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Dyadic BMO on the bidisk

Oscar Blasco and Sandra Pott

Abstract

We give several new characterizations of the dual of the dyadic
Hardy space H"%(T?), the so-called dyadic BMO space in two vari-
ables and denoted BMogmd. These include characterizations in terms
of Haar multipliers, in terms of the “symmetrised paraproduct” Ay, in
terms of the rectangular BMO norms of the iterated “sweeps”, and in
terms of nested commutators with dyadic martingale transforms. We
further explore the connection between BMOﬁrod and John-Nirenberg
type inequalities, and study a scale of rectangular BMO spaces.

1. Introduction

Throughout the paper D denotes the set of dyadic intervals in the unit
circle T. In the case of the bicircle T?, D; denotes the dyadic intervals in the
first, Dy the dyadic intervals in the second variable. We write R = D; x D,
for the dyadic rectangles, |I| for the length of I € D and |R| for the area
of R € R, (hi)rep stands for the Haar basis in L?(T) and (hg)rer for the
product Haar basis of L?(T?).

Here
1

hi(t) = W (Xr+ (t) - XI- (t))

for each dyadic interval I € D, where I~ denotes the left half of I, and I*
denotes the right half of I. For each dyadic rectangle R =1 x J € R, hgr is
defined by

hR(S, t) = h[(S)hJ(t)

We denote by Hyo the space of all functions in L?*(T?) which have a finite
expansion in the product Haar basis.

2000 Mathematics Subject Classification: 42B30, 47TB35.
Keywords: BMO on the bidisk, Carleson measures, Haar multipliers.



484 O. BLASCO AND S. POTT

Given g € L*(T), we use the notation g; = (g, h;) and m;g = ﬁ [;g(t)dt.
Similarly, given f € L?*(T?), we use the notation fr = (f, hgr), fi(s) =
(f(8),hr), mif(s) = qp [, f(t,s)dt, fa(t) = (f(t;-),hs) and m,f(t) =
ﬁfJ f(t,s)ds. Therefore

f(ts) =Y frhr(tis) =Y fi(s)hi(t) = D fa(O)ha(s).

ReR 1eD JeD

Let Prg = (g —mzg)x; for g € L*(T). Observe that P is the orthogonal
projection on the subspace spanned by the Haar functions hy, I’ € D, I' C I.

If g =3 ;cp grhi, then
(1.1) Pig= Y _ hygr.
I'eD,I'CI

Similarly, for each measurable set Q C T2, let P, be the orthogonal
projection on the subspace spanned by the Haar functions hp, R € R,
R C Q. In particular, for each dyadic rectangle R = I x J € R and for

f=>rerhr fr € L*(T?), we have
Prf =P @ F;f = Z hr fr-

R'ER,R'CR
It is easy to see that for R € R and f € L?(T?),
(1.2) Prf=(f=mif —myf +mixs) Xixs-

Recall that g € L?(T) is said to belong to dyadic BMO, to be denoted

BMOY(T), if
1 1/2
sup (— / lg(t) — m1g|2dt> < 0.
rep \ || J

By John-Nirenberg’s lemma, this is equivalent to

1 1/17
sup (11 1ot - migpar) < oo
rep \ 1| J;
for any 1 < p < 0.

Hence g € BMO“(T) if and only if there exists a constant C' such that

forall I € D
> lgnl <l
I'eD,I'CI
or equivalently
—|| P, <
?Elg u’l/pH IgHP oo

for 1 <p < 0.
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The space BMO appears in many different contexts. We shall use that
BMOY(T) = (H“4(T))* where H>? is defined in terms of the dyadic square

functions S,
1/2
XI
Sg= (jE:Tfﬂgﬂ2> :

1eD
That is,
HY(T)={ge LYT):Sgec L'(T)}.

Using Carleson measures, this gives rise to a description of BMO? in
terms of symbols g for which the dyadic paraproduct =,

mo(f) =Y gimifhy

1€D

or its adjoint operator Ay, Ag(f) = > ,cp g[f[TCI_I‘, is bounded on L*(T) (or
equivalently, on LP(T) for 1 < p < o0).

The situation in two variables it is rather different and much more
delicate. Omne main reason for the difficulties encountered in the multi-
variable theory is the failure of the naive generalization of the Carleson
Embedding Theorem to several variables (see [C], [Fef]). The reader is re-
ferred to [ChFef2] for an overview on the theory and an outline of the main
differences.

Several new results (e. g. [FS] and [PS]) further exhibit the differences
between certain BMO spaces on the polydisk defined by multi-variable ver-
sions of the different yet equivalent characterizations of BMO(T).

A function f € L?*(T?) is said to belong to the rectangular dyadic BMO
space, to be denoted BMOY | if

rect?

1 ! 2dtd -
(1.3)  sup (ﬁ/RU(t,S)—mff(s)—mjf(t)+mijf| ts) < 00.

R=IxJER

Or equivalently,

HSDHBMOd

rect

1
= sup ——— || Prool|s.
sup |R‘1/2H r|l2

We will also consider a p-version of the dyadic rectangular norm for
1 <p < oo,

1
(1.4 Ielvos,, = sup e | Peel
Here, || - lgmod . = || - llgmod .- In the one-variable case, the corresponding

rect rect,2

norms are of course all equivalent because of John-Nirenberg’s lemma.
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Let us start by defining BMOZ _,(T?) as the dual of H%(T?), the space

prod

of functions f € L'(T?) such that S(f) € L'(T?), where

st = (X lrnic) 7

RER
Although BMO? _,(T?) cannot be characterized by (1.3) [Fef], it was

prod

shown by Bernard in the dyadic case [Be| and also by Chang and R. Fef-
ferman in a continuous version [ChFefl] that BMOzmd(']IQ) can also be de-
scribed as the space of functions ¢ € L?*(T?) for which there exists C' > 0

such that

1
(1.5) llproa = sup |Q|—1/2||Psz<p||2 < o0,

where the supremum is taken over all measurable sets 2 C T?. This imme-
diately implies BMO? _; € BMO,eet.2-

prod =
The connection between both spaces can be also seen from the description
of BMO? 4 in terms of the boundedness of the dyadic paraproduct in two

pro
variables, defined by Wl()l’Q)(f) = > rer brmrfhg.

It follows from Chang’s generalization of the Carleson Embedding Theo-
rem (see [Ch]) that b € BMO?_, if and only if the double paraproduct WISM)

pro
is bounded on L*(T?). In our paper the following fact will be rather crucial:
(1.6) 1@llproa = [1wg2].

An similar characterization for BMOZ . was proved in [PS], Proposi-
tion 3.3.1, namely that b € BMO? , if and only if 7"* maps L*(T)&L2(T)

boundedly into L2(T?), where L*(T)®L?(T) stands for the projective ten-
sor product. This also implies that BMO? , € BMOZ . (see [Fef] for an

prod = rect
alternative approach).

We shall try to better understand the difference between both spaces.
Two approaches are used to this end. First we observe that John-Nirenberg
type inequalities do not hold in BMO? ., in the sense that the 2-norm in the
definition of BMO®_, cannot be replaced by any other p-norm. This solves a
question left open in [FS]. Secondly, we analyse the behaviour of the sweep

of functions in the BMO? _, and in the BMOZ . spaces.

pro rect,p
Our main new tool will be characterizations of BMO;Zrod in terms of

Haar multipliers. Recall that sequence of functions (¢r)ger is called a Haar
multiplier (see (2.16) or [Per]) on LP(T?), if the map

f=Y_ frhr(t,s) = > ¢r(t,s)frhr(t,s)

ReR ReR

defines a bounded operator on LP(T?).
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We shall say that b € BMOZ . if {(Prb)}rer defines a Haar multiplier
on L*(T?).

Using the characterization of BMOpro
we observe that b € BMOprod if the operator A, = (7, (L )) given by Ab(f)

> pbrhrfrhr defines a bounded operator on LQ(']IQ) Hence b € BMO¢
if and only if (bghgr)ger is a Haar multiplier on L?(T?).

q in terms of dyadic paraproducts,

prod

On the other hand, letting the Haar multiplier (PR/b) rer act on hg, we
see that ‘le | Prbll2 < ||6]lmuit, implying that BMO? . € BMOZ

mult rect*

We shall get a description of BMOZ . in terms of the boundedness of
the operator

Ao ="+ (D) + Agy + (Ar,),

where A, (see Definition 2.4) is an operator combining the one-variable
paraproduct 7 and its adjoint. This will allow us to prove that BMOZ . (T?)
= BMOprod( %) (see Theorem 2.8).

On the other hand, BMOZ , can also be described using A,. We show
that BMOZ_, can be characterized in terms of “average boundedness” of A,
or in terms of its boundedness from L?(T)®L?(T) into L*(T?).

The paper is divided into three sections. The first one is devoted to the
introduction of the space BMO? . and the proof of some of its properties.
We see that BMO? . can be characterized as the space of symbols b for which
the operator Ay is bounded, and that this space coincides with BMOprod

Section 3 deals with results on sweep functions. We prove the following
formula connecting the boundedness of 7TIE1’2) and Ag, (see Lemma 3.2):

(17) i D = Ag, + Dy,

where Dy, is bounded if b € BMOrect 9-

This allows us to see that b € BMOzr001 if and only if S, € BMOﬁrod. We

also obtain a characterization of BMO;lrod in terms of nested commutators
with dyadic martingale transforms, sharpening a result from [PS].

We further use the formula (1.7) to quantify the difference between the

BMO spaces we have considered, and to get a characterization of BMOPTOd

relying only upon the BMO? . norm of the n-fold sweeps.

Finally, in the last section, we apply the results from the previous ones
together with interpolation to study the scale of spaces BMOZ p introduced
in (1.4) and show that these spaces are pairwise distinct. As a corollary, we
obtain that BMOY Np>1 BMO?

prod rect,p*
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2. BMO via Haar multipliers

Definition 2.1 We shall say that b € BMO? .. if {(Prb)}rer defines a

mult

Haar multiplier on L*(T?), i.e. there exists C > 0 such that

| > Pab |, < e
ReR

for all f € L*(T?). We define ||b||muc as the norm of the corresponding
operator.

Let us start by pointing out some simple facts about this space.
_ Given I € D we write P; for the operator on L*(T) given by (1.1), and
P; = P; ®1id for the corresponding projection on L?(T?),

P(f)ts)= Y ho()fr(s).

I'eD,I'CI

Similarly, given J € D,, we write P for id ® P;.
Of course, P;(f)(t,s) = P;(f(s,-))(t) and Prf = Py(Pf) for R =1 x J.

Proposition 2.2

(2.1) L>(T?) ¢ BMO? . (T?)
(2.2) BMOY(T) ® BMOY(T) € BMO? . (T?)

Proof. Using (1.2), one easily obtains the following formula:

> Prbfrhr = fo =Y (mb)frhy = > (myb)fshs+ > mpbfrhp.

ReR IeD JeD ReR

Now (2.1) follows from this expression together with

2 2
H Z(mJb)thJ‘ Loy > llmab fall 7z
JeD ™ Jep

since

2
L2

H Z(mJb)thJ‘
JeD

and the trivial estimates for the terms bf and ZRGR mgrbfrhg.
To see (2.2), note first that for b € BMOY and f € L*(T),

(23) Z PIblfIhI = (7Tb1 + Abl)f - (ﬂ—bl + (’Nl_)l)*)f'

I1eD

Therefore (P;by)rep defines a bounded Haar multiplier on L?(T).

o |1 S [ e [ A
() JeD
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Now let b(t,s) = by(t)bo(s) with by,by € BMOY(T). Then Pg(h) =
Pr(b1)P;s(by) and therefore

Z Prbfrhr = Z P1b1<z PJbeJhJ) hy.

RER IeD JeD
This yields

) 2
| > Pabsunal, = / S Pbi(t (ZPJb2 thJ) (s)hi(t)| dtds
ReER IeD JED 2
2
< OHblHBMO/Z PJbszhJ)I(S) ds
1eD ' jep
< C?lIballBmol b2l lBaio D D 1 fiwal?
IeD JeD
with some absolute constant C' > 0. [ |

As announced in the introduction, we first relate this space to BMOprod
For this purpose we introduce the dyadic paraproducts in two variables

(see [PS]):
Definition 2.3 Given b € LZ(TQ), we write
m D (f = bgmpfhr
ReR

and

AM(F) = =2 bafnig

RER
The formula

@4) @), g) = (f, AL (g)) = /

TZ

b( > mR<f>thR> dtds

ReR

for f, g € Hoo completely describe the action of the operators 7rb Dand A(l 2)

Let us now define the following mixed operators (see [PS]).

Definition 2.4 Given b € L*(T?), we define the operators wa, and A,, by

(2.5)  (ma,(f),9) = {f,Ar(9)) = / b( Z mI(fJ)mJ(gI)hIXJ) dtds
T2 IXJER
for f,9 € Hoo.
We write

Ay =7l + AV LA
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Clearly we have the following expressions:

(2.6) 2 (f)Es) = ;mmff)(s)m(t)
(2.7) AMD(f)(ts) = jZDAb,<fI><s>h%<t>
(28) A (F)(t5) = izpmxffxs)h%@)
(2.9) T, (f)(t,s) = I:ZDAbxmffxs)w).

Lemma 2.5 Let R=1xJ € R and denote Ry = 1" x JtUI~ x J and
R_=I"xJ UI xJ". Then

(2.10) 7" (hg) = (Pg. (b) + Pr_(b))hg = (Pgr, (b) — Pr_(b))|R|~*/*

Proof. Using that mg/(hgr) # 0 only if I’ C I and J' € J and that in this
case mp/(hgr) = hr(xg), where xr = (tp, s) is the center of R, we obtain

that
(12 hR Z bR/hR .TR/

I'cl,J cJ

Observe that hr(xgr) = hg(t,s) = ‘RP/Q for R C Ry and (t,s) € R*.
Similarly hg(zr) = hr(t,s) = IRWQ for R C R, and (t,s) € R~. This
gives (2.10). |

Corollary 2.6 Let b € L*(T?). Then b € BMOZ , if and only if (Pg, (b) +
Pr_(b))hg)rer is a Haar multiplier on L?(T?).

Lemma 2.7 Ab(f) = Z PR(b)thR
RER

Proof. Note that for ¢, g € Hgo, we have

(2.11) 09 = mo(9) + D4 (9) + 7y (0)-

As in (2.3), one obtains

(2.12) Y Pr(@)gshy = mws(g) + Dglg)-

JeD
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Combining (2.12) with the formulas in (2.6)- (2.9) we get

Ao(f)(t,8) = Y (mo, + Do, ) f)()hr(t) + Y (mo, + Do, ) (fr)(5)PF(2)

- ;J; Py(br)(s)(mrf) shy(s)hi(t) + IEZD ;PJ (br)(s)(f1)sh(s)hF(t)

_ ; ; ()ms(f7)ha(t ;} ; s)(f7)hi(t))h(s)
_ ZD (o (s ) ) + z (A,SJ,, ) (£)hs(s)

_ IXZJE:R Py(Py(b))(t, s) freshixs(t, s)

= RXE;JDR )(t,5) frhg(t, s). =

We now are ready to prove our characterization of BMOﬁTOd in terms of
Haar multipliers.

Theorem 2.8 BMO¢ . = BMO*

prod mult

Proof. To see that BMO¢ C BMO¢? it suffices to see that the bound-

edness of 7Tb 2 implies the boundedness of A,,. This was proved in [PS], we
include here a proof for the sake of completeness.

By (2.5) and the characterization of BMO? ; as the dual of H'¢, the

pro
space of functions with integrable square function, we simply need to show

that

prod mult >’

F = Z m[<fj)mj(gl>hl><J(tvs>

IxJeER
belongs to H'¢. Note that

1/2
S<F><t,s>=( T |mf<fJ>|2|mJ<gf>|2h%M<t,s>) .

IXJER

Therefore

F)(t,s) < (Z Z(g?(s))2h3(s)(f§(t))2h?<t)> -

. (I;(QF(S))%?@))1/2<§(f}(t>)2h3<8))1/2,
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and hence

S( )(t, s)dtds <

/2

< / > (gi(s))’hi(t dtds) ( / > (f5()7h5(s dtds)

T Iep JED
/2
- (5 e st) (g fuora)
IeD JeD
<o(Shat) " (S1s8) = ol
IeD JeD

To prove the reverse inclusion BMO? . C BMOﬁrod, we shall use the

characterization of BMO?_, given in (1.6).

prod
It is clear that for each measurable set 2, we have Py (b) = Po(m, (1 )(XQ))

We shall show now that

Po(my"? (xa)) = Pa(As(xa)).
Let R € R and R C Q. Then by (2.10)

(A (xa), hr) = (xa, 7" (hg)) = |R]™Y*(xq, Pr+b — Pr-b) = 0.

This shows that PQ(AZ() 2) (xa)) =0.
On the other hand, we also have for R =1 x J C 2 that
7TAb hR Z b[’meI’(hI)XJhI’
I'cr
Using that (xq, xshr) =0 for all I’ C I, we obtain Po(ma,(xa)) = 0.
Similarly, Po(Ar, (xa)) = 0. Finally,

1Pa®)l] = [1Pa(m" (xa)ll = [ Pa(As(xa))

< [As(xa))l < [IA 1R, -

As a consequence of Thm 2.8, we can sharpen Thm 7.7.2 from [PS] and
characterize BMOE,Zrod in terms of the boundedness of nested commutators
with dyadic martingale transforms. This can be understood as a dyadic ana-
logue of the characterization of the continuous product BMO space BMO,,0q
as the space of functions for which the nested commutator

[Hy, [Ha, b)) - L*(T*) — L*(T?)

is bounded, where H; resp. Hy denote the Hilbert transform in the first
resp. second variable on L?(T?). The latter was proved in [FS] and [LF].
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Let ¥¢,%5 be the spaces of all sequences of signs indexed by the ele-
ments of Dy, Dy, X1 = {0,1}P1, ¥, = {0,1}P2, and let do; denote the
natural product probability measure on ¥, which assigns measure 27" to
each cylindrical set of length n. Let doy denote the corresponding mea-
sure on Xo. Let X = ¥y X Xy, with do denoting the product measure, and
R = D; x Dy as before.

For oy = (01(1))1ep, € X1, 02 = (02(J))jep, € 2o, let T,,,T,, denote
the dyadic martingale transforms

T, : LA(T%) - LX(T%), f= Y frcshis— Y o) frashiv,

IXJER IXJER
2 (2 2 (2
15, : L(T)HL T f= E frxihrxg — E 02 f]thli
IXJER IXJER

Theorem 2.9 Let b € L*(T?). Then the following are equivalent:
(i) b € BMO?

(ii) The nested commutators

prod

(2.13) (T,,, [Ty,,b]] : L*(T?) — L*(T?)

are uniformly bounded for all o1 € 31, 09 € 3.

(iii) The nested commutators [Ty, [T,,,b]] : L*(T?) — L*(T?) are bounded
on average, in the sense that the map

P, : LQ(TQ) — LQ(El X g X T? ) [ [ o1 [Tazvb]]f

15 bounded.
In this case, we have

(2.14)  |bllgyor, , = [[Aell < [[Poll < sup|[[T5y, [Toy, O[] < 4][As]-

01€¥1,02€%2

Proof. We use the ideas of the proofs of Thm 3.4, Cor 4.1 in [GPTV],
adapted to the two-variable case, and of Thm 7.7.2 in [PS].

From [PS, p.493], we know that
[TUN [Ttm’ b]] = [T0'17 [T027Ab“'

Therefore
sup ”[Tﬂla[szab]]H < 4HAbH

01€X1,02€%2

The second inequality in (2.14) is obvious.
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Finally, for f € L*(T?) one has
e O [ A RS
Elng

-/ /E Y oal) P [Py b ey dorder

IXJER
= > P [P bl f 1172
(215) IXJER
= Z H[P17 [PJvaHfH%p(Tz)
IxJER
= > (BrPsAy — PrAPs — By Pr + NPy Py) fl[ 2oy
IxXJeER
> P PP = A,
IXJER

since P;A,P; = 0 and P;A,P; = 0. This proves the first inequality in (2.14).
[ |

The martingale transformation approach is also interesting in the study
of BMOZ ,. Although A, is in general not bounded for b € BMOY ,, the
space BMOY . can be characterized in terms of “average boundedness” of Ay,
and also in terms of the boundedness of Ay from L*(T)&L?(T) into L2(T?).
For 0 = (01,09) € &, let T, = T,,T,, : L*(T?) — L*(T?).

Theorem 2.10 For g € Hoo, [|¢llgamor, @ equal to the norm of the operator
U, L*(T?) — L*(T? x %), f — AT, f.

Proof. Let f € L*(T?) and ¢ € Hpp. From Lemma 2.7 we have

(2.16) Apf = Profrh.

RER
Thus

// IATLf] dtdsda_/Tz/ >

/11‘ Z |fR|2XR Sl |(Pre)(t, s)|*dtds

ReER |R|

ReR

2
R)(Pryo)(t,s))frhr(t,s)|| dodtds

Thus the operator norm of W, is suppcr ‘Rl;l/QHPchH el Buod |

rect
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Proposition 2.11 Ifb € BMO? , then A, maps L*(T)QL*(T) into L*(T?).

rect

Proof. Assume f(t,s) = fi(t)f2(s) with || f1|| = ||f2]| = 1. Then we have

ZPRbehR—ZPI ZPJ (f2)shs)(t)(f1)1hi(2)

ReR I1eD JeD

Writing g(t,5) = Y ;cp Pr(b(t,-))(s)(f2).shs(s), we obtain

HZPRbehRH —//)ZPI (f2) k()| dtds.

Now let us consider g as a function in ¢ taking values in the Hilbert
space L*(T). Recall that as in the scalar case, the Haar multiplier norm
of (Prg)iep is controlled by the vector BMOY(T) norm of g given by

1
SUp T 1P 22z, 22 -
Thus

2 1
Sup H h H dt < Csup — || Prgl|? ‘
[ f1]l= l/ ( )<f1)I I< ) L2(T) 7 |I| H IgHLQ(T,LQ(T))

Notice now that

PI(ZPJ s)(f2)shy(s ) ZPIXJ )(t,5)(f2) s (s).

JeD JeD

On the other hand, applying a corresponding argument to the function
(Prb)(t,5) = > ;ep(Prxsb)(t, s)hs(s) understood as a function in s which
takes values in L?(T), we obtain for ||fa]|s =1

1 Prgl|Zeerr2my = ‘ZPIXJ )(t,s)(f2) shs(s )) dtds
T2 JeD
2
= /H ZPIXJ s)(f2)shi(s) 12T ds
JeD (T)
< Csup |||PI><J( )HL2 T,L2(T)) < CHIHleBMQd .

|J

This finishes the proof of the proposition. [ |
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3. Sweeps of functions in BMO

Let us now recall that the (dyadic) sweep of a function ¢ € L?(T?) is defined

as follows:
’ PR \ 2X
Se= 2 lenf'Ipp

ie. S, =38(p)2
We list some properties of the sweep which will be relevant for our pur-
poses, the proofs of which are elementary and left to the reader.

Proposition 3.1

() Sult.s) = j{jA9¢,<s>5¥533.

i) S
i) P ( ) Po(Spyg)-
(iv) If p> % then o € L?(T?) if and only if S, € LP(T?).
)
)

(v) If S, € L™ then ¢ € BMO¢

prod*

(vi) [[Se]l2 < Cllellpmog,,, llell2-

Here it is the basic result relating the boundedness of Wél’Q) and Ag, .

Lemma 3.2 Let b € Hyoy. Then

A9 0D 5 1D,

where Dy is a linear operator on L*(T?) with ||Dy|| < C||b||?
is an absolute constant.

Proof. Let R=1IxJ, R =1'xJ € R.
First, observe that

(3.1) <wél’2)*ﬂél’2)hR,hR/>
= < Z h,IIIXJH b[”XJ” m]”XJ” hR Z hIIIXJH bI”XJ” mI”XJ"<hR’)>

1" x J"eD1xDsy 1" x J"eD1x Do

BMOLL, and C >0

e Z |b[//><J//|2m[//(h[)m[//(h[/)mj//(hj)mj//(h]/).

1" x J" €Dy xDa, I CI,J"C.J

We now do a kind of triangular truncation with respect to the indices I, I’, J, J'.
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W) I21, 72T
<7qulb2 hg, hR/> = (Sp, hr')mr (hr)

X17x.J"
= < Z 7|I”||J”||b[//><J/,|27hR/>mR/(hR)

I"x J"eD1xDsy

= Z ‘bI”XJ”‘zmI”<hI/)mJ”<hJ’) m]/(h]) mJ/(hJ).

1" x J"eD1 xDa

This is nonzero only if I’ C [ and J' C J. In this case, we get
contributions only for I” C I’ and J” C J’, and the expression agrees
with (3.1).
(i) I ¢ I', J C J'. Observe that
<AA(S'1b’2)hR7 hPJ) = <hR7Wét2 hR’> - <Wévt72)hR/, hR>

As shown above, this equals (m, (1.2)* (1 Dhp, hr)yif I' 2 I and J' 2 J,
and is 0 otherwise.

(i) 121, JCJ.

<7TASth,hR/> = < Z Sb]”x]”h]” |j]//‘ mI//<hRJ//) hR’>
I

xJ"€D1x D2
< Z SbI”thI” |ml"(h1) hR’>
I//ED
= SbI/XJmI/(hJ)mJ(h]/) = <Sb7hl/><J>mI’(h[>mJ(hJ/)
— < Z X1 % J" |bI,,XJ,,|27 h[’><J>m[/(h1)mJ(hJ/)
I//

n\| n
X J"€D1 X D2 |] HJ |

— Z ’b[//XJ//‘2m1//(h1/)mJ//(hJ)mI/(hI)mJ(hJ/),

]”><J"€'D1X'D2

This is nonzero only for I’ C I and J’ 2 J. In this case, the sum has
only contributions for [” C I’ and J” C J, and agrees with (3.1).

(iv) I' 2 I and J' C J. Note that (Arg hg,hr) = (Tag hr,hg). As
shown above, this is only nonzero for I’ D I and J' C J, and agrees
with (3.1) in this case.
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(v) I'=Tor J=J. Let f € L*(T?). Then
Z Z <7Tl()1’2)*7rl()1’2)hIXJfI><J7hIXJ’fIXJ’>

1€Dy J,J €Dy

1
= > mz > (brrsea | frsa frearmgn (hymo ()

IeDy 1"CI J"e€D2
= Z ||7TbeI||2>
I1eDy

where for each I, f; stands for the one-variable function

> hufies,

JeDy

and b’ for the function

1 1/2
2
S :hJ|[|1/2( > [brres] ) .

JED; 1"Cr
It is easy to see that
16 [[Bpoa < 10l smoe, for all I € D;.

2

Thus the above sum is bounded by c|[b[|2, ..

| fII?, where c is an
t
absolute constant.

The same estimate holds for the terms corresponding to J = J'.

Now we have counted the terms corresponding to I = I', J = J' twice and
need to estimate them separately. Let f € L*(T?). Then

(32) Z Z<7Tz§1’2)*ﬁél’2)h1fo1xJ7h[foIxJ)

1€D; JED;
1
- Z Z 1117 Z br s fres|* < ||b||%MogectHf||2‘
1Dy JED; I"CII"CT
Defining D;, now by
(3.3) (Duof, [f) = Z <7rl§1,2) m§1’2)h1XJfIxJ,hI/xJ/fI/xJ/) +
IXJI'xJ'ERI'=I
+ Z <7Tg§1’2) Wl()l’Q)hfofIxJ,hI'xJ'fI/xJ/>>

IXJI')XJ' eERI'#LJ =]

we obtain the statement of the lemma. [ |
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Now we are ready to state the main result of this section.

Theorem 3.3 Let b € BMOL,,. Then b € BMOZ,  if and only if S, €
BMO¢

prod*

Proof. We will first show that there exist C' > 0 such that

(3.4) 195 lproa < CIIBII;

prod*

Indeed, by Chang’s Theorem [Ch], [ChFef2] it is sufficient to show that
there exists a constant C' > 0 with

1PaSslla < ClIblI50al 2
for all 2 C T? measurable (see (1.5)). Using Proposition 3.1, we obtain
(35) [|PaShll2 = [PaSpapllz < 1Sraplle < 1Pabllprol Pabllz < 101304122

For the converse, assume that S, € BMOﬁrOd. Then Ag, is bounded

by Theorem 2.8. Now Lemma 3.2 finishes the proof. |

Remark. The first implication can also be shown with the John-Nirenberg
Theorem for product BMO, which was proved in [ChFefl] (for a dyadic
version, see [T]).

The sweep can be understood as a bilinear map. For f, g € Hyo, let
XR
Sf,g = Z @frgra
RER
so Sy =S¢ 7.

Corollary 3.4 S : BMO?_, x BMO? _, — BMOY_, is bounded.

pro pro pro

Proof. The Cauchy-Schwarz inequality gives the pointwise inequality
Sty < (Sf)l/Q(Sg)l/Q for f, g € Hoo.

Let 2 C T? be measurable. Using an adaption of 3.1(iii), we see that

||PQSf7gH2 = “PQSPQf,PsngQ < HSPszf,Psng? < ||(SPszf)l/Q(SPszg)l/2||2

1/2 1/2
< N1Spaslls 1S Paglly’> < 19172 Fllprodllgllproa

by (3.5). u
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Another application of Lemma 3.2 yields the following result.

Theorem 3.5 Let || - || be an positive homogeneous function of degree 1
on Hoo such that

(i) There exists ¢ > 0 such that || - || gpod

rect

(ii) There exists k > 0 such that ||S,ll. < k|¢]|2.

<

Then there exists a constant C' such that for all ¢ € H,

||<P||BMogrod < Cllell

Proof. Throughout this proof we simply write 7, = 7T<(p1’2). From Lemma 3.2
we have
. 1,2 1,2)* ,
T,y = Wgw ) + WE% ) + Tag, +Tag,” + D,,
with [ D]l < Cllly 00 -
Let

E, =span{h;xy: I € Dy1,J € Dy, |I|,|J| > 27"},
let P, be the orthogonal projection onto E,, in L*(T?), and let

c(n) = sup{||7e|z, [I, @l <1}

A trivial estimate shows that ¢(n) < oo for each n € N. For n € N and
e > 0, choose f, € E, and ¢ € Hoo with ||p]l. =1, || fo|| =1 and ||7,fi || >
(1 —¢)c(n). Then
(36)  (L—e)c(n) < lImpfull® = (T fu, fu)
= (5 fus Fo) + (157 o o)+
+ <7TAs¢fmfn> + <7T*Asvfn7 fn) + (D frs fn)-

By definition of ¢(n), the first two terms can be estimated by
c(n)[|Sell < c(n)k.

For the next two terms, we have to remark that that

~n (1,2 ~1(1,2
(3.7) (Tas, Jus Ju) = (Tap, s o fu) < I7an s I < elmnl || < élnl |, |

Here, we use as in the proof of Thm 2.8 that there exists a constant ¢ such
that ||ma,|| < &zt | for all b € Hoo (sce [PS], Thm 7.7.2).

The last term is easily controlled by

<D<pfm fu) < C”('DHQBMOSZECJ
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Altogether, we obtain that

(3.8) I3, 1* < 42l . |+ Clellniog, -
With

H90HB1\40;!5Ct < cffeo|s
and

1,2
1752, || < ()|l < Ee(n) ]2,
it follows that

(3.9) (1 —¢)%c(n)? < 4ékc(n) + *C
Thus
c(n) < V4Ek? + Cc? + 2¢k.
With i
C = V4ek? + Cc? + 2¢k,
it follows that ||7,|| < C||¢|.. |

We can now characterize BMOgrod in terms of the BMOZ , ,-norm.

Theorem 3.6 Let ¢ € BMOZ_ (T?). Then ¢ € BMOZ_, if and only if

rect prod

(HSé,n)H]lg/l\igd Ynen is bounded, where SU” is the n-fold sweep of ¢, defined
rect
(n—1)

recursively by S& = S s,
Proof. By Theorem 3.3, we have for each n € N

n—1 n n n
||Sg(on)||BMOd < ||Sg(on)||BMOgmd <C.C?... 07 “(’DHEMOﬁmd < C? “(’DHEMOﬁmd’

rect

and consequently

1/2™
158 Ighmos . < Clielmuon, .-

Conversely, the map
@ = sup || © HBMOd
neN rect
clearly defines a positive homogeneous function on Hyy with satisfies condi-
tions in Theorem 3.5. |

Another consequence of Theorem 3.5 is

Corollary 3.7 S does not map BMO? ¢ X BMOZ . boundedly into BMOZ

rec rect rect

Proof. We know that the || - ||proa nOrm cannot be controlled by the || - ||rect

norm. So Condition (ii) in Theorem 3.5 cannot hold, and in particular S
does not map BMO? _, x BMOZ . boundedly into BMOZ [

rect rect rect*
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4. The scale BMO

rect,p

Recall that for 1 < p < oo, a function ¢ € L?*(T?) is said to belong to
BMOZ,, , if

rect,p

1
[l rectp = SUP |R|1/p||PR90||p < 0.

Note that BMO

rect,pa

C BMOY
The reader should also be aware that functions in BMOrectp are actu-
ally in LP(T?), due to the identities m;(f) = my(Prxrf) and my(f) =

my(Prysf).

The following proposition characterizes the behaviour of the BMOY
norms under the sweep.

for py < po.

rect,p1

rect,p

Proposition 4.1 Let p > 5 and let C, = || S ||r2o—120. Then

||S ||rectp < 402”@”

rect,2p*

Proof. Since Pr(S,) = Pr(Sps,) and || Pr(g)||, < 4]]gl|p, we obtain

2
||S ||rectp—4SUP \R|1/ ||SPR Hp 40 SUP \R|1/ | Pr(e )H?p

This gives the result. [

It is known that BMOPTOd c BMO?ect o. Indeed, this is basically the content

of Carleson’s original counterexample [C] (for the continuous case, see [Fef]).

As pointed out in [Fef], the example in [C] implies that BMO%,, , ¢ L*(T?).
We shall improve this by showing that actually BMOpmd C BMOfectp

for all p. We will show that for any p, > p; > 1, BMOZ_, »
therefore in particular BMOL,, , € BMOZ

this answers a question posed in [FS].

¢ LP>(T?) and
For the case p; = 1, py = 2,

rect,p2*

As a corollary, we show that

BMOprod = ﬂ BMOrectp
p>1
Theorem 4.2 Let p > 2. Then BMOprod - BMOrdectp

Moreover

1-2 2
(4.1) 10llrect,r < Cllollmd Pl 12
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Proof. Let us first show that BMO? _, C L?(T?) and

prod =

1-2 2
(4.2) el < Cllellb2P !5

For p = 2% | k € N, we shall prove (4.2) by induction.
It is obvious for k = 1. For k£ = 2 we have

(4.3) lellz = I1Sell2 = 1AT2(@)]2 < Cll@llproallip]]2-
Assume it holds for p;, = 2F.

1-2 2
1€l ls = 11Sellpe < CllSpllprod 1S 12"
Now from (3.4) and (4.3) we obtain

1-2 2 1-2 9
1ol < Cllllnag ™ P11 < Cllielgrod ™ Ioll3™

prod
Now the general case follows by interpolation.
Given p >2 and p # 2F for any k€N, find m € N such that 2"~ < p < 2™

Write

I 1-0, 0Oy
P - om—1 oam’
Now apply the previous case combined with

lelly < llellzm231lell3%-

Let us use (4.2) to obtain the desired estimate for the BMOL,, ,
Given R € R we have

|1 Prollp < CllProl P Proll3’ < CllollilP ]2 5| RIV?.

prod prod rect,2

-Nnorml.

This finishes the proof. |

Proposition 4.3 Let 2 < p. There exists ¢ € BMOfect,2 \LP(T?).
In particular BMOZ . € BMOY ., C BMOY

prod = rect,p = rect,2*
Proof. We shall find a sequence ¢y such that supy ||¢@n]|rect2 < o0 but
supy ||¢n||p = 0o. A standard argument then gives the existence of ¢.

From Carleson’s construction [C] we know that for each N € N there
exists a collection of dyadic rectangles ® 5 such that

(4.4) IR =1

Red N
1
4. —
(4:5) U <5
Red N
(4.6) S IR < CIRl, ReR

Redy,RCR
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where C' is a constant independent of V.

Defining
YN = Z |R\1/2hR

Red N
we have that
HSONHQ = 17 HSONHrect,Z S C

but, since supp(¢n) C Ugeay R,

lenlly > | J RI"7* 2 N7,

Red N [ |

We now can answer in the negative the above mentioned question of
C. Sadosky and S. Ferguson posed in [FS].

Corollary 4.4 There exists ¢ € BMOY \U,»1 LP(T?). In particular, for

rect,1
d d
each p > 1, BMOg,, , € BMOg.. 1, and the norms || - vt and || - [|rectp are
not equivalent.

Proof. We use the sequence of functions (¢, )neny with
H(pn”rect,Q S C and ||§0n||p Z n1/2_1/p

for each n € N, p > 2 from Proposition 4.3.

Define
=1
6= S
n=1
Then ¢ € BMOreer,1 by Proposition 4.1, but [[S,,. ||, & |l¢2n |3, > 27071/
for each n € N, p > 1 and consequently ¢ ¢ U,~ L?(T?). [ |

To differentiate the spaces BMOlcrlect,p and BMOgrOd we shall introduce
the following coefficients.

Definition 4.5 Let E,, = span{h;yxy : I € Dy,J € Dy, |I|,|J| > 27"} and
let P, be the orthogonal projection onto E,, in L*(T?).

For each ¢ > 1 and each n € N

c(n, q) = sup{[|me| : & € En, [[#llrect.g < 1},

and for p > q,

a(n,p,q) = Sup{H‘PHrect,p tp € Ey, ||90||rect,q < 1}a



Dvyapic BMO oN THE BIDISK 505

We first analyse the behaviour of these constants. Of course we have

(4.7) c(n,p2) < c(n,p1), p1<po
(48) a(napa ql) S a(napa Q2)7 q1 S q2
(49) a(nap2> Q) S a(naplv q)> b1 S D2.

If p > q, clearly

(4.10) c(n,q) < a(n, p,q)c(n, p).
Let us now extend Therorem 4.2.

Theorem 4.6 Letp > q > 2 and ¢ € BMOﬁrOd. If ¢ < 2% < p for some
k € N then

17
(4.11) 10llrectr < Coalllint Il 1225 .

In particular, for p > q1 > g2 > 2 we have

(4.12) a(n,p, g2) < Cyeln, g2) " ""Pa(n, q1, ga) /7.
Proof. We shall see first that

(4.13) lelly < Coallelliroallellg

for the above values of § = ¢/p. We do this in several steps.

First suppose that ¢ = 2" for some n € N. Theorem 4.2 gives the
case n = 1. Assume that the result is true for n > 2, and let us consider the
case ¢ = 2",

Let p > 2" Applying the induction assumption to S, for p/2, we get

ell2 & 115112
< ClISpllb ISl "
< Cllellas™ gl ne”
This shows that ey _—

lelly < Clléllproa Nl

Let us now proceed to the general case. We may assume that ¢ < 2 < p
for some k € N. We can apply the previous case for n = k together with
interpolation. Writing

I 1-«

+Oé
2k q p’
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we obtain
1—2k ok
lell, < Cllellba™llellz
12k —a a2k
< COllelloa (el lpll2) /7
Consequently
_ a2k 1—2F _a)2k
lol[272/% < Ol |y Nl ol |- e,
Note that
2k ok
l—a)—=1—-—a—.
q P

Hence we get with 0 = ¢/p that

lelly < Cllellpmoallllg-

To finish the proof, note that for each R € R,

1—
1Prolly < CogllPreol o] Prepl |17

1—
< Cpallollon?|1 ol |18 | RIM?.

[ |
Let us now establish a further connection between the constants intro-
duced in 4.5.

Theorem 4.7 There exist K1 > 0 and Ky > 0 such that for alln € N and
p=>1
CQ(na 2p) < chic(nap) + K27

where C, = || S || L2r— 120 -

Proof. Write
W;mp = Ags, + D,
with || Dy|| < Cllell3, 00 as above.
Forn € N, p > 1 and ¢ > 0, choose f, € L?(T?) and ¢ € E, with

pllrect2p = 15 ([ fallo = 1 and flme full2 = (1 = £)e(n, 2p). Then
(1= e)%c(n, 2p)* < llmpfulls = (Momo s fu) = (As, fu, fu) + (Do fu)-

Therefore, we obtain that

(4.14) (1 - £)e(n,2p)* < | As, | + CllplPyios.
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Since ||¢||rect,2p = 1, Proposition 4.1 implies ||Sy||rect,p < 4C;. Therefore,
since ||¢|lrect.2 < || ]]rect,2p, it follows that

(4.15) (1 —e)%c(n,2p)* < 4C§c(n,p) +C.
Using (4.10) we get the second part. [ |
Corollary 4.8 Let p > 1. Then BMOZ _, C BMO?

prod = rect,p *

Proof. Observe first that Proposition 4.3 implies that

(4.16) lim ¢(n,2) = oco.
This shows that BMOZ, ; € BMOY,, , for any 1 < p < 2.

On the other hand, the estimates (4.10) and (4.12) in the case ¢ = ¢1 = ¢o
imply that if p > ¢ > 2 with ¢ < 2¥ < p for some k,

(4.17) cq/p(n, q) < Cc¢(n,p),

where C' is independent of n.

Hence BMOE,Zrod = BMOfect,p for some p>2 would imply sup,, ¢(n,p) < oo

and therefore sup,, ¢(n,2) < oo, contradicting (4.16). |

The particular case p = 4 means that a question left open in [PS] can be
answered in the negative. There, it was asked whether the condition

,2)\ * , X
(418) Ny m P fIf =l 30 lbalmad
IXJEDlx'Dz,[gI/

<Clflmy  (f € LX(T).I' € D))

((27) and (28) in [PS]) already implies that b € BMOﬁmd. Note that f here
denotes a function in the second variable. We know from Prop 4.1 that
b € BMOyect,4 implies Sy, € BMO¢ By Lemma 3.2,

rect*

(w2 w2 b 1| = 1(As, + Db £,

where D, is bounded on L?(T?) and Ag, maps L*(T)®L?(T) boundedly into
L*(T?) by Prop 2.11. Thus b € BMO,ec 4 implies (4.18). This condition is

therefore not sufficient for b € BMOzmd.

As pointed out in [PS], this has also consequences for the study of
operator-valued Carleson measures, in the sense that a certain vector BMO
condition of the sweep of an operator-valued measure does not imply bound-
edness of the corresponding vector Carleson embedding.

We can further show that even the intersection of all BMOIC"lect,p
still bigger than BMO?

prod*

1 2

L2(T2)

spaces is
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Corollary 4.9
BMO},.q & [ BMOY,

prod = rect,p °
p>1

Proof. Obviously
() BMOL,.,, = (] BMOY,

rect,p rect,p *
p=1 peN

With the locally convex topology defined by the increasing sequence of semi-
norms (|| - ||lrectp)pen, the latter is a metrizable locally convex linear space.
Since each of the BMOZ,, , is complete in ||+||rect,p, Npeny BMO%, , is complete
in this topology and therefore a Fréchet space. We know from Theorem 4.2
that

d d

BNIOprod g ﬂ BMOrect,p?
p=>1

and that the embedding is continuous with respect to the norm topology on
BMOﬁrod and the locally convex topology on ﬂle BMO,ect p- Let us assume

towards a contradiction that the embedding is surjective. Then the open
mapping theorem implies that the locally convex topology on ﬂPZl BMO?

rect,p
is normable with || - ||proa and therefore contains a nonempty open neigh-
bourhood of 0 which is bounded with respect to || - ||proa. Since the family

(Il | vect,p)pen 1s increasing, this means that there exists p € N and ¢ > 0 such
that ||b|lproa < 1 whenever [|b|sect, < €, in contradiction to Corollary 4.8. W

We will now separate the BMOfecmp spaces. Note that for Corollary 4.4
means that

(4.19) lim a(n,p,1) = oo

n—oo

for all p > 1.
Let us see that this holds in general.

Corollary 4.10 Let p > ¢ > 1. Then BMOZ_ C BMO®

rect,p = rect,q *

Proof. We have to show that

lim a(n,p,q) = co.

n—oo
It suffices to prove

lim a(n,q+¢,q) = 00
n—oo

for sufficiently small . For fixed ¢ > 1, choose ¢ > 0 and k& € N such that
g<qt+e<2F<2q.
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Using Theorem 4.7, (4.10) and (4.17), we obtain constants C, Cy and Cs
independent of n such that

*(n,2q) < Cic(n, q) < C1Cra(n, q +¢,q)c(n, q + <)
< C1CyCsaln, g + £, q)c(n, 29) 7.

This shows that

c(n,2q)7= < Ca(n,q+¢,q)

where C' is independent of n. Now the result follows from Corollary 4.8. W
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