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Dyadic BMO on the bidisk

Óscar Blasco and Sandra Pott

Abstract

We give several new characterizations of the dual of the dyadic
Hardy space H1,d(T2), the so-called dyadic BMO space in two vari-
ables and denoted BMOd

prod. These include characterizations in terms
of Haar multipliers, in terms of the “symmetrised paraproduct” Λb, in
terms of the rectangular BMO norms of the iterated “sweeps”, and in
terms of nested commutators with dyadic martingale transforms. We
further explore the connection between BMOd

prod and John-Nirenberg
type inequalities, and study a scale of rectangular BMO spaces.

1. Introduction

Throughout the paper D denotes the set of dyadic intervals in the unit
circle T. In the case of the bicircle T2, D1 denotes the dyadic intervals in the
first, D2 the dyadic intervals in the second variable. We write R = D1 ×D2

for the dyadic rectangles, |I| for the length of I ∈ D and |R| for the area
of R ∈ R, (hI)I∈D stands for the Haar basis in L2(T) and (hR)R∈R for the
product Haar basis of L2(T2).

Here

hI(t) =
1

|I|1/2
(χI+(t) − χI−(t))

for each dyadic interval I ∈ D, where I− denotes the left half of I, and I+

denotes the right half of I. For each dyadic rectangle R = I × J ∈ R, hR is
defined by

hR(s, t) = hI(s)hJ(t).

We denote by H00 the space of all functions in L2(T2) which have a finite
expansion in the product Haar basis.
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Given g ∈ L2(T), we use the notation gI = 〈g, hI〉 and mIg = 1
|I|

∫
I
g(t)dt.

Similarly, given f ∈ L2(T2), we use the notation fR = 〈f, hR〉, fI(s) =
〈f(·, s), hI〉, mIf(s) = 1

|I|
∫

I
f(t, s)dt, fJ(t) = 〈f(t, ·), hJ〉 and mJf(t) =

1
|J |

∫
J
f(t, s)ds. Therefore

f(t, s) =
∑
R∈R

fRhR(t, s) =
∑
I∈D

fI(s)hI(t) =
∑
J∈D

fJ(t)hJ(s).

Let PIg = (g−mIg)χI for g ∈ L2(T). Observe that PI is the orthogonal
projection on the subspace spanned by the Haar functions hI′ , I ′ ∈ D, I ′ ⊆ I.
If g =

∑
I∈D gIhI , then

(1.1) PIg =
∑

I′∈D,I′⊆I

hI′gI′ .

Similarly, for each measurable set Ω ⊆ T2, let PΩ be the orthogonal
projection on the subspace spanned by the Haar functions hR′ , R′ ∈ R,
R′ ⊆ Ω. In particular, for each dyadic rectangle R = I × J ∈ R and for
f =

∑
R′∈R hR′fR′ ∈ L2(T2), we have

PRf = PI ⊗ PJf =
∑

R′∈R,R′⊆R

hR′fR′ .

It is easy to see that for R ∈ R and f ∈ L2(T2),

(1.2) PRf = (f − mIf − mJf + mI×J) χI×J .

Recall that g ∈ L2(T) is said to belong to dyadic BMO, to be denoted
BMOd(T), if

sup
I∈D

(
1

|I|
∫

I

|g(t) − mIg|2dt

)1/2

< ∞.

By John-Nirenberg’s lemma, this is equivalent to

sup
I∈D

(
1

|I|
∫

I

|g(t) − mIg|pdt

)1/p

< ∞

for any 1 ≤ p < ∞.

Hence g ∈ BMOd(T) if and only if there exists a constant C such that
for all I ∈ D ∑

I′∈D,I′⊆I

|gI′ |2 ≤ C|I|1/2,

or equivalently

sup
I∈D

1

|I|1/p
‖PIg‖p < ∞

for 1 ≤ p < ∞.
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The space BMO appears in many different contexts. We shall use that
BMOd(T) = (H1,d(T))∗ where H1,d is defined in terms of the dyadic square
functions S,

S g =

( ∑
I∈D

χI

|I| |gI |2
)1/2

.

That is,
H1,d(T) = {g ∈ L1(T) : S g ∈ L1(T)}.

Using Carleson measures, this gives rise to a description of BMOd in
terms of symbols g for which the dyadic paraproduct πg,

πg(f) =
∑
I∈D

gImIfhI

or its adjoint operator ∆g, ∆g(f) =
∑

I∈D gIfI
χI

|I| , is bounded on L2(T) (or

equivalently, on Lp(T) for 1 < p < ∞).

The situation in two variables it is rather different and much more
delicate. One main reason for the difficulties encountered in the multi-
variable theory is the failure of the naive generalization of the Carleson
Embedding Theorem to several variables (see [C], [Fef]). The reader is re-
ferred to [ChFef2] for an overview on the theory and an outline of the main
differences.

Several new results (e. g. [FS] and [PS]) further exhibit the differences
between certain BMO spaces on the polydisk defined by multi-variable ver-
sions of the different yet equivalent characterizations of BMO(T).

A function f ∈ L2(T2) is said to belong to the rectangular dyadic BMO
space, to be denoted BMOd

rect, if

(1.3) sup
R=I×J∈R

(
1

|R|
∫

R

|f(t, s) − mIf(s) − mJf(t) + mI×Jf |2dtds

)1/2

< ∞.

Or equivalently,

‖ϕ‖BMOd
rect

= sup
R∈R

1

|R|1/2
‖PRϕ‖2.

We will also consider a p-version of the dyadic rectangular norm for
1 ≤ p < ∞,

(1.4) ‖ϕ‖BMOd
rect,p

= sup
R∈R

1

|R|1/p
‖PRϕ‖p.

Here, ‖ · ‖BMOd
rect

= ‖ · ‖BMOd
rect,2

. In the one-variable case, the corresponding

norms are of course all equivalent because of John-Nirenberg’s lemma.
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Let us start by defining BMOd
prod(T

2) as the dual of H1,d(T2), the space
of functions f ∈ L1(T2) such that S(f) ∈ L1(T2), where

S(f) =

( ∑
R∈R

|fR|2h2
R

)1/2

.

Although BMOd
prod(T

2) cannot be characterized by (1.3) [Fef], it was
shown by Bernard in the dyadic case [Be] and also by Chang and R. Fef-
ferman in a continuous version [ChFef1] that BMOd

prod(T
2) can also be de-

scribed as the space of functions ϕ ∈ L2(T2) for which there exists C > 0
such that

(1.5) ‖ϕ‖prod = sup
Ω⊂T2

1

|Ω|1/2
‖PΩϕ‖2 < ∞,

where the supremum is taken over all measurable sets Ω ⊆ T2. This imme-
diately implies BMOd

prod ⊆ BMOrect,2.

The connection between both spaces can be also seen from the description
of BMOd

prod in terms of the boundedness of the dyadic paraproduct in two

variables, defined by π
(1,2)
b (f) =

∑
R∈R bRmRfhR.

It follows from Chang’s generalization of the Carleson Embedding Theo-
rem (see [Ch]) that b ∈ BMOd

prod if and only if the double paraproduct π
(1,2)
b

is bounded on L2(T2). In our paper the following fact will be rather crucial:

(1.6) ||ϕ||prod ≈ ||π(1,2)
ϕ ||.

An similar characterization for BMOd
rect was proved in [PS], Proposi-

tion 3.3.1, namely that b ∈ BMOd
rect if and only if π

(1,2)
b maps L2(T)⊗̂L2(T)

boundedly into L2(T2), where L2(T)⊗̂L2(T) stands for the projective ten-
sor product. This also implies that BMOd

prod � BMOd
rect (see [Fef] for an

alternative approach).

We shall try to better understand the difference between both spaces.
Two approaches are used to this end. First we observe that John-Nirenberg
type inequalities do not hold in BMOd

rect, in the sense that the 2-norm in the
definition of BMOd

rect cannot be replaced by any other p-norm. This solves a
question left open in [FS]. Secondly, we analyse the behaviour of the sweep
of functions in the BMOd

prod and in the BMOd
rect,p spaces.

Our main new tool will be characterizations of BMOd
prod in terms of

Haar multipliers. Recall that sequence of functions (φR)R∈R is called a Haar
multiplier (see (2.16) or [Per]) on Lp(T2), if the map

f =
∑
R∈R

fRhR(t, s) 
→
∑
R∈R

φR(t, s)fRhR(t, s)

defines a bounded operator on Lp(T2).
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We shall say that b ∈ BMOd
mult if {(PRb)}R∈R defines a Haar multiplier

on L2(T2).

Using the characterization of BMOd
prod in terms of dyadic paraproducts,

we observe that b ∈ BMOd
prod if the operator ∆b = (π

(1,2)

b̄
)∗ given by ∆b(f) =∑

R bRhRfRhR defines a bounded operator on L2(T2). Hence b ∈ BMOd
prod

if and only if (bRhR)R∈R is a Haar multiplier on L2(T2).

On the other hand, letting the Haar multiplier (PR′b)R′∈R act on hR, we
see that 1

|R|1/2‖PRb‖2 ≤ ‖b‖mult, implying that BMOd
mult ⊆ BMOd

rect.

We shall get a description of BMOd
mult in terms of the boundedness of

the operator

Λb = π
(1,2)
b + (π

(1,2)
b )∗ + ∆πb

+ (∆πb
)∗,

where ∆πb
(see Definition 2.4) is an operator combining the one-variable

paraproduct π and its adjoint. This will allow us to prove that BMOd
mult(T

2)
= BMOd

prod(T
2) (see Theorem 2.8).

On the other hand, BMOd
rect can also be described using Λb. We show

that BMOd
rect can be characterized in terms of “average boundedness” of Λb

or in terms of its boundedness from L2(T)⊗̂L2(T) into L2(T2).

The paper is divided into three sections. The first one is devoted to the
introduction of the space BMOd

mult and the proof of some of its properties.
We see that BMOd

mult can be characterized as the space of symbols b for which
the operator Λb is bounded, and that this space coincides with BMOd

prod.

Section 3 deals with results on sweep functions. We prove the following
formula connecting the boundedness of π

(1,2)
b and ΛSb

(see Lemma 3.2):

(1.7) π
(1,2)
b

∗
π

(1,2)
b = ΛSb

+ Db,

where Db is bounded if b ∈ BMOd
rect,2.

This allows us to see that b ∈ BMOd
prod if and only if Sb ∈ BMOd

prod. We

also obtain a characterization of BMOd
prod in terms of nested commutators

with dyadic martingale transforms, sharpening a result from [PS].

We further use the formula (1.7) to quantify the difference between the
BMO spaces we have considered, and to get a characterization of BMOd

prod

relying only upon the BMOd
rect norm of the n-fold sweeps.

Finally, in the last section, we apply the results from the previous ones
together with interpolation to study the scale of spaces BMOd

rect,p introduced
in (1.4) and show that these spaces are pairwise distinct. As a corollary, we
obtain that BMOd

prod � ∩p≥1 BMOd
rect,p.



488 Ó. Blasco and S. Pott

2. BMO via Haar multipliers

Definition 2.1 We shall say that b ∈ BMOd
mult if {(PRb)}R∈R defines a

Haar multiplier on L2(T2), i.e. there exists C > 0 such that∥∥∥ ∑
R∈R

PRb fRhR

∥∥∥
2
≤ C‖f‖2

for all f ∈ L2(T2). We define ‖b‖mult as the norm of the corresponding
operator.

Let us start by pointing out some simple facts about this space.
Given I ∈ D we write PI for the operator on L2(T) given by (1.1), and

P̃I = PI ⊗ id for the corresponding projection on L2(T2),

P̃I(f)(t, s) =
∑

I′∈D,I′⊆I

hI′(t)fI′(s).

Similarly, given J ∈ D2, we write P̃J for id ⊗ PJ .

Of course, P̃I(f)(t, s) = PI(f(s, ·))(t) and PRf = P̃J(P̃If) for R = I ×J .

Proposition 2.2

L∞(T2) ⊂ BMOd
mult(T

2)(2.1)

BMOd(T) ⊗ BMOd(T) ⊆ BMOd
mult(T

2)(2.2)

Proof. Using (1.2), one easily obtains the following formula:∑
R∈R

PRbfRhR = fb −
∑
I∈D

(mIb)fIhI −
∑
J∈D

(mJb)fJhJ +
∑
R∈R

mRbfRhR.

Now (2.1) follows from this expression together with∥∥∥ ∑
J∈D

(mJb)fJhJ

∥∥∥2

L2(T2)
=

∑
J∈D

||mJb fJ ||2L2(T),

since ∥∥∥ ∑
J∈D

(mJb)fJhJ

∥∥∥2

L2(T2)
≤ ||b||2∞

∑
J∈D

||fJ ||2L2(T) = ||b||2∞||f ||22,

and the trivial estimates for the terms bf and
∑

R∈R mRbfRhR.

To see (2.2), note first that for b1 ∈ BMOd and f ∈ L2(T),

(2.3)
∑
I∈D

PIb1fIhI = (πb1 + ∆b1)f = (πb1 + (πb̄1)
∗)f.

Therefore (PIb1)I∈D defines a bounded Haar multiplier on L2(T).
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Now let b(t, s) = b1(t)b2(s) with b1, b2 ∈ BMOd(T). Then PR(b) =
PI(b1)PJ(b2) and therefore

∑
R∈R

PRbfRhR =
∑
I∈D

PIb1

( ∑
J∈D

PJb2fJhJ

)
I

hI .

This yields

∥∥∥ ∑
R∈R

PRbfRhR

∥∥∥2

2
=

∫
T2

∣∣∣∣
∑
I∈D

PIb1(t)

( ∑
J∈D

PJb2fJhJ

)
I

(s)hI(t)

∣∣∣∣
2

2

dtds

≤ C||b1||2BMO

∫
T

∑
I∈D

∣∣∣∣
∑
J∈D

(PJb2fJhJ)I(s)

∣∣∣∣
2

ds

≤ C2||b1||2BMO||b2||2BMO

∑
I∈D

∑
J∈D

|fI×J |2

with some absolute constant C > 0. �
As announced in the introduction, we first relate this space to BMOd

prod.
For this purpose we introduce the dyadic paraproducts in two variables
(see [PS]):

Definition 2.3 Given b ∈ L2(T2), we write

π
(1,2)
b (f) =

∑
R∈R

bRmRfhR

and
∆

(1,2)
b (f) = (π

(1,2)

b̄
)∗(f) =

∑
R∈R

bRfR
χR

|R| .

The formula

(2.4) 〈π(1,2)
b (f), g〉 = 〈f,∆

(1,2)

b̄
(g)〉 =

∫
T2

b

( ∑
R∈R

mR(f)ḡRhR

)
dtds

for f, g ∈ H00 completely describe the action of the operators π
(1,2)
b and ∆

(1,2)
b .

Let us now define the following mixed operators (see [PS]).

Definition 2.4 Given b ∈ L2(T2), we define the operators π∆b
and ∆πb

by

(2.5) 〈π∆b
(f), g〉 = 〈f,∆πb̄

(g)〉 =

∫
T2

b

( ∑
I×J∈R

mI(fJ)mJ(ḡI)hI×J

)
dtds

for f, g ∈ H00.

We write
Λb = π

(1,2)
b + ∆

(1,2)
b + ∆πb

+ π∆b
.
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Clearly we have the following expressions:

π
(1,2)
b (f)(t, s) =

∑
I∈D

πbI
(mIf)(s)hI(t)(2.6)

∆
(1,2)
b (f)(t, s) =

∑
I∈D

∆bI
(fI)(s)h

2
I(t)(2.7)

∆πb
(f)(t, s) =

∑
I∈D

πbI
(fI)(s)h

2
I(t)(2.8)

π∆b
(f)(t, s) =

∑
I∈D

∆bI
(mIf)(s)hI(t).(2.9)

Lemma 2.5 Let R = I × J ∈ R and denote R+ = I+ × J+ ∪ I− × J− and
R− = I+ × J− ∪ I− × J+ . Then

(2.10) π
(1,2)
b (hR) = (PR+(b) + PR−(b))hR = (PR+(b) − PR−(b))|R|−1/2

Proof. Using that mR′(hR) �= 0 only if I ′ � I and J ′ � J and that in this
case mR′(hR) = hR(xR′), where xR′ = (tI′ , sJ ′) is the center of R, we obtain
that

π
(1,2)
b (hR) =

∑
I′�I,J ′�J

bR′hR(xR′)h′
R.

Observe that hR(xR′) = hR(t, s) = 1
|R|1/2 for R′ ⊂ R+ and (t, s) ∈ R+.

Similarly hR(xR′) = hR(t, s) = − 1
|R|1/2 for R′ ⊂ R+ and (t, s) ∈ R−. This

gives (2.10). �

Corollary 2.6 Let b ∈ L2(T2). Then b ∈ BMOd
prod if and only if (PR+(b) +

PR−(b))hR)R∈R is a Haar multiplier on L2(T2).

Lemma 2.7 Λb(f) =
∑
R∈R

PR(b)fRhR.

Proof. Note that for φ, g ∈ H00, we have

(2.11) φg = πφ(g) + ∆φ(g) + πg(φ).

As in (2.3), one obtains

(2.12)
∑
J∈D

PJ(φ)gJhJ = πφ(g) + ∆φ(g).
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Combining (2.12) with the formulas in (2.6)- (2.9) we get

Λb(f)(t, s) =
∑
I∈D

(πbI
+ ∆bI

)(mIf)(s)hI(t) +
∑
I∈D

(πbI
+ ∆bI

)(fI)(s)h
2
I(t)

=
∑
I∈D

∑
J∈D

PJ(bI)(s)(mIf)JhJ(s)hI(t) +
∑
I∈D

∑
J∈D

PJ(bI)(s)(fI)JhJ(s)h2
I(t)

=
∑
J∈D

(
∑
I∈D

(P̃Jb)I(s)mI(fJ)hI(t))hJ(s) +
∑
J∈D

(
∑
I∈D

(P̃Jb)I(s)(fJ)Ih
2
I(t))hJ(s)

=
∑
J∈D

(
πP̃Jb(s,·)(fJ)

)
(t)hJ(s) +

∑
J∈D

(
∆P̃Jb(s,·)(fJ)

)
(t)hJ(s)

=
∑

I×J∈R
P̃I(P̃J(b))(t, s)fI×JhI×J(t, s)

=
∑
R∈R

PR(b)(t, s)fRhR(t, s).
�

We now are ready to prove our characterization of BMOd
prod in terms of

Haar multipliers.

Theorem 2.8 BMOd
prod = BMOd

mult.

Proof. To see that BMOd
prod ⊆ BMOd

mult, it suffices to see that the bound-

edness of π
(1,2)
b implies the boundedness of ∆πb

. This was proved in [PS], we
include here a proof for the sake of completeness.

By (2.5) and the characterization of BMOd
prod as the dual of H1,d, the

space of functions with integrable square function, we simply need to show
that

F =
∑

I×J∈R
mI(fJ)mJ(gI)hI×J(t, s)

belongs to H1,d. Note that

S(F )(t, s) =

( ∑
I×J∈R

|mI(fJ)|2|mJ(gI)|2h2
I×J(t, s)

)1/2

.

Therefore

S(F )(t, s) ≤
( ∑

J∈D

∑
I∈D

(g∗
I (s))

2h2
J(s)(f∗

J (t))2h2
I(t)

)1/2

=

( ∑
I∈D

(g∗
I (s))

2h2
I(t)

)1/2( ∑
J∈D

(f∗
J (t))2h2

J(s)

)1/2

,
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and hence∫
T2

S(F )(t, s)dtds ≤

≤
( ∫

T2

∑
I∈D

(g∗
I (s))

2h2
I(t)dtds

)1/2(∫
T2

∑
J∈D

(f∗
J (t))2h2

J(s)dtds

)1/2

=

( ∑
I∈D

∫
T

(g∗
I (s))

2ds

)1/2( ∑
J∈D

∫
T

(f∗
J (t))2dt

)1/2

≤ C

( ∑
I∈D

||gI ||22
)1/2( ∑

J∈D
||fJ ||22

)1/2

= C||g||2||f ||2.

To prove the reverse inclusion BMOd
mult ⊆ BMOd

prod, we shall use the

characterization of BMOd
prod given in (1.6).

It is clear that for each measurable set Ω, we have PΩ(b) = PΩ(π
(1,2)
b (χΩ)).

We shall show now that

PΩ(π
(1,2)
b (χΩ)) = PΩ(Λb(χΩ)).

Let R ∈ R and R ⊆ Ω. Then by (2.10)

〈∆(1,2)
b (χΩ), hR〉 = 〈χΩ, π

(1,2)
b (hR)〉 = |R|−1/2〈χΩ, PR+b − PR−b〉 = 0.

This shows that PΩ(∆
(1,2)
b (χΩ)) = 0.

On the other hand, we also have for R = I × J ⊆ Ω that

π∆b
(hR) =

∑
I′�I

bI′×JmI′(hI)χJhI′ .

Using that 〈χΩ, χJhI′〉 = 0 for all I ′ ⊆ I, we obtain PΩ(π∆b
(χΩ)) = 0.

Similarly, PΩ(∆πb
(χΩ)) = 0. Finally,

||PΩ(b)|| = ||PΩ(π
(1,2)
b (χΩ))|| = ||PΩ(Λb(χΩ))||

≤ ||Λb(χΩ))|| ≤ ||Λb|||Ω|1/2. �

As a consequence of Thm 2.8, we can sharpen Thm 7.7.2 from [PS] and
characterize BMOd

prod in terms of the boundedness of nested commutators
with dyadic martingale transforms. This can be understood as a dyadic ana-
logue of the characterization of the continuous product BMO space BMOprod

as the space of functions for which the nested commutator

[H1, [H2, b]] : L2(T2) → L2(T2)

is bounded, where H1 resp. H2 denote the Hilbert transform in the first
resp. second variable on L2(T2). The latter was proved in [FS] and [LF].
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Let Σ1, Σ2 be the spaces of all sequences of signs indexed by the ele-
ments of D1, D2, Σ1 = {0, 1}D1, Σ1 = {0, 1}D2, and let dσ1 denote the
natural product probability measure on Σ1, which assigns measure 2−n to
each cylindrical set of length n. Let dσ2 denote the corresponding mea-
sure on Σ2. Let Σ = Σ1 × Σ2, with dσ denoting the product measure, and
R = D1 ×D2 as before.

For σ1 = (σ1(I))I∈D1 ∈ Σ1, σ2 = (σ2(J))J∈D2 ∈ Σ2, let Tσ1 , Tσ2 denote
the dyadic martingale transforms

Tσ1 : L2(T2) → L2(T2), f =
∑

I×J∈R
fI×JhI×J 
→

∑
I×J∈R

σ1(I)fI×JhI×J ,

Tσ2 : L2(T2) → L2(T2), f =
∑

I×J∈R
fI×JhI×J 
→

∑
I×J∈R

σ2(J)fI×JhI×J .

Theorem 2.9 Let b ∈ L2(T2). Then the following are equivalent:

(i) b ∈ BMOd
prod

(ii) The nested commutators

(2.13) [Tσ1 , [Tσ2 , b]] : L2(T2) → L2(T2)

are uniformly bounded for all σ1 ∈ Σ1, σ2 ∈ Σ2.

(iii) The nested commutators [Tσ1, [Tσ2 , b]] : L2(T2) → L2(T2) are bounded
on average, in the sense that the map

Φb : L2(T2) → L2(Σ1 × Σ2 × T2), f 
→ [Tσ1, [Tσ2 , b]]f

is bounded.

In this case, we have

(2.14) ‖b‖BMOd
prod

≈ ‖Λb‖ ≤ ‖Φb‖ ≤ sup
σ1∈Σ1,σ2∈Σ2

‖[Tσ1, [Tσ2 , b]]‖ ≤ 4‖Λb‖.

Proof. We use the ideas of the proofs of Thm 3.4, Cor 4.1 in [GPTV],
adapted to the two-variable case, and of Thm 7.7.2 in [PS].

From [PS, p. 493], we know that

[Tσ1 , [Tσ2 , b]] = [Tσ1, [Tσ2 , Λb]].

Therefore
sup

σ1∈Σ1,σ2∈Σ2

‖[Tσ1, [Tσ2 , b]]‖ ≤ 4‖Λb‖.

The second inequality in (2.14) is obvious.
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Finally, for f ∈ L2(T2) one has

(2.15)

‖Φbf‖2 =

∫ ∫
Σ1×Σ2

‖[Tσ1 , [Tσ2 , b]]f‖2
L2(T2)dσ1dσ2

=

∫ ∫
Σ1×Σ2

‖
∑

I×J∈R
σ1(I)σ2(J)[P̃I , [P̃J , b]]f‖2

L2(T2)dσ1dσ2

=
∑

I×J∈R
‖[P̃I , [P̃J , b]]f‖2

L2(T2)

=
∑

I×J∈R
‖[P̃I , [P̃J , Λb]]f‖2

L2(T2)

=
∑

I×J∈R
‖(P̃IP̃JΛb − P̃IΛbP̃J − P̃JΛbP̃I + ΛbP̃J P̃I)f‖2

L2(T2)

≥
∑

I×J∈R
‖P̃IP̃JΛbf‖2 = ‖Λbf‖2,

since P̃IΛbP̃I = 0 and P̃JΛbP̃J = 0. This proves the first inequality in (2.14).
�

The martingale transformation approach is also interesting in the study
of BMOd

rect. Although Λb is in general not bounded for b ∈ BMOd
rect, the

space BMOd
rect can be characterized in terms of “average boundedness” of Λb,

and also in terms of the boundedness of Λb from L2(T)⊗̂L2(T) into L2(T2).
For σ = (σ1, σ2) ∈ Σ, let Tσ = Tσ1Tσ2 : L2(T2) → L2(T2).

Theorem 2.10 For ϕ ∈ H00, ‖ϕ‖BMOd
rect

is equal to the norm of the operator

Ψϕ : L2(T2) → L2(T2 × Σ), f 
→ ΛϕTσf.

Proof. Let f ∈ L2(T2) and ϕ ∈ H00. From Lemma 2.7 we have

(2.16) Λϕf =
∑
R∈R

PRϕfRhR.

Thus∫
Σ

∫
T2

‖ΛϕTσf‖2dtdsdσ =

∫
T2

∫
Σ

∥∥∥∥
∑
R∈R

σ(R)(PRϕ)(t, s))fRhR(t, s)

∥∥∥∥
2

dσdtds

=

∫
T2

∑
R∈R

|fR|2 χR(t, s)

|R| |(PRϕ)(t, s)|2dtds

=
∑
R∈R

|fR|2 1

|R|‖PRϕ‖2.

Thus the operator norm of Ψϕ is supR∈R
1

|R|1/2‖PRϕ‖ = ‖ϕ‖BMOd
rect

. �
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Proposition 2.11 If b ∈ BMOd
rect then Λb maps L2(T)⊗̂L2(T) into L2(T2).

Proof. Assume f(t, s) = f1(t)f2(s) with ||f1|| = ||f2|| = 1. Then we have

∑
R∈R

PRb fRhR =
∑
I∈D

P̃I(
∑
J∈D

P̃Jb(f2)JhJ)(t)(f1)IhI(t)

Writing g(t, s) =
∑

J∈D PJ(b(t, ·))(s)(f2)JhJ(s), we obtain

∥∥∥ ∑
R∈R

PRbfRhR

∥∥∥2

2
=

∫
T

∫
T

∣∣∣∑
I∈D

PI(g(·, s))(t)(f1)IhI(t)
∣∣∣2dtds.

Now let us consider g as a function in t taking values in the Hilbert
space L2(T). Recall that as in the scalar case, the Haar multiplier norm
of (PIg)I∈D is controlled by the vector BMOd(T) norm of g given by

sup
I∈D

1

|I|1/2
‖PIg‖L2(T,L2(T)).

Thus

sup
||f1||=1

∫
T

∥∥∥ ∑
I∈D

PI(g(·, s))(t)(f1)IhI(t)
∥∥∥2

L2(T)
dt ≤ C sup

I

1

|I| ||PIg||2L2(T,L2(T)).

Notice now that

PI

( ∑
J∈D

PJ(b(t, ·))(s)(f2)JhJ(s)
)

=
∑
J∈D

PI×J(b)(t, s)(f2)JhJ(s).

On the other hand, applying a corresponding argument to the function
(P̃Ib)(t, s) =

∑
J∈D(PI×Jb)(t, s)hJ(s) understood as a function in s which

takes values in L2(T), we obtain for ||f2||2 = 1

||PIg||2L2(T,L2(T)) =

∫
T2

∣∣ ∑
J∈D

PI×J(b)(t, s)(f2)JhJ(s)
∣∣∣2dtds

=

∫
T

∥∥∥ ∑
J∈D

PI×J(b)(·, s)(f2)JhJ(s)
∥∥∥2

L2(T)
ds

≤ C sup
J

1

|J |‖PI×J(b)‖2
L2(T,L2(T)) ≤ C‖I|‖b‖2

BMOd
rect

.

This finishes the proof of the proposition. �
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3. Sweeps of functions in BMO

Let us now recall that the (dyadic) sweep of a function ϕ ∈ L2(T2) is defined
as follows:

Sϕ =
∑
R∈R

|ϕR|2 χR

|R| ,

i.e. Sϕ = S(ϕ)2.

We list some properties of the sweep which will be relevant for our pur-
poses, the proofs of which are elementary and left to the reader.

Proposition 3.1

(i) Sϕ(t, s) =
∑
I∈D

SϕI
(s)

χI(t)

|I| .

(ii) Sϕ = ∆
(1,2)
ϕ (ϕ).

(iii) PΩ(Sϕ) = PΩ(SPΩϕ).

(iv) If p > 1
2

then ϕ ∈ L2p(T2) if and only if Sϕ ∈ Lp(T2).

(v) If Sϕ ∈ L∞ then ϕ ∈ BMOd
prod.

(vi) ||Sϕ||2 ≤ C||ϕ||BMOd
prod

||ϕ||2.

Here it is the basic result relating the boundedness of π
(1,2)
b and ΛSb

.

Lemma 3.2 Let b ∈ H00. Then

π
(1,2)
b

∗
π

(1,2)
b = ΛSb

+ Db,

where Db is a linear operator on L2(T2) with ‖Db‖ ≤ C‖b‖2
BMOd

rect
, and C > 0

is an absolute constant.

Proof. Let R = I × J , R′ = I ′ × J ′ ∈ R.

First, observe that

(3.1)

〈
π

(1,2)
b

∗
π

(1,2)
b hR, hR′

〉

=

〈 ∑
I′′×J ′′∈D1×D2

hI′′×J ′′ bI′′×J ′′ mI′′×J ′′(hR),
∑

I′′×J ′′∈D1×D2

hI′′×J ′′ bI′′×J ′′ mI′′×J ′′(hR′)

〉

=
∑

I′′×J ′′∈D1×D2,I′′�I,J ′′�J

|bI′′×J ′′ |2 mI′′(hI)mI′′(hI′)mJ ′′(hJ)mJ ′′(hJ ′).

We now do a kind of triangular truncation with respect to the indices I, I ′, J, J ′.
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(i) I � I ′, J � J ′.
〈
π

(1,2)
Sb

hR, hR′
〉

= 〈Sb, hR′〉mR′(hR)

=

〈 ∑
I′′×J ′′∈D1×D2

χI′′×J ′′

|I ′′||J ′′| |bI′′×J ′′ |2, hR′

〉
mR′(hR)

=
∑

I′′×J ′′∈D1×D2

|bI′′×J ′′ |2 mI′′(hI′) mJ ′′(hJ ′) mI′(hI) mJ ′(hJ).

This is nonzero only if I ′ � I and J ′ � J . In this case, we get
contributions only for I ′′ � I ′ and J ′′ � J ′, and the expression agrees
with (3.1).

(ii) I � I ′, J � J ′. Observe that

〈∆(1,2)
Sb

hR, hR′〉 = 〈hR, π
(1,2)
Sb

hR′〉 = 〈π(1,2)
Sb

hR′ , hR〉.

As shown above, this equals 〈π(1,2)
b

∗
π

(1,2)
b hR′ , hR〉 if I ′ � I and J ′ � J ,

and is 0 otherwise.

(iii) I � I ′, J � J ′.
〈

π∆Sb
hR, hR′

〉
=

〈 ∑
I′′×J ′′∈D1×D2

SbI′′×J ′′hI′′
χJ ′′

|J ′′|mI′′(hRJ ′′), hR′

〉

=

〈 ∑
I′′∈D1

SbI′′×JhI′′
χJ

|J |mI′′(hI), hR′

〉

= SbI′×JmI′(hJ)mJ(hI′) = 〈Sb, hI′×J〉mI′(hI)mJ(hJ ′)

=

〈 ∑
I′′×J ′′∈D1×D2

χI′′×J ′′

|I ′′||J ′′| |bI′′×J ′′ |2, hI′×J

〉
mI′(hI)mJ(hJ ′)

=
∑

I′′×J ′′∈D1×D2

|bI′′×J ′′|2mI′′(hI′)mJ ′′(hJ)mI′(hI)mJ(hJ ′).

This is nonzero only for I ′ � I and J ′ � J . In this case, the sum has
only contributions for I ′′ � I ′ and J ′′ � J , and agrees with (3.1).

(iv) I ′ � I and J ′ � J . Note that 〈∆πSb
hR, hR′〉 = 〈π∆Sb

hR′ , hR〉. As
shown above, this is only nonzero for I ′ � I and J ′ � J , and agrees
with (3.1) in this case.
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(v) I ′ = I or J = J ′. Let f ∈ L2(T2). Then

∑
I∈D1

∑
J,J ′∈D2

〈π(1,2)
b

∗
π

(1,2)
b hI×JfI×J , hI×J ′fI×J ′〉

=
∑
I∈D1

1

|I|
∑
I′′�I

∑
J ′′∈D2

|bI′′×J ′′ |2fI×JfI×J ′mJ ′′(hJ)mJ ′′(hJ ′)

=
∑
I∈D1

‖πbIfI‖2,

where for each I, fI stands for the one-variable function
∑
J∈D2

hJfI×J ,

and bI for the function

∑
J∈D2

hJ
1

|I|1/2

( ∑
I′′�I

|bI′′×J |2
)1/2

.

It is easy to see that

‖bI‖BMOd ≤ ‖b‖BMOd
rect

for all I ∈ D1.

Thus the above sum is bounded by c ‖b‖2
BMOd

rect
‖f‖2, where c is an

absolute constant.

The same estimate holds for the terms corresponding to J = J ′.

Now we have counted the terms corresponding to I = I ′, J = J ′ twice and
need to estimate them separately. Let f ∈ L2(T2). Then

(3.2)
∑
I∈D1

∑
J∈D2

〈π(1,2)
b

∗
π

(1,2)
b hI×JfI×J , hI×JfI×J〉

=
∑
I∈D1

∑
J∈D2

1

|I||J |
∑

I′′�I,J ′′�J

|bI′′×J ′′ |2|fI×J |2 ≤ ‖b‖2
BMOd

rect
‖f‖2.

Defining Db now by

(3.3) 〈Dbf, f〉 =
∑

I×J,I′×J ′∈R,I′=I

〈π(1,2)
b

∗
π

(1,2)
b hI×JfI×J , hI′×J ′fI′×J ′〉+

+
∑

I×J,I′×J ′∈R,I′ �=I,J ′=J

〈π(1,2)
b

∗
π

(1,2)
b hI×JfI×J , hI′×J ′fI′×J ′〉,

we obtain the statement of the lemma. �
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Now we are ready to state the main result of this section.

Theorem 3.3 Let b ∈ BMOd
rect,2. Then b ∈ BMOd

prod if and only if Sb ∈
BMOd

prod.

Proof. We will first show that there exist C > 0 such that

(3.4) ‖Sb‖prod ≤ C‖b‖2
prod.

Indeed, by Chang’s Theorem [Ch], [ChFef2] it is sufficient to show that
there exists a constant C > 0 with

‖PΩSb‖2 ≤ C‖b‖2
prod|Ω|1/2

for all Ω ⊆ T2 measurable (see (1.5)). Using Proposition 3.1, we obtain

(3.5) ‖PΩSb‖2 = ‖PΩSPΩb‖2 ≤ ‖SPΩb‖2 ≤ ‖PΩb‖prod‖PΩb‖2 ≤ ‖b‖2
prod|Ω|1/2

For the converse, assume that Sb ∈ BMOd
prod. Then ΛSb

is bounded
by Theorem 2.8. Now Lemma 3.2 finishes the proof. �

Remark. The first implication can also be shown with the John-Nirenberg
Theorem for product BMO, which was proved in [ChFef1] (for a dyadic
version, see [T]).

The sweep can be understood as a bilinear map. For f, g ∈ H00, let

Sf,g =
∑
R∈R

χR

|R|frgr,

so Sf = Sf,f̄ .

Corollary 3.4 S : BMOd
prod ×BMOd

prod → BMOd
prod is bounded.

Proof. The Cauchy-Schwarz inequality gives the pointwise inequality

Sf,g ≤ (Sf)
1/2(Sg)

1/2 for f, g ∈ H00.

Let Ω ⊆ T2 be measurable. Using an adaption of 3.1(iii), we see that

‖PΩSf,g‖2 = ‖PΩSPΩf,PΩg‖2 ≤ ‖SPΩf,PΩg‖2 ≤ ‖(SPΩf )
1/2(SPΩg)

1/2‖2

≤ ‖SPΩf‖1/2
2 ‖SPΩg‖1/2

2 ≤ |Ω|1/2‖f‖prod‖g‖prod

by (3.5). �
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Another application of Lemma 3.2 yields the following result.

Theorem 3.5 Let ‖ · ‖∗ be an positive homogeneous function of degree 1
on H00 such that

(i) There exists c > 0 such that ‖ · ‖BMOd
rect

≤ c‖ · ‖∗
(ii) There exists k > 0 such that ‖Sϕ‖∗ ≤ k‖ϕ‖2

∗.

Then there exists a constant C̃ such that for all ϕ ∈ H00,

‖ϕ‖BMOd
prod

≤ C̃‖ϕ‖∗.

Proof. Throughout this proof we simply write πϕ = π
(1,2)
ϕ . From Lemma 3.2

we have
π∗

ϕπϕ = π
(1,2)
Sϕ

+ π
(1,2)
Sϕ

∗
+ π∆Sϕ

+ π∆Sϕ

∗ + Dϕ,

with ‖Dϕ‖ ≤ C‖ϕ‖2
BMOd

rect
.

Let
En = span{hI×J : I ∈ D1, J ∈ D2, |I|, |J | ≥ 2−n},

let Pn be the orthogonal projection onto En in L2(T2), and let

c(n) = sup{‖πϕ|En‖, ‖ϕ‖∗ ≤ 1}.
A trivial estimate shows that c(n) < ∞ for each n ∈ N. For n ∈ N and
ε > 0, choose fn ∈ En and ϕ ∈ H00 with ‖ϕ‖∗ = 1, ‖fn‖ = 1 and ‖πϕfn‖ ≥
(1 − ε)c(n). Then

(1 − ε)2c(n)2 ≤ ‖πϕfn‖2 = 〈π∗
ϕπϕfn, fn〉(3.6)

= 〈π(1,2)
Sϕ

fn, fn〉 + 〈π(1,2)
Sϕ

∗
fn, fn〉+

+ 〈π∆Sϕ
fn, fn〉 + 〈π∗

∆Sϕ
fn, fn〉 + 〈Dϕfn, fn〉.

By definition of c(n), the first two terms can be estimated by

c(n)‖Sϕ‖∗ ≤ c(n)k.

For the next two terms, we have to remark that that

(3.7) 〈π∆Sϕ
fn, fn〉 = 〈π∆PnSϕ

fn, fn〉 ≤ ‖π∆PnSϕ
‖ ≤ c̃‖π(1,2)

PnSϕ
‖ ≤ c̃‖π(1,2)

Sϕ
|En‖

Here, we use as in the proof of Thm 2.8 that there exists a constant c̃ such
that ‖π∆b

‖ ≤ c̃‖π(1,2)
b ‖ for all b ∈ H00 (see [PS], Thm 7.7.2).

The last term is easily controlled by

〈Dϕfn, fn〉 ≤ C‖ϕ‖2
BMOd

rect
.
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Altogether, we obtain that

(3.8) ‖π(1,2)
ϕ |En‖2 ≤ 4c̃‖π(1,2)

Sϕ
|En‖ + C‖ϕ‖2

BMOd
rect

.

With
‖ϕ‖BMOd

rect
≤ c‖ϕ‖∗

and
‖π(1,2)

Sϕ
|En‖ ≤ c(n)‖Sϕ‖∗ ≤ kc(n)‖ϕ‖2

∗,

it follows that

(3.9) (1 − ε)2c(n)2 ≤ 4c̃kc(n) + c2C

Thus
c(n) ≤

√
4c̃2k2 + Cc2 + 2c̃k.

With
C̃ =

√
4c̃2k2 + Cc2 + 2c̃k,

it follows that ‖πϕ‖ ≤ C̃‖ϕ‖∗. �

We can now characterize BMOd
prod in terms of the BMOd

rect,2-norm.

Theorem 3.6 Let ϕ ∈ BMOd
rect(T

2). Then ϕ ∈ BMOd
prod if and only if

(‖S(n)
ϕ ‖1/2n

BMOd
rect

)n∈N is bounded, where S
(n)
ϕ is the n-fold sweep of ϕ, defined

recursively by S
(n)
ϕ = S

(n−1)
Sϕ

.

Proof. By Theorem 3.3, we have for each n ∈ N

‖S(n)
ϕ ‖BMOd

rect
≤ ‖S(n)

ϕ ‖BMOd
prod

≤ C ·C2 · · ·C2n−1‖ϕ‖2n

BMOd
prod

≤ C2n‖ϕ‖2n

BMOd
prod

,

and consequently
‖S(n)

ϕ ‖1/2n

BMOd
rect

≤ C‖ϕ‖BMOd
prod

.

Conversely, the map
ϕ 
→ sup

n∈N
‖S(n)

ϕ ‖1/2n

BMOd
rect

clearly defines a positive homogeneous function on H00 with satisfies condi-
tions in Theorem 3.5. �

Another consequence of Theorem 3.5 is

Corollary 3.7 S does not map BMOd
rect×BMOd

rect boundedly into BMOd
rect.

Proof. We know that the ‖ · ‖prod norm cannot be controlled by the ‖ · ‖rect

norm. So Condition (ii) in Theorem 3.5 cannot hold, and in particular S
does not map BMOd

rect ×BMOd
rect boundedly into BMOd

rect. �
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4. The scale BMOd
rect,p

Recall that for 1 ≤ p < ∞, a function ϕ ∈ L2(T2) is said to belong to
BMOd

rect,p if

‖ϕ‖rect,p = sup
R∈R

1

|R|1/p
‖PRϕ‖p < ∞.

Note that BMOd
rect,p2

⊆ BMOd
rect,p1

for p1 ≤ p2.

The reader should also be aware that functions in BMOd
rect,p are actu-

ally in Lp(T2), due to the identities mI(f) = mI(PI×Tf) and mJ(f) =
mJ(PT×Jf).

The following proposition characterizes the behaviour of the BMOd
rect,p

norms under the sweep.

Proposition 4.1 Let p > 1
2

and let Cp = || S ||L2p→L2p. Then

‖Sϕ‖rect,p ≤ 4C2
p‖ϕ‖2

rect,2p.

Proof. Since PR(Sϕ) = PR(SPRϕ) and ||PR(g)||p ≤ 4||g||p, we obtain

‖Sϕ‖rect,p ≤ 4 sup
R∈R

1

|R|1/p
‖SPR(ϕ)‖p ≤ 4C2

p sup
R∈R

1

|R|1/p
‖PR(ϕ)‖2

2p.

This gives the result. �
It is known that BMOd

prod �BMOd
rect,2. Indeed, this is basically the content

of Carleson’s original counterexample [C] (for the continuous case, see [Fef]).
As pointed out in [Fef], the example in [C] implies that BMOd

rect,2 � L4(T2).

We shall improve this by showing that actually BMOd
prod � BMOd

rect,p

for all p. We will show that for any p2 > p1 ≥ 1, BMOd
rect,p1

� Lp2(T2) and

therefore in particular BMOd
rect,p1

� BMOd
rect,p2

. For the case p1 = 1, p2 = 2,
this answers a question posed in [FS].

As a corollary, we show that

BMOd
prod �

⋂
p≥1

BMOd
rect,p .

Theorem 4.2 Let p ≥ 2. Then BMOd
prod ⊆ BMOd

rect,p .

Moreover

(4.1) ||ϕ||rect,p ≤ C||ϕ||1−2/p
prod ||ϕ||2/p

rect,2
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Proof. Let us first show that BMOd
prod ⊆ Lp(T2) and

(4.2) ||ϕ||p ≤ C||ϕ||1−2/p
prod ||ϕ||2/p

2 .

For p = 2k , k ∈ N, we shall prove (4.2) by induction.

It is obvious for k = 1. For k = 2 we have

(4.3) ||ϕ||24 = ||Sϕ||2 = ||∆(1,2)
ϕ (ϕ)||2 ≤ C||ϕ||prod||ϕ||2.

Assume it holds for pk = 2k.

||ϕ||2pk+1
= ||Sϕ||pk

≤ C||Sϕ||1−2/pk

prod ||Sϕ||2/pk

2 .

Now from (3.4) and (4.3) we obtain

||ϕ||pk+1
≤ C||ϕ||1−2/pk

prod ||ϕ||2/pk

4 ≤ C||ϕ||1−2/pk+1

prod ||ϕ||2/pk+1

2 .

Now the general case follows by interpolation.
Given p >2 and p �= 2k for any k∈N, find m∈N such that 2m−1 < p < 2m.

Write
1

p
=

1 − θm

2m−1
+

θm

2m
.

Now apply the previous case combined with

||ϕ||p ≤ ||ϕ||1−θm

2m−1 ||ϕ||θm
2m .

Let us use (4.2) to obtain the desired estimate for the BMOd
rect,p-norm.

Given R ∈ R we have

||PRϕ||p ≤ C||PRϕ||1−2/p
prod ||PRϕ||2/p

2 ≤ C||ϕ||1−2/p
prod ||ϕ||2/p

rect,2|R|1/p.

This finishes the proof. �
Proposition 4.3 Let 2 < p. There exists φ ∈ BMOd

rect,2 \Lp(T2).

In particular BMOd
prod ⊆ BMOd

rect,p � BMOd
rect,2.

Proof. We shall find a sequence ϕN such that supN ||ϕN ||rect,2 < ∞ but
supN ||ϕN ||p = ∞. A standard argument then gives the existence of φ.

From Carleson’s construction [C] we know that for each N ∈ N there
exists a collection of dyadic rectangles ΦN such that∑

R∈ΦN

|R| = 1(4.4)

∣∣∣ ⋃
R∈ΦN

R
∣∣∣ <

1

N
(4.5)

∑
R∈ΦN ,R⊆R′

|R| ≤ C|R′|, R′ ∈ R(4.6)



504 Ó. Blasco and S. Pott

where C is a constant independent of N .

Defining

ϕN =
∑

R∈ΦN

|R|1/2hR

we have that
||ϕN ||2 = 1, ||ϕN ||rect,2 ≤ C

but, since supp(ϕN) ⊂ ∪R∈ΦN
R,

||ϕN ||p ≥
∣∣ ⋃

R∈ΦN

R
∣∣ 1

p
− 1

2 ≥ N
1
2
− 1

p .

�

We now can answer in the negative the above mentioned question of
C. Sadosky and S. Ferguson posed in [FS].

Corollary 4.4 There exists φ ∈ BMOd
rect,1 \

⋃
p>1 Lp(T2). In particular, for

each p > 1, BMOd
rect,p � BMOd

rect,1, and the norms ‖ · ‖rect,1 and ‖ · ‖rect,p are
not equivalent.

Proof. We use the sequence of functions (ϕn)n∈N with

‖ϕn‖rect,2 ≤ C and ||ϕn||p ≥ n1/2−1/p

for each n ∈ N, p > 2 from Proposition 4.3.
Define

φ =
∞∑

n=1

1

n2
Sϕ2n .

Then φ ∈ BMOrect,1 by Proposition 4.1, but ‖Sϕ2n‖p ≈ ‖ϕ2n‖2
2p ≥ 2n(1−1/p)

for each n ∈ N, p > 1 and consequently φ /∈ ∪p>1L
p(T2). �

To differentiate the spaces BMOd
rect,p and BMOd

prod we shall introduce
the following coefficients.

Definition 4.5 Let En = span{hI×J : I ∈ D1, J ∈ D2, |I|, |J | ≥ 2−n} and
let Pn be the orthogonal projection onto En in L2(T2).

For each q ≥ 1 and each n ∈ N

c(n, q) = sup{‖πϕ‖ : ϕ ∈ En, ‖ϕ‖rect,q ≤ 1},

and for p ≥ q,

a(n, p, q) = sup{‖ϕ‖rect,p : ϕ ∈ En, ‖ϕ‖rect,q ≤ 1},
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We first analyse the behaviour of these constants. Of course we have

c(n, p2) ≤ c(n, p1), p1 ≤ p2(4.7)

a(n, p, q1) ≤ a(n, p, q2), q1 ≤ q2(4.8)

a(n, p2, q) ≤ a(n, p1, q), p1 ≤ p2.(4.9)

If p ≥ q, clearly

(4.10) c(n, q) ≤ a(n, p, q)c(n, p).

Let us now extend Therorem 4.2.

Theorem 4.6 Let p > q ≥ 2 and ϕ ∈ BMOd
prod. If q ≤ 2k ≤ p for some

k ∈ N then

(4.11) ||ϕ||rect,p ≤ Cp,q||ϕ||1−q/p
prod ||ϕ||q/p

rect,q.

In particular, for p > q1 ≥ q2 ≥ 2 we have

(4.12) a(n, p, q2) ≤ Cpc(n, q2)
1−q1/pa(n, q1, q2)

q1/p.

Proof. We shall see first that

(4.13) ||ϕ||p ≤ Cp,q||ϕ||1−θ
prod||ϕ||θq

for the above values of θ = q/p. We do this in several steps.

First suppose that q = 2n for some n ∈ N. Theorem 4.2 gives the
case n = 1. Assume that the result is true for n ≥ 2, and let us consider the
case q = 2n+1.

Let p > 2n+1. Applying the induction assumption to Sϕ for p/2, we get

||ϕ||2p ≈ ||Sϕ||p/2

≤ C||Sϕ||1−2n+1/p
prod ||Sϕ||2

n+1/p
2n

≤ C||ϕ||2(1−2n+1/p)
prod ||ϕ||2n+2/p

2n+1 .

This shows that
||ϕ||p ≤ C||ϕ||1−2n+1/p

prod ||ϕ||2n+1/p

2n+1 .

Let us now proceed to the general case. We may assume that q < 2k ≤ p
for some k ∈ N . We can apply the previous case for n = k together with
interpolation. Writing

1

2k
=

1 − α

q
+

α

p
,
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we obtain

||ϕ||p ≤ C||ϕ||1−2k/p
prod ||ϕ||2k/p

2k

≤ C||ϕ||1−2k/p
prod (||ϕ||1−α

q ||ϕ||αp )2k/p

Consequently

||ϕ||1−α2k/p
p ≤ C||ϕ||1−2k/p

prod ||ϕ||(1−α)2k/p
q .

Note that

(1 − α)
2k

q
= 1 − α

2k

p
.

Hence we get with θ = q/p that

||ϕ||p ≤ C||ϕ||1−θ
prod||ϕ||θq .

To finish the proof, note that for each R ∈ R,

||PRϕ||p ≤ Cp,q||PRϕ||1−q/p
prod ||PRϕ||q/p

q

≤ Cp,q||ϕ||1−q/p
prod ||ϕ||q/p

rect,q|R|1/p.

�
Let us now establish a further connection between the constants intro-

duced in 4.5.

Theorem 4.7 There exist K1 > 0 and K2 > 0 such that for all n ∈ N and
p ≥ 1

c2(n, 2p) ≤ K1C
2
pc(n, p) + K2,

where Cp = || S ||L2p→L2p.

Proof. Write
π∗

ϕπϕ = ΛSϕ + Dϕ,

with ‖Dϕ‖ ≤ C‖ϕ‖2
BMOd

rect
as above.

For n ∈ N, p ≥ 1 and ε > 0, choose fn ∈ L2(T2) and ϕ ∈ En with
‖ϕ‖rect,2p = 1, ‖fn‖2 = 1 and ‖πϕfn‖2 ≥ (1 − ε)c(n, 2p). Then

(1 − ε)2c(n, 2p)2 ≤ ‖πϕfn‖2
2 = 〈π∗

ϕπϕfn, fn〉 = 〈ΛSϕfn, fn〉 + 〈Dϕfn, fn〉.

Therefore, we obtain that

(4.14) (1 − ε)2c(n, 2p)2 ≤ ‖ΛSϕ‖ + C‖ϕ‖2
BMOd

rect
.
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Since ||ϕ||rect,2p = 1, Proposition 4.1 implies ||Sϕ||rect,p ≤ 4C2
p . Therefore,

since ‖ϕ‖rect,2 ≤ ‖ϕ‖rect,2p, it follows that

(4.15) (1 − ε)2c(n, 2p)2 ≤ 4C2
pc(n, p) + C.

Using (4.10) we get the second part. �

Corollary 4.8 Let p ≥ 1. Then BMOd
prod � BMOd

rect,p .

Proof. Observe first that Proposition 4.3 implies that

(4.16) lim
n→∞

c(n, 2) = ∞.

This shows that BMOd
prod � BMOd

rect,p for any 1 ≤ p ≤ 2.

On the other hand, the estimates (4.10) and (4.12) in the case q = q1 = q2

imply that if p > q ≥ 2 with q ≤ 2k ≤ p for some k,

(4.17) cq/p(n, q) ≤ Cc(n, p),

where C is independent of n.

Hence BMOd
prod = BMOd

rect,p for some p>2 would imply supn c(n, p)<∞
and therefore supn c(n, 2) < ∞, contradicting (4.16). �

The particular case p = 4 means that a question left open in [PS] can be
answered in the negative. There, it was asked whether the condition

‖(π(1,2)
b )∗π(1,2)

b hI′f‖2 =
1

|I ′|
∥∥∥∥

∑
I×J∈D1×D2,I�I′

χI×J

|I||J | |bIJ |2mJf

∥∥∥∥
2

L2(T2)

(4.18)

≤ C‖f‖L2(T) (f ∈ L2(T), I ′ ∈ D1)

((27) and (28) in [PS]) already implies that b ∈ BMOd
prod. Note that f here

denotes a function in the second variable. We know from Prop 4.1 that
b ∈ BMOrect,4 implies Sb ∈ BMOd

rect. By Lemma 3.2,

‖(π(1,2)
b )∗π(1,2)

b hI′f‖ = ‖(ΛSb
+ Db)hI′f‖,

where Db is bounded on L2(T2) and ΛSb
maps L2(T)⊗̂L2(T) boundedly into

L2(T2) by Prop 2.11. Thus b ∈ BMOrect,4 implies (4.18). This condition is
therefore not sufficient for b ∈ BMOd

prod.

As pointed out in [PS], this has also consequences for the study of
operator-valued Carleson measures, in the sense that a certain vector BMO
condition of the sweep of an operator-valued measure does not imply bound-
edness of the corresponding vector Carleson embedding.

We can further show that even the intersection of all BMOd
rect,p spaces is

still bigger than BMOd
prod.
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Corollary 4.9

BMOd
prod �

⋂
p≥1

BMOd
rect,p .

Proof. Obviously

⋂
p≥1

BMOd
rect,p =

⋂
p∈N

BMOd
rect,p .

With the locally convex topology defined by the increasing sequence of semi-
norms (‖ · ‖rect,p)p∈N, the latter is a metrizable locally convex linear space.
Since each of the BMOd

rect,p is complete in ‖·‖rect,p, ∩p∈N BMOd
rect,p is complete

in this topology and therefore a Fréchet space. We know from Theorem 4.2
that

BMOd
prod ⊆

⋂
p≥1

BMOd
rect,p,

and that the embedding is continuous with respect to the norm topology on
BMOd

prod and the locally convex topology on
⋂

p≥1 BMOrect,p. Let us assume
towards a contradiction that the embedding is surjective. Then the open
mapping theorem implies that the locally convex topology on

⋂
p≥1 BMOd

rect,p

is normable with ‖ · ‖prod and therefore contains a nonempty open neigh-
bourhood of 0 which is bounded with respect to ‖ · ‖prod. Since the family
(‖·‖rect,p)p∈N is increasing, this means that there exists p ∈ N and ε > 0 such
that ‖b‖prod < 1 whenever ‖b‖rect,p < ε, in contradiction to Corollary 4.8. �

We will now separate the BMOd
rect,p spaces. Note that for Corollary 4.4

means that

(4.19) lim
n→∞

a(n, p, 1) = ∞

for all p > 1.
Let us see that this holds in general.

Corollary 4.10 Let p > q ≥ 1. Then BMOd
rect,p � BMOd

rect,q .

Proof. We have to show that

lim
n→∞

a(n, p, q) = ∞.

It suffices to prove
lim

n→∞
a(n, q + ε, q) = ∞

for sufficiently small ε. For fixed q > 1, choose ε > 0 and k ∈ N such that
q < q + ε < 2k ≤ 2q.
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Using Theorem 4.7, (4.10) and (4.17), we obtain constants C1, C2 and C3

independent of n such that

c2(n, 2q) ≤ C1c(n, q) ≤ C1C2a(n, q + ε, q)c(n, q + ε)

≤ C1C2C3a(n, q + ε, q)c(n, 2q)
2p

p+ε .

This shows that
c(n, 2q)

2ε
p+ε ≤ Ca(n, q + ε, q)

where C is independent of n. Now the result follows from Corollary 4.8. �
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