal and supported on the excep-
tional locus.

(b) The sheaf of ideals J i has no height one exceptional components: All
codimension one components of V (J i) are strict transforms of the codi-
mension one components of V (J).

With this notation, for i ∈ {1, . . . , k}, J i is the weak transform of J in Wi,
Ji = JOWi

is the total transform of J in Wi, and the strict transform of J

in Wi, J̃i, is defined by

J̃i =
∞⋃

j=1

(J̃i−1OWj
:OWi

I(Hi)
j),

where Hi denotes the exceptional divisor in Wi−1 ←Wi. Therefore we have
the inclusions,

(7.1.1) Ji ⊂ J i ⊂ J̃i,

for i = 1, . . . , r.
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In general these are strict inclusions, i.e., the notions of weak and strict
transforms of ideals are different: For instance, let X ⊂ W be a reduced
subscheme and let πr : Wr −→ W be an embedded desingularization of X.
Then

(7.1.2) I(X)OWr = Lr · Jr,

and unless X is a hypersurface, usually Jr does not coincide with I(Xr) =

J̃r, the ideal of the strict transform of X in Wr. The reason is that, during
the process of desingularization, new primary components of Jr arise. This
can clearly be seen by examining the following example:

Example 7.2. Let W be the real affine space, and let G be the curve
parameterized by

(t6, t9, t13).

This curve is defined by the ideal

I(G) = 〈x3 − y2, x2y3 − z3〉.

Note that G is minimally embedded in A3
Q at the origin (0,0,0), and

that this is the only singular point of the curve. Let

T = V (〈x3 − y2〉).

Since the origin is the only singular point of G, to obtain a desin-
gularization by monoidal transformations we have to blow-up this point:
π1 : W1 −→W.

Note that

(7.2.1) I(G)OW1 = I(H1)
2J1,

where H1 ⊂ W1 is the exceptional divisor and J1 the weak transform of
I(G) in OW1. Let T1 ⊂ W1 be the strict transform of T in W1. Note that
I(T1) ⊂ J1.

It is easy to see that J1 has an embedded component corresponding to
the line

(7.2.2) L = H1 ∩ T1 ⊂ V (J1).

We will never eliminate this primary component I(L) of J1 by blowing-
up at points of the strict transform of G.
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A Strong Factorizing Desingularization Theorem

In [13] we show that, given a reduced subscheme, X ⊂ W , it is possible
to construct a finite sequence of monoidal transformations,

W ←−W1 ←− . . .←−Wr

so that Xr is non-singular, and the weak transform of J = I(X) in Wr

describes the strict transform of X in Wr, i.e. that J r coincides with I(Xr).
That is, we present an algorithm of desingularization which provides in a
simple manner the equations describing the desingularization of X. An an-
nouncement of this result has appeared in [14].

In fact, our statement is valid under milder hypothesis; for instance,
we do not need to assume that X is reduced. The theorem can be stated
more precisely as follows:

7.3. A Strong Factorizing Desingularization Theorem. [13, Theo-
rem 1.2] Let (W0, E0 = {∅}) be a pair and let X = X0 ⊂ W0 be a closed
subscheme defined by I(X0) ⊂ OW0. Assume that the open set of regular
points Reg(X) is dense in X. Then there exists a finite sequence of trans-
formations of pairs,

(W0, E0)←− . . .←− (Wr, Er),

inducing a proper birational morphism πr : Wr −→ W0, so that setting
Er = {H1, . . . , Hr}, and letting Xr ⊂ Wr be the strict transform of X0, we
have that:

(i) Xr is regular in Wr, and Wr \ ∪r
i=1Hi 
 W0 \ Sing(X). In particular

Reg(X) ∼= π−1
r (Reg(X)) ⊂ Xr (via πr restricted to Xr).

(ii) Xr has normal crossings with Er =∪r
i=1Hi (the exceptional locus of πr).

(iii) The total transform of the ideal I(X0) ⊂ OW0 factors as a product of
ideals in OWr :

I(X)OWr = L · I(Xr),

where now I(Xr) ⊂ OWr denotes the sheaf of ideals defining Xr, and

L = I(H1)
a1 · . . . · I(Hr)

ar

is an invertible sheaf of ideals supported on the exceptional locus of πr.

Parts (i) and (ii) are the classical statement of the theorem of resolution
of singularities. However, part (iii) is new (see 7.4 below). Note also that (i)
ensures that, in our algorithm, the only points of W0 that will be modified
by the morphism πr are the ones in Sing(X0).
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7.4. Why is part (iii) new? [13, Section 2] In Hironaka’s line of proof,
the centers of monoidal transformations, chosen in accordance with the so
called standard basis, are always included in the strict transform of the
scheme. For instance, in Example 7.2, the first monoidal transformation
must be the the blowing-up at the origin, and any other center will also
have dimension zero. The one dimensional component which appears after
this blowing-up, H1 ∩ T1 (see (7.2.2)), is a primary component of J1, and
will never be eliminated by blowing-up at centers supported on the singular
locus of G. Hence (iii) will never hold for desingularizations of this curve
that follow from Hironaka’s proof.

In order to achieve (iii) one must blow-up H1 ∩ T1 (or some strict trans-
form of it). The new algorithm that we propose, first considers the quadratic
transformation π : W1 −→ W0, and, some steps later, the blowing-up at the
strict transform of the one dimensional scheme H1 ∩ T1. Since H1 ∩ T1 is
mapped to the singular locus, the first isomorphism in Theorem 7.3 (i) is
preserved after such monoidal transformation.

We think of a subscheme X of a smooth scheme W , at least locally,
as a finite number of equations defining the ideal I(X). An algorithm of
desingularization should provide us with:

(1) A sequence of monoidal transformations over the smooth scheme W ,

W0 = W ←W1 ← . . .←Wn

so that conditions (i) and (ii) Theorem 7.3 hold for the strict transform
of X at Wn.

(2) A pattern of manipulation of equations defining X, so as to obtain, at
least locally at an open covering of Wn, equations defining the strict
transform Xn of X at Wn.

So (2) indicates how the original equations defining X have to be treated,
at an affine open subset of Wn, in order to obtain local equations defining Xn.
While this is very complicated in Hironaka’s line of proof, here it is a direct
consequence of Theorem 7.3 (iii). In fact, for algorithms that follow Hiron-
aka’s proof, to get both (1) and (2) one must consider the strict transform
of the ideal of the subscheme at each monoidal transformation. In that set-
ting one has to choose a standard basis of the ideal, which is a system of
generators of the ideal of the subscheme, but such choice of generators must
be changed if the maximum Hilbert Samuel invariant drops in the sequence
of monoidal transformations. All of these complications are avoided in our
proof, which simplifies both (1) and (2).
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The idea of the proof of Theorem 7.3:
The notion of “excess of embedding codimension” of an ideal

The idea behind the proof of Theorem 7.3 is to construct a sequence of
monoidal transformations

W ← W1 ← . . .← Wr,

so that the exceptional components of the total transform of J in Wr, JOWr ,
become locally principal.

Thus, the strategy is to show first that for a suitable sequence of monoidal
transformations

W0 ← W1 ← . . .← Wl,

the subscheme V ((J l)y) is locally included in a smooth hypersurface, and
this condition holds at every y ∈ V (J l). Then we show that by applying
more monoidal transformations

Wl ← Wl+1 ← . . .←Wm,

the closed subscheme V ((Jm)y) is locally included in a smooth subscheme
of codimension two, for every y ∈ V (Jm). To obtain our result we repeat
this process as many times as needed.

This strategy leads us to the notion of excess of embedding codimension
of an ideal:

Definition 7.5. [13, Definition 5.2] Let (W,E) be a pair, and let J ⊂ OW

be a non-zero sheaf of ideals.

(a) We say that J has excess of embedding codimension ≥ a in (W,E) at
a point y ∈ W , if either Jy = OW,y, or there is a regular system of
parameters {x1, x2, . . . , xd} ⊂ OW,y such that

(i) < x1, x2, . . . , xa >⊂ Jy ⊂ OW,y, and

(ii) every hypersurface Hi ∈ E containing the point y has a local
equation

I(Hi) =< xij >⊂ OW,y

with ij > a.

(b) We say that J has excess of embedding codimension ≥ a in (W,E),
if the conditions stated in (a) hold at every point y ∈ W . We will
abbreviate this by saying that J has excess of codimension ≥ a in
(W,E), or (W,E)-codimension ≥ a. Reference to the pair (W,E) will
be omitted if it is clear from the context.
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Remark 7.6. Note that any non-zero ideal I ⊂ OW has excess codimen-
sion ≥ 0 in (W,E), since such condition is vacuously satisfied in that case.

Remark 7.7. If X ⊂W is a regular subscheme of pure codimension e, then
the sheaf of ideals I(X) ⊂ OW has excess of codimension ≥ e in (W,E = ∅).

The main result over which the proof of Theorem 7.3 is based is [13,
Lemma 4.7]. What we state below is a slightly stronger version of this
lemma:

Lemma 7.8. Let (W,E) be a pair, and let J be a non-zero sheaf of ideals.
Assume that there is a non-empty open set

Ua ⊂W \ E such that V (J) ∩ Ua = ∅

and that J has (W,E)−excess of codimension ≥ a at any point of Ua. Then
there is a finite sequence of transformation of pairs:

(7.8.1) (Wk, Ek) −→ . . . −→ (W1, E1) −→ (W0, E0) = (W,E),

such that if
JOWk

= LkJk,

then:

(i) The weak transform of J in Wk, Jk, has (Wk, Ek)−excess of codimen-
sion ≥ a.

(ii) The birational morphism Wk −→W induces an isomorphism over the
open set Ua ⊂W .

(iii) If in addition we can express E = {H1, . . . , Hk} as a disjoint union,
E = Ea � Ea′

, so that J has excess of embedding codimension ≥ a at
any point of V (J) ∩ Ea, then the sequence (7.8.1) can be constructed
so that (ii) also holds if we only assume that

Ua ⊂W \ Ea′
.

Proof: Parts (i) and (ii) have been proven in [13]. For part (iii) it is enough
to observe that if we set

E+
0 = Ea and E−

0 = Ea′
,

then the morphism Wk −→ W induces an isomorphism on E \ Ea′
(see

Definition 15.13, where E+
0 and E−

0 are introduced, and see also [13, Defin-
ition 5.9]). �
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The following is an easy consequence of Lemma 7.8:

Corollary 7.9. Fix a pair (W,E). Let X ⊂ W be a closed subscheme, let
J = I(X), and let

X = X(1) ∪X(2) ∪ . . . ∪X(e),

where for i = 1, . . . , e, each X(i) is a closed subscheme of pure codimension
i ≤ n. Assume that Reg(X(e)) = ∅ and let Z be the closure of Reg(X(e))
in W . Suppose that E = Ee � Ee′ and that Z has normal crossings with
Ee at any point of Z ∩ Ee (Ee might be empty). Let Q ⊂ W be the open
set W \

[
X(1) ∪ . . . ∪X(e− 1) ∪ Sing(X(e)) ∪ Ee′

]
. Then there is a finite

sequence of transformations of pairs,

(7.9.1) (Wk, Ek) −→ . . . −→ (W1, E1) −→ (W0, E0) = (W,E)

such that:

(i) The strict transform of Z in Wk, Zk, is regular, and has normal cross-
ings with Ek.

(ii) The morphism Wk → W induces an isomorphism on Q.

(iii) The weak transform of J in Wk, Jk, coincides with I(Zk), where Zk

is the strict transform of Z in Wk, i.e.

JOWk
= LkI(Zk),

where Lk is a locally principal sheaf of ideals supported on the excep-
tional locus of Wk → W .

Proof: By hypothesis, J has (W,E)−excess of embedding codimension ≥ e
in Q. Then by Lemma 7.8, there is a finite sequence of transformations of
pairs,

(7.9.2) (Wk, Ek) −→ . . . −→ (W1, E1) −→ (W0, E0) = (W,E)

such that:

(a) The weak transform of J in Wk, Jk, has excess of codimension e in
(Wk, Ek).

(b) The morphism Wk → W induces an isomorphism on Q.

Now write
V (Jk) = Y1 ∪ . . . ∪ Ym

where each Yi is an irreducible component of codimension at least e. Since
Zk ⊂ V (Jk), without lost of generality, we may assume that

Zk = Y1 ∪ . . . ∪ Ys,

where 1 ≤ s ≤ m.
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Note that since Jk has excess of embedding codimension ≥ e in (Wk, Ek),
Zk = Y1∪ . . .∪Ys is regular. Now, if s = m we are done. On the other hand,
if s < m, then V (Jk) is a disjoint union of Y1∪. . .∪Ys and Ys+1∪. . .∪Ym, i.e.,

(7.9.3) V (Jk) = [Y1 ∪ . . . ∪ Ys] � [Ys+1 ∪ . . . ∪ Ym]

(here we use the fact that Zk = Y1∪. . .∪Ys is regular and has codimension e:
If (7.9.3) were not a disjoint union, at any point of the intersection the
codimension would be greater than e). As a consequence

Jk = I(Y1 ∪ . . . ∪ Ys) · I(Ys+1 ∪ . . . ∪ Ym).

By Theorem 2.5, there is an enlargement of sequence 7.9.2,

(7.9.4) (Wk, Ek)← . . .← (Wl, El)

which defines a strong principalization of I(Ys+1∪. . .∪Ym) ⊂ OWk
. Therefore

JOWl
= LlJ l

and

J l = I(Zl).

Note that since (7.9.3) is a disjoint union, Wl →W defines an isomorphism
on Q. �

An application of Corollary 7.9: Log resolutions of divisors

Definition 7.10. Let D ⊂ W be a divisor. A log resolution of the pair
(W,D) is a proper and birational morphism,

µ : W
′ → W

such that W
′
is non-singular and µ∗(D)+Exc(µ) is a normal crossing divisor.

As an application of Corollary 7.9 we prove the following statement:

Theorem 7.11. Let D =
∑r

i=1 aiDi ⊂ W be a divisor, and let V ⊂ W be
the open set of points where D has normal crossings. Then there is a log
resolution of D

µ : W ′ → W

which induces an isomorphism on V .
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7.12. The motivation. The interest of this result, lies in its role in proving
statements which involve the application of vanishing theorems in the com-
pactification of a given variety. More explicitly, assume that W is a smooth
quasi-projective variety and that D ⊂ W is a normal crossing divisor. Some
vanishing theorems are only stated for projective varieties. Hence, if W is
not projective, there is a compactification of W , W , where the vanishing
theorems hold. However, it may happen that the compactification of D
in W , D, is not a normal crossing divisor any more. By applying a log
resolution to (W,D),

µ : W
′ → W

we may assume that
µ∗(D)

is a divisor with normal crossings. For technical reasons, it may be useful
to assume that the induced morphism

µ : W ′ → W

is an isomorphism over D ⊂W . To this end, it would be enough if

µ : W
′ → W

is an isomorphism over the points where D is already a normal crossing
divisor. For a concrete example see [25].

Before proving Theorem 7.11 we will introduce some notation and prove
some auxiliary results (Proposition 7.16). The proof of Theorem 7.11, which
is given in 7.17, will follow from Proposition 7.16 and an inductive argument.

Remark 7.13. In what follows, we will denote by D =
∑r

i=1 aiDi a divisor
in W , where each Di corresponds to an irreducible and reduced hypersurface
in W . Let J = OW (−D1) + . . . + OW (−Dr) be the ideal corresponding to
the intersection of all the components of D. If

Wk → Wk−1 → . . .→W1 −→ W

is a finite sequence of monoidal transformations, and if πk : Wk → W denotes
the composition, then we will write

π∗
k(D) =

r∑
i=1

aiD
[k]
i + Fk = D[k] + Fk,

where D
[k]
i ⊂ Wk denotes the strict transform of Di in Wk for i = 1, . . . , r,

and Fk is a divisor supported in the exceptional locus. Let J [k] be the sheaf
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of ideals OWk
(−D

[k]
1 ) + . . . + OWk

(−D
[k]
r ) which describes the intersection

D
[k]
1 ∩ . . . ∩ D

[k]
r in Wk. Note that if Jk is the weak transform of J =

OW (−D1) + . . . +OW (−Dr) in OWk
, then

(7.13.1) Jk ⊂ J [k].

This containment can be proven by an inductive argument: Let C⊂W be a
center such that νC(OW (−Di))=ai, for i=1, . . . , r (here νC(OW (−Di)) de-
notes the order of the idealO(−Di) at C). Then νC(J)=b=Min{a1, . . . , ar}.
Let W ← W1 be the monoidal transformation with center C. Then, if H1

denotes the exceptional divisor,

J1 = (JOW1 : I(H1)
b) and J [1] = OW1(−D

[1]
1 ) + . . . +OW1(−D[1]

r ),

therefore,

J1 ⊂ J [1] and J1 =M1,1OW1(−D
[1]
1 ) + . . . +Mr,1OW1(−D[1]

r ),

for some idealsMi,1 ⊂ OW1 , i = 1, . . . , r.

Now, assume by inductive hypothesis that after a finite sequence of
blowing-ups,

W ←W1 ← . . .← Wk

at smooth centers Ci ⊂ J i, i = 1, . . . , k − 1, we have that

Jk ⊂ J [k] and Jk =M1,kOWk
(−D

[k]
1 ) + . . . +Mr,kOWk

(−D[k]
r ),

for some idealsMi,k ⊂ OWk
.

Let Ck⊂V (Jk)⊂Wk be a smooth center, assume that νCk
(OWk

(−D
[k]
i ))=

ai,k, for i = 1, . . . , r and that νC(Jk) = bk. Note that bk = Min{a1,k +
νCk

(M1,k), . . . , ar,k + νCk
(Mr,k)}. Then if Wk ← Wk+1 is the blowing-up

at Ck and if Hk+1 denotes the exceptional divisor,

Jk+1 = (JkOWk+1
: I(Hk+1)

bk)

and J [k+1] = OWk+1
(−D

[k+1]
1 ) + . . . +OWk+1

(−D[k+1]
r ).

Now note that

Jk+1 = (JkOWk+1
: I(Hk+1)

bk) =

=
([
M1,kOWk

(−D
[k]
1 ) + . . . +Mr,kOWk

(−D[k]
r )
]
OWk+1

: I(Hk+1)
bk

)
.

Hence,

Jk+1 ⊂ J [k+1],

and Jk+1 =M1,k+1OWk+1
(−D

[k+1]
1 ) + . . . +Mr,k+1OWk+1

(−D[k+1]
r ),

for some idealsMi,k+1 ⊂ OWk+1
, i = 1, . . . , r. �
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Definition 7.14. Let (W,E) be a pair, and let D =
∑r

i=1 aiDi ⊂ W be a
divisor, where each Di is irreducible and reduced. Let s ∈ {1, . . . , r}.
• We will say that D has s−normal crossings in (W,E) at a point x ∈W if:

(a) There are fewer than s components of D containing x; or else,

(b) The divisors {∪r
i=1D ∪ E} have normal crossings at x.

• If D does not have s−normal crossings in (W,E) at x for any s ∈
{1, . . . , r}, then we will say that D has r + 1−normal crossings at x in
(W,E), since this condition is always vacuously satisfied.

• If we say that D has s−normal crossings in (W,E) we will understand
that it has t−normal crossings in (W,E) at any point of W , with t ≥ s.

Remark 7.15. Note that:

(i) If a divisor D has normal crossings then it has normal crossings at
any point of W and hence it has 1−normal crossings in (W, ∅) at any
point x ∈W .

(ii) If D has 1−normal crossings in (W,E) at any point x ∈ W , then D
has normal crossings, and {D ∪ E} have normal crossings.

Proposition 7.16. Let (W,E) be a pair, let D =
∑s

i=1 aiDi be a divisor,
and assume that E = Es�Es′ is a disjoint union such that D has s−normal
crossings at any point of Es (Es might be empty). Let U be the subset of
W \ Es′ where D has normal crossings, and let U s be the subset of W \ Es′

where D has s−normal crossings. Then there is a finite sequence of trans-
formations of pairs,

(W0, E0) = (W,E)← (W1, E1)← . . .← (Wl, El),

such that

(i) The divisor D[l] =
∑s

i=1 D
[l]
i has s−normal crossings in (Wl, El).

(ii) The morphism πl : Wl → W induces an isomorphism on U s ⊂W (and
hence on U).

Proof: First note that by Definition 7.14 (b), U ⊂ U s. We will distinguish
three cases:

Case 1: If D1 ∩ . . . ∩Ds = ∅ then there is nothing to prove.

Case 2: If there are no points in D1 ∩ . . . ∩Ds where {D1, . . . , Ds, E} have
normal crossings, or if D1 ∩ . . . ∩ Ds ⊂ Es′ , then applying Theorem 2.5 to
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J = OW (−D1) + · · · + OW (−Ds), there is a finite sequence of blowing-ups
at regular centers,

(W0, E0) = (W,E)← (W1, E1)← . . .← (Wl, El),

such that the weak transform of J in OWl
, J l, is trivial. Since,

OWl
= J l ⊂ J [l],

(see Remark 7.13), we have that

D
[l]
1 ∩ . . . ∩D[l]

s = ∅.

Note that in this case πl : Wl → W induces an isomorphism on W \ V (J),
so in particular it induces an isomorphism on U s and hence on U .

Case 3: As in the previous case, set J = OW (−D1)+. . .+OW (−Ds). If there
is a point x ∈ D1 ∩ . . . ∩ Ds where {D1, . . . , Ds, E} have normal crossings
and x /∈ Es′ , then J has excess of codimension ≥ s at x, and in fact J has
excess of codimension ≥ s at any point of V (J) ∩ U s. Let Z be the closure
of U s ∩ V (J) in W . By Corollary 7.9 applied to X = V (J) there is a finite
sequence of transformation of pairs

(W0, E0) = (W,E)← (W1, E1)← . . .← (Wl, El),

such that:

(a) The strict transform of Z in Wl, Zl, is smooth and has normal crossings
with El.

(b) The morphism Wl→W induces an isomorphism on U s, and hence on U .

(c) The ideal J l coincides with I(Zl).

Therefore {D[l],El} have normal crossings at any point of Zl =D
[l]
1 ∩. . . ∩D

[l]
s .
�

7.17. Proof of Theorem 7.11: Assume that D has t−normal crossings
in (W,E), with 1 < t ≤ r + 1, but that it does not have (t − 1)−normal
crossings in (W,E). Let Σ be the set of all possible (t−1)−tuples of elements
in {1, . . . , r}. If σ ∈ Σ, then we will denote by Dσ the divisor

∑
i∈σ Di, by

Jσ the ideal
∑

i∈σOW (−Di), and by Gσ the closed set of points in V (Jσ)
where Jσ does not have excess of embedding codimension ≥ t− 1.

Fix an order in Σ such that if

Σ = {σ1, . . . , σm},

with
σ1 < · · · < σm−1 < σm,
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then every divisor in
G = {Dσ1, . . . , Dσl−1

}
has (t− 1)−normal crossings in (W,E), and each of the divisors

Dσl
, . . . , Dσm

has only t−normal crossings in (W,E) (note that G might be empty).
Since by assumption D has t−normal crossings in (W,E), note that:

(a) For every j < l, Gσj
= ∅, and for every j ≥ l, locally, at any closed

point x ∈ Gσj
, the divisor D =

∑r
i=1 Di can be identified with Dσj

.

(b) If Eσl
= E ∪ {∪Di}, with i ∈ {1, . . . , r} \ σl, then there is an open

neighborhood P of V (Jσl
) such that (W,Eσl

) is a pair.

Now we apply Proposition 7.16 to Dσl
, (P , Eσl

= E ∪ {∪Di}), setting
s = t−1, Et−1 = {∪Di} with i ∈ {1, . . . , r}\σl, E(t−1)′ = E, and restricting
the open sets, V ∩P, and V t−1∩P (where V t−1 is the subset of W \E where
Dσl

has (t − 1)−normal crossings). Thus, there exists a finite sequence of
transformations of pairs,

(7.17.1) (P0, (Eσl
)0) = (P , Eσl

)← (P1, (Eσl
)1)← . . .← (PN , (Eσl

)N),

such that:

1. The divisor
D[N ]

σl
=
∑

i∈σl

D
[N ]
i

has (t − 1)−normal crossings in (PN , (Eσl
)N) (here we use the fact

that the centers where we blow-up in sequence (7.17.1) have normal

crossings with {∪Di}i/∈σl
, so for i = 1, . . . , l−1, each D

[N ]
σi has still t−1

normal crossings in (WN , EN )).

2. The morphism πN : PN → P induces an isomorphism on V t−1 ∩ U ,
and hence on V ∩ U .

Now observe that:

(A) Sequence (7.17.1) induces a sequence of transformations of pairs,

(W0, E0) = (W,E)← (W1, E1)← . . .← (WN , EN ).

(B) The divisors {D[N ]
σ1 , . . . , D

[N ]
σl } have (t−1)–normal crossings in (WN ,EN ).

(C) The morphism WN →W induces an isomorphism on V .
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Iterating this argument, there is a finite sequence of transformations of
pairs inducing an isomorphism on V ,

(W0, E0) = (W,E)← (W1, E1)← . . .← (WM , EM ),

such that for each σi ∈ Σ, all divisors D
[M ]
σi have (t − 1)−normal crossings

in (WM , EM ), and hence D[M ] has (t − 1)−normal crossings in (WM , EM ).
Therefore, applying an inductive argument, there is a finite sequence of
transformations of pairs,

(W0, E0) = (W,E)← (W1, E1)← . . .← (WL, EL),

such that πL : WL → W induces an isomorphism on V , and D[L] has
1−normal crossings in (WL, EL). By Remark 7.15 (ii), this means that
π∗

L(D) = D[L] + FL has normal crossings, since FL ⊂ EL. �

8. On a class of regular schemes and on real and com-
plex analytic spaces

Up to now we have worked with schemes of finite type over fields. However,
the constructions and proofs of Theorems 2.4 and 2.5 are valid for a much
wider class of schemes (not necessarily of finite type over a field k). Here we
will focus on a class to which our techniques naturally extend.

Definition 8.1. We define S0 as the class of regular, equidimensional
schemes W containing a field, k of characteristic 0 (which may vary), satis-
fying the following two conditions:

(i) If W is an n−dimensional k-scheme in S0, then there is a finite affine
open covering {Ui}i∈I , of W such that for each i ∈ I, Ui ≈ Spec(Ri), for
some Noetherian, regular k-algebra, Ri with the additional property
that Derk(Ri) is a finite projective Ri-module, locally of rank n.

(ii) If m is a maximal ideal in Ri then dim (Ri)m =n and Ri/m is algebraic
over k.

Note that under condition (ii), k is a quasi-coefficient field at the local-
ization at any closed point in the sense of [29, p. 274].

Remark 8.2. Note that:

(i) Any smooth scheme over a field of characteristic zero, as well as the
spectrum of the completion, or henselization, of a local ring which is
in S0 is in S0 (see [29, Theorem 90]).

(ii) The class of schemes in S0 is closed under monoidal transformations.
This fact follows from [29, Appendix 40, Theorem 99, (3), (4)].
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Theorem 8.3. The algorithms of desingularization and of principalization
stated in Theorems 2.4 and 2.5 extend to the class of schemes in S0.

The reason why all the constructions that we have made for schemes of
finite type over a field of characteristic zero extend to the class of schemes
in S0, is that this class of schemes satisfies Property D stated below in
Lemma 8.6: The algorithm of resolution is based in an inductive argument
which in turn is based on the nice properties of the differential operator ∆
defined on the class of smooth schemes over a field (see Sections 13 and 19).
The class S0 parallels the class of compact (real or complex) analytic spaces
with a well defined tangent bundle. It is easy to check that our results and
developments extend to these class of spaces, too.

Definition 8.4. Let R be a Noetherian, regular k-algebra, such that Derk(R)
is a finite projective R-module, locally of rank n, and assume that for each
maximal ideal m of R, Rj/m is algebraic over k. Then for each ideal J of R
we define ∆(J) to be the ideal generated by

{δ(f) : δ ∈ Derk(R), f ∈ J},

(see [29, Appendix 40, Theorems 99, 102]).

Property D asserts that the differential operator ∆ has the same nice
properties when defined over the class of schemes in S0. This is enough to
guarantee that the algorithm of resolution of basic objects, and hence the
algorithms of principalization and resolution of singularities, hold within
the class of schemes in S0. We make this idea more precise in the following
paragraph.

8.5. The general strategy. We have approached the problems of desin-
gularization and strong principalization of ideals in a unified way: by means
of the notions of basic objects and resolution of basic objects. Given a basic
object B = (W, (J, b), E), where W is smooth over a field k of characteristic
zero, we have defined a function ordd

B : Sing(J, b) → Q (6.1), basically in
terms of the function

ord : W → Z,

given by the order of the ideal J at points of W . In 13.7 we show that if W is
smooth over a field k, this function is upper-semi-continuous. Furthermore,
because W is smooth, we can define the ∆ operator which acts on ideals
of W . Note that the order of J at the local regular ring OW,x is, say, d, if
and only if x ∈ V (∆d−1(J)) \ V (∆d(J)).
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Resolution of basic objects (and hence desingularization and strong prin-
cipalization) follow by induction on the dimension of the ambient space W .
To be precise, and here is where a constraint on the characteristic of the
underlying field k is imposed, the order of J at OW,x is d if, and only if, the
order of ∆d−1(J) at OW,x is 1 (see (P2) in 13.7 and Example 13.12). An ele-
ment of order one in ∆d−1(J) ⊂ OW,x defines a smooth hypersurface, say H
locally at x ∈ W (so I(H) ⊂ ∆d−1(J)). After restriction, we may assume
that Sing(J, b) ⊂ H. Then we show that H is a good candidate for induc-
tion on the ambient space, by showing that the inclusion I(H) ⊂ ∆d−1(J))
(and hence the inclusion Sing(J, d) ⊂ H) is stable by transformations of
basic objects. In doing so, we will only use the fact that ∆d−1(J) is defined
in terms of partial derivations (see Section 13).

Lemma 8.6. (Property D) If W = Spec(A) is a scheme in the class S0,
p ⊂ A is a prime ideal and J is any ideal of A, then the order of JAp in the
local regular ring Ap is greater than or equal to b if and only if ∆b−1(J) ⊂ p.

Proof: Let R the localization of A at a maximal ideal of A containing p, and
let R̂ the completion of R. Then, the residue field of R̂ is a finite extension
K of k and Derk(R) induces Derk(R̂) over R̂ (see [29, Theorem 99, (4)]).
By [29, Theorem 102], R is excellent, so Spec(R̂) → Spec(R) is a faithfully
flat morphism with regular fibers.

Note that the order of J defines an upper-semi-continuous function on
Spec(R). Since J is finitely generated it suffices to check this when J is
principal. In that case, set R̄ = R/J ; the order of J at a prime p is the
multiplicity of the ring R̄ at the prime ideal, say p̄, induced by p, and
multiplicity is upper-semi-continuous.

Assume first that p is a regular prime ideal in R. Then it expands to a
regular prime ideal in R̂ and it is easy to see that the Property D holds for
regular primes by checking that it holds at the completion, which is a ring
of formal power series.

An arbitrary prime ideal p ⊂ R is the intersection of all prime ideals of
height n−1 , where n is the dimension of R. In fact, if dimR/p = n−h and
f ∈ R is not in p, one can find a prime ideal of height n − 1 containing p

but not f (set f̄1 ∈ R/p as the class of f , extend to f̄1, f̄2, . . . f̄n−h ∈ R/p a
system of parameters, and now take q ⊂ R by lifting a minimal prime ideal
containing < f̄2, . . . f̄n−h >⊂ R/p).

Hence it suffices to check Property D for p a prime ideal defining a curve.
Now we use a trick by Hironaka (see [23]), which consists in reducing to the
regular case: Let

π : W ′ → W
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be an an embedded desingularization of the curve defined by p, obtained as
the composition of a finite sequence of quadratic transformations. Let p1 be
the defining ideal of the desingularization of p, and set OW,x and OW ′,y as
the local rings of p and p1 respectively. Then the lemma follows immediately
from the fact that OW,x and OW ′,y are isomorphic, because in this case, we
can identify the localizations of Derk(W1) at y with that of Derk(W ) at x,
and use the fact that the operator ∆, is defined in terms of Derk(W ) and
that ∆ is a well defined operator on the class of coherent ideals over W (this
can be checked at the completion at closed points). �

9. Non-embedded desingularization

If X ⊂ W is a closed subscheme then an embedded desingularization of X,

Wr → W
∪ ∪
Xr X,

defines a non-embedded desingularization, in the sense that it defines a
proper birational morphism

Xr −→ X0

such that Xr is regular and the morphism is an isomorphism on Reg(X0).

Our procedure of desingularization will also define a non-embedded desin-
gularization of schemes which can be locally embedded in smooth schemes.
This is not a restriction at all if we consider Noetherian separated schemes
X of finite type over a field k. To prove that Theorem 2.4 extends to this
class of schemes, we only have to prove that given two different embeddings
of X we obtain the same non-embedded desingularization.

Theorem 9.1. Let X be a Noetherian separated scheme of finite type over
a field of characteristic zero, k. Consider two different closed immersions
X ⊂ W and X ⊂ W ′, where W and W ′ are pure dimensional smooth
schemes over k. Let

(9.1.1)
W ← W1 . . . Wr−1 ← Wr

∪ ∪ ∪ ∪
X X1 . . . Xr−1 Xr,

and

(9.1.2)
W ′ ← W ′

1 . . . W ′
r−1 ← W ′

r

∪ ∪ ∪ ∪
X X ′

1 . . . X ′
r−1 X ′

r,

be the embedded desingularizations provided by Theorem 2.4.
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Then sequences (9.1.1) and (9.1.2) define the same non-embedded desin-
gularization of X, i.e., if

ϕ : Xr −→ X, and ϕ′ : X ′
r′ −→ X0,

are the two induced non-embedded desingularizations, then

Xr = X ′
r′ and ϕ = ϕ′.

Moreover the number of blowing ups also coincide, i.e. r = r′.

We refer to [19] for the proof of Theorem 9.1 (see also Remark 17.8),
but let us mention here some auxiliary results which contribute to the proof
of this theorem. These results are interesting by themselves, because they
describe the behavior of the algorithm of resolution of singularities provided
by Theorem 2.4 under regular extensions.

Proposition 9.2. Let W be a pure dimensional smooth scheme over a field k
and let X ⊂W be a closed subscheme. Then:

(i) If W ′ −→ W is an étale morphism and X ′ ⊂ W ′ is the pull-back of
X, then the desingularization of X ′ ⊂ W ′ provided by Theorem 2.4
in 5.8, say

(X ′
r ⊂W ′

r) −→ (X ′ ⊂ W ′)

is the pull-back of the desingularization of X ⊂ W provided by Theo-
rem 2.4, say

(Xr ⊂ Wr) −→ (X ⊂ W ).

(ii) If W ′ −→W is defined by an arbitrary extension of the base field, then
the desingularization of the pull-back of X in W ′, X ′ ⊂ W ′ provided
by Theorem 2.4,

(X ′
r ⊂W ′

r) −→ (X ′ ⊂ W ′)

is the pull-back of the desingularization of X ⊂ W provided by Theo-
rem 2.4,

(Xr ⊂ Wr) −→ (X ⊂ W ).

(iii) More generally, if W ′ −→ W is a regular map, and both W and W ′

are schemes in S0, then the desingularization of the pull-back of X in
W ′, X ′ ⊂W ′ provided by Theorem 2.4,

(X ′
r ⊂W ′

r) −→ (X ′ ⊂ W ′)

is the pull-back of the desingularization of X ⊂ W provided by Theo-
rem 2.4,

(Xr ⊂ Wr) −→ (X ⊂ W ).
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Since the embedded desingularization stated in Theorem 2.4 is defined
in terms of the resolution of a suitable defined basic object (see 5.8), Propo-
sition 9.2 follows immediately from the next lemma:

Lemma 9.3. Let (W, (J, b), E) be a basic object. Then the algorithm of
resolution of basic objects defined in 5.5 and constructed in 14.8, satisfies
the following additional property: If W ′ −→ W is a regular map, both W
and W ′ are in S0, and J ′ ⊂ OW ′ and E ′ are respectively the pull-backs of
J and E in W ′, then the resolution of (W ′, (J ′, b), E ′) defined in 5.5 is also
the pull-back of the resolution of (W, (J, b), E) defined in 5.5.

Proof: It is enough to observe that the proof of Theorem 14.8 relies on the
functions ord and n introduced in Definition 6.1, and that these functions
are naturally compatible with regular maps between schemes in S0:

Let x′ ∈ W ′, let x = π(x′), let J ⊂ OW be a non-zero sheaf of ideals,
and let y ∈W be a closed point contained in {x}. Consider the diagram:

OW,x → OW,x′

↑
OW,y

If ordx J = b, then ∆b−1
y (J) ⊂ OW,y is a proper ideal. To check that

ordx J = ordx′ JOW ′ ,

note that the diagram

OW,x ↪→ OW ′,x′

↓ ↓
k1[|x1, . . . , xn|] = ÔW,x ↪→ ÔW ′,x′ = k2[|x1, . . . , xn, xn+1, . . . , xm|]

commutes, where k1 ⊂ k2 since the characteristic is zero, and that all the
maps are faithfully flat. �

An important result in the study of equivariance for non-embedded
schemes is the following lemma:

Lemma 9.4. Let W and W ′ be pure dimensional schemes, smooth over k,
with dim W =dim W ′, and let J⊂OW and J ′

0⊂OW ′, be two sheaves of ideals.
Assume that for two points ξ ∈ W and ξ′ ∈ W ′ there is an isomorphism
Θ : ÔW,ξ −→ ÔW ′,ξ′ such that Θ(Ĵ) = Ĵ ′ (where ÔW,ξ and ÔW ′,ξ′ de-

note the completions of OW,ξ and OW ′,ξ′ respectively, and Ĵ0 = J0ÔW0,ξ0,

Ĵ ′
0 = J ′

0ÔW ′
0,ξ′0). Then there is a common étale neighborhood ξ̃0 ∈ W̃0 of both

ξ0 and ξ′0, and and an ideal J̃0 ⊂ O�W0
such that

J̃0 = J0O�W0
= J ′

0O�W0
.
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Proof: If Θ arises from an isomorphism Θ : W0 → W ′
0 mapping ξ0 ∈ W0

to ξ′0 ∈ W ′
0, and Θ(J0) = J ′

0, then we it is enough to take W̃0 = W0

(note that an isomorphism is an étale map). We claim that this is the
case in general, at least replacing W and W ′ by suitable étale neighbor-
hoods in the given points: Since the local rings OW,ξ/Jξ and OW ′,ξ′/J

′
ξ′ are

formally isomorphic, then their henselizations are isomorphic (see [5, 2.6]).
Now, an isomorphism of these henselizations can be lifted to an isomor-
phism of the henselizations of the regular local rings, say Γ : OW,ξ → OW ′,ξ′ ,
mapping JOW,ξ to J ′OW ′,ξ′ . Since both henselizations are direct limits of
étale neighborhoods, Γ also defines an isomorphism, as indicated above, at
suitable étale neighborhoods. �

10. Equiresolution. Families of schemes

Once we fix a constructive algorithm of desingularization (i.e. once we attach
to each variety a particular desingularization), it makes sense to ask whether
one can classify varieties in accordance to their (algorithmic) desingulariza-
tion. The formulation of this question already requires some clarification;
but if we are to think of an embedded variety as a structure defined in terms
of equations, it is conceivable to ask how the algorithm of desingularization
will behave when the coefficients of these equations vary.

The questions about classification of varieties lead, quite naturally, to the
notion of families of schemes. In this section we present briefly some results
proved in [16] about the good behavior of the algorithm of desingularization
in families and the notion of equiresolution.

Given a smooth morphism W → T , we will denote by W (t), the fiber at
the point t ∈ T , i.e.,

W (t) = W ×T Spec(k(t))

where k(t) is the residue field of T at t. Note that W (t) is smooth over the
field k(t).

Definition 10.1. Given a smooth morphism W → T , a family of embedded
schemes is a closed subscheme X ⊂W such that induced morphism X → T
is flat.

Example 10.2. Let C ⊂ A2
k be a plane curve smooth over the field k

of characteristic zero. For an arbitrary scheme T (say for instance a non
reduced curve), C × T ⊂ A2

k × T defines a flat family over T .

Example 10.3. Let A2
k → A1

k be the projection on first the coordinate.
This is a smooth, and hence flat morphism. If we now take W = A2

k =
Spec(k[x1, x2]), T = A1

k, and X = V (x1x2) ⊂ W , then this is not a family
since X → T is not flat.
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Example 10.4. Let A4
k → A1

k be the projection on the first coordinate (i.e.
defined by k[x1] → k[x1, x2, x3, x4] the natural inclusion). Set W = A4

k =
Spec(k[x1, x2, x3, x4]), T =A1

k =Spec(k[x1]), and X = V (x2
2 + x1x

3
3, x4)⊂W .

This example defines a family; the members of this family consist of irre-
ducible singular curves, except at the the origin of A1

k where the fiber is a
double line.

So given a smooth morphism W → T , we view X ⊂ W as a structure
defined, at least locally, by equations with coefficients in the scheme T . The
requirement of flatness on X → T somehow avoids abrupt changes among
the different fibers, a fact illustrated in Example 10.3.

There are various contexts where the notion of families of schemes ap-
pears, like for instance when dealing with Hilbert Schemes (see for in-
stance [33]): Fix a projective space Pn

k and a Hilbert polynomial F (t); then
there is a scheme S, together with a setting X ⊂W = Pn

k ×S → S defining
an embedded family such that the fibers parameterize all possible subschemes
Y ⊂ Pn

k with Hilbert polynomial F (t).

If we are to accept the notion of families as the right setting where to
study the behavior of desingularization, a new problem arises, as illustrated
in Example 10.4: It makes sense to formulate resolution of singularities
for the general fibers, consisting of irreducible singular curves, but not for
the particular fiber at the origin, consisting of a double line. Since we
prove here that embedded desingularization is a byproduct of embedded
principalization (see 5.8), we overcome this problem by simply replacing the
use of embedded desingularization by principalization of the defining ideal.
This will be explained with more detail in the next point of this section (see
“Equisolvability I. Families parameterized by a smooth scheme T” below).
The results in desingularization will hold for a suitable class of families of
schemes: The class of equisolvable families. Thus, our objectives are:

1. To introduce the notion of equisolvable families. The definition of
equisolvability should be stable by fiber products, namely: If X ⊂
W → T , is equisolvable, and if X1 ⊂ W1 → T1, is defined by taking
fiber products with T1 → T , then the later should be equisolvable.

2. Given an arbitrary family X ⊂ W → T , we will want to find a par-
tition of algebraic nature on the underlying topological space of T , (a
partition into locally closed sets Tα) such that each restricted family,
say Xα ⊂ Wα → Tα, is equisolvable.

Note that 2 would provide a formal setting to state that constructive resolu-
tion of singularities is algebraic on the coefficients, in fact we can take (2) as
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a definition, namely, that for any family X ⊂ W → T , there is a partition,
of algebraic nature, on the underlying topological space of T , such that each
restricted family is equisolvable.

Equisolvability I. Families parameterized by a smooth scheme T

In this part we are going to restrict our attention to the case of families
X ⊂ W → T , where T is smooth over a field of characteristic zero. Let
I = I(X) ⊂ OW be the defining ideal sheaf of X. We want to introduce
conditions that insure that all the different members of the family of ideals

(10.4.1) G = (π : W → T, I)

can be simultaneously principalized by using the algorithm. When this
happens, we shall say that the family is equisolvable.

We propose two conditions (10.5 and 10.6), which turn out to be equiva-
lent (see Theorem 10.7). Condition 10.5 does not explicitly involve the fibers
of the family, but it requires, essentially, that the centers Ci that appear in
the principalization sequence that the algorithm associates to I ⊂ OW ,
(W,E) be “evenly spread” over the parameter space T . In condition 10.6,
a “numerical” invariant is associated to the different points t ∈ T (this in-
variant in defined in terms of the principalization sequences of the fibers);
it is required that it be constant along T . Both approaches have their ad-
vantages, depending on the situation. One of our aims is to show that given
an arbitrary family of ideals, it is possible to naturally stratify the parame-
ter space T as a union of locally closed sets so that, along each one, the
restriction of the family is equisolvable.

Finally recall that the given embedded principalization algorithm in-
duces an associated desingularization algorithm for couples X ⊂ W (see 5.8).
We shall say that a family of embedded schemes X ⊂W → T is equisolvable
(relative to the algorithm), if the associated family of ideals (10.4.1) is equi-
solvable. If the family of embedded schemes is such that all the fibers Xt are
reduced, then the desingularization sequence that the associated algorithm
assigns to X ⊂ W induces, on each fiber, the resolution sequence that cor-
responds to that fiber; that is, it has the property to be expected of a good
notion of simultaneous resolution.

But this definition of equisolvability applies also to the case where some
(or all the) fibers X(t) are non-reduced. So, we have a (we hope, reasonable)
notion of equiresolution for families of embedded schemes where some fibers
may be non-reduced. Since in many geometric problems it is unavoidable
the presence of non-reduced fibers in families of schemes, it is an important
feature.
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10.5. Condition of algorithmic equiresolution (AE). With the same
notation as above, consider the basic object

(10.5.1) (W0, (I, 1), E0 = ∅),
and let

(10.5.2) (W0, E0)←− (W1, E1)←− . . .←− (Wr, Er)

be the embedded principalization sequence defined by the algorithm, where
each Wi ←− Wi+1 is defined by blowing up at Ci = Max(fi), which is deter-
mined by the functions defining the algorithm (see Theorem 2.5, Definition
5.5 and 5.9). Note that we get, by composition, smooth morphisms

πi : Wi → T,

which induce morphisms ρi : Ci → T , i = 0, . . . , r − 1. We will say that the
family of ideals G satisfies the condition of algorithmic equiresolution if the
morphism

(10.5.3) ρi : Ci → T

is smooth, proper and surjective, for i = 0, . . . , r.

10.6. Condition τ . Given a family of ideals G we are going to define a
function τG from the parameter space T into a certain totally ordered set Λ(d)

(which depends on d = dimension of the fibers of π : W → T only):

(i) The values of τG are sequences whose entries are either in Z, or in the
set I(d) introduced in Definition 5.5, or (possibly) ∞. This sequences
will be ordered lexicographically. Therefore if we take Id × Z ordered
lexicographically and set L = Id × Z

⊔
{∞}, we have that

Λ(d) = L× L× . . . .

(ii) For each point t ∈ T , let (W
(t)
0 , (I(t), 1), E

(t)
0 ) be the fiber of (W0, (I, 1),

E0 = ∅) at t ∈ T , and now consider the sequence of transformations
of pairs

(10.6.1) (W
(t)
0 , E

(t)
0 )←− (W

(t)
1 , E

(t)
1 )←− . . .←− (W (t)

rt
, E(t)

rt
)

which provides an embedded principalization of the fiber of the ideal

I over t. Let c
(t)
i be the number of connected components of C

(t̄)
i :=

Max f
(t̄)
i . Here C

(t̄)
i = Ci ×T k(t) is the geometric fiber (k(t) the alge-

braic closure of k(t)). Then we define

τG(t) = (max f
(t)
0 , c

(t)
0 , max f

(t)
1 , c

(t)
1 , . . . , max f (t)

rt
, c(t)

rt
,∞,∞, . . .) ∈ Λ(d).

We will say that the family G satisfies the condition τ if τG(t) is constant for
all t ∈ T .
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Theorem 10.7. [16, Theorem 2.3] Let T be an integral and smooth scheme,
and let G = (π : W → T, I) be a family of ideals. Assume that for all
i = 0, . . . , r − 1, the morphism ρi : Ci → T described in (10.5.3) is proper.
Then G satisfies condition (AE) if and only if it satisfies condition τ , and
in either case, the principalization sequence (10.5.2) of (W, I, E) induces,
by taking fibers, the principalization sequence of G(t) := (W (t), I(t)), for
all t ∈ T .

The last part of the statement means the following. The length r of
the principalization sequence of (W, I, E) agrees with the length rt of the
principalization sequence of any fiber G(t) := (W (t), I(t)); there is a natural

identification of π−1
i (t) and W

(t)
i (10.6.1), for any t ∈ T , and via this identi-

fication, the restriction of fi to (π−1
i (t)) coincides with f

(t)
i , for i = 0, . . . , r.

Definition 10.8. [16, definition 1.10] A family of ideals G = (π : W → T, I)
is equisolvable if any of the equivalent conditions of Theorem 10.7 hold.

Note that the first hypothesis in Theorem 10.7 are automatically fulfilled
if the morphism π : W → T is proper, in particular if it is projective.

Remark 10.9. Let G = (π : W → T, I, E) be a family of ideals. Let
T ∗ → T a smooth morphism of smooth schemes, and set G∗ = (π∗ : W ∗ →
T ∗, I∗, E∗) by taking fiber products. If G fulfills the conditions of the The-
orem, then so does G∗.

We mention now some results about families of embedded schemes.

Definition 10.10. We say that a family of embedded schemes F = (X ⊂
W → T ) is equisolvable if the associated family of ideals is equisolvable.

Proposition 10.11. Assume that F = (X,W, π) is an equisolvable family
of embedded schemes, where for all t ∈ T the fiber X(t) is reduced . Then, for
all t ∈ T , the resolution sequence (10.5.2) induces the resolution sequence
of (X(t),W (t)).

Proof: By definition, the equisolvability of F means that the associated
family of ideals G = (π : W → T, I(X), ∅) is equisolvable. Letting W0 = W ,
I = I(X), E0 = ∅, consider the principalization corresponding to T =
(W0, I, ∅). Equisolvability of G asserts that the principalization sequence

of G, induces that of the fiber G(t) := (W
(t)
0 , I(t)

0 , E
(t)
0 ), in the following

sense. We have C
(t)
0 = C0 ∩W

(t)
0 , f

(t)
0 = f0|W (t)

0 and the strict transform

of W
(t)
0 in W1 can be identified with W

(t)
1 . Via this isomorphism, f

(t)
1 =

f1|W (t)
1 , C

(t)
1 = C1 ∩W

(t)
1 , and so on. Eventually, after r steps, both the

principalization sequence of T and G(t) simultaneously stop.



396 A. Bravo, S. Encinas and O. Villamayor U.

Now I(X)O
W

(t)
0

= I(X
(t)
0 ), and to obtain a desingularization sequence

for (X
(t)
0 ,W

(t)
0 ) we use the principalization sequence of the fiber G(t) =

(W
(t)
0 , I(t)

0 , ∅). It is clear that, via the identification of W
(t)
i with a suitable

subscheme of Wi, for all possible index i, X
(t)
i corresponds to the strict

transform of X
(t)
0 to Wi. Moreover, the length st of the resolution sequence

of (X
(t)
0 ,W

(t)
0 ) is constant, equal to the length s of the resolution sequence

of (X,W ). In fact s (resp. st) is the unique index such that the proper

transform Xs ⊂ Ws (resp. X
(t)
s ⊂ W

(t)
s ) has the same codimension as the

center Cs (resp. C
(t)
s ) (see 5.8). But codim(X

(t)
i ,W

(t)
i ) = codim(Xi,Wi)

and, since G is equisolvable, codim(C
(t)
i ,W

(t)
i ) = codim(Ci,Wi). This proves

our contention about the indices. Since the desingularization functions are
defined by restriction, the proposition is proved. �

Equisolvability II. Stratification of Hilbert schemes

Definition 10.12. A general family of embedded schemes is a pair

F = (j : X →W,π : W → T )

where π : W → T is a smooth morphism of equidimensional Noetherian
schemes over a field k of characteristic zero, j is a closed immersion and
p := π ◦ j : X → T , is flat (but we do not assume that W or T are regular).

Definition 10.13. A general family of ideals is a pair

G = (π : W → T, I)

where π : W → T is a smooth morphism (but we do not require W or T to be
regular or irreducible). All fibers G(t) := (W (t), I(t)) give ideals I(t) ⊂ OW (t).

Remark 10.14. Note that the function τG : T → Λ(d) introduced in 10.6
still can be defined for any general family. If T admits a desingularization
T1 → T then G1 (obtained from G by base change to T1) is a family in the
sense of Definition 10.4.1. Hence Theorem 10.7 applies to G1. Since τG is
defined in terms of the fibers only, from the properness of T1 → T we see
that the conclusion of Theorem 10.7 is also valid for the family G.

Given a general family of embedded schemes, F = (j : X →W,π : W →
T ), we can associate to it a general family of ideals (as we did in (10.4.1)),
say G = (π : W → T, I) (Definition 10.13), where I = I(X). For simplicity,
in the sequel we denote by τF the function τG corresponding to the family
of ideals G.
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10.15. Now fix the following objects:

(i) A graded algebra S over a field k of characteristic zero, finitely gener-
ated by elements of degree one, such that W = Proj(S) is smooth of
finite type over k, of dimension n (which belongs to the class S0).

(ii) An element α ∈ Λ(d).

(iii) A polynomial Q with rational coefficients.

Let H(W,α,Q) be the class of all general families of embedded and re-
duced schemes FT , of the form (j : XT → WT , π : WT → T ) where π is
obtained from W → Spec(k) by base change, and XT ⊂ WT is a closed
subscheme such that the induced projection XT → T is flat (j being the
inclusion). We require also for FT ∈ H(W,α,Q) that:

(0) T is a reduced scheme of finite type over k.

(1) For all t ∈ T , τF ,T (t) = α (hence the pull-back of this general family via
T ′ → T , with T ′ regular is equisolvable since it satisfies condition τ).

(2) If (X(t),W ) is the couple induced by (XT ,WT ) over t ∈ T , then Q is
the Hilbert polynomial (relative to the line bundle corresponding to
S(−1)) of the embedded scheme X(t) ⊂W .

Now we can state the following theorem:

Theorem 10.16. [16, 4.10] Under the conditions stated in 10.15 (and let-
ting H := H(W,α,Q)) there is a universal object in the class of general
families in H (which will be called a universal (α,Q)-equisolvable family).
That is, there is a general family, FH(α,Q) defined by (XH(α,Q) ⊂ WH(α,Q)),
WH(α,Q) → H(α,Q)) such that for each general family FT in H, there is a
unique morphism T → H(α,Q) so that FT is the pull-back of FH(α,Q).

Proof: Consider the Hilbert scheme H(Q), parameterizing subschemes
of the projective variety W having Hilbert polynomial Q. We refer here
to [31, p. 21 (c)] for a summary of results on Hilbert schemes. Let X(Q) ⊂
W ×H(Q) be the universal family; note that (X(Q),W ×H(Q)) together
with the projection W×H(Q)→H(Q) defines a general family, say F(W,Q).
Then [16, Theorem 4.8] says that τF(W,Q) : H(Q)→ Λ(n) is an LC-function.
Hence its fibers define a partition of H(Q) into a disjoint union of locally
closed subsets. If α ∈ Λ(n), let H(α,Q) := [τF(W,Q)]

−1(α). Given a general
family, say FT , in H, since the natural morphism T → H(Q) obtained by
universality of Hilbert schemes has constant value α, it becomes clear that
it factors though H(α,Q) and vice versa, proving the theorem. �
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Definition 10.17. An LC-partition of a scheme T , is an expression of T as
a disjoint union of locally closed subsets (or subschemes, with the reduced
structure).

Remark 10.18. In Theorem 10.16 we have introduced an LC-partition in
the Hilbert scheme H(Q) which is naturally related to equiresolution, by
means of the (reduced) subschemes H(α,Q). We might call this a strati-
fication of H(Q) but, in the literature, this term is often used in a more
restricted sense. For instance, in [27] the notion of stratification of T is in-
troduced as an LC-partition (each set thereof is called a stratum) with the
following properties:

(i) The boundary of each stratum is a union of strata.

(ii) The singular locus of the closure of each stratum is a union of stratum.

(iii) Each stratum is smooth.

In [27, 2.5 (c)] it is remarked that given an LC-partition of an algebraic
variety T, one can attach to this partition a coarsest stratification of T , with
the property each locally closed subset of the partition is a union of strata.
Here coarsest means that any other stratification with this property is a
refinement of the first. So, if we want to obtain a stratification of the Hilbert
scheme H(Q), in the sense of [27], and naturally related to equiresolution,
all what we need it to take the coarsest stratification associated to the LC-
partition described in Theorem 10.16.

11. Bodnár-Schicho’s computer implementation

In [35, Theorem 7.3.] and [18, Theorem 7.13.] give an algorithm of resolu-
tion of basic objects. Based on this construction, G. Bodnár and J. Schicho
wrote a computer program which resolves basic objects: Given a basic ob-
ject, (W, (J, b), E) the program provides the resolution defined in terms of
functions fd

i , as indicated in Definition 5.5, (c) (see [10] and [11]). Their
program is available at

http://www.risc.uni-linz.ac.at/projects/basic/adjoints/blowup

As a consequence, the authors provided a computer program which com-
putes the resolution of singularities of a given hypersurface (cf. [10] and [11]).
The main obstacle to generalize this process to varieties of arbitrary codi-
mension was that the classical approach for desingularization was based on
reducing to the hypersurface case, and in this process, algorithms of division
and strict transforms of ideals are involved.

In the new approach of desingularization presented in this paper all this
is avoided. The short proofs of embedded resolution of singularities and
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embedded principalization of ideals presented in 5.8 and 5.9 are only based
on the existence of an algorithm of resolution of basic objects. As a conse-
quence, based on these ideas, G. Bodnár and J. Schicho have been able to
adapt their program to produce one that resolves the singularities of vari-
eties of arbitrary codimension. Also, the program can compute embedded
principalization of ideals. We refer to Section 18 for some hints on how their
computer program works.

About the performance of the program, the complexity of computations
seems to be very high but, by now, we do not know any bound for com-
plexity. In practice “easy” examples for dim W ≤ 4 may be computed. For
instance if the input is an ideal J ⊂ Q[X1, . . . , Xn] then the resolution of
the variety defined by J can be computed if n ≤ 4 and the degree of the
generators of J is not bigger than 7 or 8. The first versions of the program
were implemented in Maple, but the most recent version use Singular, which
performs much better all standard basis computations. For example, the
resolution of the Whitney umbrella takes 1.230 seconds of CPU time in a
PowerPC G3 at 700 Mhz. But sometimes one could find an example which
seems “easy” but it requires hard middle computations, since coefficients
ideals are complicated. The most recent version has the option to com-
pute in some localized rings and improves the performance in some cases.
This option is possible using the features of Singular for computing some
localization of polynomial rings, see [9].

Part IV. Preliminaries for constructive reso-
lutions

We will prove resolution of basic objects by induction on the dimension
of the ambient space: To find a resolution of a d-dimensional basic object
(W, (J, b), E) we will associate to it, at least locally at each point of W , a
(d−1)-dimensional basic object (Z, (A, e), G) in such a way that a resolution
of (Z, (A, e), G), is equivalent to a resolution of (W, (J, b), E) in some sense
that we will make precise in the forthcoming sections. This will force us to
introduce some machinery:

1. The notions of equivalence, inclusion and intersection of basic objects
(see Section 12).

2. The notion and properties of the ∆ operator, which will provide us the
way to find (Z, (A, e), G) given (W, (J, b), E) (see Definition 13.10).

3. The notion of general basic object: Given a d-dimensional basic object
(W, (J, b), E), in some situations we will associate to it locally, at each
point of W , a (d − 1)-dimensional basic object. In other words, we will
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associate to (W, (J, b), E), a collection of (d− 1)-dimensional basic objects,

(W̃α, (Iα, aα), Eα). This family of (d − 1)-dimensional basic objects will be
what we call a general basic object (see Section 14).

12. Intersections, inclusions and equivalence of basic
objects

12.1. There are two types of information encoded in the notion of basic
object: A pair (W,E), and a closed subset F = Sing(J, b). Moreover, any
sequence of transformation of basic objects
(12.1.1)
(W, (J, b), E)=(W0, (J0, b), E0)← (W1, (J1, b), E1)← . . .← (Wk, (Jk, b), Ek),

induces a sequence of transformations of pairs with the same centers,

(12.1.2) (W0, E0) ←− (W1, E1) ←− · · · ←− (Wk, Ek)

together with a collection of closed sets Fi = Sing(Ji, b) included in Wi, for
i = 0, 1, . . . , k.

12.2. Inclusions of basic objects. We say that (W, (L, b), E) is contained
in (W, (J, b), E),

(W, (L, s), E) ⊂ (W, (J, b), E)

if Sing(L, s) ⊂ Sing(J, b), and

(i) For any sequence of transformations of the basic object (W, (L, s), E),

(W, (L, s), E)←− (W1, (L1, s), E1)←− . . .←− (Wk, (Lk, s), Ek),

the corresponding induced sequence of transformations of pairs as
in (12.1.2) defines a permissible sequence

(W, (J, b), E)←− (W1, (J1, b), E1)←− . . .←− (Wk, (Jk, b), Ek),

with the additional property that for i = 1, . . . , k,

Sing(Li, s) ⊂ Sing(Ji, s).

(ii) If U ⊂ W is an open set then we require the previous property to
hold for the restrictions (W, (L, s), E)U and (W, (J, b), E)U for any U
(see 5.6 (2)).

Example 12.3. Fix a pair (W,E) and two sheaves of ideals J ⊂ J ′ ⊂ OW .
Then clearly

(W, (J ′, b), E) ⊂ (W, (J, b), E).
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Remark 12.4. We have just introduced a notion of inclusion of basic ob-
jects. It may also happen that there is a double inclusion, namely that
(W, (L, s), E) is contained in (W, (J, b), E) and (W, (J, b), E) is contained in
(W, (L, s), E) (i.e. id : (W,E)→ (W,E) defines an isomorphism of both ba-
sic objects as in Definition 4.6). Then we will say that they are equivalent,
and will use the notation

(W, (J, b), E) ∼= (W, (L, s), E).

Remark 12.5. Note that we view a basic object as a pair, and a way of
defining transformations of pairs and closed sets: Two equivalent basic ob-
jects (W, (J, b), E) ∼= (W, (L, s), E) define exactly the same transformations
of pairs and the same closed sets. The invariants involved in the construc-
tive resolution of these basic objects (the functions fi introduced in Defini-
tion 5.5), will be defined in terms of the closed subsets described by the basic
objects. So the invariants attached to (W, (J, b), E) will coincide with those
attached to (W, (L, s), E). In particular the constructive resolution of both
basic objects given by Definition 5.5 will be the same (i.e. will be defined by
the same sequence of transformations).

Example 12.6. If we set (L, s) = (J2, 2b), then

(W, (J, b), E) ∼= (W, (L, s), E),

(see also Example 4.8).

12.7. Intersections of basic objects. Given two basic objects,

(W, (J, b), E) and (W, (I, c), E)

we define its intersection, (W, (J, b), E) ∩ (W, (I, c), E), as the basic object
(W, (K, e), E) where K = J c + Ib and e = bc.

The intersection (W, (K, e), E) is contained in both (W, (J, b), E) and
(W,(I, c), E), in the sense defined in 12.2. So any transform (W,(K, e), E)←−
(W1, (K1, e), E1) induces two transformations

(W, (J, b), E)←− (W1, (J1, b), E1) and (W, (I, c), E)←− (W1, (I1, c), E1) ,

and it can be checked that

(W1, (K1, e), E1) = (W1, (J1, b), E1) ∩ (W1, (I1, c), E1)

so that the definition of intersection is compatible with transformations.
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Example 12.8. Let (W0, (J0, b), E0) be a basic object, let H0 ⊂W0 be a reg-
ular hypersurface and consider the basic object (W0, (I(H0), 1), E0). Then,

(W0, (J0, b), E0) ∩ (W0, (I(H0), 1), E0) = (W0, (J0 + I(H0)
b, b), E0)

= (W0, (K0, b), E0).
Note that a resolution of (W0, (K0, b), E0),

(12.8.1) (W0, (K0, b), E0)← . . .←(Wn−1, (Kn−1, b), En−1)←(Wn, (Kn, b), En)

induces a sequence of transformations of basic objects for both (W0,(J0,b),E0)

(W0, (J0, b), E0)← . . .← (Wn−1, (Jn−1, b), En−1)← (Wn, (Jn, b), En)

and (W0, (I(H0), b), E0),

(W0,(I(H0),b),E0)← . . .←(Wn−1,(I(H0)n−1,b),En−1)←(Wn,(I(H0)n,b),En).

Since H0 is a regular hypersurface, I(H0)n is the sheaf of ideals defin-
ing the strict transform of H0, say H0,n ⊂ Wn (see Remark 3.9 (2)), and
since (12.8.1) is a resolution of (W0, (K0, b), E0), then

Sing(Jn, b) ∩H0,n = ∅.
12.9. Basic objects defined over different pairs. We have defined
operations of inclusions and intersections of two basic objects over a same
pair. Now let (W,E = {H1, .., Hr}) be a pair and let Z ⊂ W be a closed

smooth subscheme. Assume that each Hi intersects Z transversally at H̃i

for i = 1, . . . , r, and that (Z, Ẽ = {H̃1, . . . , H̃r}) is a pair (for instance, this

will be the case if E = Ẽ = ∅).
Note that a closed subset in Z is a closed subset in W and that any

sequence of transformation of the pair (Z, Ẽ) induces one over (W,E) (see
Definition 2.1). Note also that

(Z, (A, e), Ẽ) ⊂ (W, (I(Z), 1), E),

since any sequence of transformations over the first induces one over the
second, with inclusion of the corresponding closed sets. In this context we
can also have two basic objects with a double inclusion as in Remark 12.4
(an inclusion of the corresponding closed sets), and then we will say they
are equivalent, and denote it by

(Z, (A, e), Ẽ) ∼= (W, (J, b), E).

If dim(Z) = d′, we will abuse notation by saying that (W, (J, b), E) has a
structure of a d′-dimensional basic object.

Example 12.10. Let W be smooth of dimension d, and let X ⊂ W be a
curve which is defined by d− 1 global sections f1, . . . , fd−1 in OW . Assume
that Z = V (< f1 >) is smooth. Then (W, (J, 1), ∅) ∼= (Z, (A, 1), ∅) where
J =< f1, . . . , fd−1 >⊂ OW and A = JOZ .
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13. The differential operator and the inductive nature
of the algorithm

The objective of this section is to state Proposition 13.3, which is a key
step in the inductive proof of Theorem 3.10. Proposition 13.3 says that we
can associate (at least locally) a d − 1 dimensional basic object to some
class of d-dimensional basic objects (we will refer to them as basic objects
within the case ordB ∼= 1 — see Definition 13.2). The rest of this section is
devoted to giving a flavor of the idea behind of Proposition 13.3 as well as
to explain the role of the sheaf of differentials in this process. The proof of
Proposition 13.3 will be postponed to Section 19. Note that all arguments
exposed here extend to the class of schemes described in Definition 8.1.

Definition 13.1. Given a sheaf of ideals J ⊂ OW we will denote by R(1)(F )
the closed subset of points where F = V (J) has codimension 1 in W .

Definition 13.2. Let B = (W, (J, b), E) be a basic object, and consider the
equivariant function introduced in Section 6,

ordB : F = Sing(J, b) → Q

x → νJ (x)
b

.

We will say that B is within the case ordB ∼= 1 if the maximum value of
ordB : F → Q is 1.

Proposition 13.3. Let B = (W, (J, b), E) be a d-dimensional basic object,
assume that E = ∅ and that ordB

∼= 1. Then:

a) There is an open covering {Uα}α∈Λ, and for each index α ∈ Λ a closed

and smooth hypersurface W̃α ⊂ Uα, such that if (Uα, (Jα, b), ∅) is the
restriction of (W, (J, b), ∅) to Uα as in Remark 4.5, then

(Uα, (Jα, b), ∅) ⊂ (Uα, (I(W̃α), 1), ∅).

b) If Uα∩R(1)(Sing(J, b)) = ∅ then (Uα, (Jα, b), ∅) has structure of (d−1)-
dimensional basic object, i.e. there is a (d−1)-dimensional basic object

(W̃α, (Aα, eα), ∅) such that

(Uα, (Jα, b), ∅) ∼= (W̃α, (Aα, eα), ∅).

Remark 13.4. This proposition is the key point of our inductive argument.
We are using the notation of 12.9 (here E = ∅). In general, when E = ∅,
our constructive resolution will not follow only from induction on the di-
mension of ambient space W , but rather from induction on pairs (W,E).
The function n(x) introduced in 6.2 will allow us to treat the case (W,E)
when E = ∅.
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Definition 13.5. Let W be a smooth scheme over a field k and let ΩW/k

be the (locally free) sheaf of differentials of W over k. Given a closed point
ξ ∈ W and a regular system of parameters {x1, . . . , xn} ⊂ OW,ξ, let{

∂

∂x1
, . . . ,

∂

∂xn

}
be a basis of the dual of the OW,ξ-module, (Ω1

W/k)ξ. We will express the
differential operator ∆ in terms of this basis although it will be independent
of any choice of parameters.

Definition 13.6. (See also Section 8). Let W be a smooth scheme over a
field k, and let J ⊂ OW be a non-zero sheaf of ideals. Given a closed point
ξ ∈ W and a regular system of parameters {x1, . . . , xn} ⊂ OW,ξ, we define
∆(J) ⊂ OW as the ideal locally generated by

{fi}ri=1 ∪
{

∂fi

∂xj

}
i=1,...,r
j=1,...,n

where Jξ = 〈f1, . . . , fr〉. We also define by induction ∆i(J) = ∆ (∆i−1(J)),
for i ≥ 1, where ∆0(J) = J and ∆1(J) = ∆(J). Note that ∆(J) is indepen-
dent of the choice of parameters.

13.7. Properties of the ∆ operator. If J is a non-zero sheaf of ideals at
any irreducible component of the smooth scheme W of characteristic zero,
then the ideal ∆(J) satisfies the following properties:

P1. J ⊂ ∆(J) ⊂ · · · ⊂ ∆b(J) = OW for some b ∈ N.

P2. For any point ξ ∈W , νOW,ξ
(Jξ) = b > 1 if and only if

νOW,ξ
(∆(J)ξ) = b− 1 .

In particular νOW,ξ
(J) = b > 0 if and only if

νOW,ξ
(∆b−1(J)) = 1.

P3. For any point ξ ∈W , νOW,ξ
(J) ≥ b > 1 if and only if ξ ∈ V (∆b−1(J)).

13.8. Basic objects and the ∆ operator. Let (W, (J, b), E) be a basic
object over a field k of characteristic zero, then by looking at the Taylor
expansion of the generators of J we have that

(13.8.1) V (∆b−1(J)) = Sing(J, b).

See also 8.6.
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Remark 13.9. Given a basic object B = (W, (J, b), E), set F = Sing(J, b),
and note that the following statements are equivalent:

(a) The maximum value of ordB : F → Q is 1 (i.e. B is within the case
ordB ∼= 1).

(b) For every x ∈ F , ordB(x) = 1.

(c) The order of Jx at OW,x is b for every x ∈ F .

(d) The order of ∆b−1(J) is zero or one at every point of W and the order
is one at points of F .

Definition 13.10. Let (W, (J, b), E) be a basic object, and let Z ⊂W be a
closed and smooth subscheme such that

1. For any H ∈ E, the closed subschemes Z and H intersect transversally.

2. The hypersurfaces of Z, E ∩Z = {H ∩Z | H ∈ E}, have only normal
crossings.

Then we define the coefficient ideal

(13.10.1) CoeffZ(J) =
b−1∑
i=0

(
∆i(J)OZ

) b!
b−i ⊂ OZ .

If the coefficient ideal is non-zero, we also define the basic object

(13.10.2) (Z, (CoeffZ(J), b!), E ∩ Z).

Remark 13.11. Note that the conditions required in Definition 13.10 are
trivially satisfied if E = ∅. We will show that the ideals Aα = Coeff

�Wα
(Jα)

will satisfy the conditions in Proposition 13.3, with e = b!.

Example 13.12. Let W = A3
k and consider the ideal J = 〈z2 + x3y3〉,

generated by an equation expressed in a Tschirnhausen form (following
Abhyankar). Then

∆(J) =
〈
z2 + x3y3, 2z, 3x2y3, 3x3y2

〉
,

and if the characteristic of k is not two, then ∆2(J) = OW . Note that

Sing(J, 2) = V (∆(J)) = V (x, z) ∪ V (y, z),

and that ordB ∼= 1. In fact, if Z = V (〈z〉) and A = 〈(x3y3)〉, then

(13.12.1) (W, (J, 2), ∅) ∼= (Z, (A, 2), ∅),
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since the equation has a Tschirnhausen form. So (W, (J, 2), ∅) has a structure
of two-dimensional basic object (note that A = CoeffZ(J)). Although we
will not prove this equivalence here (see Proposition 19.7), we already point
out that this is the key step in the induction argument behind the proof of
Proposition 13.3 and hence in the proof of Theorem 3.10 (we refer the reader
to Section 19 for a complete proof that an equivalence of the form (13.12.1)
holds in general).

Remark 13.13. Equivalence (13.12.1) can be established thanks to the fact
that Z ⊂ W is a smooth hypersurface defined by an ideal I(Z) ⊂ ∆b−1(J).
In general, given a basic object B = (W, (J, b), E) such that ordB ∼= 1, we

will not be able to find a smooth hypersurface W̃ ⊂ W such that globally,

(13.13.1) I(W̃ ) ⊂ ∆b−1(J).

We shall prove that a smooth hypersurface W̃ that fulfills condition (13.13.1),
also has the property that

(13.13.2) (W, (J, b), E) ⊂ (W, (I(W̃ ), 1), E),

(see 19.3). Furthermore, we shall proof that if B = (W, (J, b), E) ←− B1 =

(W1, (J1, b), E1) is a transformation as in 3.6 or as in 3.12, then I(W̃ )1 ⊂
∆b−1(J1). Here I(W̃ )1 = I(W̃1) where W̃1 is the strict transform of W̃ in the
first case (see Remark 3.9 (2)), and the pull-back in the second case. So, in
either case ∆b−1(J1) has order at most one, so Sing(J, b) = ∅ or ordB1

∼= 1.

The key point for the proof of Proposition 13.3 is the inclusion (13.13.2).
The role of (13.13.1) is technical, but provides a way of finding hypersurfaces
for which 13.13.2 holds. This fact naturally leads us to the notion of general
basic object, which will be introduced in Section 14. The following simple
example will illustrate this notion, with b = 1, and hence ∆b−1(J) = J .

Example 13.14. Let W be smooth of dimension d, and let X ⊂ W be a
smooth curve. One can always define an open covering of W , {Uα}α∈Λ, such
that the restriction of the curve, Xα = X ∩ Uα, is a complete intersection
on each open subset Uα, i.e.,

I(Xα) = 〈f1, . . . , fd−1〉 = Jα.

Let E = ∅ and let (Uα, (Jα, 1), Eα) be the restriction of (W, (J = I(X), 1), E)
to Uα and define Zα = V (f1). Then

(Uα, (Jα, 1), Eα) ⊂ (Uα, (f1, 1), Eα),

and
(Uα, (Jα, 1), ∅) ∼= (Zα, (Coeff(Jα), 1), ∅).
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As in Example 12.10, both basic objects describe the same closed set
after any sequence of transformations. In particular, a resolution of the basic
object (Uα, (Jα, 1), ∅) is equivalent to a resolution of (Zα, (Coeff(Jα), 1), ∅).
The advantage of working with the second basic object is that it is a (d−1)-
dimensional basic object. This already illustrates that our form of induction
on the dimension is of local nature, and also leads to the consideration of
closed sets which are locally described by basic objects (see Section 14 where
the notion of general basic objects is introduced).

Remark 13.15. Note that in Example 13.14 the closed sets Sing(Coeff(Jα),1)
patch to the curve X = Sing(J, 1).

Example 13.12 illustrates why we require that the characteristic of the
underlying field be zero, at least if we want condition (d) of Remark 13.9
among the equivalent conditions in case ordB ∼= 1. It is actually this point
which imposes the constraint on the characteristic for the resolution of sin-
gularities of algebraic varieties, because it is not possible, in general, to use
the argument of reduction in the dimension that we are using here.

Remark 13.16. Set W ←− W1 a monoidal transformation with center C,
let H1 be the exceptional locus, and let J ⊂ OW be a sheaf of ideals with
order b along points in C. Then JOW1 = I(H1)

b · J1 and the order of J1

is at most b at the exceptional points of W1 (in H1 ⊂ W1). This is quite a
general result, but in our context (over a field of characteristic zero) it also
follows from Remark 13.13: ∆b−1(J) has order one along the points in C,
and hence, as indicated in Remark 13.13, ∆b−1(J1) has at most order one
along exceptional points; so the claim on J1 follows from 13.7, P2).

14. General basic objects and the main inductive
theorem: Theorem 14.8

In the previous section we have already observed the need to generalize the
notion of basic object in order to use an inductive argument for the proof
of Theorem 3.10. This leads us to the notion of general basic objects which
will be developed in this section. Inclusion, intersection and equivalence
of basic objects will naturally extend to this new context, as well as the
notion of equivariant functions (see Proposition 14.7). At the end of this
section we extend Theorem 3.10, in terms of general basic objects, with a
constructive formulation (3.11), in Theorem 14.8. The proof of Theorem 14.8
will be developed in Sections 15 and 16. Finally, in Section 17, we intro-
duce the functions fd

i so that the resolution of basic objects, provided by
Theorem 14.8, coincides with that defined by the algorithm described in
Definition 5.5.
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Definition 14.1. A d-dimensional general basic object over a pair (W,E)
consists of an open covering of W , {Uα}α∈Λ such that if (Uα, Eα) is the
restriction of (W,E) to Uα, then we have:

(i) A collection of basic objects. For every α ∈ Λ there is a closed and

smooth d-dimensional subscheme W̃α ⊂ Uα, which intersects transver-
sally all hypersurfaces of Eα defining a pair (W̃α, Ẽα), and a basic
object

(W̃α, (Bα, dα), Ẽα).

Obviously, for each index α the closed set

Sing(Bα, dα) ⊂ Uα

is locally closed in W (compare to conditions in 13.10).

(ii) A patching condition. There is a closed subset F ⊂ W such that

F ∩ Uα = Sing(Bα, dα)

for every α ∈ Λ.

(iii) Stability of patching (I). Let

(W,E)←− (W1, E1)

be a permissible transformation with center Y ⊂ F , let {Uα,1} be the
pullback of {Uα}α∈Λ to W1, and for each α ∈ Λ let

(W̃α, (Bα, dα), Ẽα)←− (W̃α,1, (Bα,1, dα), Ẽα,1).

be the corresponding transformation of basic objects. Then there is a
closed set F1 ⊂W1 so that

F1 ∩ Uα,1 = Sing(Bα,1, dα)

for each index α ∈ Λ.

(iv) Stability of patching (II). Let W ← W1 be a projection and let

(W,E)←− (W1, E1)

be the corresponding transformation of pairs as defined in 3.12. Let
{Uα,1} be the pullback of {Uα}α∈I to W1, and for each α ∈ Λ let

(W̃α, (Bα, dα), Ẽα)←− (W̃α,1, (Bα,1, dα), Ẽα,1).
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be the transformation of basic objects as defined in 3.12. Then there
is a closed set F1 ⊂ W1 such that

F1 ∩ Uα,1 = Sing(Bα,1, dα)

for each index α ∈ Λ.

(v) Stability of patching (III). The patching condition defined in (iii)
and (iv) holds after any sequence of transformations: Given a sequence
of transformations of pairs,

(W0, E0)←−(W1, E1)←− . . .←−(Wr, Er)←−(Wr+1, Er+1)
∪ ∪ ∪
F0 F1 Fr

where for i = 0, 1, . . . , r, Wi+1 → Wi is defined either by:

(1) blowing up at centers Yi, permissible for the pair (Wi, Ei), and Yi

included in the inductively defined closed sets Fi ⊂Wi, or

(2) a projection p : Wi+1 →Wi,

there is an open covering {Uα,r+1} of Wr+1 (the pull back of {Uα}), a
sequence of transformations of basic objects,

(14.1.1) (W̃α, (Bα, dα), Ẽα)←− (W̃α,1, (Bα,1, dα), Ẽα,1)←− · · ·
· · · ←− (W̃α,r+1, (Bα,r+1, dα), Ẽα,r+1),

and a closed set Fr+1 ⊂Wr+1, such that for each α ∈ Λ,

Fr+1 ∩ Uα,r+1 = Sing(Bα,r+1, dα).

(vi) Restriction to open sets. If V ⊂ W is an open set, consider the
restriction of all data to V : The open covering {Uα ∩ V }α∈Λ, the

basic objects (W̃α, (Bα, dα), Ẽα)V and the closed set FV = F ∩ V .
Then we require that all properties (i), (ii), (iii) (iv) and (v) hold for
the restriction (see Remark 4.5).

A general basic object will be denoted by (F , (W,E)), the restriction to an
open set V will be denoted by (FV , (V,EV )), and we will write a sequence
of transformations and projections as

(14.1.2)
(F0, (W0, E0))←−. . .←−(Fr, (Wr, Er))←−(Fr+1, (Wr+1, Er+1))

∪ ∪ ∪
F0 Fr Fr+1.
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Remark 14.2. If (F , (W,E)) is a general d-dimensional basic object, note
that d can be different from dim W . A basic object (W, (J, b), E) defines a
general basic object (F , (W,E)), with the trivial open covering and in this
case d = dim W . A general basic object can be described by giving two
different open coverings. What is important here are the closed sets F that
it defines. That is why in the notation for general basic objects (F , (W,E))
there is no reference to the open covering which appears in the definition (see
Definition 14.5, where the notion of isomorphism of general basic objects is
stated).

Example 14.3. Example 13.14 illustrates what a d-dimensional general
basic object can be. In this case, the collection of locally closed basic objects
is given by

(Uα, (Jα, 1), Eα),

and the closed subset F ⊂W of condition (ii) in Definition 14.1 is X. Now,
consider a sequence of transformations of pairs,

(W,E) ←− (W1, E1) ←− . . . ←− (Wr, Er) ←− (Wr+1, Er+1)
F F1 Fr Fr+1,

where each transformation is either as in Definition 14.1 (iii) or as in Defi-
nition 14.1 (iv). Then Fr+1 is either the strict transform of Fr, in the first
case (this is a particular feature discussed in 3.9 (2)), or the pull-back of Fr

in Wr+1, in the second case.

Most definitions on basic objects extend naturally to general basic ob-
jects, and we extend only some of them. In Proposition 14.7 we extend the
two equivariant functions introduced in Section 6.

Definition 14.4. A resolution of a general basic object (F0, (W0, E0)) is a
sequence of transformations as in (14.1.2) which fulfills the following two
conditions:

(i) The sequence involves only transformations as the ones introduced in
Definition 14.1 (iii).

(ii) The closed set Fr+1 is empty.

Note that if {Uα} is an open covering of W as in Definition 14.1, then

for any α we obtain a resolution of the basic object (W̃α, (Bα, dα), Ẽα) in the
sense of Definition 3.8.
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Definition 14.5. Let (F0, (W0, E0)) and (F0
′, (W ′

0, E
′
0)) be two general basic

objects and let
Θ : (W,E)→ (W ′, E ′)

be an isomorphism of pairs (4.1). We will say that Θ induces an isomorphism
of general basic objects,

Θ : (F0, (W0, E0))→ (F0
′, (W ′

0, E
′
0)),

if the following conditions hold:

(i) The isomorphism Θ : W → W ′ induces an isomorphism of the closed
subsets defined by the two general basic objects

Θ : F ∼= F ′.

(ii) If

(F0, (W0, E0))←−. . .←−(Fr−1, (Wr−1, Er−1))←−(Fr, (Wr, Er));
∪ ∪ ∪
F0 Fr−1 Fr

is sequence of transformations of general basic objects, and

(W,E) ←− (W1, E1) ←− . . . ←− (Wk, Ek)

is the corresponding sequence of transformation of pairs, then:

(a) The sequence induced by Θ as in Remark 4.4, say

(W ′, E ′) ←− (W ′
1, E

′
1) ←− . . . ←− (W ′

k, E
′
k),

defines a sequence of transformation of general basic objects,

(F ′
0, (W

′
0, E

′
0))←−. . .←−(F ′

r−1, (W
′
r−1, E

′
r−1))←−(F ′

r, (W
′
r, E

′
r))

∪ ∪ ∪
F ′

0 F ′
r−1 F ′

r.

(b) The isomorphisms Θi : (Wi, Ei) −→ (W ′
i , E

′
i), presented in Defin-

ition 4.4, induce an isomorphism of the closed subsets defined by
the general basic objects, i.e., Θi(Fi) = F ′

i for i = 0, 1, . . . , r+1.

(iii) For any open set U ⊂ W0, set U ′ = Θ(U) and consider the restric-
tions (F0,U , (U,E0,U)) and (F ′

0,U ′ , (U ′, E ′
0,U ′)) (see Definition 14.1 (vi)).

Then we require that properties (i) and (ii) hold for the restrictions.



412 A. Bravo, S. Encinas and O. Villamayor U.

Definition 14.6. Assume that for any general basic object (F , (W,E)) there
is an upper semi-continuous function

fF : F → (T,≥)

associated to it, this is what we call a family of functions with values on T .
We will say that the family of functions fF is equivariant if:

(i) For any isomorphism of general basic objects Θ : (F , (W,E)) →
(F ′, (W ′, E ′)) we have that

fF ′ ◦Θ = fF .

(ii) If U ⊂ W is an opens set, let (FU , (U,EU )) be the restriction as in
Definition 14.1 (vi). Then the function fFU

is the restriction of fF .

Proposition 14.7. Let (F , (W,E)) be a general basic object, let {Uα}α∈Λ

be the corresponding open covering of W and let (W̃α, (Bα, dα), Ẽα) be the
collection of d-dimensional basic objects associated to (F , (W,E)). Then the
functions

ordd
α : Sing(Bα, dα)→ Q and nd

α : Sing(Bα, dα)→ Z

patch so as to define equivariant functions

ordd
F : F → Q and nd

F : F → Z

which verify the requirements of Definition 14.6.

We sketch the proof below, which parallels the proof of Lemma 6.7 for
basic objects, and we refer to Section 21 for technical details.

Proof: Because of the way they are defined, any transformation of general
basic objects

(14.7.1)
(F0, (W0, E0))←−. . .←−(Fr, (Wr, Er))←−(Fr+1, (Wr+1, Er+1))

∪ ∪ ∪
F0 Fr Fr+1,

induces, for each index α, a sequence of transformations of basic objects

(14.7.2) (W̃α, (Bα, dα), Ẽα)←− ((W̃α)1, ((Bα)1, dα), (Ẽα)1)←− · · ·
· · · ←− ((W̃α)r+1, ((Bα)r+1, dα), (Ẽα)r+1).

In general, an arbitrary sequence of transformations over (W̃α, (Bα, dα), Ẽα),
will not give rise to a sequence of transformations of the general basic object.
However, this will be so if we fix α together with a point x0∈Sing(Bα,dα), and
take the sequence (14.7.2) to be an arbitrary x0-extendable sequence (6.4).
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So assume now that the sequence (14.7.1) induces an x0-extendable se-
quence (14.7.2). In this case, for any index j = 0, 1, . . . , r, there is an
identification of fibers,

(Sing((Bα,j), dα))x0 = (Fj)x0.

The characterization of the rational number ordd
α(x0) (d=dim(W̃α)) in

terms of the dimensions of these closed sets (see Lemma 6.7) shows that, for
x0 ∈ F0 ∩ Uα ∩ Uβ, ordd

α(x0) = ordd
β(x0). In particular ordd

F is well defined
(see also Proposition 21.1). The property of equivariance of the function
ordd

F follows now from (6.7.2).

As for the function nd
F , note that it is well defined by the very defin-

ition of general basic object; the same can be said about the property of
equivariance. In fact any isomorphism

Θ : (F0, (W0, E0))→ (F0
′, (W ′

0, E
′
0))

defines an isomorphism

Θ0 : (W0, E0)→ (W ′
0, E

′
0)

and the functions nF and nF ′ are defined in terms of these pairs. �
Theorem 14.8. (Theorem (d)) To each d-dimensional general basic object
(F0, (W0, E0)) we can attach a resolution RF0 in the sense of Definition 14.4,

(14.8.1)
(F0, (W0, E0))←− . . .←−(Fr, (Wr, Er))←−(Fr+1, (Wr+1, Er+1))

∪ ∪ ∪
F0 Fr Fr+1 = ∅,

which has the following equivariance property: If Θ : (F0, (W0, E0)) →
(F ′

0, (W
′
0, E

′
0)) is an isomorphism of general basic objects, and if

RF0 : (F0, (W0, E0))←− . . .←−(Fr−1, (Wr−1, Er−1))←−(Fr = ∅, (Wr, Er))
∪ ∪ ∪
F0 Fr−1 Fr = ∅,

and

RF ′
0

: (F ′
0, (W

′
0, E

′
0))←− . . .←−(F ′

r−1, (W
′
r−1, E

′
r−1))←−(F ′

r, (W
′
r, E

′
r))

∪ ∪ ∪
F ′

0 F ′
r′−1 F ′

r′ = ∅,
are the corresponding resolutions associated to F0 and F ′

0, then there is a
lifting of Θ to isomorphisms

Θi : (Fi, (Wi, Ei))→ (F ′
i , (W

′
i , E

′
i)), (so Θi(Fi) = F ′

i ) for i = 1, . . . , r,

or, in other words, both resolutions are related by an isomorphism as in
Definition 14.5 (ii).
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We will show later, that the resolutions RF0, to be constructed here,
will also be that defined by the functions fd

i that appear in Definition 5.5.
The fact that the definition of the functions fd

i is given later, in section 17, is
due to the fact that the invariants involved in the definition of such functions
is largely motivated by our proof of 14.8.

The proof of Theorem 14.8 will be presented through the next two sec-
tions: In Section 15 the theorem will be proven for the case of basic ob-
jects, and in Section 16 the general case will be treated. Since the proof
is based in an inductive argument, we already show why Theorem 14.8
holds for 0-dimensional general basic objects: namely, in that in that case,
each (W̃α, (Bα, dα), Eα) is zero dimensional, so we can assume that each W̃α

is a point, and hence, each Bα is a non-zero ideal in a field. Therefore,
Sing(Bα, dα) = ∅, and hence, F0 = ∅.

15. Proof of Theorem 14.8 for basic objects

Given a basic object B = (W, (J, b), E), we will distinguish three cases:

• Case 1: ordB ∼= 1 and E = ∅
• Case 2: ordB ∼= 1 and E = ∅.
• Case 3: The general case: Proof of Theorem 14.8 for basic objects.

Cases 1 and 2 are not special cases: They appear as intermediate steps when
proving the general case.

Case 1.

We will first study the case B = (W, (J, b), ∅) such that ordB
∼= 1, or a

transform of this case. Induction in this case parallels the treatment of
Tschirnhausen transformations (13.12). This is the simplest situation to
be considered, but at the same time the most significant; in fact it shows
why centers defined by our procedure are regular, and why the algorithm of
resolution of basic objects is equivariant. The key point in this case is the
fact that the closed set Sing(J, b) = V (∆b−1(J)) is defined by an ideal of
order at most one.

Proposition 15.1. Theorem 14.8 holds in Case 1.

To prove this statement we will need some auxiliary results: Lemmas 15.4
and 15.5. The proof of Proposition 15.1 will be given in 15.7. To illustrate
the general idea behind this case, let us consider the following example:
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Example 15.2. Let W = Spec(k[x, y, z]), let

J =< z2 + y3x2 >⊂ OW = k[x, y, z],

E = ∅ and consider the basic object (W, (J, 2), E). In this case F =
Sing(J, 2) is a union of two lines, and therefore R(1)(F ) = ∅ (see Defini-
tion 13.1). Note that 〈z〉 ∈ ∆(J) (see (13.13.1)).

Let W̃ = V (〈z〉) ⊂ W . By Proposition 19.7 we may consider the two
dimensional basic object

(W̃ ,A, ∅) = (W̃ , (y3x2, 2), ∅).

This basic object defines the 2-dimensional structure associated to (W, (J, 2),
E) in the sense of 12.9. In this case note that

Sing(< z2 + y3x2 >, 2) = Sing(y3x2, 2),

and furthermore the equality holds after any sequence of transformations.
For example, blow-up the origin in both cases and compare the closed sets
defined by

(W, (J, 2), ∅)←− (W1, (J1, 2), E1) and (W̃ , (A, 2), ∅)←− (W̃1, (A1, 2), E1).

Summarizing we have that:

• A resolution of (W, (J, 2), ∅) induces a resolution of (W̃ , (A, 2), ∅).

• A resolution of (W, (J1, 2), E1) induces a resolution of (W̃ , (A1, 2), Ẽ1).

Remark 15.3. Note that:

(1) If (W, (J, b), E) is such that ord ∼= 1, so is any transform (see Re-
mark 13.13).

(2) If there is an inclusion of basic objects,

(W, (K, d), E) ⊂ (W, (J, b), E)

and (W, (J, b), E) is such that ord ∼= 1, then same holds for (W, (K, d), E).
This follows from 12.7,

(W, (K, d), E) ∩ (W, (J, b), E) ∼= (W, (K, d), E),

and the fact that the function ord is equivariant (6.7).
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Lemma 15.4. Let B = (W, (J, b), ∅) be a basic object such that ordB ∼= 1.
Set F = Sing(J, b) = V (∆b−1(J)) and let G = Sing(J, b) \ R(1)(F ) be the
union of the irreducible components of Sing(J, b) of codimension greater than
or equal to 2. Then:

(a) R(1)(F ) and G are both open and closed in F .

(b) R(1)(F ) is either empty or regular.

(c) If R(1)(F ) is not empty, then it is a permissible center for (W, (J, b), ∅)
and if

(W, (J, b), ∅)←− (W1, (J1, b), E1)

is the transformation with center R(1)(F ), then

W1 = W and R(1)(F1) = ∅.

(d) If R(1)(F ) = ∅ then the basic object (W, (J, b), ∅) has a structure of
(d− 1)-dimensional general basic object.

Proof: Note that if x ∈ R(1), then Jx =< lb >⊂ OW,x, where l ∈ OW,x is
an element of order one. This reduces to two observations:

(i) If an ideal of order one at OW,x defines a hypersurface, the ideal must
be principal and generated by an element of order one.

(ii) If Z is a smooth irreducible hypersurface included in Sing(J, b), then the
order of J at the generic point if Z is at least b, and J =I(Z)b·J ′⊂OW .

These observations prove statements (a), (b) and (c). Statement (d)
follows from Proposition 13.3, which we reformulate below for a sequence
of transformations. Note that if R(1)(F ) = ∅ then CoeffZ(J) = 0 (see
Definition 13.10). �

Lemma 15.5. Let B0 = (W0, (J0, b), ∅) be a basic object such that ordB0
∼= 1

and let

(15.5.1) B0 = (W0, (J0, b), E0 = ∅)←− . . .←− Bk = (Wk, (Jk, b), Ek)

be a sequence of transformations of basic objects. Then:

(a) R(1)(Sing(Jk, b)) is the strict transform of R(1)(Sing(J0, b)).

(b) If (W0, (J0, b), E0 = ∅) ⊂ (W0, (I(W̃0), 1), E0 = ∅) for some smooth

hypersurface W̃0 ⊂ W0, and

(W0, (I(W̃0), 1), E0 = ∅)←− · · · ←− (Wk, (I(W̃k), 1), Ek)
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is the sequence induced by (15.5.1), then

(15.5.2) (Wk, (Jk, b), Ek) ⊂ (Wk, (I(W̃k), 1), Ek),

and I(W̃k) defines a smooth hypersurface W̃k ⊂ Wk transversal to all
hypersurfaces of Ek.

(c) If U0,α and W̃0α denote, respectively, the open covering of W0 and the
corresponding smooth hypersurfaces stated in Proposition 13.3, then
for each index α, sequence (15.5.1) induces a sequence

(U0,α, (J0,α, b), E0,α = ∅)←− . . .←− ((Uk,α), (Jk,α, b), (Ek,α))

the open subsets (Uk,α) define an open cover of Wk, and for each in-
dex α, this sequence can be replaced by one in dimension d−1 (13.3 (b))
since

(15.5.3) (Uk,α, (Jk,α, b), Ek,α) ∼= (W̃k,α, (Aα, eα), Ek,α).

Proof: Part (b) follows from 12.2, and (c) follows from Proposition 13.3.
Part (a) follows from the proof of Lemma 15.4. �

Remark 15.6. If only monoidal transformations arise in sequence (15.5.1),
then:

1) If R(1)(Sing(Jk, b)) = ∅, then Bk = (Wk, (Jk, b), Ek) has a (d − 1)-
dimensional structure (Lemma 15.4 (d))).

2) If R(1)(Sing(Jk, b)) = ∅ and

Bk = (Wk, (Jk, b), Ek) ∼= B′
k = (W ′

k, (J
′
k, b

′), Ek),

then B′
k has a (d− 1)-dimensional structure (Lemma 15.4 (d)).

3) Let (Wk, (C, s), Ek) ⊂ Bk. If R(1)(Sing(C, s))=∅ and

(Wk, (C, s), Ek) ⊂ Bk = (Wk, (Jk, b), Ek),

then (Wk, (C, s), Ek) has a (d− 1)-dimensional structure (Lemma 15.4 (d)).

All three observations follow from the fact that isomorphisms stated
in (15.5.3) require only inclusion (15.5.2) to hold.
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15.7. Proof of Proposition 15.1: Assume that B = (W, (J, b), E = ∅)
is within Case 1. If R(1)(Sing(J, b)) = ∅, then we apply Lemma 15.4 (d),
and the statement follows by induction on d; in fact we are assuming Theo-
rem 14.8 for (d− 1)-dimensional general basic objects.

If R(1)(Sing(J, b)) =∅, then by Lemma 15.4 (c), after blowing-up R(1)(F )
we may assume that the basic object has a structure of (d− 1)-dimensional
general basic object. Again we proceed by induction.

If Θ : B = (W, (J, b), E = ∅) ∼= B′ = (W ′, (J ′, b′), E ′ = ∅) is an isomor-
phism of basic objects, then B′ is within case 1, and there is an isomorphism
Θ : W → W ′, mapping F = Sing(J, b) isomorphically to F ′ = Sing(J ′, b′).
It is clear that for any such isomorphism Θ, Θ(R(1)(F )) = R(1)(F ′). Note
also that if R(1)(F ) = ∅ = R(1)(F ′) then Θ induces an isomorphism of
the corresponding (d − 1)-dimensional general basic objects (see Lemma
15.4 (d)).

By induction there is a well defined equivariant resolutionRB for any B =
(W, (J, b), E) within Case 1. Hence Theorem 14.8 holds within this case. �
Remark 15.8. Fix B0 = (W0, (J0, b), ∅) within Case 1, and now consider
any sequence of permissible monoidal transformations as in (15.5.1), not
necessarily related to the resolution RB0 defined in 15.7. We claim now that
the basic object Bk = (Wk, (Jk, b), Ek) can also be considered and treated as
in Case 1 (although Ek is no longer empty), in the sense that we can attach a
resolution to Bk by the same arguments. In fact, F = Sing(J0, b) is a disjoint
union of two closed sets F = R(1)(F ) ∪ G (Lemma 15.4), and B0 has a
structure of d−1-dimensional general basic object in an open neighborhood
of G. Now set Fk = Sing(Jk, b) and the disjoint union Fk = R(1)(Fk) ∪ Gk

as before. By Lemma 15.5 (a), R(1)(Fk) is the strict transform of R(1)(F );
and locally at points of Gk, Bk inherits the d − 1-dimensional structure of
B0 locally at G. So the whole point is to note that R(1)(Fk) is either empty
or a permissible center (it has normal crossings with Ek), which follows
from the fact that it is the strict transform of R(1)(F ), and all irreducible
components of the centers are either disjoint or included in the intermediate
strict transforms of this hypersurface.

The general pattern of Cases 2 and 3

15.9. Cases 2 and 3 follow a general pattern which we describe now: For
each d-dimensional basic object B = (W, (J, b), E) we will define an upper
semi-continuous function with values in a totally ordered set (a family in
the sense of Definition 5.2),

(15.9.1) h = hB : Sing(J, b)→ (T,≤).

Note that Max(hB) ⊂ Sing(J, b).
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The function hB is such that there will be a d-dimensional basic ob-
ject (W, (A, c), E) associated to Max(h). In this case we will say that h is
associated to ≡ (W, (A, c), E), and it has the following properties:

P1. There is an inclusion of basic objects as in (12.2)

(W, (A, c), E) ⊂ (W, (J, b), E).

Hence, any sequence of transformations of basic objects,

(15.9.2) (Wk, (Ak, c), Ek)←− . . .←− (WN , (AN , c), EN ),

induces a sequence of transformations with the same centers

(15.9.3) (Wk, (Jk, b), Ek)←− . . .←− (WN , (JN , b), EN )

and Sing(As, c) ⊂ Sing(Js, b) for k ≤ s ≤ N .

P2. If the basic object (Wk,(Jk, b), Ek) is within Case i, then (Wk,(Ak, c), Ek)
will be within Case i− 1 (for i = 2, 3), which is simpler.

P3. If sequence (15.9.3) follows from sequence (15.9.2) as in (P1), then we
have that:

(a) If Sing(AN , c) = ∅, then maxhk = maxhk+1 = · · · = maxhN−1 =
max hN , and

Sing(Aj, c) = Max(hj) for k ≤ j ≤ N.

(b) If Sing(AN , c) = ∅, then maxhk = maxhk+1 = . . . = maxhN−1 >
max hN , and

Sing(Aj, c) = Max(hj) for k ≤ j ≤ N − 1.

P4. If Θ : (Wk, (Jk, b), Ek) ∼= (W ′
k, (J

′
k, b), E

′
k) is an isomorphism of basic

objects and if hk, h′
k are the corresponding upper semi-continuous

functions

hk : Sing(Jk, b) −→ (T,≥) and h′
k : Sing(J ′

k, b) −→ (T,≥),

then h′
k(Θ(ξ)) = hk(ξ) for all ξ ∈ Sing(Jk, b).

P5. Both the functions hi, and the basic objects (Wi, (Ai, c), Ei) attached
to it, are compatible with open restrictions of (Wi, (Ji, b), Ei) (see De-
finition 4.5).
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Remark 15.10. Note that:

A) A basic object provides a way of describing closed sets. We may think
of (Wi, (Ai, c), Ei) as a basic object attached to the value maxhi; and
property (P3) expresses this fact properly. It indicates, in particular,
that if the sequence (15.9.2) is a resolution of (W, (A, c), E), then in
the sequence (15.9.3) we have that

maxhk = maxhk+1 = · · · = maxhN−1 > max hN ,

and Sing(Aj , c) = Max(hj) for k ≤ j ≤ N − 1. In other words,
lowering max hk is guaranteed by a resolution of the basic object
(Wk, (Ak, c), Ek), attached to this maximum value.

B) If a sequence of transformations is defined (as in 3.6 and 3.12),

(15.10.1) B = (W, (J, b), E)←− . . .←− Bk = (Wk, (Jk, b), Ek),

if
Θ : B = (W, (J, b), E)→ B′ = (W ′, (J ′, b′), E ′)

is an isomorphism of basic objects, and if

B′ = (W ′, (J ′, b′), E ′)←− . . .←− B′
k = (W ′

k, (J
′
k, b

′), E ′
k)

is the corresponding induced sequence, so that there are isomorphisms

Θj : (Wj, (Jj, b), Ej) ∼= (W ′
j , (J

′
j, b

′), E ′
j),

for 0 ≤ j ≤ k as in Definition 4.6 (ii), then (P3) and (P4) assert
that Θk : (Wk, (Jk, b), Ek) ∼= (W ′

k, (J
′
k, b

′), E ′
k) induces an isomorphism

(Wk, (Ak, c), Ek) ∼= (W ′
k, (A

′
k, c

′), E ′
k).

C) The analog for general basic objects: If B = (F , (W,E)) is now a gen-
eral basic object and {Uα}α∈I is an open covering of W as in Definition

14.1 (i), then for each index α and each basic object (W̃α, (Bα, dα), Ẽα)
there is an upper semi-continuous function

hα : Sing(Bα, dα) −→ (T,≤).

If the collection of functions {hα} patch so as to define a function,

h : F → (T,≤)

then the argument exhibit in (A) and (B) show that the different
basic objects

(W̃α, (Aα, cα), Ẽα)

(defined in terms of α), define a general basic object attached to the
value maxhi.
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D) In our approach, the functions hi will be defined entirely in terms of
the functions ord and n. So Proposition 14.7 guarantees that they
define functions on general basic objects as required in (C).

Case 2.

Now we consider the case of a basic object (W, (J, b), E) such that the
function ordB ∼= 1, but where E may not be empty.

Proposition 15.11. Theorem 14.8 holds for d-dimensional basic objects
which are within Case 2.

The proof of this result, which will be stated in 15.17, is based on the
construction of suitable functions as indicated in 15.9. To illustrate the
philosophy behind this case we present the following example:

Example 15.12. Let W = A2
k. Set J = 〈x− y〉 the ideal of the diagonal D,

and set E = {H1, H2}, where H1 is the x-axis and H2 the y-axis. The
resolution of the basic object (W, (J, 1), E) consists of two transformations:

(W, (J, 1), E)←− (W1, (J1, 1), E1)←− (W2, (J2, 1), E2) .

The first transformation is the blowing-up at the origin and the second is
the blowing-up at D′, where D′ is the strict transform of the diagonal.

Now consider the automorphism Θ defined by the symmetry about the
diagonal. The resolution is equivariant and the automorphism Θ lifts to
automorphisms Θ1 in (W1, E1) and Θ2 in (W2, E2).

15.13. Let B = (W, (J, b), E) be a basic object such that ordB ∼= 1. Re-
mark 15.3 asserts that for any sequence of transformations of basic objects

(15.13.1) B=(W, (J, b), E)←− B1 =(W1, (J1, b), E1)←− . . .

. . .←− Bk =(Wk, (Jk, b), Ek),

then Sing(Jk, b) = ∅ or ordBi
∼= 1 for 1 ≤ i ≤ k. Now consider the disjoint

union

(15.13.2) Ek = E+
k ∪ E−

k

where E−
k denotes the strict transform of hypersurfaces of E. Note that

sequence (15.13.1) induces a sequence of transformations

(15.13.3) (W, (J, b), ∅)←− (W1, (J1, b), E
+
1 )←− . . .←− (Wk, (Jk, b), E

+
k ).
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Definition 15.14. With the notation introduced above, we define the upper
semi-continuous function

nk : Sing(Jk, b)→ Z

nk(x) = �{Hi ∈ E−
k : x ∈ Hi}.

If E−
k = {H1, H2, . . . , Hs}, and maxnk = m, we set

(15.14.1) Pk = Pk(m) =
∏

i1<···<im

(
m∑

j=1

I(Hij)

)
,

and define the basic objects
(15.14.2)

(Wk, (Ak, c), E
+
k ) =

{
(Wk, (Jk, b), E

+
k ) ∩ (Wk, (Pk, 1), E+

k ) if m > 0
(Wk, (Jk, b), E

+
k ) if m = 0,

and
(15.14.3)

(Wk, (Ak, c), Ek) =

{
(Wk, (Jk, b), Ek) ∩ (Wk, (Pk, 1), Ek) if m > 0
(Wk, (Jk, b), Ek) if m = 0.

Remark 15.15. Note that:

(a) By definition

(15.15.1) (Wk, (Ak, c), E
+
k ) ⊂ (Wk, (Jk, b), E

+
k ).

(b) The function nkis associated to (Wk, (Ak, c), Ek) (linked by the five
properties stated in 15.9). These properties will be discussed below.

(c) For any ξ ∈Wk,

(Pk)ξ = OWk
⇐⇒ ξ ∈ Max nk.

In fact if ξ ∈ Maxnk then

(Pk)ξ =

m=max(nk)∑
j=1

I(Hij)ξ and ξ ∈
m⋂

j=1

Hij Hij ∈ E−
k .

So Maxnk = Sing(Ak, c). Note now that the expressions in (15.14.3)
and (15.14.2), as intersection of basic objects, are compatible with
transformations in the sense of 12.7. This fact together with (a) prove
that Property (P1) stated in 15.9 holds for the functions nk.
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(d) If C is a permissible center of (Wk, (Pk, 1), Ek), for any hypersurface
H ∈ E−

k , and any irreducible component C ′ of C, either C ′ ⊂ H or
C ′∩H = ∅. This last observation and the following lemma will indicate
that

(15.15.2) (Wk, (Ak, c), Ek) ∼= (Wk, (Ak, c), E
+
k ),

in the sense of 4.6, despite the fact that Ek = E+
k . In fact the follow-

ing lemma proves that both basic objects have the same sequences of
transformations.

Lemma 15.16. Let (W,E) be a pair, assume that E is a disjoint union E =
E+∪E−. If C ⊂W is a permissible center for (W,E+), and each irreducible
component of C is either disjoint from or included in hypersurfaces of E−,
then C is permissible for (W,E).

Proof: This follows from the definition of normal crossing (see Defini-
tion 2.1). �

15.17. Proof of Proposition 15.11: First note that given a sequence of
transformation of basic objects

(15.17.1) B = (W0, (J0, b), E0)←− . . .←− Bk = (Wk, (Jk, b), Ek),

and isomorphisms

Θ : B = (W, (J, b), E)→ B′ = (W ′, (J ′, b′), E ′),

sequence (15.17.1) induces a sequence

(15.17.2) B′ = (W ′, (J ′, b′), E ′)←− . . .←− B′
k = (W ′

k, (J
′
k, b

′), E ′
k).

In particular, for 0 ≤ j ≤ k, we have the isomorphisms

Θj : (Wj, Ej) ∼= (W ′
j , E

′
j),

as in Definition 4.6 (b). Now set

(15.17.3) Ek = E+
k ∪ E−

k and E ′
k = E ′+

k ∪ E ′−
k ,

and consider the functions n′
k : Sing(J ′

k, b)→ Z, and the corresponding basic
objects

(W ′
k, (A

′
k, c

′), E ′
k).

Clearly the functions nk are compatible with the expressions in (15.17.3)
defined in terms of Ek and E ′

k. Hence,

nk(x) = n′
k(Θk(x)).
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Note that Θk defines an isomorphism

(Wk, (Ak, c), Ek) ∼= (W ′
k, (A

′
k, c

′), E ′
k)

as can be checked directly from the construction of these basic object.

We are now ready to give a proof of Proposition 15.11. We begin by
making some inductive assumptions on sequence (15.17.1): Assume first
that sequence (15.17.1) is equivariant, and assume also that

max n0 ≥ maxn1 ≥ . . . ≥ maxnk.

Let k0 be the index such that maxnk0−1 > maxnk0 = . . . = maxnk, and set
(Wk0 , (Ak0 , c), Ek0) as in (15.14.3).

By (15.15.2) a resolution of the basic object (Wk0 , (Ak0 , c), Ek0) is equiv-
alent to a resolution of (Wk0 , (Ak0 , c), E

+
k0

). We will show that

(Wk0 , (Ak0 , c), E
+
k0

)

is within Case 1, in the extended form indicated in Remark 15.8 (see 15.9
(P2)). To check this, note that (W0, (J0, b), ∅) in (15.13.3) is within Case 1,
so the assertion follows from Remark 15.6.

Assume now, by induction on k, that the last k − k0 transformations in
sequence (15.17.1) are defined by the first k − k0 steps of the equivariant
resolution of (Wk0 , (Ak0 , c), E

+
k0

). We finally enlarge sequence (15.17.1) by
the sequence induced by the equivariant resolution of (Wk0 , (Ak0 , c), E

+
k0

), as
was indicated in 15.9 (P1). This defines for some index k′ > k an equivariant
enlargement of sequence (15.17.1). Note that if maxnk = 0 this extension
is already an equivariant resolution of (W, (J, b), E). If not

maxnk0 = · · · = maxnk = · · · = maxnk′−1 > maxnk′ .

Repeating this procedure, ultimately maxnk′ = 0, and hence, we have con-
structed an equivariant resolution within this case, say

RB = (W, (J, b), E)←− (W1, (J1, b), E1)←− . . .←− (WN , (JN , b), EN )

together with a sequence 0 = k0 < k1 < k2 < · · · < ks ≤ N , and

maxnki−1
> max nki

= maxnki+1 = . . . = maxnki+1−1 > maxnki+1
. . . .

This proves Proposition 15.11. �

Note that in the Example 15.2, maxn0 = 2 > max n1 = 1 > max n2 = 0.
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Case 3: Proof of Theorem 14.8 for basic objects

Our next objective is the following statement:

Proposition 15.18. Theorem 14.8 holds for d-dimensional basic objects.

We will start with an example to illustrate the invariants involved in
the general case, and then we will introduce some auxiliary definitions and
results that will be used in the proof of the proposition, which will be detailed
in 15.25.

Example 15.19. Let W be the affine plane A2
k, let J =< x3, y4 >⊂ k[x, y],

set b = 2, and consider the basic object B = (W, (J, 2), E = ∅). In this case
Sing(J, 2) is the origin in A2

k, and ordB = 3/2. Now blow-up at the origin,
(W, (J, 2), ∅)←− (W1, (J1, 2), E1 = {H1}).

Note that J1 ⊂ OW1 is defined so that JOW1 = I(H1)
2J1. However in

this case, since the function ord is not equal to 1, there is a new factorization
of the form

J1 = I(H1)J1.

This factorization of J1 does not hold for a basic object for which ord ∼= 1,
in fact J1 = J1 if ord ∼= 1.

15.20. Given a sequence of transformation of basic objects

(15.20.1) (W0, (J0, b), E0)←− . . .←− (Wk, (Jk, b), Ek),

consider the expression

(15.20.2) Jk = I(H1)
α(1)I(H2)

α(2) . . . I(Hk)
α(k) · Jk

which is unique, if we require that Jk does not vanish along (any component
of) any Hi, arising from a previous transformation.

Remark 15.21. Let bk = max νJ̄k
, where νJ̄ is the numerator of the function

introduced in 6.2. Note that Sing(J̄k, bk) = Max νJ̄k
. If the transformation

is such that Ck ⊂ Sing(J̄k, bk) then (Wk+1, (J̄k+1, bk), Ek+1) is the transform
of the basic object (Wk, (J̄k, bk), Ek). Moreover if bk+1 = max νJ̄k+1

then
bk+1 ≤ bk (see Remark 13.16).

Definition 15.22. Given a sequence of transformations of basic objects
as in (15.20.1), and expressions as in (15.20.2), we define the upper semi-
continuous function:

w-ordk : Sing(Jk, b) → Q

x → w-ordk(x) = νx(Jk)/b.
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Remark 15.23. Given a sequence of transformations as in (15.20.1) note
that:

(a) If sequence (15.20.1) is defined by blowing up centers Ci ⊂ Max w-ordi,
then by Remark 15.21

maxw-ord0 ≥ maxw-ord1 ≥ · · · ≥ max w-ordk .

(b) If maxw-ordk = 0 then

Jk = I(H1)
α(1)I(H2)

α(2) · . . . · I(Hk)
α(k).

(c) If maxw-ordk > 0 then the functions w-ordk will play the role of the
functions hk in (15.9.1). In fact if max w-ordk = bk/b > 0 for 0 < bk

then we define:

(15.23.1) (Wk, (Ak, c), Ek) = (Wk, (Jk, bk), Ek) ∩ (Wk, (Jk, b), Ek).

(d) The basic object (Wk, (Jk, bk), Ek) is such that ord ∼= 1, so the same
holds for the basic objects (Wk,(Ak, c), Ek) (15.3 (2)), and Sing(Jk, bk)=
Maxw-ordk. By (a) bi/b = maxw-ordi ≥ bi+1/b = max w-ordi+1.
Note that if equality holds, then

(Wi+1, (J i+1, bi+1), Ei+1)

is the transform of (Wi, (J i, bi), Ei).

(e) The function w-ordk is associated to (Wk, (Ak, c), Ek), and hence it
satisfies the five properties stated in 15.9.

Lemma 15.24. Let Θ : B = (W0, (J0, b), E0) ∼= B′ = (W ′
0, (J

′
0, b

′), E ′
0) be

an isomorphism of basic objects. Consider a sequence of transformations
over B,

(15.24.1) (W0, (J0, b), E0)←− . . .←− (Wk, (Jk, b), Ek),

together with the induced sequence over B′ (as in Definition 4.6 (ii)),

(15.24.2) B′ = (W ′
0, (J

′
0, b

′), E ′
0)←− . . .←− B′

k = (W ′
k, (J

′
k, b

′), E ′
k),

and let
Jk = I(H1)

α(1)I(H2)
α(2) · . . . · I(Hk)

α(k) · Jk,

and
J ′

k = I(H ′
1)

α′(1)I(H ′
2)

α′(2) · . . . · I(H ′
k)

α′(k) · J ′
k,

be the factorizations of the ideals Jk and J ′
k as in 15.20. Set

ξk ∈ Sing(Jk, bk) = Maxw-ordk

and Θ(ξk) = ξ′k. Then:
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(i) For each ξk ∈ Sing(Jk, b) the rational numbers w-ordk(ξk), and the
{α(i)/b}{i=1,...,k} corresponding to hypersurfaces containing ξk, can be
expressed in terms of the rational numbers

{ordB0(ξ0), ordB1(ξ1), . . . , ordBk
(ξk)},

where ξi denotes the image of ξk in Wi.

(ii) For each i = 1, . . . , k, ξk ∈ Hi ∈ Ek if and only if ξ′k ∈ Θk(Hi) ∈ E ′
k,

and in that case α(i)/b = α′(i)/b′.

(iii) The function w-ordk is equivariant, i.e., w-ordk(ξk) = w-ord′
k(ξ

′
k).

Proof: We first indicate how to prove (i) by induction on k. If k = 0,
w-ord0 = ordB0 so it follows from 6.7.

If k = 1, and ξ1 /∈ H1, then ξ1 can be identified with ξ0 ∈ W0, and
w-ord1(ξ1) = w-ord0(ξ0) = ord0(ξ0). If k = 1 and ξ1 ∈ H1, note that (as in
Example 15.19) α1 is the order of J along the first center of transformation.
Hence α1/b = ordB0(ξ0), and then ordB1(ξ1) = α1/b + w-ord1(ξ1) and (i)
holds in this case.

Assume that (i) holds for i = k − 1, and we want to prove the assertion
for i = k. Then we argue as above distinguishing the case when ξk ∈ Hk, or
ξk /∈ Hk. A general expression of the invariants mentioned in (i) in terms of
{ordB0(ξ0), ordB1(ξ1), . . . , ordBk

(ξk)} can be found in [18, Theorem 7.6].

Parts (ii) and (iii) follow from the proof of part (i). �

15.25. Proof of Proposition 15.18: Let (W, (J, b), E) be a basic object,
and assume by induction on k, that we have defined an equivariant sequence
of transformations

(15.25.1) (W0, (J0, b), E0)←− . . .←− (Wk, (Jk, b), Ek),

at centers Ci ⊂ Maxw-ordi for i = 0, 1, . . . , k − 1. Hence, if Θ : B =
(W, (J, b), E) → B′ = (W ′, (J ′, b′), E ′) is an isomorphism, then there is an
induced sequence of transformations

(15.25.2) B′ = (W ′
0, (J

′
0, b

′), E ′
0)←− . . .←− B′

k = (W ′
k, (J

′
k, b

′), E ′
k)

at centers Θ(Ci) = C ′
i ⊂ Maxw-ordi for i = 0, 1, . . . , k − 1 (see Defini-

tion 4.6).

Let k0 be the smallest index in sequence (15.25.1) (or in (15.25.2))
such that

maxw-ordk0 = maxw-ordk .

We distinguish two cases:



428 A. Bravo, S. Encinas and O. Villamayor U.

• Case maxw-ordk0 > 0.

Recall that in this case, if we set maxw-ordk0 = b′/b, the basic object

(Wk0 , (Ak0 , c), Ek0) = (Wk0 , (Jk0 , b
′), Ek0) ∩ (Wk0 , (Jk0 , b), Ek0)

is within the previously treated Case 2; moreover, Sing(Ak0 , c)=Max w-ordk0 ,
and the basic object (Wk0 , (Ak0 , c), Ek0) fulfills all conditions stated in 15.9.
As indicated in Remark 15.10 (A), a resolution of (Wk0 , (Ak0 , c), Ek0), say

(15.25.3) (Wk0 , (Ak0 , c), Ek0)←− . . .←− (WN , (AN , c), EN ),

induces a sequence

(15.25.4) (Wk0 , (Jk0 , b), Ek0)←− . . .←− (WN , (JN , b), EN ),

such that

maxw-ordk0 = maxw-ordk0+1 = · · · = maxw-ordN−1 > maxw-ordN .

Assume that the last k − k0 steps of sequence (15.25.1) are the first
k − k0 steps of the sequence (15.25.4) (induced by the resolution (15.25.3)),
and now extend sequence (15.25.1), as above, to a sequence of length N .
Note that N > k and that all the hypothesis on sequence (15.25.1) also hold
on this enlarged sequence. In particular, if sequence (15.25.2) is defined in
terms of sequence (15.25.1), then by Lemma 15.24 and the equivariance of
Case 2, sequence (15.25.2) can also be extended to a sequence of length N ,
such that w-ordk0 > maxw-ordN , and the isomorphisms Θj, j = 0, 1, . . . , k
can be lifted for j = k + 1, . . . , N .

If maxw-ordN > 0 we repeat the argument. But this can happen only
finitely many times. In fact, if maxw-ordk = b′/b, then this positive rational
number can drop at most b′ times. This leads us ultimately to the case
max w-ord = 0.

• Case maxw-ordk0 = 0.

In this case we have that

(15.25.5) Jk0 = I(H1)
α(1)I(H2)

α(2) · . . . · I(Hk0)
α(k0),

and hence also that

(15.25.6) J ′
k0

= I(H ′
1)

α(1)I(H ′
2)

α(2) · . . . · I(H ′
k0

)α(k0).
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This is what we call the monomial case which will be treated in Section 20.
We will only mention here that in this case it is very simple to extend
sequence (15.25.1) (and hence sequence (15.25.2)) to a resolution. This can
be done in various ways, and simply by considering the exponents α(i): One
can define a new upper semi-continuous equivariant function whose value
at ξ ∈ Sing(Jk, b) depends entirely on {α(i)/b : ξ ∈ Hi ∈ Ek}. These
functions are equivariant by Lemma 15.24 (ii), and reach their maximum
value at a smooth permissible center. An extension of the first k0 steps of
the equivariant sequence (15.25.1) (of (15.25.2)) to an equivariant resolution
is achieved by repeating this procedure (see Section 20). �

16. Proof of Theorem 14.8 for general basic objects

We now address the proof of Theorem 14.8 for general basic objects B =
(F , (W,E)) of dimension d. Fix an open covering {Uα}α∈Λ, a collection

of smooth d-dimensional subschemes W̃α ⊂ Uα and Bα = (W̃α, (Bα, dα)Ẽα)
with the properties stated in Definition 14.1. Recall that by Proposition 14.7,
there are well defined equivariant functions,

ordd : F → Q and nd : F → Z,

obtained by patching the functions ordd
Bα

and nd
Bα

.

As in the case of basic objects we will consider three cases:

• Case 1: ordB = 1 and E = ∅.
• Case 2: ordB = 1 and E = ∅.
• Case 3. The general case: Proof of Theorem 14.8.

Again, we stress here that Cases 1 and 2 are not special cases, and that they
appear as intermediate steps when proving the general case. Recall that
Theorem 14.8 holds for d = 0, so we will argue by induction on d.

• Case 1.

Since F is of dimension d, the closed set F (⊂W ), has dimension at most d−1.
Lemma 15.4 asserts that the (d− 1)-dimensional components of F are both
open and closed in F , defining a smooth permissible center; and further-
more, by blowing up such center the transform has a structure of (d − 1)-
dimensional general basic object. A similar argument as the one used in
the proof of Proposition 15.1 shows that this particular transformation is
equivariant. This proves the theorem for d-dimensional general basic ob-
jects within Case 1.
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Remark 16.1. We may also repeat the outcome of Remark 15.8 in the
context of general basic objects, namely that the construction of the reso-
lution indicated above, also applies for transform of a general basic object
within Case 1.

• Case 2.

Let F0 be a general basic object within Case 2. As in Proposition 14.7, set

nF0 : F0 → N.

Given a sequence of transformation of general basic objects,

(16.1.1)
(F0, (W0, E0))←− . . .←−(Fr−1, (Wr−1, Er−1))←−(Fr, (Wr, Er)).

∪ ∪ ∪
F0 Fr−1 Fr

we can consider the partition, as in (15.13.2),

Ek = E+
k ∪ E−

k .

Finally define the functions

nk : Fk → Z

nk(x) = �{Hi ∈ E−
k : x ∈ Hi}.

In this way we extend, to general basic objects, the previously defined func-
tion on basic objects. The same holds for the Pk(m) in (15.14.1) as we
sketch below. For each α ∈ Λ (as in the covering introduced in 14.1), define

basic objects

(W̃α,k, (Aα,k, cα), Ẽ+
α,k) and (W̃α,k, (Aα,k, cα), Ẽα,k),

with
(W̃α,k, (Aα,k, cα), Ẽα,k) ⊂ (W̃α,k, (Bα,k, dα), Ẽα,k)

as in (15.14.2) and (15.14.3):

(W̃α,k, (Aα,k, cα), Ẽ+
α,k) = (W̃α,k, (Bα,k, dα), Ẽ+

α,k) ∩ (W̃α,k, (Pα,k, 1), E+
k ),

and

(W̃α,k, (Aα,k, c)Ẽα,k) = (W̃α,k, (Bα,k, d)Ẽα,k) ∩ (W̃α,k, (Pα,k, 1), Ek).
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Now note that the (W̃α,k, (Aα,k, c)Ẽα,k) define a new d-dimensional gen-
eral basic objects (see Remark 15.10 (C)). So for k = 0 we obtain a new
general basic object, say (F ′

0, (W0, E0)), and we repeat the argument used
in Case 2 in the context of basic objects: Since (F ′

0, (W0, E0)) is in Case 1
there is an equivariant resolution,

(F ′
0, (W0, E0))←−. . .←−(F ′

r−1, (Wr−1, Er−1))←−(F ′
r, (Wr, Er))

∪ ∪ ∪
F ′

0 F ′
r′−1 F ′

r′ = ∅

which induces a sequence of transformations

(F0, (W0, E0))←−. . .←−(Fr−1, (Wr−1, Er−1))←−(Fr, (Wr, Er))
∪ ∪ ∪
F0 Fr−1 Fr,

such that maxn0 = maxn1 = · · · = maxnr−1 > maxnr, and F ′
i = Maxni ⊂

Fi for i = 0, 1, . . . , r − 1 (see Remark 15.10 (A)).

If max nr = 0, a new d-dimensional general basic object is attached to
the value maxnr, as we did before. We repeat this argument up to the case
in which maxnr = 0. In this case (Fr, (Wr, Er)) is within Case 1 (in the
sense of Remark 16.1), and hence can be extended to a resolution.

Assume now that there is an isomorphism of general basic objects, say
F → G. If F ′ and G ′ are both defined, as before, in terms of the value
max n, then by Remark 15.10 (B), F ′ ∼= G ′ (see also Remark 15.10 (D)).
Hence these resolutions are equivariant.

• Case 3: Proof of Theorem 14.8

We may argue as in the previous case, to show that the functions w-ordi

can also be defined for general basic objects, and for a sequence of transfor-
mations of general basic objects. The same arguments used above, replacing
here the functions ni by w-ordi, show that:

(i) For any general basic object F0, we can associate to it a sequence of
transformations,

(16.1.2)
(F0, (W0, E0))←−. . .←−(FN−1, (WN−1, EN−1))←−(FN , (WN , EN ))

∪ ∪ ∪
F0 FN−1 FN ,

such that maxw-ordN = 0.

(ii) Given an isomorphism Θ : F0 → F ′
0, then the sequences defined in (i)

for F0 and F ′
0, are both of same length, say N , and linked by isomorphisms

Θi : Fi → F ′
i for 0 ≤ i ≤ N .
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Finally, the discussion in Case w-ordN = 0 applies also for general ba-
sic objects. In fact the extension of sequence (16.1.2) to a resolution is
achieved by means of a function that depends only on the invariants of
Lemma 15.24. Thus, Lemma 15.24 together with the equivariance of the
functions ordFi

assert that the extensions of sequence (16.1.2) to a reso-
lution of F0 (of F ′

0) are defined together with linking isomorphisms. This
proves Theorem 14.8. �

Part V. The Algorithm

17. On the definition of the functions fd
i

We address here the explicit description of the functions fd
i introduced in

Definition 5.5. These functions provide the elementary proofs of desingular-
ization and principalization given in 5.8 and 5.9; and the resolution of basic
objects they define turn out being that defined in Theorem 14.8. We sum-
marize some previous results for self-containment, although some references
to Part IV will be needed.

17.1. Let (W0, (J0, b), E0 = {H1, . . . , Hl}) be a d-dimensional basic object.
Given a sequence of transformations,

(17.1.1) (W0, (J0, b), E0)
π1←− . . .

πr←− (Wr, (Jr, b), Er)

we define expressions

(17.1.2) Ji = I(Hl+1)
a1 . . . I(Hl+i)

arJ i,

where Hl+i denotes the exceptional divisor at that i-th blowing-up, and
upper semi-continuous functions

w-ordd
i : Sing(Ji, b) −→ 1

b
Z ⊂ Q

ξ −→ νJi
(ξ)

b

are defined in terms of (17.1.2) (see (15.20.2) and Definition 15.22).

Assume now that sequence (17.1.1) is a sequence of transformations at
permissible centers Yi such that

(17.1.3) Yi ⊂ Maxw-ordd
i ⊂ Sing(Ji, b)

for i = 0, 1, . . . , r. In this case:

(17.1.4) w-ordd
i−1(πi(ξi)) ≥ w-ordd

i (ξi)

for every ξi ∈ Sing(Ji, b), and equality holds if πi(ξi) /∈ Yi−1 (see Re-
mark 13.16).
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In particular

(17.1.5) maxw-ordd
0 ≥ · · · ≥ max w-ordd

r .

Pick k ∈ {0, 1, . . . , r}. If max w-ordd
k > 0 let k0 be the smallest index

so that

maxw-ordd
k0−1 > maxw-ordd

k0
= maxw-ordd

k,

(k0 = 0 if max w-ordd
0 = · · · = maxw-ordd

r). Write

Ek = E+
k � E−

k

where E−
k is the set hypersurfaces of Ek which are strict transforms of hyper-

surfaces of Ek0 . Now define

nd
k(ξ) =

{
#{H ∈ Ek | ξ ∈ H} if w-ordd

k(ξ) < maxw-ordd
k

#{H ∈ E−
k | ξ ∈ H} if w-ordd

k(ξ) = maxw-ordd
k .

Definition 17.2. If condition (17.1.3) holds, and maxw-ordd
r > 0, we define,

for the index r, a function tdr by setting:

tdr : Sing(Jr, b) −→ (Q× Z,≤)

ξ −→ (w-ordd
r(ξ), n

d
r(ξ)),

where Q×Z is ordered lexicographically. In the same way we define functions
tdr−1, t

d
r−2, . . . , t

d
0. If Yr ⊂ Max tdr is a permissible center, then Yr is said to be

a tdr-permissible center.

17.3. Properties of the inductive function tdi (cf. [18, 4.15]).

1. Set F i = Sing(Ji, b). Given (q,m) ∈ Q× Z, set

F i
(q,m) = {x ∈ F i : tdi (x) ≥ (q,m)}.

Note that

F(q,m) ={x ∈ F i :w-ordi(x)> q} ∪ {x ∈ F i :w-ordi(x)≥ q, ni(x)≥ m}.

Here the first term is closed since w-ord is upper semi-continuous and
takes only finitely many different values. Since ni and w-ordi are upper
semi-continuous functions, it easily follows that the second term is also
closed. This shows that F(q,m) is closed, and hence that each tdi is upper
semi-continuous. Note also that Max tdi ⊂ Maxw-ordi.
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2. If the sequence of transformations

(17.3.1) (W0, (J0, b), E0)
π1← (W1, (J1, b), E1)

π2← . . .
πr← (Wr, (Jr, b), Er)

is td-permissible, namely if Yi ⊂ Max tdi (⊂ Maxw-ordi), then for each
index i = 0, 1, . . . , r,

tdi−1(πi(ξi)) ≥ tdi (ξi)

for all ξi ∈ Sing(Ji, b), and equality holds if πi(ξi) ∈ Yi−1. In particular

max td0 ≥ · · · ≥ max tdr .

3. We say that max td drops at i0 if max tdi0−1 >max ti0 . If maxw-ordd
0 =

b′/b and dim W0 = d, note that max tdi = (s/b,m), 0 ≤ s ≤ b′, 0 ≤
m ≤ d. So it is clear that max td can drop at most b′d times.

4. The functions tdi are the inductive invariants. In fact, if

R(1)(Max t) = ∅

(see 13.1), then this is our canonical choice of center; and after re-
peatedly blowing up this center we may assume that R(1)(Max t) = ∅.
On the other hand, if R(1)(Max t) = ∅, then via some form of induc-
tion which will be described below, it is possible to construct a unique
enlargement of sequence (17.3.1),

(17.3.2) (W0, (J0, b), E0)←− . . .←− (Wr, (Jr, b), Er)←−

←− (Wr+1, (Jr+1, b), Er+1)←− . . .←− (WN , (JN , b), EN ),

such that max tdr = max tdr+1 = · · · = max tdN−1 and either

(a) Sing(JN , b) = ∅; or

(b) Sing(JN , b) = ∅; and max w-ordN = 0; or

(c) Sing(JN , b) = ∅, maxw-ordN > 0 and max tN−1 > max tN .

Note that Property 3 says that the function max w-ordd can drop at most
finitely many times, in particular for some index N , either (a) or (b) will
hold. We show now why Property (4) holds, and why the construction of
the equivariant resolution RF , in Theorem 14.8, follows essentially from the
function tij : Roughly speaking, we attach a new basic object to max tdr , say
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(Wr, (J
′′
r , b′′), Er), so that Max tdr = Sing(J ′′

r , b′′), and a sequence of transfor-
mations

(17.3.3) (Wr, (J
′′
r , b′′), Er)←− . . .←− (WN , (J ′′

N , b′′), EN )

is naturally associated to sequence (17.3.2), so that Max tdi = Sing(J ′′
r , b′′)

(i = r, r + 1, . . . , N − 1), and such that max tdN < max tdN−1 if and only
if Sing(J ′′

N , b′′) = ∅ (if and only if sequence (17.3.3) is a resolution). The
point is that a resolution of (Wr, (J

′′
r , b′′), Er) is easy to achieve by induction,

essentially as in 13.3, which we prove in 19. We will do this in two steps, by
first attaching a basic object to the function w-ordd (in the sense described
below, see 15.9 for a more precise description), and finally to the function td.

17.4. Fix a d-dimensional basic objects (W0, (J0, b), E0), and let

(17.4.1) (W0, (J0, b), E0)←− . . .←− (Wr, (Jr, b), Er)

be a tdi -permissible sequence (so max w-ordd
i ≥ maxw-ordd

i+1 and max tdi ≥
max tdi+1). For each i = 0, 1, . . . , r, consider the factorization

Ji = I(Hl+1)
a1 · . . . · I(Hl+i)

aiJ i

as in (17.1.2). We will assume that sequence (17.4.1) has been defined by
induction on r, together with some other added conditions that we will
impose below.

• Case maxw-ordr > 0.

The function tdr was defined only when max w-ordd
r > 0, and in that case

Max tdi ⊂ Maxw-ordd
i ⊂ V (J i).

Set r0(≤ r) the smallest index such that maxw-ordr0 = maxw-ordr. A basic
object

(Wr0, (J
′
r0

, b′), Er0)

can be attached to the value maxw-ordr0, in the sense indicated above (and
denoted by (Wr0, (Ar0 , c), Er0) in (15.23.1), see Remark 15.23 (e)). Here all
the centers Yi ⊂ Maxw-ordi, and we will assume that the last r − r0 steps
of (17.4.1) are defined by a sequence of transformations
(17.4.2)

(Wr0, (J
′
r0

, b′), Er0)← (Wr0+1, (J
′
r0+1, b

′), Er0+1)← . . .← (Wr, (J
′
r, b

′), Er)

as in the case of sequence (17.3.3) (or see (P1) in 15.9).
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Note that (Wr0 , (J
′
r0

, b′), Er0) is closer to the setting in 13.3, in fact
ord ∼= 1 (it is within Case 2, see Remark 15.23 (d)). Consider the partition
Ej = E+

j ∪E−
j , for each index r0 ≤ j ≤ r, and assume that sequence (17.4.2)

is such that

maxnr0 ≥ maxnr0+1 ≥ · · · ≥ maxnr.

Since nj is the second coordinate of tj we just view it as a function on
Max w-ordj =Sing(J ′

j, b
′). Set r1(≥ r0) the smallest index such that max nr1=

max nr and let

(Wr1 , (J
′′
r1

, b′′), Er1)

be the basic object attached to maxnr1 in (15.14.3) (see also Remark 15.15(b)).

All centers Yi ⊂ Maxni(= Max ti ⊂ Maxw-ordi), and we assume that
the last r − r1 terms of sequence (17.4.2) are defined by
(17.4.3)
(Wr1, (J

′′
r1

, b′′), Er1)← (Wr1+1, (J
′′
r1+1, b

′′), Er1+1)← · · · ← (Wr, (J
′′
r , b′′), Er)

as in the case of 17.3.3 (or see (P1) in 15.9).

The point is that (Wr1, (J
′′
r1

, b′′), Er1)
∼=(Wr1 , (J

′′
r1

, b′′), E+
r1

) (see (15.15.2)),
and the right hand term is essentially in the setting of 13.3 (it is within
Case 1, see (15.17)). It follows now from 15.8 that the set F = Sing(J ′′, b′′) =
Max td is a disjoint union R(1)(F ) ∪ F1, where R(1)(F ) is a permissible
center, and after blowing up that smooth hypersurface we may assume that
R(1)(F ) = ∅, in which case (Wr1, (J

′′
r1

, b′′), Er1) has a (d − 1)-dimensional
structure. Theorem 14.8 defines a resolution, which in this case has first
center R(1)(F ) = ∅, and then proceeds by induction on d− 1.

Assume, by induction, that (Id−1,≥) is defined, together with functions
fd−1

i which have the properties stated in Definition 5.5 for general basic
objects of dimension d−1. Assume also that the resolution that they provide,
is the same resolution as Theorem (d-1) (Theorem 14.8). We also assume
that Id−1 has a biggest element, say ∞d−1 ∈ Id−1, and that this value is
never reached by any fd−1

i .

Set f
d−1

r1
(x) = ∞d−1 if x ∈ R(1)(F ), and f

d−1

r1
(x) = fd−1

0 (x) if x ∈ F1.
So if R(1)(F ) = ∅ the following properties hold:

Max f
d−1

r1
= R(1)(F ); max f

d−1

r1
> max f

d−1

r1+1(17.4.4)

f
d−1

r1
(x) = f

d−1

r1+1(x
′) if x /∈ R(1)(F ),(17.4.5)

where x′ ∈ Sing(J ′′
r1+1, b

′′) is, in this case, the point naturally identified
with x, and assume that the first transformation in sequence (17.4.3) is

defined by blowing up at Max f
d−1

i = R(1)(F ) (see Case 1 in 15.7).
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Fix some index i, r1 < i ≤ r. For any

x ∈ Max ni (= Max ti ⊂ Maxw-ordi)

set
f

d−1

i (x) = fd−1
i−r1

(x)

and assume that sequence (17.4.3) is defined by blowing up at Max f
d−1

i .
Extend sequence (17.4.3) to a resolution by means of these functions. Fi-
nally extend sequence (17.4.1) by this resolution in the sense of 15.9 (P1).
Since max td can drop only finitely many times, eventually we come to the
following case.

• Case maxw-ordr = 0.

Set r0 ≤ r the smallest index for which max w-ordr0 = 0. This is the
case in which Jr0 is in the setting of Remark 15.23 (b). This is a simple
case, in which no form of induction is required. It is not hard to formulate
the development in the proof of Case w-ord = 0 in Proposition 15.18, by
defining a totally ordered set (Γ,≥) and an upper semi-continuous function
hr0 : Sing(Jr0, b) → Γ so that, as in that proof, Maxhr0 is a permissible
center (see Section 20). Furthermore, by setting inductively functions hi :
Sing(Ji, b)→ Γ, a resolution

(17.4.6) (Wr0, (Jr0, b), Er0)←− . . .←− (WN , (JN , b), EN )

is defined by blowing up at Max hi ⊂ Sing(Ji, b), Ei) for i = 0, 1, . . . , N − 1,
and the sequence is such that

(17.4.7) maxhj > max hj+1; hd
j (x) = hd

j+1(x
′) if x /∈ Max hj,

where x′ ∈ Sing(Jj+1, b) is, in this case, the point naturally identified with x.
Assume that the last r − r0 steps of sequence (17.4.1) are the first r − r0

steps of sequence (17.4.6). Finally extend sequence (17.4.1) to a resolution
of length N.

Definition 17.5. Set T d = {∞} � (Q× Z) � Γ where this disjoint union is
totally ordered by setting that ∞ is the biggest element, and that α < β if
β ∈ (Q×Z) and α ∈ Γ. We now set Id = T d×Id−1 ordered lexicographically,
and define fd

r : Sing(Jr, b)→ Id.

(i) If max w-ordr >0, and x∈Max tr(⊂Sing(Jr, b)): f
d
r (x)=(max tr,f

d

r(x)).

(ii) If maxw-ordr = 0: fd
r (x) = (hr−r0(x),∞d−1).
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(iii) If maxw-ordr > 0, x /∈ Max tdr and w-ordr(x) > 0: There is a smallest
index r′ > r in the resolution, such that max tdr′ = tdr(x). Note that x
can be identified with a point x′ ∈ Max tdr′ . Set fd

r (x) = fd
r′(x

′).

(iv) If max w-ordr > 0 and w-ordr(x) = 0: There is a smallest index r′ > r
in the resolution, such that maxw-ordr′ = 0. Note that x can be
identified with a point x′ ∈ Sing(Jr′ , b) and we set fd

r (x) = fd
r′(x

′).

Remark 17.6. On Definition 5.5.

(1) The value (∞,∞d−1) ∈ Id is never reached, and up to induction on
the dimension d, choices of centers (namely, Max fd) are defined either
as R(1)(Max td) in case w-ordd > 0, or as Maxhd in case w-ordd = 0.
This shows that the centers Max fd are regular and permissible.

(2) Fix, as before, a basic object B=(W, (J, b), E) of dimension d, and let

RB : (W, (J, b), E)←− (W1, (J1, b), E1)←− . . .←− (WM , (JM , b), EM )

be the the resolution defined by Theorem 14.8. It follows from (17.4.4)
and (17.4.7) that max fd

j > max fd
j+1 and that fd

j (x) = fd
j+1(x

′) if
x /∈ Max fj, where x′ ∈ Sing(Jj+1, b) is the point naturally identified
with x.

(3) One can check from (2) that given α ∈ Id,

Fα = {x ∈ Sing(Jr, b) : fd
r (x) ≥ α} = ∪πs

r(Max fd
s ),

where the union is taken over each index s ≥ r such that max fd
s ≥ α,

and where πs
r : Ws →Wr is the composite morphism. In particular Fα

is closed, so the functions fd
r are upper semi-continuous.

(4) Conditions B (e) and B (f) of Definition 5.5 hold for the functions fd
r .

In fact, by Lemma 6.7 and Lemma 15.24, it follows that both condi-
tions hold for the functions hi and tdi since they hold for the functions
ord and n (see also Proposition 14.7).

(5) Note that Id = T d × . . . × T 0, and that (∞,∞, . . . ,∞) ∈ Id is the
biggest element.

(6) It follows now that these functions have the properties described in
Definition 5.5; and since all invariants involved rely on the functions
ord and n), Definition 5.5 also applies in the setting of general basic
objects.
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Example 17.7. Fix W = A3
k, E = ∅, X ⊂ W a smooth subscheme and set

(W, (I(X), 1), ∅). Note that Sing(I(X), 1) = X and that t3(x) = (1, 0) for
any x ∈ X.

If X is a smooth hypersurface, then X = R(1)(Max(t3)) so f3(x) =
((1, 0),∞,∞) ∈ I3 for any x ∈ X.

If X is a smooth curve, then R(1)(Max(t3)) = ∅, and X =R(1)(Max(t2)).
In this case f3(x) = ((1, 0), (1, 0),∞) ∈ I3 for any x ∈ X.

Remark 17.8. It turns out that given a subscheme X ⊂ W , the algorith-
mic resolution of (W, (I(X), 1), ∅) depends, to some extent, only on X (on
OW /I(X)). In fact, if J ⊂ OW and J ′ ⊂ OW ′ are such that OW /J and
OW ′/J ′ are isomorphic, and if

RB : (W, (J, 1), ∅)←− (W1, (J1, 1), E1)←− . . .←− (WM , (JM , 1), EM)

and

RB′ : (W ′, (J ′, 1), ∅)←− (W ′
1, (J

′
1, 1), E ′

1)←− . . .←− (W ′
M ′ , (J ′

M ′ , 1), EM ′)

are the resolutions defined by Theorem 14.8, then M = M ′ and, for each in-
dex i, there is an identification of V (Ji)(⊂Wi) with V (J ′

i)(⊂W ′
i ). To check

this, note first that if dim W = d > dim W ′ = d′, then RB : (W, (J, 1), ∅) has
a structure of d− d′ general basic object. Hence the first d− d′ coordinates
of fi are (1, 0) at any point of V (Ji). Use this argument to reduce to the
case in which d = d′, and then check, by induction on i, that in that setting,
there is an identification of the set V (Ji)(⊂Wi) with V (J ′

i)(⊂W ′
i ) such that

the functions fi and f ′
i coincide. See Section 9 for more details.

18. Bodnár-Schicho’s program for resolution of singu-
larities

In [10], G. Bodnár and J. Schicho presented a computer program that pro-
duces resolution of basic objects. Full details can be found in [11]. Given a
basic object, (W, (J, b), E) the program provides its resolution,

(W, (J, b), E)←− (W1, (J1, b), E1)←− . . .←− (Wr, (Jr, b), Er),

defined in terms of functions fd
i (see Definition 5.5).

Among the various problems to solve, the first one is how to encode the
variety W . This is not too difficult in case W is of finite type over k. They
cover W by open subsets Uα, such that each Uα is a closed subscheme of the
affine space Am

k , for some m. In fact the program presents the resolution of
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the basic object as a tree of charts. By looking at the tree one can follow
the affine charts of the sequence of blowing-ups, and the top level of the tree
are the charts of Wr.

From Definition 17.5 we see that the functions fd
i are defined in terms of

the function ord (introduced in 6.1), and n (6.2) of several auxiliary basic
objects. Given an ideal J , the function ord(J) is computed in terms of
the operator ∆ (13.7). Finally to compute ∆(J), we need partial derivatives
(see 13.6); and to compute derivatives we need regular systems of parameters
at every point.

A global section f ofOUα is a restriction of a polynomial f∈k[X1, . . . , Xm]
modulo the ideal defining Uα. If f1, . . . , fn are global sections of OUα such
that suitable d×d minors of the jacobian matrix do not vanish at any point
of Uα, then these global sections give rise to regular systems of parameters,
locally at any point of Uα.

18.1. In the computer program given in [11] the variety W is covered by
open charts, say Uα, where each chart is presented as follows:

• Uα is a closed smooth variety of Am
k for some m (depending on Uα).

So that Uα is defined by polynomials, called dependencies, D1, . . . , Ds∈
k[X1, . . . , Xm].

• Polynomials P1, . . . , Pd ∈ k[X1, . . . , Xm] which give rise to regular sys-
tem of parameters for every point of Uα.

• A m×d matrix with entries in k[X1, . . . , Xm], such that the restriction
of each coefficient to Uα is the partial derivative of ∂Xi

∂Pj
.

With this structure they are able to compute derivatives in the chart Uα.
In particular, given generators of an ideal J ⊂ OUα they compute generators
of ∆(J). To compute the maximal order of J in the chart Uα, one has to
find the smallest index b such that ∆b(J) = OUα , which is accomplished by
Gröbner basis computations.

Remark 18.2. Let Uα be a chart in 18.1 and let Cα = Max fd
i be the

center defined by the algorithm described in Definition 5.5 (i.e. by the
functions fd

i ).

The center Cα ⊂ Uα is defined by some equations of k[X1, . . . , Xm], say
I(Cα) = 〈f1, . . . , fr〉. The program will arrange matters so that I(Cα) =
〈P1, . . . , Pr〉 for some r < d. Using these equations one may compute the
blowing-up with center Cα, (Uα)1 −→ Uα, and cover (Uα)1 by r charts as
in 18.1.
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18.3. Computing I(Cα). We follow the proof of Theorem 14.8 for basic
objects: If the basic object is within Case 1 of Section 15, then, and as
in Proposition 13.3, at every chart Uα they define a smooth hypersurface
Ũα ⊂ Uα such that

(Uα, (Jα, b), Eα) ⊂ (Uα, (I(Ũα), 1), Eα).

The above inclusion asserts that Cα ⊂ Ũα, and hence, if f ∈ k[X1, . . . , Xm]

is the equation defining the hypersurface Ũα, then f is one of the equations
defining Cα.

Note that the hypersurface Ũα may not be irreducible. If

R(1)(Sing(J, b)) = ∅

then R(1)(Sing(J, b)) is a smooth hypersurface and a union of some con-

nected components of Ũα. The program of [11] covers Uα by open sets, as
in 18.1, of two types:

1. Charts where R(1)(Sing(J, b)) = Ũα.

2. Charts where R(1)(Sing(J, b)) = ∅.

For charts of the first type the center is Cα = Ũα.

For charts in as in (2), they provide the computations of the (d − 1)-
dimensional basic object

(Ũα, (Coeff
�Uα

(J), b!), Eα ∩ Ũα),

which requires an expression of Ũα as in 18.1. If f = Pj for some index j,

then Ũα fulfills 18.1 by adding Pj to dependencies, and we have d− 1 para-
meters.

In general f will not be a parameter, and the program given in [11] uses
an operation called cover and exchange: it covers Uα by charts as in 18.1
such that f = Pj for some j at each new chart. Following this procedure
one reduces the computation of the center for a d-dimensional basic object
to the computation for a (d− 1)-dimensional basic object.

Assume now that the basic object is within Case 2 or 3 of Section 15.
In these cases new basic objects were defined, always following the general
pattern of Remark 15.9. In both cases the basic objects are defined in terms
of intersections of other basic objects, and this is a computation (see 12.7)
which the program can also handle.
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19. Proof of Proposition 13.3

The objective of this section is to prove Proposition 13.3, which is a key step
in the inductive proof of Theorem 14.8:

Proposition 13.3 Let B = (W, (J, b), E) be a basic object, assume that
E = ∅ and that ordB

∼= 1. Then:

a) There is an open covering {Uα}α∈Λ, and for each index α ∈ Λ a closed

and smooth hypersurface W̃α ⊂ Uα, such that if (Uα, (Jα, b), ∅) is the
restriction of (W, (J, b), ∅) to Uα then

(Uα, (Jα, b), ∅) ⊂ (Uα, (I(W̃α), 1), ∅).

b) If Uα∩R(1)(Sing(J, b)) = ∅ then (Uα, (Jα, b), ∅) has structure of d−1-

dimensional basic object, i.e. there is a d−1 basic object (W̃ , (A, e), ∅)
such that

(Uα, (Jα, b), ∅) ∼= (W̃ , (A, e), ∅).

To prove this proposition we will need some auxiliary results. Some of
them clearly express the role of the derivatives in our statement, while the
others are related to the study of the restriction of basic objects to smooth
hypersurfaces. The proof of Proposition 13.3 will be detailed in 19.8.

• The role of the derivatives (an idea of J. Giraud)

Lemma 19.1. Let J ⊂ OW be an invertible sheaf of ideals and let δ be a
globally defined derivation. Then

(W, (J, b), E) ∩ (W, (δ(J), b− 1), E) ∼= (W, (J, b), E),

or equivalently,

(W, (δ(J), b− 1), E) ⊂ (W, (J, b), E).

Proof: From the properties stated in 13.7, we have that

Sing(J, b) ∩ Sing(δ(J), b− 1) = Sing(J, b).

We only have to prove that this equality is stable (or preserved) after a
transformation,

(19.1.1) (W, (J, b), E)←− (W1, (J1, b), E1).

It is simple to check this when the transformations is as in 3.12. We discuss
here the case when the transformation is as in 2.3.
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Let H be the exceptional divisor, and let I(H) ⊂ OW1 be the correspond-
ing invertible sheaf of ideals. We claim that I(H) · δ is an invertible sheaf
of derivations on W1. To see this we argue locally: Let ξ ∈ W be a closed
point and choose a regular system of parameters {x1, . . . , xn} ⊂ OW,ξ so that
the center of the monoidal transformation is locally defined by 〈x1, . . . , xs〉.
Now consider an affine neighborhood U of ξ such that x1, . . . , xs are global
sections of OU and such that J is generated by a global section, say f .
For simplicity we may assume that U = W . The scheme W1 is defined by
patching the affine rings

Ai = OW [x1/xi, . . . , xs/xi], i ∈ {1, . . . , s},

and I(H) = 〈xi〉 at Ai. Note also that

δ

(
xj

xi

)
=

δ(xj)

xi

− xj

xi

δ(xi)

xi

,

and that
I(H)δ|Spec(Ai)

= xi.δ : Ai → Ai,

and hence I(H) · δ is an invertible sheaf of derivations on W1.

Now in Ai consider the factorization f = xb
igi, so that (Spec(Ai), (〈gi〉, b),

Ei,1) is the restriction of (W1, (J1, b), E1) to Spec(Ai). Then by 13.7, the
transformation (19.1.1) induces a transformation

(19.1.2) (W, (δ(〈f〉), b− 1), E)←− (W1, (δ(〈f〉)1, b− 1), E1).

Note here that 〈f〉1 = 〈gi〉 ⊂ Ai, and that xi · δ is a derivation on Ai.
Finally check that

δ(f)

xb−1
i

=
xiδ(x

b
i · gi)

xb
i

=
xiδ(x

b
i)

xb
i

gi + xb
i

(xiδ)(gi)

xb
i

) = b · δ(xi) · gi + (xiδ)(gi).

Using this formula, and the fact that δ : OW → OW is a derivation, we also
conclude that

(δ(〈f〉))1 ⊂ 〈gi, δ(f)/xb−1
i 〉.

The formula also shows that 〈gi, δ(f)/xb−1
i 〉 = 〈gi, xiδ(gi)〉; and hence, that

globally:

(19.1.3) (δ(〈f〉))1 ⊂ ∆(〈f〉1),

and now by 13.7 again we have that

Sing(〈f〉1, b) ∩ Sing((δ(〈f〉))1, b− 1) = Sing(〈f〉1, b).

Our argument also shows that this equality is stable by any sequence of
transformations. �
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Corollary 19.2. For any basic object (W, (J, b), E) we have that:

1) (W, (J, b), E) ⊂ (W, (∆(J), b − 1), E) (i.e. (W, (J, b), E) ∩ (W, (∆(J),
b− 1), E) = (W, (J, b), E)).

2) Whenever

(W, (∆(J), b− 1), E)←− (W1, (∆(J)1, b− 1), E1)

is defined in terms of

(W, (J, b), E)←− (W1, (J1, b), E1)

(in the sense of (1)), then:

(19.2.1) ∆(J)1 ⊂ ∆(J1).

Proof: By 13.7 we have that Sing(J, b) ⊂ Sing(∆(J), b−1), which proves (1).
To prove (2), note that if

(W, (J, b), E)←− (W1, (J1, b), E1)

is a projection (as in 3.12), then it is simple to check that ∆(J)1 = ∆(J1).
Now assume that

(W, (J, b), E)←− (W1, (J1, b), E1)

is a permissible transformation (as in 2.3). If J is a principal sheaf of ideals,
then the proof follows directly from the proof of Lemma 19.1. If J is not
principal, there is an open covering of W , {Ui}i=1,...,k, such that J |Ui

=
〈fi,1, . . . , fi,si

〉. Then

(W, (J, b), E) |Ui
= ∩(W, (〈fij〉, b), E),

and the statement reduces to the principal case. �
Corollary 19.3. Let (W, (J, b), E) be a basic object, and assume that there

is a closed smooth hypersurface W̃ ⊂W such that

(19.3.1) I(W̃ ) ⊂ ∆b−1(J).

Then
(W, (J, b), E) ⊂ (W, (I(W̃ ), 1), E).

Proof: By applying Corollary 19.2 several times, we have that

(W, (J, b), E) ⊂ (W, (∆b−1(J), 1), E).

Now the proof follows from the fact that I(W̃ ) ⊂ ∆b−1(J) and the observa-
tion in Example 12.3. �
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Corollary 19.4. Let B = (W, (J, b), E) be a basic object which is within the
case ordB

∼= 1. Then locally at any point ξ ∈ Sing(J, b), there is a smooth

hypersurface W̃ , such that, identifying W with a suitable neighborhood, W̃
is closed in W , and

(19.4.1) (W, (J, b), E) ⊂ (W, (I(W̃ ), 1), E).

Proof: Since B is within the case ∼= 1, by Remark 13.9 (d) the order
of ∆b−1(J) is at most one at points of W . So, locally at each point ξ ∈
V (∆b−1(J)) = Sing(J, b), there is an element hξ ∈ ∆b−1(J)ξ which defines

a smooth hypersurface W̃ at a suitable open neighborhood of ξ. Now the
result follows from Corollary 19.3. �

• The restriction of basic objects to smooth hypersurfaces

Lemma 19.5. Let (W, (J, b), E) be a basic object, and let Z ⊂ W be a
closed smooth subscheme. Assume that Z and E are as in Definition 13.10.
If (JOZ)ξ = 0 for any ξ ∈ Z, then there is an inclusion of basic objects:

(W, (J, b), E) ∩ (W, (I(Z), 1), E) ⊂ (Z, (JOZ , b), E ∩ Z).

Proof: Set (W, (J, b), E) = (W0, (J0, b), E0) and Z0 = Z. The inclusion

Sing(J0, b) ∩ Sing(I(Z0), 1) ⊂ Sing((J0OZ0), b)

is clear, and it is clear also that such relation will hold after a transformation
as in 3.12. So we consider a sequence of transformation of pairs,

(W0, E0)←− (W1, E1)←− . . .←− (Wk, Ek),

with centers Ci ⊂ Wi, i = 0, . . . , k − 1. Assume that this sequence defines
sequences of transformations of basic objects,

(19.5.1) (W0, (J0, b), E0)←− (W1, (J1, b), E1)←− . . .←− (Wk, (Jk, b), Ek),

(19.5.2) (W0, (I(Z0), 1), E0)←− (W1, (I(Z1), 1), E1)←− . . .

. . .←− (Wk, (I(Zk), 1), Ek),

(19.5.3) (Z0, (J0OZ0, b), E0 ∩ Z0)←− (Z1, ((J0OZ0)1, b), E1 ∩ Z1)←− . . .

. . .←− (Zk, ((J0OZ0)k, b), Ek ∩ Zk),
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and assume, by induction, that for i = 0, . . . , k − 1,

(Ci ⊂) Sing(Ji, b) ∩ Sing(I(Zi), 1) ⊂ Sing((J0OZ0)i, b).

We want to prove that

(19.5.4) Sing(Jk, b) ∩ Sing(I(Zk), 1) ⊂ Sing((J0OZ0)k, b).

Note that the first transformation of basic objects of sequence (19.5.3) is

(Z0, (J0OZ0, b), E0 ∩ Z0)←− (Z1, (J1OZ1, b), E1 ∩ Z1),

since (J0OZ0)1 = J1OZ1. Now we have

Sing(J1, b) ∩ Sing(I(Z1), 1) ⊂ Sing(J1OZ1, b) = Sing((J0OZ0)1, b),

where the first inclusion is clear, and hence inclusion (19.5.4), and the lemma
follow by induction on k.

�
Remark 19.6. Let Z ⊂ W be a smooth closed subscheme, let ξ ∈ Z be a
closed point, and let

{z1, . . . , zr, x1, . . . , xn}
be a regular system of parameters in OW,ξ such that I(Z)ξ = (z1, . . . , zr).
Consider the isomorphisms

ÔW,ξ
∼= k(ξ)[[z1, . . . , zr, x1, . . . , xn]], ÔZ,ξ

∼= k(ξ)[[x1, . . . , xn]],

where the right sides are the rings of formal series. Given f ∈ OW,ξ, let f̂

denote the image in ÔW,ξ. Assume that

f̂ =
∞∑

i1,...,ir=0

ai1,...,irz
i1
1 · · · zir

r ,

where each ai1,...,ir ∈ k(ξ)[[x1, . . . , xn]]. Note that

(19.6.1) (i1! · · · ir!)ai1,...,ir = ϕ

(
∂i1+···+irf

∂zi1
1 · · · ∂zir

r

)
,

where ϕ : k(ξ)[[z1, . . . , zr, x1, . . . , xn]] → k(ξ)[[x1, . . . , xn]] is the quotient
map induced by the inclusion Z ⊂ W at ξ. Note also that, for a fixed
integer b,

(19.6.2) νξ(f) ≥ b⇐⇒ νξ(ai1,...,ir) ≥ b− (i1 + · · ·+ ir),

for all i1, . . . , ir with 0 ≤ i1 + · · ·+ ir < b (here the left hand side is the order
at OW,ξ, and the right hand side is the order at OZ,ξ).
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Proposition 19.7. Let Z ⊂ W be a closed and smooth subscheme, and let
(W, (J, b), E) be a basic object. Assume that {E,Z} have normal crossings.
Then with the same notation as in Definition 13.10, if CoeffZ(J)ξ = 0 for
any ξ ∈ Z, there is an equivalence of basic objects,

(Z, (CoeffZ(J), b!), E ∩ Z) ∼= (W, (J, b), E) ∩ (W, (I(Z), 1), E).

Proof: Set (W0, (J0, b), E0) = (W, (J, b), E) and let Z0 = Z. We will restrict
attention to transformations as in 3.6 and leave the case of 3.12 to the reader.
Consider a sequence of transformation of pairs:

(W0, E0)←− (W1, E1)←− . . .←− (Wk, Ek)

with centers Ci ⊂ Wi, i = 0, . . . , k − 1. Assume that this sequence defines
the following three sequences of transformations:

(W0, (J0, b), E0)←− (W1, (J1, b), E1)←− . . .←− (Wk, (Jk, b), Ek),

(W0, (I(Z0), 1), E0)←− (W1, (I((Z0)1), 1), E1)←− . . .

. . .←− (Wk, (I((Z0)k), 1), Ek),

(Z0, (CoeffZ0(J0), b!), E0∩Z0)←− (Z1, ((CoeffZ0(J0))1, b!), E1∩Z1)←− . . .

. . .←− (Zk, ((CoeffZ0(J0))k, b!), Ek ∩ Zk).

Assume now, by induction on k, that for i = 0, . . . , k − 1,

(Ci ⊂) Sing(Ji, b) ∩ Zi = Sing((CoeffZ0(J0))i, b!),

and recall that I((Z0)k) = I(Zk), where Zk is the strict transform of Z0 (see
Remark 3.9 (2)), and of course Sing(I(Zk), 1) = Zk. We will prove that

(19.7.1) Sing(Jk, b) ∩ Zk = Sing((CoeffZ0(J0))k, b!).

Consider the basic objects (W0,(∆
j(J0), b−j), E0) and (Z0,(∆

j(J0)OZ0, b−j),

E0 ∩ Z0), for j = 0, . . . , b− 1. From Definition 13.10 it follows that

(Z0, (CoeffZ0(J0), b!), E0 ∩ Z0) =
b−1⋂
j=0

(Z0, (∆
j(J0)OZ0, b− j), E0 ∩ Z0),

(see also 12.7); and by Corollary 19.2,

(W0, (J0, b), E0)) =
b−1⋂
j=0

(W0, (∆
j(J0), b− j), E0)).
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Finally, Lemma 19.5 asserts that

(W0, (J0, b), E0) ∩ (W0, (I(Z0), 1), E0) ⊂ (Z0, (Coeff(J0), b!), E0 ∩ Z0),

and hence,
Sing(Jk, b) ∩ Zk ⊂ Sing((CoeffZ0(J0))k, b!).

To prove the reverse inclusion we first prove the following claim:

Claim (k): For any closed point ξk ∈ Sing((CoeffZ0(J0))k, b!) ⊂ Zk, there
is a regular system of parameters at OWk,ξk

, {zk,1, . . . , zk,r, xk,1, . . . , xk,n},
such that

(a) I(Zk)ξk
= 〈zk,1, . . . , zk,r〉.

(b) Given an isomorphism of complete rings as in Remark 19.6,

ÔWk,ξr = Rk
∼= k(ξk)[[zk,1, . . . , zk,r, xk,1, . . . , xk,n]],

ÔZk,ξk
= R̄k

∼= k(ξk)[[xk,1, . . . , xk,n]],

there is a set of generators {f̂ (λ)
k } of JkRk such that

f̂
(λ)
k =

∞∑
i1,...,ir=0

a
(λ)
k,i1,...,ir

zi1
k,1 · · · zir

k,r,

as in Remark 19.6, and(
a

(λ)
k,i1,...,ir

) b!
b−(i1+···+ir) ∈ (CoeffZ0(J0))k R̄k.

Note that Claim (k) asserts that

Sing((CoeffZ0(J0))k, b!) ⊂ Sing(Jk, b) ∩ Zk.

In fact, if ξk ∈ Sing((CoeffZ0(J0))k, b!), then the order of (CoeffZ0(J0))k R̄k

is b! at R̄k, and hence by 19.6.2 ξk ∈ Sing(Jk, b).

Proof of Claim (k): Claim (0) follows from (19.6.1). Assume that Claim
(k − 1) holds for some k ≥ 1. Let ξk−1 be the image of ξk in Wk−1, and let

{zk−1,1, . . . , zk−1,r, xk−1,1, . . . , xk−1,n}

be the regular system of parameters, at ξk−1, provided by Claim (k − 1).
After a finite extension of the base field, and a linear change involving only
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the variables xk−1,1, . . . , xk−1,n in Rk−1, we may define a regular system of
parameters

{zk,1, . . . , zk,r, xk,1, . . . , xk,n}
with

zk,i =
zk−1,i

xk−1,1

, i = 1, . . . , r, xk,1 = xk−1,1, xk,i =
xk−1,i

xk−1,1

, i = 1, . . . , n,

and I(Zk)ξk
= 〈zk,1, . . . , zk,r〉. Set

f̂
(λ)
k =

f̂
(λ)
k−1

xb
k−1,1

=
∞∑

i1,...,ir=0

a
(λ)
k,i1,...,ir

zi1
k,1 · · · zir

k,r, and a
(λ)
k,i1,...,ir

=
a

(λ)
k−1,i1,...,ir

x
b−(i1+···+ir)
k−1,1

.

This settles the first part of (b). To prove that(
a

(λ)
k,i1,...,ir

) b!
b−(i1+···+ir) ∈ (CoeffZ0(J0))k R̄k,

use first (19.6.1) to show that

a
(λ)
k,i1,...,ir

∈ ∆i1+···+ir(Jk)OZk,ξk
,

and then Definition 13.10.1. �
19.8. Proof of Proposition 13.3: It follows from Propositions 19.4
and 19.7. �

20. The monomial case

In this section we will consider basic objects with the property that the
function w-ord is equal to zero at every point. For this special case we define
a resolution quite easily by means of an upper-semi-continuous function,
without making any induction on the dimension of the basic object. We will
see that the resolution, in this case, is purely combinatorial.

Definition 20.1. Let (W, (J, b), E) be a basic object with E = {H1, . . . , Hr}.
We say the the basic object is monomial if for any point ξ ∈ Sing(J, b) we
have that

Jξ = I(H1)
a1(ξ)
ξ I(H2)

a2(ξ)
ξ · · · I(Hr)

ar(ξ)
ξ ,

where ai : Hi ∩ Sing(J, b) −→ Z is a locally constant function.

Note that, for a monomial basic object, the closed set Sing(J, b) is the
union of some of the irreducible components of intersections of the hyper-
surfaces Hi. In fact, consider the intersection Hi1 ∩ · · · ∩Hip and let C be
an irreducible component. Then the functions ai1 , . . . , aip are constant on C
and C is included in Sing(J, b) if and only ai1 + · · ·+ aip ≥ b along C.
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Definition 20.2. Let (W, (J, b), E) be a monomial basic object. With the
notation of Definition 20.1 define the function:

h : Sing(J, b) −→ Γ = Z×Q× ZN

h(ξ) = (−p(ξ), ω(ξ), �(ξ)).

If ξ ∈ Sing(J, b) define,

(20.2.1) p(ξ) = min

{
q | ∃i1, . . . , iq,

ai1(ξ) + · · ·+ aiq(ξ) ≥ b
ξ ∈ Hi1 ∩ · · · ∩Hiq ,

}

(20.2.2) ω(ξ) = max

{
ai1(ξ) + · · ·+ aiq(ξ)

b
|

q = p(ξ), ai1(ξ) + · · ·+ aiq(ξ) ≥ b, ξ ∈ Hi1 ∩ · · · ∩Hiq

}
and

(20.2.3) �(ξ) = max

{
(i1, . . . , iq, 0, . . .) |

q = p(ξ),
ai1(ξ) + · · ·+ aiq(ξ)

b
= ω(ξ), ξ ∈ Hi1 ∩ · · · ∩Hiq

}
.

In the last formula we consider the lexicographical order in ZN, and the
convention that i1 < i2 < · · · < iq.

Fix a point ξ ∈ Sing(J, b) and let C1, . . . , Cs be the irreducible compo-
nents of Sing(J, b) at ξ. The first coordinate of h(ξ), −p(ξ), will indicate
the minimal codimension of C1, . . . , Cs. Denote by C ′

1, . . . , C
′
s′ the com-

ponents with minimum codimension p(ξ). The second coordinate of h(ξ)
is ω(ξ) = b′/b where b′ is the maximum of the order of J along the sets
C ′

1, . . . , C
′
s′ . Denote by C ′′

1 , . . . , C ′′
s′′ the components with maximum order.

Now the last coordinate of h(ξ), �(ξ), corresponds to C ′′
j for some index j.

So far, fixed a point ξ, with p(ξ) we have selected the irreducible com-
ponents of Sing(J, b) at ξ of highest dimension. With ω(ξ) we have select,
among the previous components, those where the order of J is maximum.
Finally with �(ξ) we select a unique component containing ξ.

20.3. Now one can check that the function h is upper-semi-continuous and
that the set Maxh is regular and a union of connected components of the
regular scheme Hi1 ∩ · · · ∩ Hip0

if maxh = (−p0, w0, (i1, . . . , ip0, 0, . . .)). It
is clear that Maxh is a permissible center for the basic object (W, (J, b), E).
Let

(W, (J, b), E)
Π←− (W1, (J1, b), E1)
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be the transformation with center Maxh, and let E1 = {H1, . . . , Hr, Hr+1},
where, by abuse of notation, Hi is the strict transform of Hi, for i = 1, . . . , r,
and Hr+1 is the exceptional divisor of the transformation Π. The basic object
(W1, (J1, b), E1) is also monomial, in fact for ξ ∈ Sing(J1, b) we have

(20.3.1) Jξ = I(H1)
a′
1(ξ)

ξ · · · I(Hr)
a′

r(ξ)
ξ I(Hr+1)

a′
r+1(ξ)

ξ ,

where the functions a′
i are given by:

(20.3.2)
a′

i(ξ) = ai(Π(ξ)) ∀ξ ∈ Hi and i = 1, . . . , r;
a′

r+1(ξ) = ai1(Π(ξ)) + · · ·+ aip0
(Π(ξ))− b ∀ξ ∈ Hr+1.

As in Definition 20.2, a function h1 has been associated to the basic object
(W1, (J1, b), E1), and one can check that the maximum value has dropped:

maxh > maxh1.

In fact, for any point ξ ∈ Sing(J1, b):

(20.3.3)
h1(ξ) = h(Π(ξ)) if Π(ξ) ∈ Max h
h1(ξ) < h(Π(ξ)) if Π(ξ) ∈ Max h.

It is not hard to check that this function h defines a resolution of the basic
object. To illustrate this fact and the statement in (20.3.3), consider the
following example:

Example 20.4. Let (W, (J, b), E) where W now denotes the real analytic
space R4, H1, . . . , H4 are the coordinate hyperplanes, and

E = {H1, H2, H3, H4}, b = 9, J = I(H1)
6I(H2)

4I(H3)
2I(H4)

2.

Note that the intersection H1 ∩ H2 ∩ H3 ∩ H4 is a closed point. The
singular locus of the basic object is:

Sing(J, 9) = (H1 ∩H2) ∪ (H1 ∩H3 ∩H4) ,

and the function h is given by

h(ξ) =

{
(−2, 10

9
, (1, 2, 0, 0)) if ξ ∈ H1 ∩H2

(−3, 10
9
, (1, 3, 4, 0)) if ξ ∈ (H1 ∩H3 ∩H4) \ (H1 ∩H2) ,

so that maxh = (−2, 10
9
, (1, 2, 0, 0)) and Maxh = H1 ∩ H2. Note that the

two irreducible components of Sing(J, 9) are of different dimension and that
the function p takes different values along each component. Consider the
transformation with center H1 ∩H2:

(W, (J, 9), E)←− (W1, (J1, 9), E1),

where E1 = {H1, H2, H3, H4, H5} and

J1 = I(H1)
6I(H2)

4I(H3)
2I(H4)

2I(H5).
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The singular locus of the new basic object is

Sing(J1, 9) = (H1 ∩H3 ∩H4) ∪ (H1 ∩H3 ∩H5) ∪ (H1 ∩H4 ∩H5)∪
∪ (H2 ∩H3 ∩H4 ∩H5) .

The function h1 corresponding to the basic object (W1, (J1, 9), E1) is given
as follows:

• If ξ ∈ H1 ∩H3 ∩H4 then

h1(ξ) = (−3,
10

9
, (1, 3, 4, 0)).

• If ξ ∈ H1 ∩H4 ∩H5 and ξ ∈ H1 ∩H3 ∩H4 then

h1(ξ) = (−3,
9

9
, (1, 4, 5, 0)).

• If ξ ∈ H1 ∩H3 ∩H5 and ξ ∈ (H1 ∩H3 ∩H4) ∪ (H1 ∩H4 ∩H5) then

h1(ξ) = (−3,
9

9
, (1, 3, 5, 0)).

• If ξ ∈ H2 ∩H3 ∩H4 ∩H5 then

h1(ξ) = (−4,
9

9
, (2, 3, 4, 5)).

Here Sing(J1, 9) has four irreducible components and the function h1 takes
different values along each component. Then maxh1 = (−3, 10

9
, (1, 3, 4, 0))

and Maxh1 = H1 ∩H3 ∩H4. Note that maxh > maxh1. We construct the
transformation of basic objects with center Maxh1:

(W1, (J1, 9), E1)←− (W2, (J2, 9), E2).

Now E2 = {H1, H2, H3, H4, H5, H6} and

J2 = I(H1)
6I(H2)

4I(H3)
2I(H4)

2I(H5)I(H6).

The singular locus of (W2, (J2, 9), E2) is

Sing(J2, 9) = (H1 ∩H3 ∩H5) ∪ (H1 ∩H4 ∩H5)∪
∪ (H1 ∩H3 ∩H6) ∪ (H1 ∩H4 ∩H6)∪
∪ (H2 ∩H3 ∩H4 ∩H5) ∪ (H2 ∩H3 ∩H4 ∩H6) .

There are four irreducible components of dimension one and two compo-
nents of dimension zero. The function h2 takes different values along each
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component and one concludes that maxh2 = (−3, 9
9
, (1, 4, 6, 0)) and that

Max h2 = H1 ∩H4 ∩H6. Consider the transformation with center Maxh2

(W2, (J2, 9), E2)←− (W3, (J3, 9), E3),

where E3 = {H1, H2, H3, H4, H5, H6, H7} and

J3 = I(H1)
6I(H2)

4I(H3)
2I(H4)

2I(H5)I(H6).

Now the singular locus is

Sing(J3, 9) = (H1 ∩H3 ∩H5) ∪ (H1 ∩H4 ∩H5)∪

∪ (H1 ∩H3 ∩H6) ∪ (H2 ∩H3 ∩H4 ∩H5) ∪ (H2 ∩H3 ∩H4 ∩H6) ,

and we have that maxh3 = (−3, 9
9
, (1, 4, 5, 0)) and Max h3 = H1 ∩H4 ∩H5.

After five transformations of basic objects we achieve a resolution.

21. On Hironaka’s trick

The purpose of this section is to state and prove Proposition 21.1. A conse-
quence of this result is that the function ord introduced in 6.1 is well defined
for general basic objects, and moreover, equivariant (see Remark 21.2).

Proposition 21.1. [4] Let (F , (W,E)) be a d-dimensional general basic
object. Assume that there is an open covering {Uα}α∈Λ of W as in Defini-
tion 14.1 consisting of the single open set W . Assume also that we have two
d-dimensional basic objects (W ′, (B′, d′), E ′) and (W ′′, (B′′, d′′), E ′′) defining
(F , (W,E)), (i.e. both basic objects describe the closed sets associated to
(F , (W,E))). If x ∈ Sing(B′, d′) = Sing(B′′, d′′) then

νB′(x)

d′ =
νB′′(x)

d′′ .

Proof: Set ω′ = νB′(x) and ω′′ = νB′′(x). We shall prove the proposition
by constructing a number of x-extendable sequences of transformations of
general basic objects with suitable properties. Let
(21.1.1)

(F , (W,E))
Π0←− (F0, (W0, E0))

Π1←− (F1, (W1, E1))
Π2←− · · · Πk←− (Fk, (Wk, Ek))

be a sequence of transformations of general basic objects. Note that se-
quence (21.1.1) defines sequences of transformations of basic objects

(21.1.2) (W ′, (B′, d′), E ′)
Π′

0←− (W ′
0, (B

′
0, d

′), E ′
0)

Π′
1←− (W ′

1, (B
′
1, d

′), E ′
1)

Π′
2←− . . .

· · · Π′
k←− (W ′

k, (B
′
k, d

′), E ′
k),
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and

(21.1.3)

(W ′′, (B′′, d′′), E ′′)
Π′′

0←− (W ′′
0 , (B′′

0 , d′′), E ′′
0 )

Π′′
1←− (W ′′

1 , (B′′
1 , d′′), E ′′

1 )
Π′′

2←− . . .

· · · Π′′
k←− (W ′′

k , (B′′
k , d′′), E ′′

k ).

The first transformation Π0 of (21.1.1) is a projection (as allowed in 14.1),
so the first transformations of (21.1.2) and (21.1.3) are projections too. All
the other transformation will be permissible transformations (as in 3.6). For
each index k, sequence (21.1.1) is defined as follows:

1. Identify L0 = Π−1
0 (x) with A1

k and set x0 = 0 ∈ L0. Note that L0 ⊂ F0,
the singular locus of (F0, (W0, E0)).

2. Given an index s ≥ 0, a line Ls ⊂ Fs and a point xs ∈ Ls, define the
transformation Πs+1 with center xs. Now set:

i Ls+1 ⊂ Fs+1 as the strict transform of Ls.

ii Hs+1(∈ Es+1) as the exceptional locus of Πs+1;

iii xs+1 = Hs+1 ∩ Ls+1.

Note that (1) together with (2) provides us with a rule for constructing
a sequence as (21.1.1) with length s for any s ≥ 1. By construction the
sequence (21.1.1) is x-extendable (see 6.3). Note that Ls ⊂ Fs for any s, so
in particular xs ∈ Fs, and by assumption:

xs ∈ Sing(B′
s, d

′) = Sing(B′′
s , d′′) ∀s ≥ 0.

There are expressions as in (15.20.2),

(21.1.4) (B′
s)xs = I(H ′

s)
a′

s
xs

(B′
s)xs (B′′

s )xs = I(H ′′
s )a′′

s
xs

(B′′
s)xs .

Note that here H ′
s = Hs ∩ W ′

s and H ′′
s = Hs ∩ W ′′

s . On may check, by
induction on s, that

a′
s = s(ω′ − d′) a′′

s = s(ω′′ − d′′).

Since the first term of all sequences is a projection, then for s ≥ 1, dim(W ′
s) =

dim(W ′′
s ) = d + 1. It follows that

dim(Fs ∩Hs) = d⇐⇒ a′
s = s(ω′ − d′) ≥ d′

⇐⇒ a′′
s = s(ω′′ − d′′) ≥ d′′.

Note that dimH ′
s = dim H ′′

s = d, so if dim(Fs ∩ Hs) = d then Fs ∩ Hs =
H ′

s = H ′′
s . Furthermore if dim(Fs ∩ Hs) = d, then Fs ∩ Hs is a permissible

center for the general basic object.
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At this point we start a new stage of the process by choosing Fs ∩ Hs

as a center of a transformation Πs+1. It turns out that in the expressions
of (21.1.4),

a′
s = s(ω′ − d′)− d′, a′′

s = s(ω′′ − d′′)− d′′.

Fix the index s and set, if possible, the center of transformations Πs+j to be
Fs+j ∩Hs+j, for j ≥ 0. Note that

dim(Fs+j ∩Hs+j) = d⇐⇒ a′
s+j = s(ω′ − d′)− jd′ ≥ d′

⇐⇒ a′′
s+j = s(ω′′ − d′′)− jd′′ ≥ d′′.

And we conclude that

dim(Fs+j ∩Hs+j) = d (in which case is a permissible center)⇔ j ≤ �′s
⇔ j ≤ �′′s ,

where

�′s =

⌊
s(ω′ − d′)

d′

⌋
�′′s =

⌊
s(ω′′ − d′′)

d′′

⌋
and �·� denotes the integer part.

Finally note that

νB′(x)

d′ =
w′

d′ = lim
s→∞

1

s
�′s + 1,

νB′′(x)

d′′ =
w′′

d′′ = lim
s→∞

1

s
�′′s + 1,

and we have expressed the rational numbers

νB′(x)

d′ and
νB′′(x)

d′′

in terms of permissible sequences of the general basic object (F , (W,E)),
and all sequences are x-extendable. Hence νB′(x)/d′ = νB′′(x)/d′′. �
Remark 21.2. It follows from Proposition 21.1 that the function ord is well
defined for general basic objects, and note also that the proof of Proposi-
tion 21.1 implies the equivariance of this function: Given an isomorphism
of d-dimensional general basic objects Θ : (F , (W,E))→ (F ′, (W ′, E ′)) (see
Definition 14.5) and a point x ∈ Sing(F), set x′ = Θ(x) ∈ Sing(F ′). By Def-
inition 14.5 (ii), the isomorphism Θ defines a bijection between x-extendable
sequences and x′-extendable sequences, say αΘ : Cx(F)→Cx′(F ′). Note that
the dimension n is fixed and the rational number ordF(x) (resp. ordF ′(x′))
is expressed in terms of sequences of Cx(F) (resp. Cx′(F ′)). We conclude
that ordF(x) = ordF ′(x′).



456 A. Bravo, S. Encinas and O. Villamayor U.

References

[1] Abhyankar, S. S.: Good points of a hypersurface. Adv. in Math. 68
(1988), 87–256.

[2] Abramovich, D. and De Jong, A. J. : Smoothness, semistability and
toroidal geometry. J. Algebraic Geom. 6 (1997), 789–801.

[3] Abramovich, D. and Wang, J.: Equivariant resolution of singularities
in characteristic 0. Math. Res. Lett. 4 (1997), 427–433.

[4] Aroca, J.M., Hironaka, H. and Vicente, J. L.: The theory of the
maximal contact. Memorias de Matemática del Instituto“Jorge Juan” 29.
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