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A Generalized Sharp Whitney Theorem
for Jets

Charles Fefferman

Abstract

Suppose that, for each point x in a given subset E ⊂ R
n, we are

given an m-jet f(x) and a convex, symmetric set σ(x) of m-jets at x.
We ask whether there exist a function F ∈ Cm,ω(Rn) and a finite
constant M , such that the m-jet of F at x belongs to f(x) + Mσ(x)
for all x ∈ E. We give a necessary and sufficient condition for the
existence of such F, M , provided each σ(x) satisfies a condition that
we call “Whitney ω-convexity”.

1. Introduction

Generalizing [9, 11], we obtain here a result used in [10] as a key step in
solving the following problem.

Whitney’s Extension Problem: Let m ≥ 1, and let ϕ : E −→ R, with
E ⊆ R

n compact. How can we tell whether ϕ extends to a Cm function
on R

n?
We start by recalling the result of [11], and then discuss the main theorem

of this paper. We next recall from [10] the solution of Whitney’s extension
problem. Our introduction ends with a brief historical discussion, touch-
ing on the work of Whitney [19, 20, 21], Glaeser [12], Brudnyi-Shvartsman
[3,. . . ,7 and 14, 15, 16], Zobin [22, 23], and Bierstone-Milman-Pawlucki [1, 2].

The result of [11] deals with Cm,ω(Rn), the space of functions F : R
n → R

whose derivatives through order m are bounded and have modulus of conti-
nuity ω. We assume that ω is a “regular modulus of continuity” as defined
in Section 2 below. This is a very mild assumption. We seek a function
F ∈ Cm,ω(Rn) whose restriction to a given set E agrees with a given func-
tion f to a given tolerance σ. The main theorem of [11] is as follows.
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Theorem 1 Given m,n ≥ 1, there exists k#, depending only on m and n,
for which the following holds.

Let ω be a regular modulus of continuity, let E ⊆ R
n; and let f : E −→ R

and σ : E −→ [0,∞) be given functions on E. Suppose that, given S ⊆ E
with cardinality at most k#, there exists F S ∈ Cm,ω(Rn), satisfying

‖ F S ‖Cm,ω(Rn) ≤ 1 and |F S(x) − f(x)| ≤ σ(x) for all x ∈ S

Then there exists F ∈ Cm,ω(Rn), satisfying

‖ F ‖Cm,ω(Rn) ≤ A, and |F (x) − f(x)| ≤ Aσ(x) for all x ∈ E.

Here, A is a constant depending only on m and n.

Thus, to decide whether there exist a function F ∈ Cm,ω(Rn) and a finite
constant M , such that |F (x)− f(x)| ≤ M · σ(x) for all x ∈ E, it is enough
to examine finite subsets S ⊆ E with cardinality at most k#.

Our goal here is to prove a version of Theorem 1 in which the condition
|F (x) − f(x)| ≤ σ(x) is replaced by the requirement that the m-jet of F
at x belong to a prescribed convex set. We write Rx for the ring of m-jets of
smooth, real-valued functions at x ∈ R

n; and we write Jx(F ) for the m-jet
of F at x.

Now suppose that, for each point x ∈ E, we are given an m-jet f(x) ∈
Rx, and a closed, symmetric convex subset σ(x) ⊆ Rx. Let ω be a regular
modulus of continuity. We ask: How can we decide whether there exist
F ∈ Cm,ω(Rn) and a constant A <∞ such that Jx(F )− f(x) ∈ A · σ(x) for
all x ∈ E?

We want to prove an analogue of Theorem 1 for this problem. We will
need some restriction on the set σ(x), or else the desired analogue of The-
orem 1 will be obviously false. (For instance, any linear PDE LF = g has
the form Jx(F ) − f(x) ∈ σ(x) for a suitable jet f(x) and linear subspace
σ(x) ⊆ Rx.)

Two natural questions come to mind:

• Which hypotheses on σ(x) allow us to carry over the proof of Theo-
rem 1 from [11] to our present setting?

• Which hypotheses on σ(x) allow us to apply the analogue of Theorem 1
to solve Whitney’s extension problem as in [10]?

Interestingly, these two questions have very similar answers.
The correct hypothesis on σ(x) is “Whitney ω-convexity”. To define this

notion, we introduce a bit more notation.
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We fix m,n ≥ 1, and let P denote the vector space of all (real-valued)
mth degree polynomials on R

n. For functions F , we identify the m-jet Jx(F )
with the Taylor polynomial

y 	→
∑
|α|≤m

1

α!
(∂αF (x)) · (y − x)α.

Thus, the ring Rx of m-jets at x is identified with P as a vector space; and
we regard elements of Rx as polynomials P ∈ P.

We can now define the notion of “Whitney ω-convexity”.
Let ω be a regular modulus of continuity, let σ ⊆ Rx0 be a set of m-jets

at x0, and let A be a positive number.
We say that σ is “Whitney ω-convex, with Whitney constant A”, if the

following conditions are satisfied:

• σ is closed, convex, and symmetric (i.e., P ∈ σ if and only if −P ∈ σ).

• Suppose P ∈ σ, Q ∈ Rx0 , and δ ∈ (0, 1]. Assume that P and Q satisfy
the estimates

|∂βP (x0)| ≤ ω(δ) · δm−|β| and |∂βQ(x0)| ≤ δ−|β| for |β| ≤ m.

Then P ·Q ∈ Aσ, where the dot denotes multiplication in Rx0.
If we omit the factor ω(δ) in the above estimates, then we arrive at

the closely related notion of “Whitney convexity”. (See [10], and Section 2
below.) Note that, if σ is Whitney convex, then σ is also Whitney ω-convex,
for any regular modulus of continuity ω. (This follows at once from the
above definitions, since ω(δ) ≤ 1 for δ ∈ (0, 1] and ω a regular modulus of
continuity; see Section 2.)

Our analogue of Theorem 1 for Whitney ω-convex sets is as follows.

Theorem 2 Given m,n ≥ 1, there exists k#, depending only on m and n,
for which the following holds.

Let ω be a regular modulus of continuity, let E ⊆ R
n, and let A > 0.

For each x ∈ E, suppose we are given an m-jet f(x) ∈ Rx, and a Whitney
ω-convex subset σ(x) ⊆ Rx with Whitney constant A. Suppose that, given
S ⊆ E with cardinality at most k#, there exists F S ∈ Cm,ω(Rn), satisfying

‖ F S ‖Cm,ω(Rn) ≤ 1 , and Jx(F
S) − f(x) ∈ σ(x) for all x ∈ S.

Then there exists F ∈ Cm,ω(Rn), satisfying

‖ F ‖Cm,ω(Rn) ≤ A′, and Jx(F ) − f(x) ∈ A′ · σ(x) for all x ∈ E.

Here, A′ depends only on m,n, and on the Whitney constant A.
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The purpose of this paper is to prove Theorem 2, by carrying over the proof
of Theorem 1 from [11]. We make a few remarks about Theorem 2, and
about the notions of Whitney ω-convexity and Whitney convexity.

First of all, note that Theorem 2 immediately implies Theorem 1. (In fact,
given a function σ : E −→ [0,∞), we define a set σ̂(x0) of m-jets, for each
x0 ∈ E, by setting

σ̂(x0) = {P ∈ P : |P (x0)| ≤ σ(x0)}.

One checks trivially that σ̂(x0) is Whitney convex with Whitney constant 1,
and that Theorem 2 for σ̂ is equivalent to Theorem 1 for σ.) Since the proof
of Theorem 2 is close to that of Theorem 1, and is presented here in detail,
we will not be publishing [11].

Next, note that Theorem 2 yields the following corollary.

Theorem 3 Let m,n ≥ 1. Then there exists a constant k#, depending only
on m and n, for which the following holds:

Let ω be a regular modulus of continuity, and let E ⊂ R
n be an arbitrary

subset. Suppose that for each x ∈ E we are given an m-jet f(x) ∈ Rx and
subset σ(x) ⊂ Rx.

Assume that each σ(x) is Whitney convex, with a Whitney constant A0

independent of x.
Assume also that, given any subset S ⊂ E with cardinality at most k#,

there exists a map x 	→ P x from S into P, with

(a) P x ∈ f(x) + σ(x) for all x ∈ S;

(b) |∂βP x(x)| ≤ 1 for all x ∈ S, |β| ≤ m; and

(c) |∂β(P x−P y)(y)| ≤ ω(|x−y|) · |x−y|m−|β| for |β| ≤ m, |x−y| ≤ 1,
x, y ∈ S.

Then there exists F ∈ Cm,ω(Rn), with ‖ F ‖Cm,ω(Rn) ≤ A1, and

Jx(F ) ∈ f(x) + A1σ(x) for all x ∈ E.

Here, A1 depends only on m,n and the Whitney constant A0.

To deduce Theorem 3 from Theorem 2, we simply recall that Whitney con-
vexity implies Whitney ω-convexity, and we invoke Lemma 2.1 from Sec-
tion 2 below.

Theorem 3 is a crucial step in our paper [10] solving Whitney’s extension
problem for Cm.
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The notions of Whitney convexity and Whitney ω-convexity are somewhat
mysterious. On the one hand, there are interesting examples of Whitney
convex sets.

For instance, let E ⊂ R
n be given, and let x0 be a point of R

n, possibly
in or close to E. Then the closure of the set

σ̂(x0) = {Jx0(F ) : ‖ F ‖Cm(Rn) ≤ 1 and F = 0 on E} ⊆ Rx0

is easily seen to be Whitney convex, with a Whitney constant depending
only on m and n. (See the proof of Lemma 5.3 in [10].)

On the other hand, I don’t know how to decide efficiently whether a given
set σ ⊆ Rx0 is Whitney convex, or Whitney ω-convex; or how to compute
the order of magnitude of the best Whitney constant for σ.

It would be interesting to understand these issues.

Next, we recall our solution of Whitney’s extension problem from [10].

Let ϕ : E −→ R be given, with E ⊂ R
n compact, as in Whitney’s

problem. By induction on � ≥ 0, we define an affine subspace H�(x0) ⊆ P
for each point x0 ∈ E. We start with

H0(x0) = {P ∈ P : P (x0) = ϕ(x0)} for x0 ∈ E .

The induction step is as follows. Fix � ≥ 0, and suppose we have defined
H�(x) for all x ∈ E. We will define an affine subspace H�+1(x0) ⊆ H�(x0)
for each x0 ∈ E. To do so, let k̄ be a large enough constant, depending only
on m and n. Let B(x, r) denote the open ball of radius r about x in R

n. We
say that a given P0 ∈ H�(x0) belongs to H�+1(x0) if the following condition
holds:

Given ε>0 there exists δ>0 such that, for any x1, . . . , xk̄ ∈ E∩B(x0, δ),
there exist P1 ∈ H�(x1), . . . , Pk̄ ∈ H�(xk̄), with

|∂α(Pi − Pj)(xj)| ≤ ε|xi − xj|m−|α| for |α| ≤ m, 0 ≤ i, j ≤ k̄ .

Note that H�+1(x0) may be empty. By convention, we allow the empty set
as an affine subspace of P .

In principle, the H�(x0) are computable from ϕ : E −→ R.

The significance of the subspaces H�(x0) is that, whenever F ∈ Cm(Rn)
with F = ϕ on E, then Jx0(F ) ∈ H�(x0) for any � ≥ 0 and x0 ∈ E. (This
follows from an easy induction on � using Taylor’s theorem.) In particular,
if any H�(x0) is empty, then obviously ϕ cannot admit a Cm extension F .
Conversely, [10] uses Theorem 3 to demonstrate the following result.
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Theorem 4 Let � = 2 · dimP + 1.

(A) If H�(x0) is non-empty for every x0 ∈ E, then ϕ extends to a Cm

function F on R
n.

(B) Suppose ϕ extends to a Cm function on R
n. Let x0 ∈ E. Then, given

P0∈H�(x0), there exists F ∈Cm(Rn) with F = ϕ on E and Jx0(F )=P0.

Theorem 4 solves Whitney’s problem, and also computes the space of all
possible m-jets at a given x0 ∈ E of functions F ∈ Cm(Rn) with F = ϕ
on E. See Bierstone-Milman-Pawlucki [1,2]. Our proof of Theorem 4 in [10]
uses Theorem 3 from this paper, which is called the “Generalized Sharp
Whitney Theorem” in [10].

We give a brief historical discussion of Whitney’s extension problem.
Whitney began the subject in [19, 20, 21] in 1934, by settling the exten-
sion problem for the case of Cm(R1), and by proving the classical Whitney
extension theorem.

In 1958, G. Glaeser [12] solved Whitney’s problem for C1(Rn) by introdu-
cing a geometrical object called the “iterated paratangent space”. Glaeser’s
work influenced all later work on the subject. A series of papers by Y. Brud-
nyi and P. Shvartsman [3,. . . ,7 and 14, 15, 16] studied the analogue of Whit-
ney’s problem for Cm,ω(Rn) and other function spaces. Among their conjec-
tures is the case σ ≡ 0 of Theorem 1. Among their results is the case σ ≡ 0,
m = 1 of Theorem 1, with the sharp constant k# = 3 · 2n−1, proven by the
elegant method of “Lipschitz selection”, which has independent interest. We
refer the reader to [3,. . . ,7 and 14, 15, 16] for these and other related results
and conjectures. See also N. Zobin [22, 23], for the solution of a problem
that may prove to be closely related to the ones discussed here.

The next progress on Whitney’s problem was the work of Bierstone-
Milman-Pawlucki [1]. They introduced an analogue of Glaeser’s iterated
paratangent space relevant to Cm(Rn). The conjectured a complete solution
of Whitney’s extension problem based on their paratangent space, and they
found supporting evidence for their conjecture. (A version of their conjec-
ture holds for sub-analytic sets E.) Theorem 4 is equivalent by duality to
the Bierstone-Milman-Pawlucki conjectures [1] with their paratangent space
replaced by a natural variant. (See [2].) Some modification of the condition
in [1] is required to treat general compact sets without loss of derivatives;
see a forthcoming paper by Bierstone, Milman, Pawlucki and the author.

It is a pleasure to thank E. Bierstone and P. Milman for very use-
ful conversations and to acknowledge the influence of [1], as well as to thank
the Courant Institute of Mathematical Sciences where this work was car-
ried out. I am particularly grateful to Gerree Pecht for making special
efforts to TEX this paper quickly and accurately. We now begin the work of
proving Theorem 2.
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2. Notation and Preliminaries

A “regular modulus of continuity” is a function ω(t), defined for 0 ≤ t ≤ 1,
and satisfying the following conditions:

(1) ω(0) = lim
t→0+

ω(t) = 0, and ω(1) = 1.

(2) ω(t) is increasing (not necessarily strictly) on [0, 1].

(3) ω(t)/t is decreasing (not necessarily strictly) on (0, 1].

Note the obvious estimates:

ω(t) ≥ t for t ∈ [0, 1];
ω(t) ≤ ω(C1t) ≤ C1ω(t) for C1 ≥ 1, C1t ≤ 1; and
ω(t) ≥ ω(c1t) ≥ c1ω(t) for 0 < c1 ≤ 1, t ∈ [0, 1].

These estimates are immediate from (1), (2), (3).
Suppose ω is a regular modulus of continuity, and supposem ≥ 0. We de-

fine Cm,ω(Rn) as the space of all Cm functions F : R
n → R for which

the norm

‖ F ‖Cm,ω(Rn)= max

{
max
|β|≤m

sup
x∈Rn

|∂βF (x)|, max
|β|=m

sup
x,y∈Rn

0<|x−y|≤1

|∂βF (x) − ∂βF (y)|
ω(|x− y|)

}

is finite.
Note that we get an equivalent norm by allowing all β with |β| ≤ m in

the second sup.
We also define Cm,ω

�oc (Rn) as the space of all functions F that agree with
some FK ∈ Cm,ω(Rn) on any given compact set K ⊂ R

n. As usual, Cm
�oc(R

n)
denotes the space of functions F with m continuous derivatives, without any
global boundedness assumption on F or its derivatives.

We apply repeatedly the following obvious consequence of Taylor’s The-
orem: Let ω be a regular modulus continuity.

Suppose F ∈ Cm
�oc(R

n), with

|∂βF (x) − ∂βF (y)| ≤M · ω(|x− y|)

for |β| = m, x, y ∈ R
n, |x− y| ≤ 1. Then for |β| ≤ m, |x− y| ≤ 1, we have

∣∣∣∂βF (y) −
∑

|γ|≤m−|β|

1

γ!
(∂β+γF (x)) · (y − x)γ

∣∣∣ ≤ CM |x− y|m−|β| ω(|x− y|)

with C depending only on m and n.
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In particular,

∣∣∣∂βF (y) −
∑

|γ|≤m−|β|

1

γ!
(∂β+γF (x)) · (y − x)γ

∣∣∣
≤ C ‖ F ‖Cm,ω(Rn) |x− y|m−|β| ω(|x− y|) .

for |x− y| ≤ 1, |β| ≤ m.

We fix m,n ≥ 1 throughout this paper. We recall the following from the
Introduction.

We let P denote the vector space of all real-valued polynomials of degree
≤ m on R

n and we let D = dimP .

If F ∈ Cm
�oc(R

n) and y ∈ R
n, then we write Jy(F ) for the m-jet of F at y,

i.e., the polynomial

x 	→
∑
|β|≤m

1

β!
(∂βF (y)) · (x− y)β.

We write Ry for the ring of jets at y. More precisely, Ry = P , with the
multiplication operator that gives

P ·Q = S (P,Q, S ∈ P) if and only if ∂β(PQ− S)(y) = 0

for |β| ≤ m, where PQ denotes the ordinary product of polynomials.

Fix y ∈ R
n, A > 0, and let Ω be a subset of Ry. Then, as in the Intro-

duction, we say that Ω is “Whitney convex at y with Whitney constant A”
if the following conditions are satisfied.

(a) Ω is closed, convex, and symmetric about the origin. (That is, P ∈ Ω
if and only if −P ∈ Ω.)

(b) Let P ∈ Ω, Q ∈ P , 0 < δ ≤ 1 be given. Assume that

|∂αP (y)| ≤ δm−|α| and |∂αQ(y)| ≤ δ−|α|, for |α| ≤ m.

Let Q · P denote the product of Q and P in Ry. Then Q · P belongs
to A · Ω.

Note that if instead we have

|∂αP (y)| ≤M1δ
m−|α| and |∂αQ(y)| ≤M2δ

−|α|

for |α| ≤ m, with M1 ≥ 1, then we obtain Q · P ∈ AM1M2Ω.
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Similarly, suppose y ∈ R
n, A > 0, Ω ⊆ Ry, and let ω be a regular

modulus of continuity. Then we say that Ω is “Whitney ω-convex at y with
Whitney constant A” if the following conditions are satisfied.

(a) Ω is closed, convex, and symmetric about the origin.

(b) Let P ∈ Ω, Q ∈ P , 0 < δ ≤ 1 be given. Assume that

|∂βP (y)| ≤ ω(δ) · δm−|β| and |∂βQ(y)| ≤ δ−|β| , for |β| ≤ m.

Let Q · P denote the product of Q and P in Ry. Then Q · P belongs
to A · Ω.

Note that if σ ⊆ Rx is Whitney convex, (with Whitney constant A),
then it is Whitney ω-convex for any regular modulus of continuity, again
with Whitney constant A.

If β, α are multi-indices, then δβα denotes the Kronecker delta, equal to 1
if β = α, and equal to zero otherwise.

We let M denote the set of multi-indices β = (β1, . . . , βn) of order |β| =
β1 + · · · + βn ≤ m.

We write M+ for the set of all multi-indices of order ≤ m+ 1.

A subset A ⊆ M is called “monotonic” if, for any α ∈ A and γ ∈ M,
α + γ ∈ M implies α + γ ∈ A.

We write B(x, r) for the open ball of radius r, centered at x ∈ R
n.

A cube Q is defined as a Cartesian product [a1, b1)× · · · × [an, bn) ⊂ R
n,

with b1 − a1 = b2 − a2 = · · · = bn− an. The diameter of a cube Q is denoted
by δQ. If Q is a cube, then Q∗ denotes the cube concentric with Q, and
having diameter 3δQ. To “bisect” a cube is to subdivide it into 2n congruent
sub-cubes in the obvious way. Later on (in Section 11), we will fix a cube
Q◦ ⊂ R

n. Once Q◦ is fixed, the collection of “dyadic” cubes consists of Q◦,
together with all the cubes arising from Q◦ by bisecting k times, for any
k ≥ 1. Note that, by this definition, every dyadic cube is contained in Q◦.
Moreover, any dyadic cube Q other than Q◦ arises by bisecting a “dyadic
parent” Q+, with δQ+ = 2δQ.

We will often be dealing with functions of x ∈ R
n, parametrized by

y ∈ R
n. We denote these by ϕy(x), or by P y(x) if x 	→ P y(x) is a polynomial

for each fixed y. When we write ∂βP y(y), we mean
(
∂
∂x

)β
P y(x) evaluated

at x = y. We never use ∂βP y(y) to denote the derivative of order β of the
function y 	→ P y(y).

If S is any finite set, then we write #(S) for the number of elements of S.
For S infinite, we define #(S) = ∞.
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We close this section with the following result.

Lemma 2.1 Let ω be a regular modulus of continuity, and let S ⊂ R
n be a

finite set. Suppose we are given an m-jet P x ∈ P associated to each point
x ∈ S. Assume that

(a) |∂βP x(x)| ≤ 1 for |β| ≤ m, x ∈ S; and that

(b) |∂β(P x−P y)(y)| ≤ ω(|x−y|) · |x−y|m−|β| for |β| ≤ m, |x−y| ≤ 1,
x, y ∈ S.

Then there exists F S ∈ Cm,ω(Rn), with

Jx(F
S) = P x for all x ∈ S, and with ‖ F S ‖Cm,ω(Rn) ≤ C.

Here, C depends only on m and n.

This result follows from the usual proof of the standard Whitney exten-
sion theorem. (See [13,17].)

Using Lemma 2.1, one sees that our present Theorem 2 trivially implies
the “Generalized Sharp Whitney Theorem” stated in [10] i.e., our present
Theorem 3.

3. Order Relations on Multi-Indices

We introduce order relations on multi-indices, and on subsets of M as in [9].
Let us recall these relations.

Suppose α = (α1, . . . , αn) and β = (β1, . . . , βn) are distinct multi-indices.
Then we must have α1 + · · ·+αk �= β1 + · · ·+βk for some k. Let k̄ denote

the largest such k. Then we say that α < β if and only if α1 + · · · + αk̄ <
β1 + · · · + βk̄. One checks easily that this defines an order relation. Next,
suppose A and B are distinct subsets of M. Then the symmetric difference
A∆B = (A � B) ∪ (B � A) is non-empty. Let α denote the least element of
A∆B, under the above ordering on multi-indices. Then we say that A < B
if and only if α belongs to A. Again, one checks easily that this defines an
order relation. As in [9], we have the following elementary results.

Lemma 3.1 If α, β are multi-indices, and if |α| < |β|, then α < β.

Lemma 3.2 If A ⊆ Ā ⊆ M, then Ā ≤ A.

Lemma 3.3 Let A ⊂ M, and let φ : A → M. Suppose that

(1) φ(α) ≤ α for all α ∈ A, and

(2) for each α ∈ A, either φ(α) = α or φ(α) /∈ A.

Then φ(A) ≤ A, with equality if and only if φ is the identity map.
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4. Statement of Two Main Lemmas

Fix A ⊆ M. We state two results involving A.

Weak Main Lemma for A: There exists k#, depending only on m and n,
for which the following holds.

Suppose we are given constants C, a0; a regular modulus of continuity ω;
a finite set E ⊂ R

n; a point y0 ∈ R
n; and a family of polynomials Pα ∈ P,

indexed by α ∈ A. Suppose also that for each x ∈ E, we are given an m-jet
f(x) ∈ Rx and a subset σ(x) ⊂ Rx.

Assume that the following conditions are satisfied.

(WL0) For each x ∈ E, the set σ(x) is Whitney ω-convex at x with Whitney
constant C.

(WL1) ∂βPα(y
0) = δβα for all β, α ∈ A.

(WL2) |∂βPα(y0) − δβα| ≤ a0 for all α ∈ A, β ∈ M.

(WL3) Given α ∈ A and S ⊂ E with #(S) ≤ k#, there exists ϕSα ∈
Cm,ω
�oc (Rn), with

(a) |∂βϕSα(x) − ∂βϕSα(y)| ≤ a0 · ω(|x − y|) for |β| = m, x, y ∈ R
n,

|x− y| ≤ 1;

(b) Jx(ϕ
S
α) ∈ Cσ(x) for all x ∈ S; and

(c) Jy0(ϕSα) = Pα.

(WL4) Given S ⊂ E with #(S) ≤ k#, there exists F S ∈ Cm,ω(Rn), with

(a) ‖ F ‖Cm,ω(Rn)≤ C; and

(b) Jx(F
S) ∈ f(x) + Cσ(x) for all x ∈ S.

(WL5) a0 is less than a small enough positive constant determined by C,m, n.

Then there exists F ∈ Cm,ω(Rn), with

(WL6) ‖ F ‖Cm,ω(Rn)≤ C ′, and

(WL7) Jx(F ) ∈ f(x) + C ′σ(x) for all x ∈ E ∩ B(y0, c′).

Here, C ′ and c′ in (WL6,7) depend only on C,m, n.
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Strong Main Lemma for A: There exists k#, depending only on m
and n, for which the following holds.

Suppose we are given constants C, ā0; a regular modulus of continuity ω;
a finite set E ⊂ R

n; a point y0 ∈ R
n; and a family of polynomials Pα ∈ P,

indexed by α ∈ A.

Suppose also that, for each x ∈ E, we are given an m-jet f(x) ∈ Rx and
a subset σ(x) ⊂ Rx.

Assume that the following conditions are satisfied.

(SL0) For each x ∈ E, the set σ(x) is Whitney ω-convex at x, with Whitney
constant C.

(SL1) ∂βPα(y
0) = δβα for all β, α ∈ A.

(SL2) |∂βPα(y0)| ≤ C for all β ∈ M, α ∈ A with β ≥ α.

(SL3) Given α ∈ A and S ⊂ E with #(S) ≤ k#, there exists ϕSα ∈ Cm,ω
�oc (Rn),

with

(a) |∂βϕSα(x) − ∂βϕSα(y)| ≤ ā0ω(|x − y|) + C|x − y| for |β| = m,
x, y ∈ R

n, |x− y| ≤ 1;

(b) Jx(ϕ
S
α) ∈ Cσ(x) for all x ∈ S; and

(c) Jy0(ϕSα) = Pα.

(SL4) Given S ⊂ E with #(S) ≤ k#, there exists F S ∈ Cm,ω(Rn), with

(a) ‖ F S ‖Cm,ω(Rn)≤ C, and

(b) Jx(F
S) ∈ f(x) + Cσ(x) for all x ∈ S.

(SL5) ā0 is less than a small enough positive constant determined by C,m, n.

Then there exists F ∈ Cm,ω(Rn), with

(SL6) ‖ F ‖Cm,ω(Rn)≤ C ′, and

(SL7) Jx(F ) ∈ f(x) + C ′σ(x) for all x ∈ E ∩B(y0, c′).

Here, C ′ and c′ in (SL6,7) depend only on C,m, n.
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5. Plan of the Proof

We will establish the following results.

Lemma 5.1 The Weak Main Lemma and the Strong Main Lemma both hold
for A = M.

(Note that A = M is minimal for the order relation <.)

Lemma 5.2 Fix A ⊂ M with A �= M. Assume that the Strong Main
Lemma holds for each Ā < A. Then the Weak Main Lemma holds for A.

Lemma 5.3 Fix A ⊂ M, and assume that the Weak Main Lemma holds for
each Ā ≤ A. Then the Strong Main Lemma holds for A.

Once we establish these lemmas, the two Main Lemmas must hold for
all A ⊆ M, by induction on A. In particular, taking A to be the empty set
in, say, the Weak Main Lemma, we see that hypotheses (WL1,2,3) hold vac-
uously, and that the constant a0 appears only in hypothesis (WL5). Hence,
we obtain the following result.

Local Theorem: There exists k#, depending only on m and n, for which
the following holds.

Suppose we are given a regular modulus of continuity ω; a finite set
E ⊂ R

n; and, for each x ∈ E, an m-jet f(x) ∈ Rx and a subset σ(x) ⊂ Rx.

Assume that the following conditions are satisfied.

(I) For each x ∈ E, the set σ(x) is Whitney ω-convex at x, with Whitney
constant C.

(II) Given S ⊂ E with #(S) ≤ k#, there exists F S ∈ Cm,ω(Rn), with
‖ F S ‖Cm,ω(Rn)≤ C, and Jx(F ) ∈ f(x) + C · σ(x) for each x ∈ S.

Let y0 ∈ R
n be given. Then there exists F ∈ Cm,ω(Rn), with

‖ F ‖Cm,ω(Rn)≤ C ′ and Jx(F ) ∈ f(x) + C ′ · σ(x)

for each x ∈ E ∩ B(y0, c′); here, C ′ and c′ depend only on C,m, n in (I)
and (II).

Once we have the above Local Theorem, we may remove the restriction
to finite sets E, by a compactness argument using Ascoli’s Theorem. We
may then use a partition of unity to pass from a local to a global result,
completing the proof of Theorem 2.
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6. Starting the Main Induction

In this section, we give the proof of Lemma 5.1. We will show that the
Strong Main Lemma holds for A = M. The Weak Main Lemma for A = M
then follows at once.

Let C, ā0, ω, E, f, σ, y
0, (Pα)α∈M satisfy (SL0,. . . ,5) with A = M and

k# = 1. We must produce F ∈ Cm,ω(Rn) satisfying (SL6,7). We will show
that (SL6,7) hold with F = 0. To see this we argue as follows.

We write c1, C1, C
′, etc., to denote constants determined by C,m, n in

(SL0,. . . ,5). We introduce a small enough constant δ > 0, to be picked later,
and we assume that

(1) ā0 < δ.

Now suppose we are given

(2) x′ ∈ E ∩B(y0, δ).

Taking S = {x′} in (SL3), we obtain, for each α ∈ M, a function ϕα ∈
Cm,ω
�oc (Rn), with

(3) |∂βϕα(x) − ∂βϕα(y)| ≤ ā0ω(|x− y|) + C|x− y|

for |β| = m,x, y ∈ R
n, |x− y| ≤ 1;

Jx′(ϕα) ∈ Cσ(x′); and(4)

Jy0(ϕα) = Pα.(5)

From (SL1) with A = M, we see that Pα(x) = 1
α!

(x − y0)α, hence (5)
gives

(6) ∂βϕα(y
0) = δβα for β, α ∈ M.

Since ω(t) ≤ 1 for t ∈ [0, 1], we obtain from (1), (3) that

(7) |∂βϕα(x) − ∂βϕα(y
0)| ≤ C1δ for all x ∈ B(y0, δ), if |β| = m.

By downward induction on |β|, we show that (7) holds for |β| ≤ m. We
have just proven (7) for |β| = m. For the induction step, suppose |β| < m,
and suppose (7) holds for multi-indices of order |β| + 1.

Then we have

(8) |∇∂βϕα(x̃) −∇∂βϕα(y0)| ≤ C2δ for all x̃ ∈ B(y0, δ).



A Generalized Sharp Whitney Theorem for Jets 591

On the other hand, for x ∈ B(y0, δ), the mean value theorem produces an x̃
on the line segment joining y0 to x, for which we have

∂βϕα(x) − ∂βϕα(y
0) = ∇ ∂βϕα(x̃) · (x− y0)(9)

= [∇∂βϕα(x̃) − ∇ ∂βϕα(y
0)] · (x− y0) + ∇ ∂βϕα(y

0) · (x− y0) .

From (6) we have at once

(10) |∇∂βϕα(y0)| ≤ C3.

Putting (8) and (10) into (9), and recalling that |x − y0| ≤ δ, we find
that |∂βϕα(x) − ∂βϕα(y

0)| ≤ C2δ
2 + C3δ ≤ C4δ, provided δ ≤ 1. This

completes the downward induction, proving (7) with a constant that may
depend on |β|. Since 0 ≤ |β| ≤ m, we conclude that (7) holds with a
constant depending only on C,m, n in (SL0,. . . ,5).

From (2), (6), (7), we have

(11) |∂βϕα(x′) − δβα| ≤ C5δ for all β, α ∈ M.

Together with (4), and the fact that σ(x′) is convex and symmetric
about 0, (11) shows that

(12) Given any P ∈ P, if |∂βP (x′)| ≤ 1 for |β| ≤ m, then P ∈ C6 · σ(x′),
provided we take

(13) δ < c7.

Next, we apply hypothesis (SL4), with S = {x′}. Thus, we obtain F S ∈
Cm,ω(Rn) satisfying in particular

|∂βF S(x′)| ≤ C (|β| ≤ m) and(14)

Jx′(F
S) ∈ f(x′) + Cσ(x′).(15)

From (12) and (14), we see that Jx′(F
S) ∈ C8 · σ(x′), and therefore (15)

shows that

(16) f(x′) ∈ C9 · σ(x′).

(We have again used the hypothesis that σ(x′) is convex and symmetric
about 0). Thus, if assumption (1) holds, and if δ is taken small enough that
the above arguments work, then we have shown that every x′ ∈ E∩B(y0, δ)
satisfies (16).

We may take δ to be a small enough constant c′, determined by C,m, n
in (SL0,. . . ,5). If c′ is taken small enough, then the above arguments work.
Moreover, with δ = c′, our assumption (1) follows from hypothesis (SL5).
Thus, we have (16) for all x′ ∈ B(y0, c′)∩E. This implies immediately that
the function F = 0 satisfies (SL6,7). The proof of Lemma 5.1 is complete. �
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7. Non-Monotonic Sets

In this section, we prove Lemma 5.2 in the easy case of non-monotonic A.

Lemma 7.1 Fix a non-monotonic set A ⊂ M, and assume that the Strong
Main Lemma holds for all Ā < A. Then the Weak Main Lemma holds for A.

Proof: Suppose A is non-monotonic, and let C, a0, ω, E, f, σ, y
0, (Pα)α∈A

satisfy (WL0,. . . ,5). We must show that there exist C ′, c′ depending only on
C,m, n, and that there exists F ∈ Cm,ω(Rn) satisfying (WL6,7) for those C ′

and c′. We write c1, C2, etc., for constants depending only on C,m, n. We
call c1, C2, etc. “controlled constants”.

Since A is not monotonic, there exist multi-indices ᾱ, γ̄, with

(1) ᾱ ∈ A, ᾱ+ γ̄ ∈ M � A.
We set

(2) Ā = A ∪ {ᾱ+ γ̄},
and take k# as in the Strong Main Lemma for Ā. Note that Ā < A, by
Lemma 3.2 and (1).

Define

(3) Pᾱ+γ̄(x) =
ᾱ!

(ᾱ+ γ̄)!
·

∑
|β̄|≤m−|γ̄|

(
1

β̄!
∂β̄Pᾱ(y

0)

)
· (x− y0)β̄+γ̄ .

Thus, Pα ∈ P is defined for all α ∈ Ā.

From (3) we obtain easily that

∂βPᾱ+γ̄(y
0) =

⎡
⎣

ᾱ!
(ᾱ+γ̄)!

· (β̄+γ̄)!

β̄!
· (∂β̄Pᾱ(y

0)) if β = β̄ + γ̄ for some β̄

0 if β doesn′t have the form β̄ + γ̄ for a multi-index β̄

⎤
⎦ .

Consequently, (WL2) gives

(4) |∂βPᾱ+γ̄(y
0) − δβ,ᾱ+γ̄| ≤ C1a0 for all β ∈ M.

From (4) and another application of (WL2), we see that

(5) |∂βPα(y0) − δβα| ≤ C1a0 for all α ∈ Ā, β ∈ M.

From (5) and (WL5), we see that the matrix (∂βPα(y
0))β,α∈Ā is invertible,

and its inverse matrix (Mα′α)α′,α∈Ā satisfies

(6) |Mα′α| ≤ C2 for all α′, α ∈ Ā.
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By definition of (Mα′α), we have

(7) δβα =
∑
α′∈Ā

∂βPα′(y0) ·Mα′α for all β, α ∈ Ā.

We define

(8) P̄α =
∑
α′∈Ā

Pα′ ·Mα′α for all α ∈ Ā.

Thus, P̄α ∈ P for α ∈ Ā, and, from (7), (8) we have

(9) ∂βP̄α(y
0) = δβα for all β, α ∈ Ā.

Also, from (5), (6), (8) and (WL5), we have

(10) |∂βP̄α(y0)| ≤ C3 for all β ∈ M, α ∈ Ā.

Next, let S ⊂ E be given, with #(S) ≤ k#. For α ∈ A, we let ϕSα ∈
Cm,ω
�oc (Rn) be as in (WL3). We define also

(11) ϕSᾱ+γ̄(x) =
ᾱ!

(ᾱ+ γ̄)!
(x− y0)γ̄ · χ(x− y0) · ϕSᾱ(x) on R

n,

where

(12) ‖ χ ‖Cm+1(Rn)≤ C4, χ = 1 on B(0, 1/20), suppχ ⊂ B(0, 1/10).

We prepare to estimate the derivatives of ϕSᾱ+γ̄ . From (WL3)(a) and the
fact that ω(t) ≤ 1 for t ∈ [0, 1] (since ω is a regular modulus of continuity),
we have

|∂βϕSᾱ(x) − ∂βϕSᾱ(y
0)| ≤ a0 for x ∈ B(y0, 1) and |β| = m.

Also, from (WL2) , (WL3)(c), (WL5), we have

|∂βϕSᾱ(y0)| ≤ C5 for |β| ≤ m.

Consequently,

(13) |∂βϕSᾱ(x)| ≤ C6 for x ∈ B(y0, 1) and |β| ≤ m.

From (11), (12), (13), we see that

(14) |∂βϕSᾱ+γ̄(x)| ≤ C7 for x ∈ R
n, |β| ≤ m.
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Next, we prepare to estimate the modulus of continuity of ∂βϕSᾱ+γ̄ for
|β| = m. Set

χ̃(x) =
ᾱ!

(ᾱ+ γ̄)!
(x− y0)γ · χ(x− y0).

Thus, (11), (12) give

ϕSᾱ+γ̄ = χ̃ · ϕSᾱ, and(15)

‖ χ̃ ‖Cm+1(Rn) ≤ C8, suppχ̃ ⊂ B(y0, 1/10).(16)

Since χ̃, ϕSᾱ ∈ Cm
�oc(R

n), we know that, for |β| = m, we have

∂β ϕSᾱ+γ̄(x) − ∂βϕSᾱ+γ̄(y) =(17)

=
∑

β′+β′′=β

c(β′, β′′)[∂β
′
χ̃(x) · ∂β′′

ϕSᾱ(x) − ∂β
′
χ̃(y) · ∂β′′

ϕSᾱ(y)]

= χ̃(x) · [∂βϕSᾱ(x) − ∂βϕSᾱ(y)] + [χ̃(x) − χ̃(y)] · ∂βϕSᾱ(y)
+

∑
β′+β′′=β

β′ �=0

c(β, β′)(∂β
′
χ̃(x)) · [∂β′′

ϕSᾱ(x) − ∂β
′′
ϕSᾱ(y)]

+
∑

β′+β′′=β
β′ �=0

c(β, β′) [∂β
′
χ̃(x) − ∂β

′
χ̃(y)] · (∂β

′′
ϕSᾱ(y)) .

Suppose x, y ∈ B(y0, 1) and |x− y| ≤ 1/2. Then, by virtue of (13) and (16),
the last two sums on the right in (17) have absolute values less than or equal
to C9 · |x− y|. Also, from (13) and (16), we have |[χ̃(x)− χ̃(y)] · ∂βϕSᾱ(y)| ≤
C10 · |x− y|. Hence, (17) shows that

(18) |∂βϕSᾱ+γ̄(x)−∂βϕSᾱ+γ̄(y)| ≤ |χ̃(x) · [∂βϕSᾱ(x)−∂βϕSᾱ(y)]| + C11 · |x−y|
for x, y ∈ B(y0, 1), |x− y| ≤ 1/2.

Putting (WL3)(a) and (16) into (18), we learn that

(19) |∂βϕSᾱ+γ̄(x) − ∂βϕSᾱ+γ̄(y)| ≤ C12a0ω(|x− y|) + C12|x− y|
for x, y ∈ B(y0, 1), |x− y| ≤ 1/2, |β| = m.

On the other hand, if |x− y| ≤ 1/2 and x or y lies outside B(y0, 1), then
we have |x− y0|, |y− y0| ≥ 1/2, and therefore ∂βϕSᾱ+γ̄(x) = ∂βϕSᾱ+γ̄(y) = 0,
by (15), (16). Hence, the hypothesis x, y ∈ B(y0, 1) may be dropped
from (19). Thus, we have

(20) |∂βϕSᾱ+γ̄(x) − ∂βϕSᾱ+γ̄(y)| ≤ C12a0ω(|x− y|) + C12|x− y|
for x, y ∈ R

n, |x− y| ≤ 1/2, |β| = m.
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Also, for 1/2 ≤ |x− y| ≤ 1, we see from (14) that

|∂βϕSᾱ+γ̄(x)−∂βϕSᾱ+γ̄(y)| ≤ |∂βϕSᾱ+γ̄(x)| + |∂βϕSᾱ+γ̄(y)| ≤ C13 ≤ 2C13|x−y|.

Together with (20), this implies that

(21) |∂βϕSᾱ+γ̄(x)− ∂βϕSᾱ+γ̄(y)| ≤ C14a0ω(|x− y|) + C14|x− y| for x, y ∈ R
n,

|x − y| ≤ 1, |β| = m. In particular, ϕSᾱ+γ̄ ∈ Cm,ω(Rn), thanks to (14),
(21), and the estimate t ≤ ω(t) valid on [0, 1] for a regular modulus of
continuity.

From (WL3)(a) and (21), we conclude that

(22) |∂βϕSα(x) − ∂βϕSα(y)| ≤ C15a0ω(|x− y|) + C15|x− y|

for |x− y| ≤ 1, α ∈ Ā, |β| = m.

At last, we have estimated the modulus of continuity of the mth deriva-
tives of the ϕSα (α ∈ Ā). In particular, we have ϕSα ∈ Cm,ω

�oc (Rn) for α ∈ Ā.

Next, suppose x ∈ S ∩B(y0, 1).

From (13), (16) and (WL3)(b), we have

|∂β(c16ϕᾱ)(x)|, |∂β(c16 χ̃)(x)| ≤ 1 for |β| ≤ m; and Jx(c16ϕᾱ) ∈ σ(x).

Taking P = c16Jx(ϕᾱ), Q = c16Jx(χ̃), and δ = 1 in the definition of Whitney
ω-convexity, we conclude that Jx(χ̃) · Jx(ϕᾱ) ∈ C17σ(x), where the multipli-
cation is taken in Rx.

Together with (15), this shows that

Jx(ϕ
S
ᾱ+γ̄) ∈ C17σ(x) for x ∈ S ∩ B(y0, 1) .

On the other hand, for x ∈ S�B(y0, 1), we have Jx(ϕ
S
ᾱ+γ̄) = 0 by (15), (16);

and therefore Jx(ϕ
S
ᾱ+γ̄) ∈ C17σ(x) since σ(x) is convex and symmetric about

the origin. Thus,

Jx(ϕ
S
ᾱ+γ̄) ∈ C17σ(x) for all x ∈ S .

Together with (WL3)(b), this shows that

(23) Jx(ϕ
S
α) ∈ C18σ(x) for all x ∈ S, α ∈ Ā.

Also, from (11), (12), and (WL3)(c), we have

ϕSᾱ+γ̄(x) − ᾱ!

(ᾱ+ γ̄)!
(x− y0)γ̄ Pᾱ(x) = o(|x− y|m) as x −→ y0 .
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On the other hand, (3) shows that

Pᾱ+γ̄(x) − ᾱ!

(ᾱ + γ̄)!
(x− y0)γ̄ Pᾱ(x) = o(|x− y0|m) as x −→ y0 .

Hence,

ϕSᾱ+γ̄(x) − Pᾱ+γ̄(x) = o(|x− y0|m) as x −→ y0.

Since also Pᾱ+γ̄ ∈ P and ϕSᾱ+γ̄ ∈ Cm(Rn), we have

Jy0(ϕSᾱ+γ̄) = Pᾱ+γ̄.

Together with (WL3)(c), this shows that

(24) Jy0(ϕSα) = Pα for all α ∈ Ā.

Thus, the (ϕSα)α∈Ā satisfy (22), (23), (24).

Next, given S ⊂ E with #(S) ≤ k#, let the ϕSα (α ∈ Ā) be as above,
and define

(25) ϕ̄Sα =
∑
α′∈Ā

ϕSα′ ·Mα′α for all α ∈ Ā.

Thus, ϕ̄Sα ∈ Cm,ω
�oc (Rn), for all α ∈ Ā.

From (6), (22), (23), we have

(26) |∂βϕ̄Sα(x) − ∂βϕ̄Sα(y)| ≤ C19 a0ω(|x− y|) + C19|x− y|

for x, y ∈ R
n, |x− y| ≤ 1, |β| = m, α ∈ Ā and

(27) Jx(ϕ̄
S
α) ∈ C20 · σ(x) for all x ∈ S, α ∈ Ā.

(We use the fact that σ(x) is convex and symmetric about the origin to
prove (27).)

Also, comparing (8) with (25), and recalling (24), we see that

(28) Jy0(ϕ̄Sα) = P̄α for all α ∈ Ā.

Next, we check that the hypotheses of the Strong Main Lemma for Ā
are satisfied by C21, ā0, E, f, σ, y

0, ω, P̄α (α ∈ Ā), provided C21 is a large
enough controlled constant, and ā0 is a small enough constant determined
by C21,m, n. In fact, C21 and ā0 are constants; ω is a regular modulus of
continuity; E ⊂ R

n is a finite set; y0 ∈ R
n; and P̄α ∈ P for all α ∈ Ā.
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Also, for each x ∈ E, f(x) ∈ Rx is an m-jet, and σ(x) is Whitney
ω-convex with Whitney constant C (hence also with Whitney constant
C21 > C).

Thus, (SL0) holds. From (9) we see that (SL1) holds.

Taking C21 > C3, we see from (10) that (SL2) holds, even without the
restriction to β ≥ α. To see that (SL3) holds, we let α ∈ Ā and S ⊂ E,
with #(S) ≤ k#. Let ϕ̄Sα be as in (26), (27), (28). Thus, ϕ̄Sα ∈ Cm,ω

�oc (Rn),
and (26), (27), (28) imply (SL3)(a),(b),(c), provided we take C21 > C19,
C21 > C20, and provided we have

(29) C19 · a0 < ā0.

However, (29) follows from hypothesis (WL5), since we are taking ā0 to
be a small enough constant determined by C21 and m,n. (In fact, since C21

is a controlled constant, so is ā0, and therefore, (29) just says that a0 is less
than a certain controlled constant.) This shows that (SL3) holds.

Also, (SL4) follows from our hypothesis (WL4), provided we takeC21> C.
Finally, (SL5) holds here, since we picked ā0 to be a small enough constant,
determined by C21,m, n.

This completes the verification of the hypotheses of the Strong Main
Lemma for Ā, for C21, ā0, ω, E, f, σ, y

0, (P̄α)α∈Ā.

Since Ā < A, we are assuming that the Strong Main Lemma holds for Ā.
Applying that Lemma, we obtain F ∈ Cm,ω(Rn), with

(30) ‖ F ‖Cm,ω(Rn)≤ C ′

and

(31) Jx(F ) ∈ f(x) + C ′σ(x) for all x ∈ E ∩B(y0, c′);

with

(32) C ′ and c′ determined by C21,m, n.

Since C21 is a controlled constant, (32) shows that C ′ and c′ are also
controlled constants. Hence, (30), (31) are the conclusions (WL6,7) of the
Weak Main Lemma.

Thus, the Weak Lemma holds for A.

The proof of Lemma 7.1 is complete. �
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8. A Consequence of the Main Inductive Assumption

In this section, we establish the following result.

Lemma 8.1 Fix A ⊂ M, and assume that the Strong Main Lemma holds
for all Ā < A. Then there exists k#

old, depending only on m and n, and
there exists a function A 	→ aold0 (A) mapping (0,∞) −→ (0,∞), for which
the following holds.

Let A > 0 be given. Let Q ⊂ R
n be a cube of diameter ≤ 1, ω a regular

modulus of continuity, E a finite subset of R
n. Suppose that, for each x ∈ E,

we are given an m-jet f(x) ∈ Rx and a subset σ(x) ⊂ Rx.

Suppose also that, for each y ∈ Q∗∗, we are given a set Āy < A, and a
family of polynomials P̄ y

α ∈ P, indexed by α ∈ Āy.

Assume that the following conditions are satisfied.

(G0) For each x ∈ E, the set σ(x) is Whitney ω-convex, with Whitney con-
stant A.

(G1) ∂βP̄ y
α(y) = δβα for all β, α ∈ Āy, y ∈ Q∗∗.

(G2) |∂βP̄ y
α(y)| ≤ Aδ

|α|−|β|
Q for all β ∈ M, α ∈ Āy, y ∈ Q∗∗ with β ≥ α.

(G3) Given S ⊂ E with #(S) ≤ k#
old, and given y ∈ Q∗∗ and α ∈ Āy, there

exists ϕSα ∈ Cm,ω
�oc (Rn), with

(a) |∂βϕSα(x′)−∂βϕSα(x′′)| ≤ Aδ
|α|−m−1
Q · |x′−x′′|+aold0 (A) · δ|α|−mQ · ω(|x′−x′′|)

ω(δQ)

for |x′ − x′′| ≤ δQ and |β| = m;

(b) Jx(ϕ
S
α) ∈ A

δ
|α|−m
Q

ω(δQ)
· σ(x) for all x ∈ S;

(c) Jy(ϕ
S
α) = P̄ y

α .

(G4) Given S ⊂ E with #(S) ≤ k#
old there exists F S ∈ Cm,ω(Rn), with

(a) ‖ ∂βF S ‖C0(Rn)≤ A · ω(δQ) · δm−|β|
Q for |β| ≤ m;

(b) |∂βF S(x′) − ∂βF S(x′′)| ≤ A · ω(|x′ − x′′|) for |β| = m,x′, x′′ ∈ R
n,

|x′ − x′′| ≤ δQ;

(c) Jx(F
S) ∈ f(x) + A · σ(x) for all x ∈ S.
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Then there exists F ∈ Cm,ω(Rn), with

(G5) ‖ ∂βF ‖C0(Rn)≤ A′ · ω(δQ) · δm−|β|
Q for |β| ≤ m;

(G6) |∂βF (x′) − ∂βF (x′′)| ≤ A′ · ω(|x′ − x′′|) for |β| = m, x′, x′′ ∈ R
n,

|x′ − x′′| ≤ δQ;

(G7) Jx(F ) ∈ f(x) + A′ · σ(x) for all x ∈ E ∩Q∗.

Here, A′ is determined by A,m, n.

Proof: By a rescaling, we may reduce matters to the case δQ = 1. We spell
out the details. Let A,Q, ω,E, f, σ, Āy , (P̄ y

α)α∈Āy be as in the hypotheses of
Lemma 8.1. We set

=

Q= δ−1
Q ·Q;(1)

=

S= δ−1
Q · S for S ⊂ E;(2)

=

E= δ−1
Q · E;(3)

=
ω (t) = (ω(δQ))−1 ω(δQt) for t ∈ [0, 1];(4)
=
y= δ−1y for y ∈ Q∗∗;(5)

=

P

=
y

α (
=
x) = δ

−|α|
Q · P y

α(δQ
=
x) for y ∈ Q∗∗,

=
x∈ R

n, α ∈ Āy;(6)

=
ϕ

=
S

α (
=
x) = δ

−|α|
Q ϕSα(δQ

=
x) for

=
x∈ R

n, α ∈ Āy, y ∈ Q∗∗;(7)
=

f (
=
x) = (ω(δQ) · δmQ )−1 · [(f(δQ

=
x)) ◦ τ ], for

=
x∈=

E, where(8)

τ(
=
x ′) = δQ

=
x ′ for all

=
x ′ ∈ R

n;(9)
=
σ (

=
x) = {(ω(δQ) · δmQ )−1 · [P ◦ τ ] : P ∈ σ(δQ

=
x)} for

=
x∈=

E;(10)

=

F

=
S

(
=
x) = (ω(δQ) · δmQ )−1 · F S(δQ

=
x) for

=
x∈ R

n.(11)

=

A
=
y

= Āy = ĀδQ
=
y

for
=
y∈

=

Q
∗∗

.(12)

Note that (4) makes sense, since we have assumed that δQ ≤ 1, and ω is
defined on [0, 1].

We check in detail that

A,
=

Q,
=
ω,

=

E,
=

f,
=
σ,

=

A
=
y

, (
=

P

=
y

α)
α∈

=
A

=
y

satisfy the hypotheses of Lemma 8.1, with δ=
Q

= 1. The verification is as

follows:



600 C. Fefferman

Evidently, A > 0;
=

Q⊂ R
n is a cube of diameter ≤ 1 (in fact δ=

Q
= 1;

see (1));
=
ω is a regular modulus of continuity (see (4) and the definition of

a regular modulus of continuity); and
=

E is a finite subset of R
n (see (3)).

Also, for each
=
x∈=

E, we have δQ
=
x∈ E (see (3)), hence

f(δQ
=
x) ∈ R

δQ
=
x

= R
τ(

=
x)

(see (9)), hence [f(δQ
=
x) ◦ τ ] ∈ R=

x
, and thus

=

f (
=
x) ∈ R=

x
(see (8)).

Similarly, for each
=
x∈=

E, we have δQ
=
x∈ E (see (3)), hence

σ(δQ
=
x) ⊂ R

δQ
=
x

= R
τ(

=
x)
,

hence {P ◦ τ : P ∈ σ(δQ
=
x)} ⊂ R=

x
, hence

=
σ (

=
x) ⊂ R=

x
(see (10)).

For
=
y∈

=

Q
∗∗

, we have
=

A
=
y

= ĀδQ
=
y < A since δQ

=
y∈ Q∗∗ (see (1), (12)).

Also, for
=
y∈

=

Q
∗∗

, the family of polynomials
=

P

=
y

α∈ P is indexed by α ∈=

A
=
y

(see (1), (5), (6), (12)).

We check that A,
=

Q,
=
ω,

=

E,
=

f,
=
σ,

=

A
=
y

satisfy hypotheses (G0),. . . ,(G4).

We begin with (G0). We note first that, given
=
x∈=

E, the set
=
σ (

=
x) is

closed, convex, and symmetric about the origin. This is obvious from (10)

and the corresponding property of σ(x), where x = δQ
=
x∈ E.

Next, suppose we are given

(13)
=
x∈=

E,
=

Q∈ R=
x
,

=

P∈=
σ (

=
x) ⊂ R=

x
and

=

δ≤ 1,

with

(14) |∂α =

P (
=
x)| ≤ =

ω (
=

δ) ·
=

δ
m−|α|, |∂α

=

Q (
=
x)| ≤ =

δ
−|α| for |α| ≤ m.

Then by definition (10), we have

(15)
=

P= (ω(δQ) · δmQ )−1 · [P ◦ τ ],
with

(16) P ∈ σ(x),

where

(17) x = δQ
=
x .
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For a suitable polynomial Q ∈ Rx, we have

(18)
=

Q= [Q ◦ τ ].

Let us estimate the derivatives of P and Q. From (15), (18), we have

P = (ω(δQ) · δmQ ) · [
=

P ◦τ−1], and Q = [
=

Q ◦τ−1] .

Therefore, (17) and (14) show that

|∂αP (x)| = (ω(δQ) · δmQ ) · |δ−|α|
Q ∂α

=

P (
=
x)|(19)

≤ ω(δQ) · δm−|α|
Q · =

ω (
=

δ) ·
=

δ
m−|α|

= ω(δQ) · δm−|α|
Q ·

[
(ω(δQ))−1 · ω(δQ

=

δ)
]
· =

δ
m−|α|

= ω(δQ
=

δ) · (δQ
=

δ)
m−|α|

and

(20) |∂αQ(x)| = δ
−|α|
Q | ∂α

=

Q (
=
x)| ≤ (δQ

=

δ)
−|α|.

We have δQ
=

δ ≤ 1, since we assumed that δQ ≤ 1,
=

δ ≤ 1. Moreover,
σ(x) is Whitney ω-convex, with Whitney constant A, by hypothesis (G0)
for A,Q, ω,E, f, σ, Āy , (P̄ y

α)α∈Āy .

Therefore, (16), (19), (20) imply that

(21) Q · P ∈ Aσ(x),

where the multiplication in (21) is taken in Rx.

On the other hand, (15) and (18) show that

(22)
=

Q · =

P= (ω(δQ) · δmQ )−1 · [(Q · P ) ◦ τ ].

Here, Q · P is as in (21), and the multiplication
=

Q · =

P is taken in R=
x
.

From (21) and (22), we see that

A−1(
=

Q · =

P ) ∈ {(ω(δQ) · δmQ )−1 · [S ◦ τ ] : S ∈ σ(x)} .

Comparing this with the definition (10) of
=
σ(

=
x), and recalling (17), we see

that A−1(
=

Q · =

P ) ∈=
σ (

=
x).
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Thus, we have shown that (13), (14) imply
=

Q · =

P ∈ A
=
σ (

=
x), with the

multiplication taken in R=
x
. This shows that

=
σ (

=
x) is Whitney

=
ω-convex,

with Whitney constant A.

Thus, (G0) holds for A,
=

Q,
=
ω, etc.

Next, we check that (G1) holds for A,
=

Q,
=
ω, etc.

Suppose we are given β, α ∈ =

A
=
y ,

=
y ∈

=

Q ∗∗. Then, with y = δQ
=
y, we have

β, α ∈ Āy, y ∈ Q∗∗ (see (1), (12)). Hence, (G1) for A,Q, ω,E, f, σ, etc. tells
us that

(23) ∂βP̄ y
α(y) = δβα.

Moreover, (6) gives

(24) ∂β
=

P
=
y
α(

=
y) = δ

|β|−|α|
Q ∂βP̄ y

α(y).

From (23) and (24) we obtain

∂β
=

P
=
y
α(

=
y) = δβα ,

which proves (G1) for A,
=

Q,
=
ω,

=

E, etc.

Next, we check that (G2) holds for A,
=

Q,
=
ω,

=

E, etc. Suppose we have

β ∈ M, α ∈
=

A
=
y ,

=
y ∈

=

Q ∗∗, with β ≥ α.

Taking y = δQ
=
y, we then have

β ∈ M , α ∈ Āy , y ∈ Q∗∗ , β ≥ α ,

thanks to (1), (12). Hence, (G2) for A,Q, ω,E, f, σ, etc. tells us that

(25) |∂βP̄ y
α(y)| ≤ Aδ

|α|−|β|
Q .

On the other hand, (6) gives

∂β
=

P
=
y
α(

=
y) = δ

|β|−|α|
Q ∂βP̄ y

α(y) ,

as in (24), and therefore (25) implies

|∂βP̄ y
α(y)| ≤ A = Aδ

|α|−|β|
=
Q

(see (1)) .

Thus, (G2) holds for A,
=

Q,
=
ω,

=

E, etc.

Next, we check that (G3) holds for A,
=

Q,
=
ω,

=

E, etc.
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Suppose we are given
=

S⊂ =

E with #(
=

S) ≤ k#
old, together with

=
y∈

=

Q
∗∗

and α ∈=

A
=
y . Then we set S = δQ

=

S⊂ E (see (2), (3)), y = δQ
=
y∈ Q∗∗

(see (1), (5)). We have

S ⊂ E with #(S) ≤ k#
old, y ∈ Q∗∗, and α ∈ Āy. (See (12).)

Hence, hypothesis (G3) for A,Q, ω,E, etc., produces a function ϕSα ∈
Cm,ω
�oc (Rn), satisfying conditions (G3)(a),(b),(c). We define

=
ϕ

=
S
α as in (7). We

will check that (G3)(a),(b),(c) hold for
=
ϕ

=
S
α,

=

E, etc.

First, we check (G3)(a). Suppose we are given β,
=
x ′,

=
x ′′, with

|β| = m,
=
x ′,

=
x ′′ ∈ R

n, | =
x ′− =

x ′′| ≤ δ=
Q

= 1.

Then, setting x′ = δQ
=
x ′, x′′ = δQ

=
x ′′, we have |x′ − x′′| ≤ δQ, and

|∂β =
ϕ

=
S
α(

=
x ′) − ∂β

=
ϕ

=
S
α(

=
x ′′)| = δ

|β|−|α|
Q |∂βϕSα(x′) − ∂βϕSα(x

′′)| (see (7))

= δ
m−|α|
Q |∂βϕSα(x′) − ∂βϕSα(x

′′)|
≤ Aδ−1

Q |x′ − x′′| + aold0 (A) · ω(|x′ − x′′|)
ω(δQ)

(thanks to hypothesis (G3)(a) for A, Q, ω, E, etc. and the fact that |x′−x′′|≤δQ)

= A| =
x ′− =

x ′′| + aold0 (A) · ω(δQ · | =
x ′− =

x ′′|)
ω(δQ)

= A| =
x ′− =

x ′′| + aold0 (A)· =
ω (| =

x ′− =
x ′′|) (see (4)) .

This shows that (G3)(a) holds for
=
ϕ

=
S
α,

=

E, etc.; and also that
=
ϕ

=
S
α ∈ Cm,

=
ω

�oc (Rn).

Next, we check (G3)(b) for
=
ϕ

=
S
α,

=

E, etc.

Suppose
=
x∈ =

S. Then x = δQ
=
x belongs to S, and therefore (G3)(b) tells

us that

Jx(ϕ
S
α) ∈

Aδ
|α|−m
Q

ω(δQ)
· σ(x) .

Consequently,

(26) J=
x
(ϕSα ◦ τ) ∈

{
Aδ

|α|−m
Q

ω(δQ)
· [P ◦ τ ] : P ∈ σ(x)

}
.
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On the other hand (7) and (9) show that
=
ϕ

=
S
α = δ

−|α|
Q · (ϕSα ◦ τ), and

therefore (26) gives

J=
x
(
=
ϕ

=
S
α) ∈ {A · (ω(δQ) · δmQ )−1 · [P ◦ τ ] : P ∈ σ(δQ

=
x)} .

Comparing this to the definition (10) of
=
σ (

=
x), we find that

J=
x
(
=
ϕ

=
S
α) ∈ A· =

σ (
=
x) .

Since δ=
Q

= 1, and hence also
=
ω (δ=

Q
) = 1 (because

=
ω is a regular modulus

of continuity), it follows that

J=
x
(
=
ϕ

=
S
α) ∈

Aδ
|α|−m
=
Q

=
ω (δ=

Q
)
· =
σ (

=
x) .

This shows that (G3)(b) holds for
=
ϕ

=
S
α,

=

E, etc.

Next, we check that (G3)(c) holds for
=
ϕ

=
S
α,

=

E, etc. Hypothesis (G3)(c)
for ϕSα, E, etc., tells us that Jy(ϕ

S
α) = P̄ y

α . From the definitions (7) and (6),

we see that J=
y
(
=
ϕ

=
S
α) = δ

−|α|
Q Jy(ϕ

S
α) ◦ τ and

=

P
=
y
α = δ

−|α|
Q P̄ y

α ◦ τ , with τ as in (9).

(Here, we use also (5)).

Therefore,

J=
y
(
=
ϕ

=
S
α) =

=

P
=
y
α .

This proves (G3)(c) for
=
ϕ

=
S
α,

=

E, etc.

We have now checked (G3)(a),(b),(c) for
=
ϕ

=
S
α,

=

E, etc. Thus, (G3) holds

for A,
=

Q,
=
ω,

=

E,
=

f ,
=
σ,

=

A
=
y , (

=

P
=
y)
α∈=

A
=
y .

Next, we check that (G4) holds for A,
=

Q,
=
ω,

=

E, etc.

Suppose
=

S⊂
=

E with #(
=

S) ≤ k#
old. We define S = δQ · =

S (see (2)). Thus,

S ⊂ E with #(S) ≤ k#
old. (See (3).) Applying hypothesis (G4) forA,Q, ω,E,

etc., we obtain a function F S ∈ Cm,ω(Rn), satisfying (G4)(a),(b),(c).

We then define
=

F
=
S by (11). Thus,

=

F
=
S ∈ Cm,

=
ω(Rn).

We check that (G4)(a),(b),(c) hold for
=

F
=
S, A,

=

Q,
=

E, etc.

We first check (G4)(a) for
=

F
=
S, A,

=

Q, etc. From (11), we have

‖ ∂β =

F
=
S ‖C0(Rn) = (ω(δQ) · δmQ )−1 · δ|β|Q · ‖ ∂βF S ‖C0(Rn) for |β| ≤ m.



A Generalized Sharp Whitney Theorem for Jets 605

Therefore, (G4)(a) for F S, A,Q, ω,E, etc., implies

‖ ∂β =

F
=
S ‖C0(Rn)≤ A for |β| ≤ m.

Since δ=
Q

=
=
ω (δ=

Q
) = 1, this is equivalent to

‖ ∂β =

F
=
S ‖C0(Rn) ≤ A

=
ω (δ=

Q
) · δm−|β|

=
Q

for |β| ≤ m.

Thus, (G4)(a) holds for
=

F
=
S, A,

=

Q, etc.

Next, we check (G4)(b) for
=

F
=
S, A,

=

Q, etc. From (11), we have, for
|β| = m, that

(27) |∂β =

F
=
S(

=
x ′) − ∂β

=

F
=
S(

=
x ′′)| = (ω(δQ))−1|∂βF S(x′) − ∂βF S(x′′)|,

with x′ = δQ
=
x ′ and x′′ = δQ

=
x ′′.

If |=x ′−=
x ′′| ≤ δ=

Q
, i.e., if |=x ′−=

x ′′| ≤ 1 (see (1)), then we have |x′−x′′| ≤ δQ,

and therefore (G4)(b) for F S, A,Q, etc. applies. From (27) and (G4)(b) for
F S, A,Q, etc., we find that

|∂β =

F
=
S(

=
x ′)− ∂β

=

F
=
S(

=
x ′′)| ≤ A(ω(δQ))−1 · ω(|x′ − x′′|)

= A · ω(δQ · |=x ′ − =
x ′′|)

ω(δQ)
= A · =

ω (| =
x ′− =

x ′′|) (see (4)).

Thus, for |β| = m,
=
x ′,

=
x ′′ ∈ R

n with | =
x ′− =

x ′′| ≤ δ=
Q
, we have

|∂β =

F
=
S(

=
x ′) − ∂β

=

F
=
S(

=
x ′′)| ≤ A· =

ω (| =
x ′− =

x ′′|).
This means that (G4)(b) holds for

=

F
=
S, A,

=

Q, etc.

Next, we check that (G4)(c) holds for
=

F
=
S, A,

=

Q, etc. Suppose
=
x∈ =

S. We

set x = δQ
=
x∈ S (see (2)), and apply (G4)(c) for F S, A,Q, etc. Thus,

Jx(F
S) ∈ f(x) + A · σ(x) .

Consequently,

J=
x
((ω(δQ)δmQ )−1 · [F S ◦ τ ]) ∈ (ω(δQ)δmQ )−1[f(x) ◦ τ ]

+
A

ω(δQ) · δmQ
· {P ◦ τ : P ∈ σ(x)} .

Comparing this with (8), (10), (11), we see that

J=
x
(

=

F
=
S) ∈

=

f (
=
x) + A · =

σ (
=
x) .

This shows that (G4)(c) holds for
=

F
=
S, A,

=

Q, etc.
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We have now checked (G4)(a), (b), (c) for
=

F
=
S, A,

=

Q, etc.

Thus, (G4) holds for A,
=

Q,
=
ω,

=

E, etc.

At last, we have checked (G0 ), . . . , (G4) for A,
=

Q,
=
ω,

=

E, etc.

Thus, A,
=

Q,
=
ω,

=

E,
=

f,
=
σ,

=

A
=
y (

=

P
=
y
α)α∈=

A
=
y satisfy the hypotheses of Lemma 8.1,

with
=

Q having diameter 1.

If Lemma 8.1 holds for cubes of diameter 1, then we obtain for A,
=

Q,
=
ω,

etc., a function
=

F∈ Cm,
=
ω(Rn), satisfying (G5), (G6), (G7) for A,

=

Q,
=
ω, etc.

Since δ=
Q

=
=
ω (δ=

Q
) = 1, this means that

‖ ∂β =

F‖C0(Rn) ≤ A′ for |β| ≤ m;(28)

|∂β =

F (
=

x′) − ∂β
=

F (
=

x′′)| ≤ A′ · =
ω (|=x ′ − =

x ′′|)(29)

for |β| = m,
=
x ′,

=
x ′′ ∈ R

n, |=x ′ − =
x ′′| ≤ 1; and

(30) J=
x
(

=

F ) ∈
=

f (
=
x) + A′ · =

σ (
=
x) for all

=
x∈=

E ∩
=

Q ∗.

Here, A′ is determined by A,m, n.

We now define F on R
n, by setting

F = (ω(δQ) · δmQ ) · =

F ◦τ−1, i.e.,(31)

F (x) = (ω(δQ) · δmQ ) · =

F (δ−1
Q x).(32)

Since
=

F ∈ Cm,
=
ω(Rn), we have F ∈ Cm,ω(Rn).

We will check that the function F satisfies conclusions (G5), (G6), (G7)
for A,Q, ω,E, f, σ, etc., with the same constant A′ as in (28), (29), (30).

First, we check (G5) for F,A,Q, ω, etc. Immediately from (28), (32), we
have

‖ ∂βF ‖C0(Rn) = (ω(δQ) · δmQ ) · δ−|β|
Q ‖ ∂β =

F‖C0(Rn) ≤ A′ω(δQ)δ
m−|β|
Q

for |β| ≤ m. Thus, (G5) holds for F,A,Q, ω, etc.

Next, we check (G6) for F,A,Q, ω, etc.

Suppose |β| = m, x′, x′′ ∈ R
n, |x′ − x′′| ≤ δQ. Setting

=
x ′ = δ−1

Q x′,
=
x ′′ = δ−1

Q x′′, we have | =
x ′− =

x ′′| ≤ 1, hence (29) applies. From (29), (32) we
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obtain

|∂βF (x′) − ∂βF (x′′)| = (ω(δQ)δmQ )δ
−|β|
Q |∂β =

F (
=
x ′) − ∂β

=

F (
=
x′′)|

≤ A′ω(δQ) · =
ω (| =

x ′− =
x ′′|) (recall, |β| = m)

= A′ω(δQ) · ω(δQ| =
x ′− =

x ′′|)
ω(δQ)

(see (4))

= A′ω(δQ| =
x ′− =

x ′′|) = A′ω(|x′ − x′′|).

Thus, (G6) holds for F,A,Q, ω, etc.

Next, we check that (G7) holds for F,A,Q, ω, etc. Suppose x ∈ E ∩Q∗.

Setting
=
x= δ−1

Q x, we have
=
x∈=

E ∩
=

Q ∗, hence (30) applies. Thus,

J=
x
(

=

F ) ∈
=

f (
=
x) + A′ · =

σ (
=
x).

Consequently,

Jx(ω(δQ) · δmQ · [
=

F ◦ τ−1]) ∈ ω(δQ)δmQ · [(
=

f (
=
x)) ◦ τ−1](33)

+ A′ · {ω(δQ)δmQ · [
=

P ◦ τ−1] :
=

P∈=
σ (

=
x)} .

We have from (8) that

ω(δQ)δmQ · [(
=

f (
=
x)) ◦ τ−1] = ω(δQ) · δmQ · [(ω(δQ)δmQ )−1 · {(f(δQ

=
x)) ◦ τ} ◦ τ−1]

= f(δQ
=
x) = f(x) .

Together with (31), this yields

(34) Jx(F ) ∈ f(x) + A′ · {ω(δQ)δmQ · [
=

P ◦ τ−1] :
=

P∈=
σ (

=
x)} .

From (10), we see that

{ω(δQ)δmQ · [
=

P ◦ τ−1] :
=

P ∈ =
σ (

=
x)} =

= {ω(δQ)δmQ · [(ω(δQ)δmQ )−1[P ◦ τ ] ◦ τ−1] : P ∈ σ(δQ
=
x)}

= σ(δQ
=
x) = σ(x) .

Hence, (34) shows that

Jx(F ) ∈ f(x) + A′ · σ(x).

Thus, (G7) holds for F,A,Q, ω, etc.
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We have now shown that Lemma 8.1 holds, provided it holds in the case
δQ = 1. For the rest of the proof of Lemma 8.1, we suppose that δQ = 1.

We take k#
old to be a constant determined by m and n, satisfying

(35) k#
old ≥ 1,

and

(36) k#
old ≥ k#, with k# as in the Strong Main Lemma for any Ā < A.

(Note that (36) makes sense, since one of the hypotheses of Lemma 8.1 is
that the Strong Main Lemma holds for each Ā < A.)

We will take aold
0 (A) to be a small enough constant, depending only on

A,m, n, to be picked below.

Now suppose A,Q, ω,E, f, σ, Āy (y ∈ Q∗∗), and P̄ y
α(α ∈ Āy, y ∈ Q∗∗) are

as in the hypotheses of Lemma 8.1, with δQ = 1, and with k#
old and aold

0 (A)
as described above.

We must show that there exists F ∈Cm,ω(Rn), satisfying (G5), (G6), (G7).

The first step is to correct f , as follows.

Given x ∈ E, we let S = {x}. Thus, S ⊂ E and #(S) ≤ k#
old, by (35).

Applying (G4), we obtain a function F S ∈ Cm,ω(Rn), satisfying in par-
ticular |∂βF S(x)| ≤ A for |β| ≤ m, and Jx(F

S) ∈ f(x) + Aσ(x).

Setting f̃(x) = Jx(F
S), we have

(37)
|∂β[f̃(x)] (x)| ≤ A for |β| ≤ m, and

f̃(x) − f(x) ∈ Aσ(x) , for each x ∈ E .

(In (37), note that since f̃(x) ∈ Rx, the expression ∂β[f̃(x)](x) makes sense;

it means
(
∂
∂y

)β
[f̃(x)](y) evaluated at y = x.)

In view of (37) and (G4), we have the following property of f̃ .

(38) Given S ⊂ E with #(S) ≤ k#
old, there exists F S ∈ Cm,ω(Rn), with

(a) ‖ ∂βF S ‖C0(Rn) ≤ A for |β| ≤ m;

(b) |∂βF S(x′)−∂βF S(x′′)| ≤ A · ω(|x′−x′′|) for |β| = m, x′, x′′ ∈ R
n,

|x′ − x′′| ≤ 1;

(c) Jx(F
S) ∈ f̃(x) + 2A · σ(x) for all x ∈ S.

(Recall that δQ = 1, hence also ω(δQ) = 1 since ω is a regular modulus of
continuity.)

We now check the following.
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(39) Claim: For each y ∈ Q∗∗, the hypotheses of the Strong Main Lemma for
Āy are satisfied, with our present

2A, aold
0 (A), ω, E, y, (P̄ y)α∈Āy , f̃ , σ ,

in place of
C, ā0, ω, E, y

0, (Pα)α∈Ā, f, σ

in the statement of the Strong Main Lemma for Āy.

In fact, 2A and aold
0 (A) are positive constants; ω is a regular modulus

of continuity and E ⊂ R
n is finite (by hypothesis of Lemma 8.1); y ∈ R

n;
P̄ y
α ∈ P is indexed by α ∈ Āy (again, by hypothesis of Lemma 8.1); and, for

each x ∈ E, we have f̃(x) ∈ Rx and σ(x) ⊂ Rx (yet again by hypothesis of
Lemma 8.1). To check (39), we must show that conditions (SL0),. . . ,(SL5)
hold for 2A, aold

0 (A), ω,E, etc.

Condition (SL0) for 2A, aold
0 (A), etc., says that, for each x ∈ E, the set σ(x)

is Whitney ω-convex x, with Whitney constant 2A. This follows at once
from our present hypothesis (G0).

Condition (SL1) for 2A, aold
0 (A), etc., says that ∂βP̄ y

α(y) = δβα for β, α ∈ Āy.
Since y ∈ Q∗∗, this is immediate from our present hypothesis (G1).

Condition (SL2) for 2A, aold
0 (A), etc., says that |∂βP̄ y

α(y)| ≤ 2A for β ∈
M, α ∈ Āy with β ≥ α.

Since δQ = ω(δQ) = 1 and y ∈ Q∗∗, this follows at once from our present
hypothesis (G2).

Condition (SL3) for 2A, aold
0 (A), etc., says the following.

(40) Given α ∈ Āy and S ⊂ E with #(S) ≤ k#, there exists ϕSα ∈ Cm,ω
�oc (Rn),

with

(a) |∂βϕSα(x′) − ∂βϕSα(x
′′)| ≤ 2A|x′ − x′′| + aold

0 (A) · ω(|x′ − x′′|) for
|β| = m, x′, x′′ ∈ R

n, |x′ − x′′| ≤ 1;

(b) Jx(ϕ
S
α) ∈ 2Aσ(x) for all x ∈ S; and

(c) Jy(ϕ
S
α) = P̄ y

α .

Here k# is as in the Strong Main Lemma for Āy.
We recall from the hypotheses of Lemma 8.1 that Āy < A, since y ∈ Q∗∗.

Hence, (36) gives k#
old ≥ k#. Also, we again recall that δQ = ω(δQ) = 1.

In view of the above remarks, (40) follows at once from our present hypoth-
esis (G3). Thus, (SL3) holds for 2A, aold

0 (A), etc.

Condition (SL4) for 2A, aold
0 (A), etc., says the following.
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(41) Given S ⊂ E with #(S) ≤ k#, there exists F S ∈ Cm,ω(Rn), with

(a) ‖ F S ‖Cm,ω(Rn)≤ 2A; and

(b) Jx(F
S) ∈ f̃(x) + 2Aσ(x) for all x ∈ S.

Here again, k# is as in the Strong Main Lemma for Āy, hence k# ≤ k#
old,

by (36). Consequently, (41) follows at once from (38).

(Here, we use the precise definition of the Cm,ω-norm from the section
on Notation and Preliminaries.) Thus, (SL4) holds for 2A, aold

0 (A), etc.

Condition (SL5) for 2A, aold
0 (A), etc., says that

(42) aold
0 (A) is less than a small enough constant determined by 2A,m, n.

We now specify aold
0 (A), which so far was “to be picked later”. We

simply pick aold
0 (A) to be a positive number, determined by A,m, n, and

small enough to satisfy (42). Thus, (SL5) holds for 2A, aold
0 (A), etc.

The verification of our claim (39) is complete.

We now recall two hypotheses of Lemma 8.1: For y ∈ Q∗∗, we have
Āy < A; and the Strong Main Lemma holds for Ā < A.

Consequently, from (39), we may draw the following conclusion.

(43) Given y ∈ Q∗∗, there exists F ∈ Cm,ω(Rn), with ‖ F ‖Cm,ω(Rn) ≤ A′,
and Jx(F ) ∈ f̃(x) + A′σ(x) for all x ∈ E ∩B(y, a′).

Here, A′ and a′ depend only on A,m, n. We fix A′ and a′ for the rest of
our proof of Lemma 8.1.

We write A1, A2, · · · for constants depending only on A,m, n.

To exploit (43), we use a partition of unity

(44) 1 =
νmax∑
ν=1

θν on Q∗;

with

‖ θν ‖Cm+1(Rn) ≤ A1;(45)

suppθν ⊂ B(yν , a
′) with yν ∈ Q∗∗; and(46)

νmax ≤ A2.(47)

We can find {θν} as in (44),. . . ,(47), since δQ = 1.

Since each yν belongs to Q∗∗, we may apply (43).
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Thus, for each ν (1 ≤ ν ≤ νmax), we obtain Fν ∈ Cm,ω(Rn), with

(48) ‖ Fν ‖Cm,ω(Rn)≤ A′,

and
Jx(Fν) ∈ f̃(x) + A′ · σ(x) for all x ∈ E ∩ B(yν , a

′) .

In particular, we have

(49) Jx(Fν) = f̃(x) + A′ · P x
ν for all x ∈ E ∩B(yν , a

′),

with

(50) P x
ν ∈ σ(x), for all x ∈ E ∩B(yν , a

′).

From (48), we have |∂βFν(x)| ≤ A′ for |β| ≤ m, x ∈ R
n.

From (37), we have |∂β(f̃(x))(x)| ≤ A for |β| ≤ m, x ∈ E.

Together with (49), these estimates show that

(51) |∂βP x
ν (x)| ≤ A3 for |β| ≤ m, x ∈ E ∩B(yν , a

′).

If we hadn’t taken the trouble to pass from f(x) to f̃(x) as above, then
we would not have been able to obtain (51).

We now define

(52) F =
νmax∑
ν=1

θν · Fν ∈ Cm,ω(Rn).

From (45), (47), (48), we conclude that

(53) ‖ F ‖Cm,ω(Rn)≤ A4.

Next, fix x ∈ Q∗ ∩ E and let Ω = {ν : 1 ≤ ν ≤ νmax and x ∈ B(yν , a
′)}.

Then, with “·” denoting multiplication in Rx, we may argue as follows.
We have

(54) Jx(F ) =
∑

1≤ν≤νmax

Jx(θν) · Jx(Fν) (see (52))

=
∑
ν∈Ω

Jx(θν) · Jx(Fν) (see (46))

=
∑
ν∈Ω

Jx(θν) · f̃(x) +
∑
ν∈Ω

Jx(θν) · A′P x
ν (see (49))

=
∑

1≤ν≤νmax

Jx(θν) · f̃(x) +
∑
ν∈Ω

Jx(θν) · A′P x
ν (see (46))

= f̃(x) + A′ ·
∑
ν∈Ω

Jx(θν) · P x
ν .
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We note that

(55) |∂β Jx(θν)
A5

(x)| ≤ 1 for |β| ≤ m, thanks to (45),

and also

(56) |∂β
(
P x
ν

A6

)
(x)| ≤ 1 for |β| ≤ m, ν ∈ Ω, thanks to (51).

We may take A6 ≥ 1 in (56). Hence, we have also

(57)

(
P x
ν

A6

)
∈ σ(x) for ν ∈ Ω, thanks to (50).

(Recall that σ(x) is convex and symmetric about 0.)

From (55), (56), (57), and from hypothesis (G0) of Lemma 8.1, we con-
clude that

(58) Jx(θν) · P x
ν ∈ A7σ(x) for all ν ∈ Ω.

(Here, we take δ = 1 in the definition of Whitney ω-convexity.)

From (47), (58), and the fact that σ(x) is convex and symmetric about 0,
we conclude that ∑

ν∈Ω

Jx(θν) · P x
ν ∈ A8σ(x) ,

and consequently (54) implies that

(59) Jx(F ) ∈ f̃(x) + A9σ(x).

From (37) we recall that f(x) − f̃(x) ∈ Aσ(x). Hence, (59) yields

Jx(F ) ∈ f(x) + A10σ(x).

Thus, we have shown that

(60) Jx(F ) ∈ f(x) + A10σ(x) for all x ∈ E ∩Q∗.

In particular, we have produced a function F ∈ Cm,ω(Rn), satisfying (53)
and (60). Since the constants A4 and A10 in (53) and (60) are determined
by A,m, n, we see that F satisfies the conclusions (G5), (G6), (G7), and
that the constant called A′ in (G5), (G6), (G7) may be taken to depend
only on A,m, n.

Thus, we have proven Lemma 8.1 in the case of δQ = 1. Since we already
reduced the general case to the case δQ = 1, the proof of Lemma 8.1 is
complete. �
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9. Set-Up for the Main Induction

In this section, we give the set-up for the proof of Lemma 5.2 in the monotonic
case. We fix m,n ≥ 1, and A ⊆ M.

We let k# be a large enough integer, determined by m and n, to be
picked later. We suppose we are given the following data:

• Constants C0, a1, a2 > 0.

• A regular modulus of continuity ω.

• A finite set E ⊂ R
n.

• For each x ∈ E, an m-jet f(x) ∈ Rx and a set σ(x) ⊂ Rx.

• A point y0 ∈ R
n.

• A family of polynomials Pα ∈ P, indexed by α ∈ A.

We fix C0, a1, a2, ω, E, f, σ, y
0, (Pα)α∈A until the end of Section 16. We

make the following assumptions.

(SU0) A is monotonic, and A �= M.

(SU1) The Strong Main Lemma holds for all Ā < A.

(SU2) For each x ∈ E, the set σ(x) ⊂ Rx is Whitney ω-convex at x, with
Whitney constant C0.

(SU3) ∂βPα(y
0) = δβα for all β, α ∈ A.

(SU4) |∂βPα(y0) − δβα| ≤ a1 for all β ∈ M, α ∈ A.

(SU5) a1 is less than a small enough constant determined by C0, m and n.

(SU6) Given α ∈ A and S ⊂ E with #(S) ≤ k#, there exists ϕSα ∈ Cm,ω
�oc (Rn),

with

(a) |∂βϕSα(x′)−∂βϕSα(x′′)| ≤ a2·ω(|x′−x′′|) for all β, x, x′, with |β| = m,
x′, x′′ ∈ R

n, |x′ − x′′| ≤ 1;

(b) Jx(ϕ
S
α) ∈ C0σ(x) for all x ∈ S; and

(c) Jy0(ϕSα) = Pα.

(SU7) a2 is less than a small enough constant determined by a1, C0, m, and n.

(SU8) Given S ⊂ E with #(S) ≤ k#, there exists F S ∈ Cm,ω(Rn), with

(a) ‖ F S ‖Cm,ω(Rn)≤ C0; and

(b) Jx(F
S) ∈ f(x) + C0σ(x) for all x ∈ S.
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The main effort of this paper goes into proving the following result.

Lemma 9.1 Assume (SU0),. . . ,(SU8). Then there exists F ∈ Cm,ω(Rn) with

(a) ‖ F ‖Cm,ω(Rn) ≤ A, and

(b) Jx(F ) ∈ f(x) + Aσ(x) for all x ∈ E ∩B(y0, a);

here, A and a are determined by a1, a2,m, n, C0.

In this section, we prove the following result.

Lemma 9.2 Lemma 9.1 implies Lemma 5.2.

Proof: Assume that Lemma 9.1 holds. To establish Lemma 5.2, we fix
A ⊂ M, with A �= M, and we assume that the Strong Main Lemma holds
for all Ā < A. We must prove the Weak Main Lemma for A under the
above assumptions. We may assume also that A is monotonic, thanks to
Lemma 7.1.

Let C, a0, ω, E, f, σ, y
0, (Pα)α∈A be as in the hypotheses of the Weak Main

Lemma for A, with the “small enough constant” in (WL5) to be picked below.
We take k# as in (SU0),. . . , (SU8).

We then pick the constants C0, a1, a2 as follows.
First, we take C0 = C.
Next, we pick a1 > 0, depending only on C,m and n, and small enough

to satisfy (SU5).
Finally, we pick a2 > 0, depending only on C,m, n, and small enough to

satisfy (SU7). (This can be done, since our a1 depends only on C,m and n.)

We now take the “small enough constant determined by C,m, n” in
(WL5) to be small enough that (WL5) implies a0 < min(a1, a2).

With the constants picked as explained above, we have satisfied (SU5)
and (SU7), and we have ensured that

a0 < min (a1, a2) ,

since we are assuming (WL5).
We now check that C0, a1, a2, ω, E, f, σ, y

0, (Pα)α∈A satisfy conditions
(SU0),. . . , (SU8).

In fact, we have assumed (SU0) and (SU1), and we have picked the
constants a1, a2 to satisfy (SU5) and (SU7).

Conditions (SU2), (SU3), (SU4) are immediate from hypotheses (WL0),
(WL1), (WL2), since C = C0 and a0 < a1.

Similarly, conditions (SU6) and (SU8) are immediate from hypotheses
(WL3), (WL4), since C = C0 and a0 < a2.

Thus, as claimed, C0, a1, a2, ω, E, f, σ, y
0, (Pα)α∈A satisfy (SU0),. . . , (SU8).
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Since we are assuming Lemma 9.1, it follows that there exists F ∈
Cm,ω(Rn), with

(1)
‖ F ‖Cm,ω(Rn) ≤ A, and with

Jx(F ) ∈ f(x) + Aσ(x), for all x ∈ E ∩ B(y0, a),

where A and a are determined by C0,m, n, a1, a2. However, we picked
C0, a1, a2 above, so that C0 = C, and a1 and a2 are determined by C,m, n.

Consequently, A and a in (1) are also determined by C,m, n. Hence, (1) is
equivalent to the conclusions (WL6), (WL7) of the Weak Main Lemma for A.

Thus, we have proven that Lemma 9.1, together with the Strong Main
Lemma for all Ā < A, implies the Weak Main Lemma for A. This shows that
Lemma 9.1 implies Lemma 5.2. The proof of Lemma 9.2 is complete. �

We begin the work of proving Lemma 9.1. Until the end of Section 16, we
fix C0, a1, a2, ω, E, f, σ, y0, (Pα)α∈A, and we assume that (SU0),. . . , (SU8)
are satisfied. Also, until the end of Section 16, except in Section 15, we write
c, C,C ′, etc., to denote constants determined by C0,m, n in (SU0),. . . , (SU8);
and we call such constants “controlled”. However, in Section 15, c, C,C ′,
etc. will denote constants depending only on m and n.

Also, until the end of Section 16, we fix a constant k#
old, depending only

on m and n, as in Lemma 8.1.

10. Applying Helly’s Theorem on Convex Sets

In this section, we start the proof of Lemma 9.1 by applying repeatedly the
following well-known result (Helly’s theorem; see [18]).

Lemma 10.0 Let F be a family of compact, convex subsets of R
d. Suppose

that any (d + 1) of the sets in F have non-empty intersection. Then the
whole family F has non-empty intersection.

We assume (SU0,. . . , 8), and adopt the conventions of Section 9.

For M > 0, S ⊂ E, y ∈ R
n, we define

Kf (y, S,M) = {Jy(F ) : F ∈ Cm,ω (Rn), ‖ F ‖Cm,ω(Rn) ≤ M,(1)

Jx(F ) ∈ f(x) +Mσ(x) on S}.
For M > 0, k ≥ 1, y ∈ R

n, we then define

(2) Kf (y, k,M) =
⋂

{Kf(y, S,M) : S ⊂ E,#(S) ≤ k}.

Note that Kf (y, S,M) is a convex subset of P .
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Moreover, if Fi ∈ Cm,ω(Rn) with ‖ Fi ‖Cm,ω(Rn)≤M and Jx(Fi) ∈ f(x)+
Mσ(x) for all x ∈ S, for i = 1, . . . , then by Ascoli’s theorem, we may pick
out a subsequence of {Fi} that converges in Cm-norm on compact sets in R

n.
The limit F of that subsequence will satisfy F ∈ Cm,ω(Rn), ‖ F ‖Cm,ω(Rn)≤
M , and Jx(F ) ∈ f(x) + Mσ(x) for all x ∈ S. (Here, we recall that σ(x)
is closed, since it is Whitney ω-convex.) Consequently, Kf (y, S,M) is a
compact, convex subset of P . Hence, also, Kf(y, k,M) is compact and
convex.

Lemma 10.1 Suppose we are given k#
1 , with k# ≥ (D+1)·k#

1 , and k#
1 ≥ 1.

Let C0 be as in (SU0) ,. . . , (SU8). Then Kf(y, k
#
1 , C0) is non-empty, for each

y ∈ R
n .

Proof: Fix y ∈ R
n, and let S1, . . . , SD+1 ⊆ E, with #(Si) ≤ k#

1 for each i.

Let S = S1∪· · ·∪SD+1. Thus, S ⊂ E with #(S) ≤ k#. Applying (SU8)
to S, and setting P = Jy(F

S) with F S as in (SU8), we have P ∈ Kf (y, Si, C0)
for i = 1, . . . , D + 1. Consequently, any (D + 1) of the sets Kf(y, S, C0)

(S ⊂ E,#(S) ≤ k#
1 ) have non-empty intersection. Hence, Lemma 10.1

follows from Helly’s theorem and (2). �
Lemma 10.2 Suppose k#

1 ≥ (D + 1) · k#
2 , let A > 0, and suppose we

are given P ∈ Kf (y, k
#
1 , A). Then, for |y′ − y| ≤ 1, there exists P ′ ∈

Kf (y
′, k#

2 , A), with

|∂β(P−P ′)(y)|, |∂β(P−P ′)(y′)| ≤ CAω(|y−y′|) · |y−y′|m−|β| for |β| ≤ m.

Proof: For S ⊂ E, define

Ktemp(S) = {Jy′(F ) :F ∈ Cm,ω(Rn), ‖ F ‖Cm,ω(Rn)≤ A,

Jx(F ) ∈ f(x) + Aσ(x) on S, Jy(F ) = P}.
Each Ktemp(S) is a compact convex subset of P , as we see from Ascoli’s
theorem, just as above for Kf(y, S,M). Let S1, . . . , SD+1 ⊂ E, with #(Si) ≤
k#

2 for each i. Set S = S1 ∪ · · · ∪ SD+1; note that S ⊂ E, with #(S) ≤ k#
1 .

Since P ∈ Kf (y, k
#
1 , A), there exists F ∈ Cm,ω(Rn) with ‖ F ‖Cm,ω(Rn)≤ A,

Jx(F ) ∈ f(x)+Aσ(x) on S, and Jy(F ) = P . In particular, Jy′(F ) belongs to
Ktemp(Si) for each i. Thus, any (D+1) of the sets Ktemp(S) (S ⊂ E,#(S) ≤
k#

2 ) have non-empty intersection. By Helly’s theorem, the intersection of all
the sets Ktemp(S) (S ⊂ E,#(S) ≤ k#

2 ) is non-empty. Let P ′ belong to this
intersection. Thus, by definition, P ′ has the following property.

(3) Given S ⊂ E with #(S) ≤ k#
2 , there exists F ∈ Cm,ω(Rn), with

‖ F ‖Cm,ω(Rn)≤ A, Jx(F ) ∈ f(x) + Aσ(x) for all x ∈ S, Jy(F ) = P ,
Jy′(F ) = P ′.
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In particular, we have P ′ ∈ Kf(y, k
#
2 , A). Also, taking F as in (3) with

S = empty set, we have from Taylor’s theorem that

|∂β(P − P ′)(y′)| = |
∑

|γ|≤m−|β|

1

γ!
(∂γ+βP (y)) · (y′ − y)γ − ∂βP ′(y′)|

= |
∑

|γ|≤m−|β|

1

γ!
(∂γ+βF (y)) · (y′ − y)γ − ∂βF (y′)|

≤ CAω(|y − y′|) · |y − y′|m−|β| ,

and similarly for |∂β(P −P ′)(y′)|. The proof of Lemma 10.2 is complete. �

Lemma 10.3 Suppose k# ≥ (D + 1) · k#
1 , and let y ∈ B(y0, a1) be given.

Then there exist polynomials P y
α ∈ P, indexed by α ∈ A, with the follow-

ing properties:

(WL1)y ∂βP y
α(y) = δβα for β, α ∈ A .

(WL2)y |∂βP y
α(y) − δβα| ≤ Ca1 for all α ∈ A, β ∈ M .

(WL3)y Given α∈A and S⊂E with #(S) ≤ k#
1 , there exists ϕSα ∈ Cm,ω

�oc (Rn),
with

(a) |∂βϕSα(x′) − ∂βϕSα(x
′′)| ≤ Ca2ω(|x′ − x′′|) for |β| = m,x′, x′′ ∈ R

n,
|x′ − x′′| ≤ 1;

(b) Jx(ϕ
S
α) ∈ Cσ(x) for all x ∈ S ; and

(c) Jy(ϕ
S
α) = P y

α .

Proof: We may assume y �= y0, since otherwise the lemma is immediate
from (SU3,4,6).

For α ∈ A, S ⊂ E, we define

Kα(S) = {Jy(ϕ) : ϕ ∈ Cm,ω
�oc (Rn), Jy0(ϕ) = Pα, Jx(ϕ) ∈ C0σ(x) for all x ∈ S

and |∂βϕ(x′) − ∂βϕ(x′′)| ≤ a2ω(|x′ − x′′|) for |β| = m,

x′, x′′ ∈ R
n, |x′ − x′′| ≤ 1}

(Here, a2 and C0 are as in (SU0,. . . ,8).)

Each Kα(S) is a convex subset of P . We check that Kα(S) is also com-
pact. In fact, suppose Pi ∈ Kα(S) for i = 1, 2, . . . .

Then there exist ϕi ∈ Cm,ω
�oc (Rn), with Jy(ϕi) = Pi, Jy0(ϕi) = Pα,

Jx(ϕi) ∈ C0σ(x) for all x ∈ S, and |∂βϕi(x′)−∂βϕi(x
′′)| ≤ a2ω(|x′−x′′|) for

|β| = m, x′, x′′ ∈ R
n, |x′ − x′′| ≤ 1.
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In particular, since Jy0(ϕi) is fixed and the ∂βϕi (|β| = m) have a com-
mon modulus of continuity, Ascoli’s theorem picks out a subsequence {ϕiν}
that converges in Cm norm on compact subsets of R

n. The limit ϕ will then
satisfy ϕ ∈ Cm,ω

�oc (Rn), Jy0(ϕ) = Pα, Jx(ϕ) ∈ C0σ(x) for all x ∈ S, and

|∂βϕ(x′)− ∂βϕ(x′′)| ≤ a2ω(|x′ −x′′|) for |β| = m, x′, x′′ ∈ R
n , |x′ −x′′| ≤ 1 .

(Here, we use the fact that σ(x) is closed, since it is Whitney ω-convex.)

It follows that Jy(ϕ) belongs to Kα(S).

On the other hand, since ϕiν → ϕ in Cm-norm on compact sets, we have
Piν = Jy(ϕiν ) → Jy(ϕ) in P . Thus, any sequence {Pi} of points of Kα(S)
has a subsequence that converges to a point of Kα(S). Hence, as claimed,
Kα(S) is compact.

Next, suppose S1, . . . , SD+1 ⊂ E, with #(Si) ≤ k#
1 for each i. Set

S = S1 ∪ · · · ∪ SD+1; note that S ⊂ E with #(S) ≤ k#.
Applying (SU6), and letting ϕSα be as in (SU6), we see that Jy(ϕ

S
α) be-

longs to Kα(Si) for each i. Thus, any (D + 1) of the sets Kα(S) (S ⊂
E,#(S) ≤ k#

1 ) have non-empty intersection.

Consequently, by Helly’s theorem, there exists P̄ y
α ∈ P, belonging to each

Kα(S)(S⊂E,#(S) ≤ k#
1 ).

By definition, the P̄ y
α have the following property.

(4) Given S ⊂ E with #(S) ≤ k#
1 , and given α ∈ A, there exists ϕ̄Sα ∈

Cm,ω
�oc (Rn), with

(a) |∂βϕ̄Sα(x′) − ∂βϕ̄Sα(x
′′)| ≤ a2ω(|x′ − x′′|) for |β| = m, x′, x′′ ∈ R

n,
|x′ − x′′| ≤ 1;

(b) Jx(ϕ̄
S
α) ∈ C0σ(x) for all x ∈ S;

(c) Jy0(ϕ̄Sα) = Pα;

(d) Jy(ϕ̄
S
α) = P̄ y

α .

In particular, taking S= empty set in (4), we find that, for |β| ≤ m, we have

|∂βP̄ y
α(y) −

∑
|γ|≤m−|β|

1

γ!
(∂γ+βPα(y

0)) · (y − y0)γ|(5)

= |∂βϕ̄Sα(y) −
∑

|γ|≤m−|β|

1

γ!
(∂γ+βϕ̄Sα(y

0)) · (y − y0)γ|

≤ Ca2ω(|y − y0|) · |y − y0|m−|β|

≤ Ca2.

(Recall that ω is a regular modulus of continuity and that y ∈ B(y0, a1),
with a1 < 1 by (SU5).)
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From (SU4,5), we have |∂β′
Pα(y

0)| ≤ 2 for all α ∈ A, β′ ∈ M.

Since also y ∈ B(y0, a1) with a2 < a1 < 1 (see (SU5,7)), we have
|∂γ+βPα(y0)| · |(y − y0)γ| ≤ Ca1 for γ �= 0, and therefore (5) implies

|∂βP̄ y
α(y) − ∂βPα(y

0)| ≤ Ca1 for α ∈ A , β ∈ M .

In view of (SU4), we therefore have

(6) |∂βP̄ y
α(y) − δβα| ≤ Ca1 for α ∈ A, β ∈ M.

From (6) and (SU5), we see that the matrix (∂βP̄ y
α(y))β,α∈A is invertible,

and its inverse matrix (Mα′α)α′,α∈A satisfies

(7) |Mα′α − δα′α| ≤ Ca1 for α′, α ∈ A.

For each α ∈ A, we now define

(8) P y
α =

∑
α′∈A

P̄ y
α′Mα′α ∈ P.

By definition of Mα′α, we have

(9) ∂βP y
α(y) =

∑
α′∈A

(∂βP̄ y
α′(y))Mα′α = δβα for β, α ∈ A.

Also, from (6), (7), (8), we see that

(10) |∂βP y
α(y) − δβα| ≤ Ca1 for all β ∈ M, α ∈ A.

Next, suppose we are given S ⊂ E, with #(S) ≤ k#
1 . For each α ∈ A,

let ϕ̄Sα ∈ Cm,ω
�oc (Rn) be as in (4), and then define

(11) ϕSα =
∑
α′∈A

ϕ̄Sα′ Mα′α for each α ∈ A.

Thus, ϕSα ∈ Cm,ω
�oc (Rn). From (4)(a), (7), (SU5), and (11), we see that

|∂βϕSα(x′) − ∂βϕSα(x
′′)| ≤ Ca2ω(|x′ − x′′|)

for |β| = m, x′, x′′ ∈ R
n, |x′ − x′′| ≤ 1.

From (4)(b), (7), (SU5), and (11), we see that

Jx(ϕ
S
α) ∈ Cσ(x) for all x ∈ S.

(Here, we also use (SU2).)

From (4)(d), (8), (11), we obtain

Jy(ϕ
S
α) = P y

α for α ∈ A.
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Thus, we have proven the following.

(12) Given α ∈ A and S ⊂ E with #(S) ≤ k#
1 , there exists ϕSα ∈ Cm,ω

�oc (R),
with

(a) |∂βϕSα(x′)− ∂βϕSα(x
′′)| ≤ Ca2ω(|x′ − x′′|) for |β| = m, x′, x′′ ∈ R

n,
|x′ − x′′| ≤ 1;

(b) Jx(ϕ
S
α) ∈ Cσ(x) for all x ∈ S; and

(c) Jy(ϕ
S
α) = P y

α .

The conclusions of Lemma 10.3 are (9), (10) and (12).

The proof of Lemma 10.3 is complete. �
Lemma 10.4 Suppose k# ≥ k#

1 · (D + 1) and k#
1 ≥ k#

2 · (D + 1).

Let y ∈ B(y0, a1), and let (P y
α)α∈A satisfy conclusions (WL1)y, (WL2)y,

(WL3)y, as in the conclusion of Lemma 10.3. Let y′ ∈ R
n be given.

Then there exist polynomials P̃ y′
α (α ∈ A), with the following property:

Given α ∈ A and S ⊂ E with #(S) ≤ k#
2 , there exists ϕSα ∈ Cm,ω

�oc (Rn),
with

(a) | ∂β ϕSα(x′) − ∂β ϕSα(x
′′)| ≤ C a2 ω(|x′−x′′|) for |β| = m,x′, x′′ ∈ R

n,
|x′ − x′′| ≤ 1;

(b) Jx(ϕ
S
α) ∈ Cσ(x) for all x ∈ S;

(c) Jy(ϕ
S
α) = P y

α ; and

(d) Jy′(ϕ
S
α) = P̃ y′

α .

Proof: The lemma is trivial for y′ = y; we just set P̃ y′
α = Pα and ap-

ply (WL3)y.
Suppose y′ �= y. For α ∈ A, S ⊂ E, we set

K[α](S) = {Jy′(ϕ) : ϕ ∈ Cm,ω
�oc (Rn); |∂βϕ(x′) − ∂βϕ(x′′)| ≤ Ca2ω(|x′ − x′′|)

for |β| = m,x′, x′′ ∈ R
n, |x′ − x′′| ≤ 1;

Jx(ϕ
S
α) ∈ Cσ(x) for all x ∈ S; Jy(ϕ) = P y

α} ,
with C as in (WL1)y, (WL2)y, (WL3)y.

As in the proof of Lemma 10.3, we see that K[α](S) is a compact, convex
subset of P . Suppose S1, . . . , SD+1 ⊂ E, with #(S1) ≤ k#

2 for each i.

Set S = S1 ∪ · · · ∪ SD+1; note that S ⊂ E, with #(S) ≤ k#
1 .

Taking ϕSα ∈ Cm,ω
�oc (Rn) as in (WL3)y, we see that Jy′(ϕ

S
α) belongs to

K[α](Si) for each i.

Thus, K[α](S1) ∩ · · · ∩ K[α](SD+1) is non-empty.
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Applying Helly’s theorem, we see that, for each α ∈ A, there exists
P̃ y′
α ∈ P , belonging to K[α](S) for each S ⊂ E with #(S) ≤ k#

2 .

Properties (a),. . . ,(d) for P̃ y′
α now follow from the definition of K[α](S).

The proof of Lemma 10.4 is complete. �
Next, for y ∈ R

n, k ≥ 1, M > 0, we define

K#
f (y, k,M) = {P ∈ Kf(y, k,M) : ∂βP (y) = 0 for all β ∈ A} .

Lemma 10.5 Suppose k# ≥ (D + 1) · k#
1 and k#

1 ≥ 1 Then, for a large
enough controlled constant C, the set K#

f (y, k#
1 , C) is non-empty for each

y ∈ B(y0, a1).

Proof: Fix y ∈ B(y0, a1). By Lemma 10.1, there exists P ∈ Kf (y, k
#
1 , C0).

Thus, P ∈ P, and

(13) given S ⊂ E with #(S) ≤ k#
1 , there exists F S ∈ Cm,ω

�oc (Rn), with

(a) ‖ F S ‖Cm,ω(Rn)≤ C0;

(b) Jx(F
S) ∈ f(x) + C0σ(x) for all x ∈ S; and

(c) Jy(F
S) = P .

By Lemma 10.3, there exist P y
α ∈ P (all α ∈ A), with properties (WL1)y,

(WL2)y, (WL3)y. We define

(14) P̃ = P −
∑
α∈A

(∂αP (y)) · P y
α ∈ P.

For β ∈ A, we have

(15) ∂βP̃ (y) = ∂βP (y) −
∑
α∈A

(∂αP (y)) · (∂βP y
α(y)) = 0,

thanks to (WL1)y.

Taking S = empty set in (13), we see that

(16) |∂βP (y)| ≤ C for all β ∈ M.

We introduce a cutoff function θ on R
n, with

(17) ‖ θ ‖Cm+1(Rn)≤ C, θ = 1 on B(y, 1/20), supp θ ⊂ B(y, 1/10).

Now, let S ⊂ E, with #(S) ≤ k#. We let F S be as in (13), and for each
α ∈ A, we let ϕSα be as in (WL3)y.
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We then define

(18) F̃ S = F S −
∑
α∈A

[∂αP (y)] · θϕSα ∈ Cm,ω(Rn)

(Note that F S ∈ Cm,ω(Rn), ϕSα ∈ Cm,ω
�oc (Rn), θ ∈ Cm+1(Rn), and supp θ ⊂

B(y, 1/10). Hence, F̃ S ∈ Cm,ω(Rn), as asserted in (18).)

Let us estimate the derivatives of F̃ S. From (WL2)y and (WL3)y (a), (c),
we have

(19) |∂βϕSα(x′)| ≤ C for |β| ≤ m and x′ ∈ B(y, 1).

(Recall that a1 < 1, by (SU5).)

From (19), (WL3)(a), and (17), we see that

(20) ‖ θϕSα ‖Cm,ω(Rn)≤ C for α ∈ A.

From (13)(a), (16), (18), (20), we conclude that

(21) ‖ F̃ S ‖Cm,ω(Rn)≤ C.

Next, suppose x ∈ S ∩B(y, 1). Then (WL3)(b) and (19) show that

Jx(cϕ
S
α) ∈ σ(x), and |∂β[Jx(cϕSα)](x)| ≤ 1 for |β| ≤ m.

Also, (17) gives

|∂β[Jx(cθ)] (x)| ≤ 1 for |β| ≤ m.

Recalling our assumption (SU2), and taking δ = 1 in the definition of
Whitney ω-convexity, we see that

Jx(θϕ
S
α) ∈ Cσ(x) for x ∈ S ∩B(y, 1) .

On the other hand, if x ∈ S � B(y, 1), then from (17) we see that
Jx(θϕ

S
α) = 0 ∈ Cσ(x).

Thus, we have proven that

(22) Jx(θϕ
S
α) ∈ Cσ(x) for all x ∈ S, α ∈ A.

Hence, from (13)(b), (16), (18), (22), we obtain

(23) Jx(F̃
S) ∈ f(x) + Cσ(x) for all x ∈ S.
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Next, note that (13)(c), (14), (WL3)(c), (17), (18) show that

Jy(F̃
S) = Jy(F

S) −
∑
α∈A

[∂αP (y)] · Jy(θϕSα)(24)

= Jy(F
S) −

∑
α∈A

[∂αP (y)] · Jy(ϕSα)

= P −
∑
α∈A

[∂αP (y)] · P y
α

= P̃ .

In view of (21), (23), (24), we have proven the following result.

Given S ⊂ E with #(S) ≤ k#
1 , there exists F̃ S ∈ Cm,ω(Rn), with

‖ F̃ S ‖Cm,ω(Rn) ≤ C, Jx(F̃
S) ∈ f(x)+Cσ(x) for all x ∈ S , and Jy(F̃

S) = P̃ .

By definition, this means that P̃ ∈ Kf (y, k
#
1 , C).

This, in turn, implies P̃ ∈ K#
f (y, k#

1 , C), thanks to (15).

Thus, K#
f (y, k#

k , C) is non-empty.

The proof of Lemma 10.5 is complete. �

11. A Calderón-Zygmund Decomposition

In this section, we again place ourselves in the setting of Section 9, and we
assume (SU0,. . . ,8). We fix a cube Q0 ⊂ R

n, with the following properties.

Q0 is centered at y0.(1)

(Q0)∗∗∗ ⊂ B(y0, a1).(2)

ca1 < δQ0 < a1.(3)

Recall that a subcube Q ⊆ Q0 is called “dyadic” if Q = Q0 or else Q
arises from Q0 by successive “bisection”. A dyadic cube Q �= Q0 arises
by bisecting its dyadic “parent” Q+, which is again a dyadic cube, with
δQ+ = 2δQ. Only Q0 and subcubes of Q0 may be called “dyadic”, according
to the above definition.

Two distinct dyadic cubes will be said to “abut” if their closures have
non-empty intersection.

We say that a dyadic cubeQ is “OK” if it satisfies the following condition:

(OK) For every y∈Q∗∗, there exist Āy<A and polynomials P̄ y
α ∈P (α∈Āy),

with the following properties:
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(OK1) ∂βP̄ y
α(y) = δβα for all β, α ∈ Āy.

(OK2) δ
|β|−|α|
Q |∂βP̄ y

α(y)| ≤ (a1)
−(m+2) for all α ∈ Āy, β ∈ M with β ≥ α.

(OK3) Given α ∈ Āy and S ⊂ E with #(S) ≤ k#
old, there exists ϕS,yα ∈

Cm,ω
�oc (Rn), with

(a) |∂βϕS,yα (x′)−∂βϕS,yα (x′′)| ≤ (a1)
−(m+2)·δ|α|−m−1

Q ·|x′−x′′|+(a1)
−(m+2)

·a2 · δ|α|−mQ · ω(|x′ − x′′|)
ω(δQ)

for |β| = m,x′ , x′′ ∈ R
n , |x′ − x′′| ≤ δQ ;

(b) Jx(ϕ
S,y
α ) ∈ (a1)

−(m+2) · δ|α|−mQ · (ω(δQ))−1 · σ(x) for all x ∈ S;

(c) Jy(ϕ
S,y
α ) = P̄ y

α .

Here, k#
old is as in Lemma 8.1 and Section 9.

We say that a dyadic cube Q is “almost OK” if either Q is OK or Q∗∗

contains at most one element of E.

We say that a dyadic cubeQ is a “CZ” or “Calderón-Zygmund” cube, ifQ
is almost OK, but no dyadic cube Q′ properly containing Q is almost OK.
Recall that, given any two dyadic cubes Q1, Q2, we always have one of the
three alternatives: Q1 ⊆ Q2, Q2 ⊂ Q1, Q1 and Q2 disjoint. Consequently,
any two distinct CZ cubes are disjoint. Moreover, since E ⊂ R

n is finite, any
sufficiently small cube Q can contain at most one element of E. Hence, any
sufficiently small dyadic cube Q is almost OK, and is therefore contained in
a CZ cube.

Thus, we have the following easy result.

Lemma 11.1 The CZ cubes form a partition of Q0 into finitely many dyadic
subcubes.

Next, we prove that the CZ cubes have “good geometry”.

Lemma 11.2 If two CZ cubes Q, Q′ abut, then 1
2
δQ ≤ δQ′ ≤ 2δQ.

Proof: Suppose not. Without loss of generality, we may assume that δQ≤δQ′ .

Since δQ = 2−kδQ0 and δQ′ = 2−k
′
δQ0 for some integers k, k′ (because

Q,Q′ are dyadic), we must have δQ ≤ 1
4
δQ′ .

Hence, Q �= Q0, and the dyadic parent Q+ abuts Q′ and satisfies

(4) δQ+ ≤ 1

2
δQ′ .

Consequently, we have

(5) (Q+)∗∗ ⊂ (Q′)∗∗.



A Generalized Sharp Whitney Theorem for Jets 625

We know that Q′ is almost OK, since it is a CZ cube. We will show
that Q+ is almost OK. In fact, if (Q′)∗∗ contains at most one element of E,
then the same is true of (Q+)∗∗ by (5), and hence Q+ is almost OK, as
claimed. If instead (Q′)∗∗ contains at least two distinct elements of E, then,
since Q′ is almost OK, we know that Q′ is OK. In this case, we will show
that Q+ is also OK. This will complete the proof that Q+ is almost OK.

To see that Q+ is OK whenever Q′ is OK, we let Āy, P̄ y
α (α ∈ Āy) be

as in (OK1,2,3) for y ∈ (Q′)∗∗. Thus, Āy, P̄ y
α(α ∈ Āy) are defined for each

y ∈ (Q′)∗∗, and so, in particular, for each y ∈ (Q+)∗∗, thanks to (5).

Moreover, conditions (OK1,2,3) for Q+ follow from (OK1,2,3) for Q′,
thanks to (5) and the following inequalities:

δ
|β|−|α|
Q+ ≤ δ

|β|−|α|
Q′ for β ≥ α,

δ
|α|−m−1
Q′ ≤ δ

|α|−m−1
Q+ for α ∈ M,

δ
|α|−m
Q′ ≤ δ

|α|−m
Q+ for α ∈ M,

(ω(δQ′))−1 ≤ (ω(δQ+))−1.

These inequalities are immediate from (4) and the fact that ω is a regular
modulus of continuity. Thus, (OK1,2,3) hold for Q+, Āy, P̄ y

α(α ∈ Āy),
completing the proof that Q+ is OK in this case. This also completes the
proof of our claim that Q+ is almost OK.

However, Q+ cannot be almost OK, since it is a dyadic cube prop-
erly containing the CZ cube Q. This contradiction completes the proof
of Lemma 11.2. �

As an easy consequence of Lemma 11.2, we have the following.

Lemma 11.3 For a small enough constant c1 > 0 depending only on the
dimension n, the following holds:

Suppose x ∈ Q, x′ ∈ Q′, for CZ cubes Q and Q′. If the balls B(x, c1δQ)
and B(x′, c1δQ′) intersect, then the cubes Q,Q′ coincide or abut.

Proof: Without loss of generality, we may suppose δQ′ ≤ δQ.
If B(x, c1δQ) intersects B(x′, c1δQ′), then |x− x′| ≤ c1δQ + c1δQ′ ≤ 2c1δQ

hence x′ ∈ {y ∈ R
n: distance (y,Q) ≤ 2c1δQ} ≡ Ω. However, if c1 is a small

enough constant depending only on the dimension n, then the set Ω∩Q0 is
covered by Q and the CZ cubes that abut it, thanks to Lemma 11.2.

Consequently, x′ ∈ Q′′, where Q′′ is some CZ cube that coincides with
or abuts Q. Since also x′ ∈ Q′, the cubes Q′, Q′′ cannot be disjoint. Since
two CZ cubes are either equal or disjoint, we must have Q′ = Q′′. Hence,
Q′ and Q coincide or abut. The proof of the lemma is complete. �

Until the end of Section 16, we fix the cube Q0 and the collection of CZ
cubes.
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12. Controlling Auxiliary Polynomials I

We again place ourselves in the setting of Section 9, and we assume
(SU0 ,. . . , 8). In this section only, we fix an integer k#

1 , a dyadic cube Q, a
point y ∈ R

n, and a family of polynomials P y
α ∈ P, indexed by α ∈ A; and

we make the following assumptions.

(CAP1) k# ≥ (D + 1) · k#
1 , and k#

1 ≥ (D + 1) · k#
old.

(CAP2) y ∈ Q∗∗∗.

(CAP3) Q is properly contained in Q0.

(CAP4) The P y
α(α ∈ A) satisfy conditions (WL1)y, (WL2)y, (WL3)y. (See

Lemma 10.3.)

(CAP5) (a1)
−(m+1) ≤ maxβ∈M

α∈A
δ
|β|−|α|
Q |∂βP y

α(y)| ≤ 2m+1 · (a1)
−(m+1).

Note that A is non-empty, since the max in (CAP5) cannot be zero.

Our goal in this section is to show that the dyadic cube Q+ is OK. Let

(1) y′ ∈ (Q+)∗∗ be given.

Then y, y′ ∈ Q∗∗∗ ⊂ (Q0)∗∗∗ ⊂ B(y0, a1), by (11.2).

Applying Lemma 10.4, with k#
2 = k#

old, we obtain a family of polynomials
P̃ y′
α ∈ P , indexed by α ∈ A, with the following property.

(2) Given α ∈ A and S ⊂ E with #(S) ≤ k#
old, there exists ϕSα ∈ Cm,ω

�oc (Rn),
with

(a) |∂βϕSα(x′)− ∂βϕSα(x
′′)| ≤ Ca2ω(|x′ − x′′|) for |β| = m, x′, x′′ ∈ R

n,
|x′ − x′′| ≤ 1;

(b) Jx(ϕ
S
α) ∈ Cσ(x) for all x ∈ S;

(c) Jy(ϕ
S
α) = P y

α ; and

(d) Jy′(ϕ
S
α) = P̃ y′

α .

We fix polynomials P̃ y′
α satisfying (2). The basic properties of the P̃ y′

α ,
aside from (2), are as follows

Lemma 12.1 We have

c · (a1)
−(m+1) ≤ max

β∈M
α∈A

δ
|β|−|α|
Q |∂βP̃ y′

α (y′)| ≤ C · (a1)
−(m+1);(3)

δ
|β|−|α|
Q |∂βP̃ y′

α (y′)| ≤ C · a1 for α ∈ A, β ∈ M, β > α;(4)

|∂αP̃ y′
α (y′) − 1| ≤ C · a1 for α ∈ A; and(5)

δ
|β|−|α|
Q |∂βP̃ y′

α (y′)| ≤ C for β, α ∈ A.(6)
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Proof: We apply (2), with S = empty set. Thus, for each α ∈ A, we obtain
ϕα ∈ Cm,ω

�oc (Rn), with Jy(ϕα) = P y
α , Jy′(ϕα) = P̃ y′

α , and

|∂βϕα(x′)−∂βϕα(x′′)| ≤ Ca2ω(|x′−x′′|) for |β| = m,x′, x′′ ∈ R
n, |x′−x′′| ≤ 1 .

For β ∈ M, Taylor’s theorem implies

|∂βP̃ y′
α (y′) −

∑
|γ|≤m−|β|

1

γ!
(∂γ+βP y

α(y)) · (y′ − y)γ| =

(7)

= |∂βϕα(y′) −
∑

|γ|≤m−|β|

1

γ!
(∂γ+βϕα(y)) · (y′ − y)γ|

≤ Ca2ω(|y′ − y|) · |y′ − y|m−|β|

and

|∂βP y
α(y) −

∑
|γ|≤m−|β|

1

γ!
(∂γ+β P̃ y′

α (y′)) · (y − y′)γ| =(8)

= |∂βϕα(y) −
∑

|γ|≤m−|β|

1

γ!
(∂γ+βϕα(y

′)) · (y − y′)γ|

≤ Ca2ω(|y′ − y|) · |y′ − y|m−|β| .

In view of (CAP2) and (1), we have

(9) |y′ − y| ≤ CδQ ≤ CδQ0 ≤ Ca1 < 1.

(We have also used the fact that Q is dyadic, hence Q ⊆ Q0; as well as (11.3)
and (SU5).)

From (CAP5), we have

(10) |∂γ+βP y
α(y)| ≤ 2m+1 · (a1)

−(m+1) · δ|α|−|β|−|γ|
Q

for α ∈ A, β ∈ M, |γ| ≤ m− |β|.
Putting (9) and (10) into (7), we find that

(11) |∂βP̃ y′
α (y′)| ≤ C (a1)

−(m+1) δ
|α|−|β|
Q +C a2 δ

m−|β|
Q ≤ C ′ (a1)

−(m+1) δ
|α|−|β|
Q

for α ∈ A, β ∈ M.
(Here, we use the fact that δQ ≤ δQ0 ≤ 1, by virtue of (11.1). . . (11.3),

and also the fact that ω(|y′ − y|) ≤ 1 since |y′ − y| ≤ 1 and ω is a regular
modulus of continuity. See also (SU5,7).)



628 C. Fefferman

On the other hand, if we put

(12) Ω = max
β∈M
α∈A

δ
|β|−|α|
Q | ∂βP̃ y′

α (y′)|,

then we have

(13) |∂γ+βP̃ y′
α (y′)| ≤ Ω δ

|α|−|β|−|γ|
Q for α ∈ A, β ∈ M, |γ| ≤ m− |β|.

Putting (9) and (13) into (8), we find that

(14) |∂βP y
α(y)| ≤ CΩδ

|α|−|β|
Q + Ca2δ

m−|β|
Q ≤ C · [Ω + 1] · δ|α|−|β|

Q

for α ∈ A, β ∈ M.

Comparing (14) with (CAP5), we see that C · [Ω+1] ≥ (a1)
−(m+1), hence

Ω ≥ c · (a1)
−(m+1). Together with (11) and (12), this proves conclusion (3).

Next, suppose α ∈ A, β ∈ M and β > α. From (WL2)y and Lemma 3.1,
we have

|∂γ+βP y
α(y)| ≤ Ca1 for |γ| ≤ m− |β| .

Putting this and (9) into (7), and recalling (SU7), we have

|∂βP̃ y′
α (y′)| ≤ Ca1 + Ca2 ≤ C ′a1 .

Since also δQ ≤ 1, and |β| ≥ |α| for β > α, we conclude that

δ
|β|−|α|
Q |∂βP̃ y′

α (y′)| ≤ C ′a1 for α ∈ A, β ∈ M, β > α .

Thus, we have proven conclusion (4).

Next, suppose α ∈ A, and take β = α. By (SU0), we have γ + β ∈ A
for |γ| ≤ m − |β|. Hence, (WL1)y gives ∂γ+βP y

α(y) = δγ+β,α = δγ,0, and
therefore (7) yields

|∂αP̃ y′
α (y′) − 1| ≤ Ca2 ≤ Ca1, thanks to (SU7).

This proves conclusion (5).

Next, suppose α, β ∈ A. Then, again (SU0) gives γ + β ∈ A for |γ| ≤
m− |β|; hence, (WL1)y gives ∂β+γP y

α(y) = δβ+γ,α.
In particular, we have

|∂γ+βP y
α(y)| ≤ δ

|α|−|β|−|γ|
Q for |γ| ≤ m− |β| .

Putting this and (9) into (7), we find that

|∂βP̃ y′
α (y′)| ≤ C δ

|α|−|β|
Q + Ca2 δ

m−|β|
Q ≤ C ′δ|α|−|β|

Q .

This proves conclusion (6). The proof of Lemma 12.1 is complete �
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Define a matrix
M̃ = (M̃βα)β,α∈A

by setting

(15) M̃βα = δ
|β|−|α|
Q ∂βP̃ y′

α (y′) for β, α ∈ A.

From (4), (5), (6) we see that

(16)

⎡
⎢⎢⎢⎢⎣

|M̃βα| ≤ Ca1 for β > α (β, α ∈ A) ,

|M̃αα − 1| ≤ Ca1 for α ∈ A ,

|M̃βα| ≤ C for all β, α ∈ A .

That is, M̃ lies within distance Ca1 of a triangular matrix with 1’s on the
main diagonal, and with entries bounded by C.

It follows that the inverse matrix

M = (Mα′α)α′,α∈A

satisfies the same property, i.e.,

|Mα′α| ≤ Ca1 if α′ > α (α′, α ∈ A);(17)

|Mαα − 1| ≤ Ca1 if α ∈ A;(18)

and

(19) |Mα′α| ≤ C for all α′, α ∈ A.

By definition, we have

(20)
∑
α′∈A

M̃βα′Mα′α = δβα for all β, α ∈ A.

That is,

(21)
∑
α′∈A

δ
|β|−|α′|
Q ∂βP̃ y′

α′ (y
′) · Mα′α = δβα for all β, α ∈ A.

We define the polynomials P̌ y′
α ∈ P by setting

(22) P̌ y′
α = δ

|α|
Q ·

∑
α′∈A

δ
−|α′|
Q P̃ y′

α′ · Mα′α for all α ∈ A.
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The basic properties of the P̌ y′
α are as follows.

Lemma 12.2 We have

(23) ∂βP̌ y′
α (y′) = δβα for all β, α ∈ A;

(24) c · (a1)
−(m+1) < max

β∈M
α∈A

δ
|β|−|α|
Q | ∂βP̌ y′

α (y′)| < C · (a1)
−(m+1);

(25) δ
|β|−|α|
Q |∂βP̌ y′

α (y′)| ≤ C · (a1)
−m for all α ∈ A, β ∈ M with β > α;

(26) Given α ∈ A and S ⊂ E with #(S) ≤ k#
old, there exists ϕ̌Sα ∈ Cm,ω

�oc (Rn),
with

(a) |∂βϕ̌Sα(x′) − ∂βϕ̌Sα(x
′′)| ≤ Ca2 δ

|α|−m
Q · ω(|x′−x′′|)

ω(δQ)

for |β| = m, x′, x′′ ∈ R
n, |x′ − x′′| ≤ 100δQ;

(b) Jx(ϕ̌
S
α) ∈ Cδ

|α|−m
Q (ω(δQ))−1 σ(x) for all x ∈ S; and

(c) Jy′(ϕ̌
S
α) = P̌ y′

α .

Proof: Conclusion (23) is immediate from (21) and (22).

From (22), we have

(27)
[
δ
|β|−|α|
Q ∂βP̌ y′

α (y′)
]

=
∑
α′∈A

[
δ
|β|−|α′|
Q ∂βP̃ y′

α′ (y
′)
]
· Mα′α

for β ∈ M, α ∈ A.

Since M and M̃ are inverse matrices, (27) implies

(28)
[
δ
|β|−|α|
Q ∂βP̃ y′

α (y′)
]

=
∑
α′∈A

[
δ
|β|−|α′|
Q ∂βP̌ y′

α′ (y
′)
]
· M̃α′α

for β ∈ M, α ∈ A.

From (16), (19), (27), (28), we conclude that

c · max
β∈M
α∈A

[
δ
|β|−|α|
Q |∂βP̃ y′

α (y′)|
]
≤ max

β∈M
α∈A

[
δ
|β|−|α|
Q |∂βP̌ y′

α (y′)|
]

≤ C · max
β∈M
α∈A

[
δ
|β|−|α|
Q |∂βP̃ y′

α (y′)|
]
.

Together with (3), this proves conclusion (24).

Next, suppose β ∈ M, α ∈ A, with β > α. Then, for each α′ ∈ A, we
have either β > α′ or α′ > α. If β > α′, then (4) and (19) yield

|[δ|β|−|α′|
Q ∂βP̃ y′

α′ (y
′)] · Mα′α| ≤ Ca1 ≤ C(a1)

−m by (SU5).
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If instead α′ > α, then (3) and (17) yield

|[δ|β|−|α′|
Q ∂βP̃ y′

α′ (y
′)] · Mα′α| ≤ C · (a1)

−(m+1) · C · (a1) = C ′ · (a1)
−m.

Consequently, (27) implies conclusion (25).

Finally, let S ⊂ E, with #(S) ≤ k#
old. For each α ∈ A, let ϕSα ∈ Cm,ω

�oc (Rn)
be as in (2). We define

(29) ϕ̌Sα = δ
|α|
Q

∑
α′∈A

δ
−|α′|
Q ϕSα′Mα′α for α ∈ A.

Thus, ϕ̌Sα ∈ Cm,ω
�oc (Rn). Also, for |β| = m, x′, x′′ ∈ R

n, |x′ − x′′| ≤ 100δQ,
(2)(a) and (19) show that

|∂βϕ̌Sα(x′) − ∂βϕ̌Sα(x
′′)| ≤ δ

|α|
Q

∑
α′∈A

δ
−|α′|
Q |∂βϕSα′(x′) − ∂βϕSα′(x′′)| · |Mα′α|

≤
∑
α′∈A

δ
|α|−|α′|
Q · Ca2ω(|x′ − x′′|) · C ≤ C ′ δ|α|−mQ a2ω(|x′ − x′′|)

≤ C ′a2δ
|α|−m
Q

ω(|x′ − x′′|)
ω(δQ)

which shows that the ϕ̌Sα satisfy (26)(a).

From (2)(b), (19), (29) we see that for x ∈ S we have

Jx(ϕ̌
S
α) ∈ δ

|α|
Q

∑
α′∈A

δ
−|α′|
Q |Mα′α| · Cσ(x) ⊆

∑
α′∈A

Cδ
|α|−|α′|
Q σ(x)

⊆ Cδ
|α|−m
Q σ(x) ⊆ Cδ

|α|−m
Q

ω(δQ)
σ(x).

This shows that the ϕ̌Sα satisfy condition (26)(b).

For each α ∈ A, (2)(d), (22), (29) together show that the ϕ̌Sα satisfy
condition (26)(c).

Thus, given α ∈ A, S ⊂ E with #(S) ≤ k#
old, we have exhibited a

function ϕ̌Sα ∈ Cm,ω
�oc (Rn) satisfying (26)(a),(b),(c). This completes the proof

of conclusion (26), hence also that of Lemma 12.2. �

Next, we pick β̄ ∈ M and ᾱ ∈ A to maximize δ
|β̄|−|ᾱ|
Q |∂β̄P̌ y′

ᾱ (y′)|. By

definition of β̄, ᾱ, and by (24), we have

c · (a1)
−(m+1) < δ

|β̄|−|ᾱ|
Q |∂β̄P̌ y′

ᾱ (y′)| < C · (a1)
−(m+1);(30)

δ
|β|−|α|
Q |∂βP̌ y′

α (y′)| ≤ δ
|β̄|−|ᾱ|
Q |∂β̄P̌ y′

ᾱ (y′)| for all β ∈ M, α ∈ A;(31)

β̄ ∈ M, ᾱ ∈ A.(32)
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If β̄ ∈ A, then (23) gives δ
|β̄|−|ᾱ|
Q |∂β̄P̌ y′

ᾱ (y′)| = δβ̄ᾱ ≤ 1, contradicting (30)
thanks to (SU5). Hence,

(33) β̄ /∈ A.
In particular, β̄ �= ᾱ. If β̄ > ᾱ, then (30) contradicts (25). Hence,

(34) β̄ < ᾱ.

Now define

Āy′ = (A � {ᾱ}) ∪ {β̄},(35)
+

P
y′
α = P̌ y′

α for all α ∈ A � {ᾱ},(36)
+

P
y′

β̄
= P̌ y′

ᾱ

/
(∂β̄P̌ y′

ᾱ (y′)).(37)

The denominator in (37) is non-zero, thanks to (30). We have defined
+

P y′
α ∈ P for all α ∈ Āy′ , as we see from (35), (36), (37).

In view of (32), . . . , (35), the least element of the symmetric difference
Āy′∆A is β̄, which lies in Āy′ . Hence, by definition of our ordering on sets
of multi-indices, we have

(38) Āy′ < A.

The basic properties of the
+

P y′
α are as follows.

Lemma 12.3 We have

(39) ∂β
+

P
y′
β̄

= δββ̄ for all β ∈ Āy′;

(40) ∂β
+

P y′
α (y′) = δβα for all β, α ∈ Āy′

� {β̄};

(41) δ
|β|−|α|
Q |∂β +

P y′
α (y′)| ≤ C · (a1)

−(m+1) for all β ∈ M , α ∈ Āy′;

(42) δ
|β|−|β̄|
Q |∂β +

P
y′

β̄
(y′)| ≤ 1 for all β ∈ M; and

(43) Given α ∈ Āy′ and S ⊂ E with #(S) ≤ k#
old, there exists

+
ϕ S

α ∈
Cm,ω
�oc (Rn) , with

(a) |∂β +
ϕ S
α(x

′) − ∂β
+
ϕ S
α(x

′′)| ≤ Ca2δ
|α|−m
Q

ω(|x′−x′′|)
ω(δQ)

for |β| = m,x′, x′′ ∈
R
n, |x′ − x′′| ≤ 100δQ;

(b) Jx(
+
ϕS
α) ∈ Cδ

|α|−m
Q

ω(δQ)
σ(x) for all x ∈ S; and

(c) Jy′(
+
ϕS
α) =

+

P y′
α .
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Proof: To check (39), we note that for β ∈ Āy′
� {β̄} = A� {ᾱ}, we have

from (37) that

∂β
+

P
y′

β̄
(y′) = ∂βP̌ y′

ᾱ (y′)
/
(∂β̄P̌ y′

ᾱ (y′)) = 0, thanks to (23).

On the other hand, (37) gives also that

∂β̄
+

P
y′
β̄
(y′) = ∂β̄P̌ y′

ᾱ (y′)
/
(∂β̄P̌ y′

ᾱ (y′)) = 1 .

This proves conclusion (39). Conclusion (40) is immediate from (23)
and (36), since Āy′

� {β̄} = A � {ᾱ}.
Similarly, conclusion (41) for α ∈ Āy′

� {β̄} = A � {ᾱ} follows at once
from (24) and (36).

On the other hand, (31) and (37) show that

δ
|β|−|β̄|
Q |∂β +

P
y′

β̄
(y′)| =

∣∣[δ|β|−|ᾱ|
Q ∂βP̌ y′

ᾱ (y′)]
/
[δ

|β̄|−|ᾱ|
Q ∂β̄P̌ y′

ᾱ (y′)]
∣∣ ≤ 1

for all β ∈ M. This proves conclusion (42), and also shows that conclu-
sion (41) holds for α = β̄. The proof of (41) is complete.

For α ∈ Āy′
� {β̄} = Ā � {ᾱ}, conclusion (43) is immediate from (26)

and (36). It remains to prove (43) in the case α = β̄.

Suppose α = β̄, and let S ⊂ E, with #(S) ≤ k#
old. We let ϕ̌Sᾱ ∈ Cm,ω

�oc (Rn)
be as in (26), and we define

(44)
+
ϕS
β̄ = ϕ̌Sᾱ

/
(∂β̄P̌ y′

ᾱ (y′)).

From (26)(a) and (30), we have, for |β| = m, x′, x′′ ∈ R
n with |x′−x′′| ≤

100δQ, that

|∂β +
ϕ S
β̄ (x

′) − ∂β
+
ϕ S
β̄ (x

′′)| = |∂β̄P̌ y′
ᾱ (y′)|−1 · |∂βϕ̌Sᾱ(x′) − ∂βϕ̌Sᾱ(x

′′)|

≤ [Ca
(m+1)
1 δ

|β̄|−|ᾱ|
Q ] ·

[
Ca2δ

|ᾱ|−m
Q

ω(|x′ − x′′|)
ω(δQ)

]
≤ Ca2δ

|β̄|−m
Q

ω(|x′ − x′′|)
ω(δQ)

.

This proves conclusion (43)(a) for α = β̄.

From (26)(b) and (30), we have for x ∈ S that

Jx(
+
ϕ S
β̄) = [∂β̄P̌ y′

ᾱ (y′)]−1 Jx(ϕ̌
S
ᾱ) ∈ [∂β̄P̌ y′

ᾱ (y′)]−1 · Cδ|ᾱ|−mQ (ω(δQ))−1σ(x)

⊆ [C · (a1)
m+1 · δ|β̄|−|ᾱ|

Q ] · Cδ|ᾱ|−mQ (ω(δQ))−1σ(x) ⊆ Cδ
|β̄|−m
Q (ω(δQ))−1σ(x) .

This proves conclusion (43)(b) for β = ᾱ.
Finally, comparing (37) with (44), and recalling (26)(c), we obtain con-

clusion (43)(c) for β = ᾱ. Thus, (43) holds for β = ᾱ. The proof of
Lemma 12.3 is complete. �
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Next, we define polynomials P̄ y′
α ∈ P(α ∈ Āy′), by setting

P̄ y′

β̄
=

+

P
y′

β̄
, and(45)

P̄ y′
α =

+

P
y′
α − [∂β̄

+

P
y′
α (y′)] · +

P
y′

β̄
for all α ∈ Ā � {ᾱ}.(46)

The basic properties of these polynomials are as follows.

Lemma 12.4 We have

(47) ∂βP̄ y′
α (y′) = δβα for all β, α ∈ Āy′;

(48) δ
|β|−|α|
Q |∂βP̄ y′

α (y′)| ≤ C · (a1)
−(m+1) for all β ∈ M, α ∈ Āy′ ; and

(49) Given α ∈ Āy′ and S ⊂ E with #(S) ≤ k#
old, there exists ϕ̄Sα ∈ Cm,ω

�oc (Rn)
with

(a) |∂βϕ̄Sα(x′) − ∂βϕ̄Sα(x
′′)| ≤ C · (a1)

−(m+1) · a2 · δ|α|−mQ · ω(|x′−x′′|)
ω(δQ)

for |β| = m, x′, x′′ ∈ R
n, |x′ − x′′| ≤ 100δQ;

(b) Jx(ϕ̄
S
α) ∈ C · (a1)

−(m+1) · δ
|α|−m
Q

ω(δQ)
σ(x) for all x ∈ S ; and

(c) Jy′(ϕ̄
S
α) = P̄ y′

α .

Proof: For α = β̄, conclusion (47) is immediate from (39) and (45).
For α ∈ Āy′

� {β̄} = A � {ᾱ}, (46) gives

(50) ∂βP̄ y′
α (y′) = ∂β

+

P
y′
α (y′) − [∂β̄

+

P
y′
α (y′)] · ∂β +

P
y′
β̄
(y′) for all β ∈ M.

If β ∈ A�{ᾱ}, then (39), (40) give ∂β
+

P y′
α (y′) = δβα and ∂β

+

P
y′

β̄
(y′) = 0;

hence (50) gives conclusion (47) in this case.

If instead, β = β̄, then from (39) we have ∂β
+

P
y′

β̄
(y′) = 1; hence (50)

gives ∂βP̄ y′
α (y′) = 0 = δβα, so again (47) holds in this case.

Thus, conclusion (47) holds in all cases.

Next, conclusion (48) holds for α = β̄, by (41) and (45). Suppose α ∈
Āy′

� {β̄} = A � {ᾱ}, and let β ∈ M. Then (41), (42), (46) show that

δ
|β|−|α|
Q |∂βP̄ y′

α (y′)| ≤

≤
[
δ
|β|−|α|
Q |∂β +

P
y′
α (y′)|

]
+

[
δ
|β̄|−|α|
Q |∂β̄ +

P
y′
α (y′)|

]
·
[
δ
|β|−|β̄|
Q |∂β +

P
y′

β̄
(y′)|

]

≤ [C · (a1)
−(m+1)] + [C · (a1)

−(m+1)] · [1] ≤ C ′ · (a1)
−(m+1)

Hence, conclusion (48) holds in all cases.
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Next, conclusion (49) holds for α = β̄, thanks to (43), (45), and (SU5).
It remains to check conclusion (49) for α ∈ Āy′

� {β̄} = A � {ᾱ}.
Suppose α ∈ A � {ᾱ}, and let S ⊂ E, with #(S) ≤ k#

old. We apply (43)
(for the given α, and for β̄), and we define

(51) ϕ̄Sα =
+
ϕS
α − [∂β̄

+

P
y′
α (y′)] · +

ϕS
β̄ ∈ Cm,ω

�oc (Rn).

From (43)(a) and (41), we learn that whenever |β| = m, x′, x′′ ∈ R
n,

|x′ − x′′| ≤ 100δQ, we have

|∂βϕ̄Sα(x′) − ∂βϕ̄Sα(x
′′)| ≤

≤
[
Ca2δ

|α|−m
Q

ω(|x′ − x′′|)
ω(δQ)

]
+

[
C(a1)

−(m+1) δ
|α|−|β̄|
Q

][
Ca2δ

|β̄|−m ω(|x′ − x′′|)
ω(δQ)

]

≤ C ′ · (a1)
−(m+1) · a2 · δ|α|−mQ · ω(|x′ − x′′|)

ω(δQ)
, thanks to (SU5) .

This proves conclusion (49)(a) for the given α.

Also, for x ∈ S, we obtain from (41), (43)(b), (51) that

Jx(ϕ̄
S
α) ∈

Cδ
|α|−m
Q

ω(δQ)
σ(x) +

[
C · (a1)

−(m+1)δ
|α|−|β̄|
Q

] Cδ|β̄|−m

ω(δQ)
σ(x)

⊆ C ′ · (a1)
−(m+1)

δ
|α|−m
Q

ω(δQ)
σ(x) , again thanks to (SU5) .

This proves conclusion (49)(b) for the given α.

Finally, comparing (46) with (51), and applying (43)(c), we obtain con-
clusion (49)(c) for the given α.

Thus, conclusion (49) holds also for α∈A�{ᾱ}. The proof of Lemma 12.4
is complete �

We are ready to give the main result of this section.

Lemma 12.5 The cube Q+ is OK.

Proof: For every y′ ∈ (Q+)∗∗ (see (1)), we have constructed Āy′ < A
(see (38)) and P̄ y′

α ∈ P for α ∈ Āy′, satisfying (47), (48), (49).

We will check that the Āy′ and P̄ y′
α satisfy (OK1,2,3) for the cube Q+.

In fact, (OK1) for Q+ is just (47).

Condition (OK2) for Q+ says that

δ
|β|−|α|
Q+ |∂βP̄ y′

α (y′)| ≤ (a1)
−(m+2) for all α ∈ Āy′ , β ∈ M with β ≥ α .

This estimate, without the restriction to β ≥ α, is immediate from (48)
and (SU5), since δQ+ = 2δQ.
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Condition (OK3) for Q+ says that, given α ∈ Āy′ and S ⊂ E with
#(S) ≤ k#

old, there exists ϕ̄Sα ∈ Cm,ω
�oc (Rn), with

(52)(a) |∂βϕ̄Sα(x′) − ∂βϕ̄Sα(x
′′)| ≤ (a1)

−(m+2) · δ|α|−m−1
Q+ · |x′ − x′′|+

+(a1)
−(m+2) · a2 · δ|α|−mQ+ · ω(|x′ − x′′|)

ω(δQ+)

for |β| = m, x′, x′′ ∈ R
n, |x′ − x′′| ≤ δQ+ ;

(52)(b) Jx(ϕ̄
S
α) ∈ (a1)

−(m+2) · δ|α|−mQ+ · (ω(δQ+))−1 · σ(x) for all x ∈ S; and

(52)(c) Jy′(ϕ̄
S
α) = P̄ y′

α .

We check that these conditions follow from (49). To do so, we recall
that ω is a regular modulus of continuity, and that δQ+ = 2δQ ≤ 1. Hence,
ω(δQ) ≤ ω(δQ+) ≤ 2ω(δQ).

In view of these remarks and (SU5), assertions (52)(a),(b),(c) are imme-
diate from (49)(a),(b),(c), respectively.

Thus, conditions (OK1,2,3) hold for the cubeQ+, the sets of multi-indices
Āy′(y′ ∈ (Q+)∗∗), and the polynomials P̄ y′

α (α ∈ Āy′, y′ ∈ (Q+)∗∗).
This shows that the cube Q+ is OK. The proof of Lemma 12.5 is com-

plete. �

13. Controlling Auxiliary Polynomials II

In this section, we again place ourselves in the setting of Section 9, and we
assume (SU0,. . . ,8). The result of this section is as follows.

Lemma 13.1 Fix an integer k#
1 , satisfying

(1) k# ≥ (D + 1) · k#
1 , k#

1 ≥ (D + 1) · k#
old.

Suppose that

(2) Q is a CZ cube,

and

(3) y ∈ Q∗∗∗.

Let P y
α ∈ P be a family of polynomials, indexed by α ∈ A, and assume that

(4) Conditions (WL1)y, (WL2)y, (WL3)y hold for the P y
α .

(See Lemma 10.3.). Then we have the estimate

(5) δ
|β|−|α|
Q |∂βP y

α(y)| ≤ (a1)
−(m+1) for all α ∈ A, β ∈ M.
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Proof: Suppose (5) fails. There are finitely many dyadic cubes Q̂ contain-
ing Q (since, according to our definition, only subcubes of Q0 are allowed as
dyadic cubes). For such Q̂, define

(6) Φ(Q̂) = max
β∈M
α∈A

δ
|β|−|α|
Q̂

|∂βP y
α(y)|.

Since (5) fails, we have Φ(Q) > (a1)
−(m+1). Let Q̄ be the maximal dyadic

cube containing Q with Φ(Q̄) > (a1)
−(m+1). Thus,

Φ(Q̄) > (a1)
−(m+1),(7)

Q ⊆ Q̄, and(8)

either Q̄ = Q0, or else Φ(Q̄+) ≤ (a1)
−(m+1).(9)

We can easily check that Q̄ �= Q0. In fact, (11.3), (WL2)y and (SU5)
show that

δ
|β|−|α|
Q0 |∂βP̄ y

α(y)| ≤ Cδ
|β|−|α|
Q0 ≤ Cδ−mQ0 ≤ C ′(a1)

−m < (a1)
−(m+1)

for all α ∈ A, β ∈ M. Thus, Φ(Q0) < (a1)
−(m+1), and hence Q̄ �= Q0 by (7).

From (9) we now see that Φ(Q̄+) ≤ (a1)
−(m+1). A glance at the definition

of Φ shows that Φ(Q̄) and Φ(Q̄+) can differ at most by a factor of 2m.
Therefore, Φ(Q̄) ≤ 2m · (a1)

−(m+1).

Together with (6) and (7), this implies that

(10) (a1)
−(m+1) ≤ max

β∈M
α∈A

δ
|β|−|α|
Q̄

|∂βP y
α(y)| ≤ 2m+1 · (a1)

−(m+1).

Note also that

(11) y ∈ Q̄∗∗∗,

thanks to (3) and (8).

We prepare to apply the results of Section 12 to the cube Q̄. Let us
check that the assumptions (CAP1,. . . ,5), made in that section, hold here
for Q̄. In fact, (CAP1) is merely our present hypothesis (1); (CAP2) for Q̄
is our present observation (11); (CAP3) holds for Q̄, since we showed above
that Q̄ �= Q0; (CAP4) is our present hypothesis (4); and (CAP5) for Q̄ is
precisely our present result (10).

Hence, the results of Section 12 apply to the cube Q̄. In particular,
Lemma 12.5 shows that the cube Q̄+ is OK. Consequently, Q̄+ is almost OK.
On the other hand, (8) shows that Q̄+ properly contains the CZ cube Q.
Hence, by definition of a CZ cube, the cube Q̄+ cannot be almost OK. This
contradiction proves that (5) cannot fail.

The proof of Lemma 13.1 is complete. �
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14. Controlling the Main Polynomials

In this section, we again place ourselves in the setting of Section 9, and we
assume (SU0 ,. . . , 8). Our goal is to control the polynomials in K#

f (y, k#
1 ,M)

in terms of the CZ cubes Q, for suitable k#
1 and M .

Lemma 14.1 Let Q,Q′ be CZ cubes that abut or coincide. Suppose we are
given

(1) y ∈ Q∗∗∗, y′ ∈ (Q′)∗∗∗

and

(2) P ∈ K#
f (y, k#

1 , C),

with

(3) k# ≥ (D + 1) · k#
1 , k#

1 ≥ (D + 1) · k#
2 , and k#

2 ≥ k#
old.

Then there exists

(4) P ′ ∈ K#
f (y′, k#

2 , C
′),

with

(5) |∂β(P ′ − P )(y′)| ≤ C ′′ · (a1)
−(m+1) · ω(δQ) · δm−|β|

Q for all β ∈ M.

Proof: By Lemma 10.2, there exists

(6) P̃ ∈ Kf (y
′, k#

2 , C),

with

(7) |∂β(P̃ − P )(y′)| ≤ C ′ ω(δQ) · δm−|β|
Q for β ∈ M.

(Here, we use the fact that |y − y′| ≤ C ′δQ. This follows from (1) and
Lemma 11.2, since Q and Q′ are CZ cubes that abut or coincide.

Note also that ω(|y − y′|) ≤ C ′ω(δQ), since ω is a regular modulus of
continuity. We note also the fact that y ∈ Q∗∗∗ ⊆ (Q0)∗∗∗ ⊂ B(y0, a1)
by (11.2), and similarly y′ ∈ (Q′)∗∗∗ ⊆ (Q0)∗∗∗ ⊂ B(y0, a1).)

From (6) and the definition of Kf , we have the following.

(8) Given S ⊂ E with #(S) ≤ k#
2 , there exists F̃ S ∈ Cm,ω(Rn), with

‖ F̃ S ‖Cm,ω(Rn)≤ C , Jx(F̃
S) ∈ f(x) + Cσ(x)

for all x ∈ S and Jy′(F̃
S) = P̃ .
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In particular, taking S = empty set in (8), we learn that

(9) |∂βP̃ (y′)| ≤ C for all β ∈ M.

Also, (2) and the definition of K#
f give ∂βP (y) = 0 for all β ∈ A.

Applying (SU0), we see that ∂γ+βP (y) = 0 for all β ∈ A, |γ| ≤ m− |β|.
Since ∂βP is a polynomial of degree at most m− |β|, it follows that ∂βP

is the zero polynomial, for all β ∈ A. Hence, (7) implies

(10) |∂βP̃ (y′)| ≤ C ′ω(δQ) · δm−|β|
Q for all β ∈ A.

Next, since y′ ∈ B(y0, a1) as noted above, Lemma 10.3 applies, with y′

in place of y. Thus, we obtain polynomials P y′
α ∈ P(α ∈ A), satisfying

conditions (WL1)y
′
, (WL2)y

′
, (WL3)y

′
.

We now check that the hypotheses of Lemma 13.1 hold here, with our
present Q′, y′, P y′

α (α ∈ A) in place of Q, y, P y
α(α ∈ A).

In fact, hypothesis (1) of Lemma 13.1 is immediate from our present hy-
pothesis (3); and hypothesis (2) of Lemma 13.1 (with Q′ in place of Q) is a
hypothesis of the Lemma we are now proving. Hypothesis (3) of Lemma 13.1
(with Q′, y′ in place of Q, y) is contained in our present hypothesis (1). Fi-
nally, hypothesis (4) of Lemma 13.1 (with Q′, y′, P y′

α in place of Q, y, P y
α)

says that (WL1)y
′
, (WL2)y

′
, (WL3)y

′
hold for the P y′

α (α ∈ A); this is pre-
cisely the defining property of the P y′

α . Thus, as claimed, the hypotheses
of Lemma 13.1 hold for Q′, y′, (P y′

α )α∈A. Applying that lemma, we conclude
that

(11) δ
|β|−|α|
Q′ |∂βP y′

α (y′)| ≤ (a1)
−(m+1) for all α ∈ A, β ∈ M.

We now define

(12) P ′ = P̃ −
∑
α∈A

[∂αP̃ (y′)] · P y′
α ∈ P.

Note that

(13) ∂βP ′(y′) = ∂βP̃ (y′) −
∑
α∈A

[∂αP̃ (y′)] · ∂βP y′
α (y′) = 0 for all β ∈ A,

thanks to (WL1)y
′
.

Note also that, for any α ∈ A and β ∈ M, we have

|∂β{[∂αP̃ (y′)] · P y′
α }(y′)| = |∂αP̃ (y′)| · |∂βP y′

α (y′)|
≤ [C ′ω(δQ) · δm−|α|

Q ] · [(a1)
−(m+1)δ

|α|−|β|
Q′ ]

≤ C ′′(a1)
−(m+1)ω(δQ) · δm−|β|

Q ,
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thanks to (10), (11), and Lemma 11.2. Hence (12) shows that

(14) |∂β(P ′ − P̃ )(y′)| ≤ C ′′(a1)
−(m+1)ω(δQ) · δm−|β|

Q for all β ∈ M.

Together with (7) and (SU5), (14) implies

|∂β(P ′ − P )(y′)| ≤ C ′′ · (a1)
−(m+1)ω(δQ)δ

m−|β|
Q for all β ∈ M ,

which is conclusion (5). Moreover, suppose S ⊂ E with #(S) ≤ k#
2 (and

hence also #(S) ≤ k#
1 ; see (3)).

Let F̃ S be as in (8), and, for each α ∈ A, let ϕSα ∈ Cm,ω
�oc (Rn) be as in

(WL3)y
′
. We introduce a cutoff function θ on R

n, with

(15) ‖ θ ‖Cm+1(Rn)≤ C ′, θ = 1 on B(y′, 1/20), suppθ ⊂ B(y′, 1/10),

and we define

(16) F S = F̃ S −
∑
α∈A

[∂αP̃ (y′)] θϕSα.

Thus, F S ∈ Cm,ω(Rm), since F̃ S ∈ Cm,ω(Rn), ϕSα ∈ Cm,ω
�oc (Rn), θ ∈ Cm+1(Rn),

and supp θ ⊂ B(y′, 1/10). We prepare to estimate the Cm,ω-norm of F S.

From (WL2)y
′
, (WL3)y

′
(c), and (SU5), we have

(17) |∂βϕSα(y′)| ≤ C ′ for |β| ≤ m, α ∈ A.

Hence, (WL3)y
′
(a) shows that

(18) |∂βϕSα(x′)| ≤ C ′ for |β| = m, α ∈ A, x′ ∈ B(y′, 1).

From (17) and (18), we obtain

(19) |∂βϕSα| ≤ C ′ on B(y′, 1), for |β| ≤ m, α ∈ A.

From (15), (19), and (WL3)y
′
(a), together with (SU7), we obtain

‖ θϕSα ‖Cm,ω(Rn) ≤ C ′ for all α ∈ A .

Together with (9), this yields

(20) ‖ [∂αP̃ (y′)] · θϕSα ‖Cm,ω(Rn) ≤ C ′ for all α ∈ A.

Putting (8) and (20) into (16), we learn that

(21) ‖ F S ‖Cm,ω(Rn) ≤ C ′.
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Next, suppose x ∈ S∩B(y′, 1). Then from (WL3)y
′
(b) and (19), we have

(22) Jx(c1ϕ
S
α) ∈ σ(x) and |∂β[Jx(c1ϕSα)](x)| ≤ 1 for |β| ≤ m, α ∈ A,

for a small enough controlled constant c1 > 0.

From (15), we have also

(23) |∂β[Jx(c2θ)](x)| ≤ 1 for |β| ≤ m,

for a small enough controlled constant c2 > 0.

From (22), (23), and the Whitney ω-convexity assumption (SU2), we see
that

(24) Jx(θϕ
S
α) ∈ C ′σ(x) for all α ∈ A.

(Here, we take δ = 1 in the definition of Whitney ω-convexity.)

We have proven (24) for x ∈ S ∩ B(y′, 1), but of course it holds also for
x ∈ S, x /∈ B(y′, 1), since then (15) gives Jx(θϕ

S
α) = 0.

Thus, (24) holds for all x ∈ S. From (9), (24) we obtain

(25) Jx(
∑
α∈A

[∂αP̃ (y′)] · θϕSα) ∈ C ′σ(x) for all x ∈ S.

Also, from (8), we have

(26) Jx(F̃
S) ∈ f(x) + Cσ(x) for all x ∈ S.

Putting (25), (26) into (16), we find that

(27) Jx(F
S) ∈ f(x) + C ′σ(x) for all x ∈ S.

Moreover, (8), (12), (15), (16), and (WL3)y
′
(c) show that

Jy′(F
S) = Jy′(F̃

S) −
∑
α∈A

[∂αP̃ (y′)] Jy′(θϕSα)(28)

= Jy′(F̃
S) −

∑
α∈A

[∂αP̃ (y′)] Jy′(ϕSα)

= P̃ −
∑
α∈A

[∂αP̃ (y′)]P y′
α = P ′ .

In view of (21), (27), (28), we have proven the following:

Given S ⊂ E with #(S) ≤ k#
2 , there exists F S ∈ Cm,ω(Rn), with

‖F S ‖Cm,ω(Rn)≤ C ′, Jx(F S) ∈ f(x)+C ′σ(x) for all x ∈ S, and Jy′(F
S) = P ′.

By definition, this means that P ′ ∈ Kf (y
′, k#

2 , C
′). Since also P ′ satis-

fies (13), we have
P ′ ∈ K#

f (y′, k#
2 , C

′) ,

which is conclusion (4). Thus, we have proven that P ′ ∈ P satisfies (4)
and (5). The proof of Lemma 14.1 is complete. �
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Lemma 14.2 Fix k#
1 , with

(29) k# ≥ (D + 1) · k#
1 and k#

1 ≥ (D + 1) · k#
old.

Suppose that

Q is a CZ cube,(30)

y ∈ Q∗∗, and(31)

P1, P2 ∈ K#
f (y, k#

1 , C).(32)

Then

(33) |∂β(P1 − P2)(y)| ≤ (a1)
−(m+1) · a−1

2 · ω(δQ) · δm−|β|
Q for |β| ≤ m.

Proof: Suppose (33) fails. Under this assumption, we will show that

Q is a proper subcube of Q0, and(34)

Q+ is OK.(35)

This will lead to a contradiction, since Q+ is a dyadic cube that properly
contains a CZ cube, and therefore Q+ cannot be almost OK.

Consequently, the proof of Lemma 14.2 is reduced to showing (34) and (35)
under the assumption that (33) fails.

In view of (32), we know that

(36) ∂βP1(y) = ∂βP2(y) = 0 for all β ∈ A, and

(37) Given S ⊂ E with #(S) ≤ k#
1 , there exist F S

1 , F
S
2 ∈ Cm,ω(Rn), with

‖ F S
i ‖Cm,ω(Rn)≤ C, Jx(F

S
i ) ∈ f(x)+Cσ(x) for all x ∈ S, and Jy(F

S
i ) =

Pi(i = 1, 2).

In particular, taking S = empty set in (37), we find that

(38) |∂βP1(y)|, |∂βP2(y)| ≤ C for |β| ≤ m.

It is now easy to check (34). Since Q is dyadic, it is enough to show that
Q �= Q0.

We have ca1 ≤ δQ0 ≤ a1 (see (11.3)), hence also ω(δQ0) ≥ ω(ca1) ≥ ca1

since ω is a regular modulus of continuity. Hence, for |β| ≤ m, we have

(39) (a1)
−(m+1) · a−1

2 · ω(δQ0) · δm−|β|
Q0 ≥ c′ · (a1)

−(m+1) ·a−1
2 ·a1 ·am1 = c′a−1

2 .

Also, for |β| ≤ m, (38) gives

(40) |∂β(P1 − P2)(y)| ≤ C ′.
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From (39), (40) and (SU7), we have

|∂β(P1 − P2)(y)| ≤ (a1)
−(m+1)a−1

2 ω(δQ0)δ
m−|β|
Q0 for |β| ≤ m.

On the other hand, we are assuming that (33) fails. Hence, Q �= Q0,
proving (34).

We start the proof of (35). We are assuming that (33) fails. Let

(41) y′ ∈ (Q+)∗∗

be given.

Then y, y′ ∈ Q∗∗∗, and P1, P2 ∈ K#
f (y, k#

1 , C). Also, k# ≥ (D + 1) · k#
1

and k#
1 ≥ (D + 1) · k#

old. Applying Lemma 14.1, with k#
2 = k#

old, we obtain
polynomials

(42) P̃1, P̃2 ∈ K#
f (y′, k#

old, C
′),

with

(43) |∂β(P̃i − Pi)(y
′)| ≤ C ′′ · (a1)

−(m+1) · ω(δQ) · δm−|β|
Q for |β| ≤ m.

From (43), we see that

max
β∈M

[ω(δQ)δ
m−|β|
Q ]−1 · |∂β(P1 − P2)(y

′)| ≤(44)

≤ 2C · (a1)
−(m+1) + max

β∈M
[
ω(δQ)δ

m−|β|
Q

]−1 · |∂β(P̃1 − P̃2)(y
′)| .

Also, for β ∈ M we have

|∂β(P1 − P2)(y)| =
∣∣∣ ∑
|γ|≤m−|β|

1

γ!
(∂γ+β(P1 − P2)(y

′)) · (y − y′)γ
∣∣∣

≤ C max
|γ|≤m−|β|

δ
|γ|
Q · |∂γ+β(P1 − P2)(y

′)| (since y, y′ ∈ Q∗∗∗)

≤ Cδ
−|β|
Q · max

β′∈M
δ|β

′| · |∂β′
(P1 − P2)(y

′)|,

and therefore,

max
β∈M

[ω(δQ) · δm−|β|
Q ]−1 · |∂β(P1 − P2)(y)| ≤(45)

≤ C · max
β∈M

[ω(δQ)δ
m−|β|
Q ]−1 · |∂β(P1 − P2)(y

′)| .

Also, since we are assuming that (33) fails, we have

(46) (a1)
−(m+1) · a−1

2 < max
β∈M

[ω(δQ)δ
m−|β|
Q ]−1 · |∂β(P1 − P2)(y)|.
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Combining (44), (45), (46), we learn that

(a1)
−(m+1)· a−1

2 ≤ C ′·(a1)
−(m+1) +C ′ max

β∈M
[ω(δQ)δ

m−|β|
Q ]−1 · |∂β(P̃1−P̃2)(y

′)| .

Consequently, by (SU7), we have

(47) max
β∈M

[ω(δQ) · δm−|β|
Q ]−1 · |∂β(P̃1 − P̃2)(y

′)| ≥ c′ · (a1)
−(m+1) · a−1

2 .

From (42) and the definition of K#
f , we have

(48) ∂βP̃1(y
′) = ∂βP̃2(y

′) = 0 for β ∈ A;

and also

(49) Given S ⊂ E with #(S) ≤ k#
old, there exist F̃ S

1 , F̃
S
2 ∈ Cm,ω(Rn), with

‖ F̃ S
i ‖Cm,ω(Rn) ≤ C ′, Jx(F̃ S

i ) ∈ f(x) + C ′σ(x) for all x ∈ S ,

Jy′(F̃
S
i ) = P̃i(i = 1, 2) .

Immediately from (49), we obtain

(50) Given S ⊂ E with #(S) ≤ k#
old, there exists F̃ S ∈ Cm,ω(Rn), with

‖ F̃ S ‖Cm,ω(Rn) ≤ C ′, Jx(F̃ S) ∈ C ′σ(x) for all x ∈ S, and

Jy′(F̃
S) = P̃1 − P̃2.

Now pick β̄ ∈ M to maximize [ω(δQ) · δm−|β̄|
Q ]−1 · |∂β̄(P̃1 − P̃2)(y

′)|, and
define

(51) Ω = ∂β̄(P̃1 − P̃2)(y
′).

By definition, and by (47), we have

(52) |∂β(P̃1 − P̃2)(y
′)| ≤ |Ω| · δ|β̄|−|β|

Q for all β ∈ M,

and

(53) |Ω| ≥ c · (a1)
−(m+1) · a−1

2 · ω(δQ) · δm−|β̄|
Q .

In particular, Ω �= 0. We define

(54) P̄ = (P̃1 − P̃2)
/
Ω ∈ P.
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From (51), (52) we have

(55) |∂βP̄ (y′)| ≤ δ
|β̄|−|β|
Q for all β ∈ M,

and

(56) ∂β̄P̄ (y′) = 1.

From (48) we have

(57) ∂βP̄ (y′) = 0 for all β ∈ A.

Comparing (56) to (57), we see that

(58) β̄ /∈ A.
Also, from (50), (53), (54), we learn the following.

(59) Given S ⊂ E with #(S) ≤ k#
old, there exists F̄ S ∈ Cm,ω(Rn), with

(a) ‖ F̄ S ‖Cm,ω(Rn) ≤ C′
|Ω| ≤ C ′′ · (a1)

m+1 · a2 · [ω(δQ) · δm−|β̄|
Q ]−1;

(b) Jx(F̄
S) ∈ C′

|Ω| σ(x) ⊆ C ′′ · (a1)
m+1 · a2 · [ω(δQ) · δm−|β|

Q ]−1 σ(x) for
all x ∈ S; and

(c) Jy′(F̄
S) = P̄ .

In view of (59)(a), the function F̄ S in (59) satisfies

(60) |∂βF̄ S(x′)−∂βF̄ S(x′′)| ≤ C ′′· (a1)
m+1 · a2 · δ|β̄|−mQ · ω(|x′−x′′|)

ω(δQ)
for |β| = m,

x′, x′′ ∈ R
n, |x′ − x′′| ≤ 1.

Recall that y′ ∈ (Q+)∗∗ ⊂ Q∗∗∗ ⊂ (Q0)∗∗∗ ⊂ B(y0, a1) (see 11.2).

Hence, Lemma 10.3 shows that there exist polynomials P y′
α (α ∈ A), for

which

(61) (WL1)y
′
, (WL2)y

′
, (WL3)y

′
hold for the P y′

α (α ∈ A).

We now define

Āy′ = A ∪ {β̄},(62)

P̄β̄ = P̄ , and(63)

P̄α = P y′
α − [∂β̄P y′

α (y′)] · P̄ for all α ∈ A.(64)

Thus, we have defined P̄β ∈ P for all β ∈ Āy′. Note that (63) and (64)
do not conflict, and moreover A is a proper subset of Āy′, thanks to (58).
Hence, Lemma 3.2 shows that

(65) Āy′ < A.



646 C. Fefferman

We will check that

(66) ∂βP̄α(y
′) = δβα for all β, α ∈ Āy′ .

In fact, (66) holds for α = β̄, thanks to (56), (57), (63).

For α, β ∈ A, we have

∂βP̄α(y
′) = ∂βP y′

α (y′) − [∂β̄P y′
α (y′)] · ∂βP̄ (y′) = δβα ,

by (WL1)y
′
and (57). Hence, (66) holds for α, β ∈ A.

Finally, for α ∈ A, β = β̄, we have

∂βP̄α(y
′) = ∂β̄P y′

α (y′) − [∂β̄P y′
α (y′)] · ∂β̄P̄ (y′) = 0 ,

thanks to (56). Hence, (66) holds also for α ∈ A, β = β̄.

Thus, (66) holds in all cases.

Next, we apply Lemma 13.1, with y′ and P y′
α in place of y and P y

α . We
check that the hypotheses of that lemma are satisfied. In fact, we have
k# ≥ (D + 1) · k#

1 and k#
1 ≥ (D + 1) · k#

old, by our present hypothesis (29).
Also, Q is a CZ cube, by our present hypothesis (30).

We have y′ ∈ Q∗∗∗, thanks to (41).

Finally, (WL1)y
′
, (WL2)y

′
, (WL3)y

′
hold for the P y′

α (α ∈ A); see (61).

Thus, as claimed, the hypotheses of Lemma 13.1 are satisfied, with our
present y′ and P y′

α in place of y, P y
α . Applying that lemma, we learn that

(67) δ
|β|−|α|
Q |∂βP y′

α (y′)| ≤ (a1)
−(m+1) for all α ∈ A, β ∈ M.

Using (67), we can check that

(68) |∂βP̄α(y′)| ≤ C · (a1)
−(m+1) · δ|α|−|β|

Q for all α ∈ Āy′ , β ∈ M.

In fact, for α = β̄, (68) is immediate from (55), (63), and (SU5).

For α ∈ A, β ∈ M, we learn from (55), (64), (67) that

|∂βP̄α(y′)| ≤ |∂βP y′
α (y′)| + |∂β̄P y′

α (y′)| · |∂βP̄ (y′)|
≤ [(a1)

−(m+1)δ
|α|−|β|
Q ] + [(a1)

−(m+1)δ
|α|−|β̄|
Q ] · [δ

|β̄|−|β|
Q ]

≤ C · (a1)
−(m+1) · δ|α|−|β|

Q , so again (68) holds.

Thus (68) holds in both cases.
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Let S ⊂ E be given, with #(S) ≤ k#
old. Let F̄ S ∈ Cm,ω(Rn) be as in (59),

and, for α ∈ A, let ϕSα ∈ Cm,ω
�oc (Rn) be as in (WL3)y

′
. (Note that (WL3)y

′

applies, since k#
1 ≥ k#

old.) We define

(69) ϕ̄Sβ̄ = F̄ S

and

(70) ϕ̄Sα = ϕSα − [∂β̄P y′
α (y′)] · F̄ S for all α ∈ A.

Thus ϕ̄Sα ∈ Cm,ω
�oc (Rn) for all α ∈ Āy′.

We will check that

(71) |∂βϕ̄Sα(x′) − ∂βϕ̄Sα(x
′′)| ≤ Ca2 · δ|α|−mQ · ω(|x′ − x′′|)

ω(δQ)

for α ∈ Āy′ , |β| = m, x′, x′′ ∈ R
n, |x′ − x′′| ≤ 50δQ.

In fact, for α = β̄, (71) is immediate from (60), (69), and (SU5).

Suppose α ∈ A. Then, for |β| = m, x′, x′′ ∈ R
n, |x′ − x′′| ≤ 1, we have

|∂βϕ̄Sα(x′) − ∂βϕ̄Sα(x
′′)| ≤

≤ |∂βϕSα(x′) − ∂βϕSα(x
′′)| + |∂β̄P y′

α (y′)| · |∂βF̄ S(x′) − ∂βF̄ S(x′′)|
≤ [Ca2ω(|x′ − x′′|)] + [Ca

−(m+1)
1 δ

|α|−|β̄|
Q ][C ′′(a1)

m+1a2δ
|β̄|−m
Q

ω(|x′ − x′′|)
ω(δQ)

]

(see (WL3)y
′
(a), (67), (59))

= Ca2ω(|x′ − x′′|) + Ca2δ
|α|−m
Q

ω(|x′ − x′′|)
ω(δQ)

≤ C ′a2δ
|α|−m
Q

ω(|x′ − x′′|)
ω(δQ)

,

since |α| ≤ m and δQ, ω(δQ) ≤ 1. So, again (71) holds.

Thus, (71) holds in all cases.

Next, we check that

(72) Jx(ϕ̄
S
α) ∈ Cδ

|α|−m
Q (ω(δQ))−1σ(x) for all x ∈ S, α ∈ Āy′ .

In fact, for α = β̄, (72) is immediate from (59)(b), (69), (SU5) and (SU7).

Suppose α ∈ A. Then, for x ∈ S, we have

Jx(ϕ̄
S
α) = Jx(ϕ

S
α) − [∂β̄P y′

α (y′)] · Jx(F̄ S) (see (70))

∈ [Cσ(x)] + |∂β̄P y′
α (y′)| · [C ′′ · (a1)

m+1 · a2 · (ω(δQ))−1 · δ|β̄|−mQ σ(x)]

(see (WL3)y
′
(b) and (59)(b))

⊂ [Cσ(x)] + [a
−(m+1)
1 · δ|α|−|β̄|

Q ] · [C ′′a(m+1)
1 · a2 · δ|β̄|−mQ · (ω(δQ))−1σ(x)]

(see (67))

⊂ Cσ(x) + C ′′a2δ
|α|−m
Q (ω(δQ))−1σ(x) ⊂ C ′δ|α|−mQ (ω(δQ))−1σ(x),
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since δQ, ω(δQ) ≤ 1, |α| ≤ m, and a2 < 1 (see (SU7)). Hence, again (72)
holds.

Thus, (72) holds in all cases. We also check that

(73) Jy′(ϕ̄
S
α) = P̄α for all α ∈ Āy′ .

In fact, for α = β̄, (73) is immediate from (59)(c), (63), (69).

Suppose α ∈ A. Then

Jy′(ϕ̄
S
α) = Jy′(ϕ

S
α) − [∂β̄P y′

α (y′)] · Jy′(F̄ S) (see (70))

= P y′
α − [∂β̄P y′

α (y′)] · P̄ (see (WL3)y
′
(c) and (59)(c))

= P̄α (see (64)).

So, again (73) holds. Thus, (73) holds in all cases.

Given y′ ∈ (Q+)∗∗ (see (41)), we have constructed Āy′ < A (see (65)),
along with P̄α ∈ P(α ∈ Āy′) (see (63), (64)), satisfying (66) and (68).
Moreover, given α ∈ Āy′ and S ⊂ E with #(S) ≤ k#

old, we have exhibited
ϕ̄Sα ∈ Cm,ω

�oc (Rn), satisfying (71), (72), (73).

We will now check that Āy′ and P̄α(α ∈ Āy′) satisfy conditions (OK1,2,3)
for the cube Q+.

In fact, (OK1) for Āy′ , P̄α, Q
+ says simply that ∂βP̄α(y

′) = δβα for
β, α ∈ Āy′, which is precisely (66).

Condition (OK2) for Āy′ , P̄α, Q
+ says that

(δQ+)|β|−|α||∂βP̄α(y′)| ≤ (a1)
−(m+2) for all α ∈ Āy′ , β ∈ M with β ≥ α.

This assertion, without the restriction to β ≥ α, is immediate from (68)
and (SU5), since δQ+ = 2δQ.

Condition (OK3) for Āy′ , P̄α, Q
+ says that

(74) given α ∈ Āy′ and S ⊂ E with #(S) ≤ k#
old, there exists ϕ̄Sα ∈

Cm,ω
�oc (Rn), with

(a) |∂βϕ̄Sα(x′)− ∂βϕ̄Sα(x
′′)| ≤ a

−(m+2)
1 δ

|α|−m−1
Q+ · |x′ − x′′| + (a1)

−(m+2) ·
a2 · δ|α|−mQ+ ·
· ω(|x′−x′′|)

ω(δQ+ )
for |β| = m, x′, x′′ ∈ R

n, |x′ − x′′| ≤ δQ+ ;

(b) Jx(ϕ̄
S
α) ∈ (a1)

−(m+2)δ
|α|−m
Q+ (ω(δQ+))−1 · σ(x) for all x ∈ S; and

(c) Jy′(ϕ̄
S
α) = P̄α.

We use the ϕ̄Sα ∈ Cm,ω
�oc (Rn) that satisfy (71), (72), (73).
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Since δQ+ = 2δQ and ω is a regular modulus of continuity, we have

ω(δQ) ≤ ω(δQ+) ≤ 2ω(δQ).

Hence, (74)(a) is immediate from (71) and (SU5); and (74)(b) is immediate
from (72) and (SU5).

Also, (74)(c) is precisely (73).

Thus, as claimed, (OK1,2,3) hold for Q+, Āy′ , P̄α(α ∈ Āy′), for any given
y′ ∈ (Q+)∗∗. By definition, this tells us that Q+ is OK.

The proof of (35) is complete.

Hence, also, the proof of Lemma 14.2 is complete. �
Lemma 14.3 Suppose y ∈ Q∗∗ and y′ ∈ (Q′)∗∗, where Q and Q′ are CZ
cubes that abut. Let P ∈ K#

f (y, k#
A , C) and P ′ ∈ K#

f (y′, k#
A , C) be given,

where

(75) k# ≥ (D + 1) · k#
A and k#

A ≥ (D + 1)2 · k#
old.

Then we have

(76) |∂β(P ′−P )(y′)| ≤ C ′ · (a1)
−(m+1) · (a2)

−1 · ω(δQ) · δm−|β|
Q for |β| ≤ m.

Proof: Let k#
B = (D + 1) · k#

old. Then, by Lemma 14.1, there exists P̃ ∈
K#
f (y′, k#

B , C
′), with

(77) |∂β(P̃ − P )(y′)| ≤ C ′′ · (a1)
−(m+1) · ω(δQ) · δm−|β|

Q for |β| ≤ m.

In particular, both P̃ and P ′ belong to K#
f (y′, k#

B , C
′′′), with y′ ∈ (Q′)∗∗.

Thus, Lemma 14.2 shows that

(78) |∂β(P ′ − P̃ )(y′)| ≤ (a1)
−(m+1) · (a2)

−1 · ω(δQ′) δ
m−|β|
Q′ for |β| ≤ m.

By Lemma 11.2, we have

1

2
δQ ≤ δQ′ ≤ 2δQ.

Since ω is a regular modulus of continuity, it follows that

1

2
ω(δQ) ≤ ω(δQ′) ≤ 2ω(δQ).

Putting these remarks into (78), we find that

(79) |∂β(P ′−P̃ )(y′)| ≤ C̃ · (a1)
−(m+1) · (a2)

−1 ·ω(δQ) · δm−|β|
Q for |β| ≤ m.

Adding (77) and (79), and recalling (SU7), we obtain the conclusion (76)
of Lemma 14.3. The proof of the lemma is complete. �
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We shall need analogues of Lemmas 14.1 and 14.3 in which the cubes
Q,Q′ need not abut.

Lemma 14.4 Let Q,Q′ be distinct CZ cubes, with centers y, y′ respectively.
Let

(80) P ∈ K#
f (y, k#

1 , C),

with

(81) k# ≥ (D + 1) · k#
1 , k

#
1 ≥ (D + 1) · k#

2 and k#
2 ≥ k#

old.

Then there exists

(82) P ′ ∈ K#
f (y′, k#

2 , C
′),

with

(83) |∂β(P ′ − P )(y′)| ≤ C ′′ · (a1)
−(m+1) · ω(|y − y′|) · |y − y′|m−|β|

for |β| ≤ m.

Proof: We have y, y′ ∈ Q0 ⊂ B(y0, a1), hence |y − y′| ≤ 2a1 ≤ 1.

Hence, Lemma 10.2 shows that there exists

(84) P̃ ∈ Kf (y
′, k#

2 , C),

with

(85) |∂β(P̃ − P )(y′)| ≤ C ′ ω(|y − y′|) · |y − y′|m−|β| for |β| ≤ m.

From (84), we have

(86) Given S ⊂ E with #(S) ≤ k#
2 , there exists F̃ S ∈ Cm,ω(Rn), with

‖ F̃ S ‖Cm,ω(Rn)≤ C, Jx(F̃
S) ∈ f(x)+Cσ(x) for all x ∈ S, Jy′(F̃

S) = P̃ .

In particular, taking S = empty set in (86), we obtain

(87) |∂βP̃ (y′)| ≤ C for |β| ≤ m.

Also, (80) gives ∂βP (y) = 0 for all β ∈ A. Hence, by (SU0), we have
also ∂γ+βP (y) = 0 for all β ∈ A, |γ| ≤ m− |β|. Since ∂βP is a polynomial
of degree of most m− |β|, it follows that ∂βP is the zero polynomial, for all
β ∈ A. Hence, (85) implies

(88) |∂βP̃ (y′)| ≤ C ′ ω(|y − y′|) · |y − y′|m−|β| for β ∈ A.

Next, since y′ ∈ B(y0, a1), Lemma 10.3 applies, with y′ in place of y.
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Let P y′
α ∈ P(α ∈ A) satisfy (WL1)y

′
, (WL2)y

′
, (WL3)y

′
. From (WL2)y

′

and (SU5), we have

(89) |∂βP y′
α (y′)| ≤ C ′ for α ∈ A, |β| ≤ m.

We next check that the hypotheses of Lemma 13.1 hold for the cube Q′,
the point y′, and the polynomials P y′

α (α ∈ A).

In fact, (81) shows that k# ≥ (D + 1) · k#
1 ≥ (D + 1) · k#

old.

We are assuming in Lemma 14.4 that Q′ is a CZ cube, and that y′ is the
center of Q′, hence y′ ∈ (Q′)∗∗∗. The defining property of the P y′

α ∈ P is
that they satisfy (WL1)y

′
,. . . ,(WL3)y

′
. Thus, as claimed, the hypotheses of

Lemma 13.1 hold for Q′, y′, (P y′
α )α∈A. Applying that lemma, we learn that

(90) δ
|β|−|α|
Q′ |∂βP y′

α (y′)| ≤ (a1)
−(m+1) for all α ∈ A, |β| ≤ m.

Now define

(91) P ′ = P̃ −
∑
α∈A

[∂αP̃ (y′)] · P y′
α ∈ P.

Note that

(92) ∂βP ′(y′) = ∂βP̃ (y′) −
∑
α∈A

[∂αP̃ (y′)] · ∂βP y′
α (y′) = 0 for β ∈ A,

thanks to (WL1)y
′
.

We check that P ′ ∈ Kf (y
′, k#

2 , C
′). In fact, let S ⊂ E, with #(S) ≤ k#

2 .

Then also #(S) ≤ k#
1 . Let F̃ S ∈ Cm,ω(Rn) be as in (86), and, for each

α ∈ A, let ϕSα ∈ Cm,ω
�oc (Rn) be as in (WL3)y

′
.

We introduce a cutoff function θ on R
n, satisfying

(93) ‖ θ ‖Cm+1(Rn) ≤ C ′, θ = 1 on B(y′, 1/20), supp θ ⊂ B(y′, 1/10).

We then define

(94) F S = F̃ S −
∑
α∈A

[∂αP̃ (y′)] · θϕSα on R
n.

Note that F S ∈ Cm,ω(Rn), since F̃ S ∈ Cmω(Rn), ϕSα ∈ Cm,ω
�oc (Rn), θ ∈

Cm+1(Rn), and supp θ ⊂ B(y′, 1/10). Let us estimate the derivatives of F S.

From (WL2)y
′
, (WL3)y

′
(c), and (SU5), we have

(95) |∂βϕSα(y′)| ≤ C ′ for α ∈ A, |β| ≤ m.
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Hence, (WL3)y
′
(a) and (SU7) show that

(96) |∂βϕSα| ≤ C ′ on B(y′, 1), for α ∈ A, |β| = m.

(Here, we use the fact that ω is a regular modulus of continuity, hence
ω(t) ≤ 1 for 0 ≤ t ≤ 1.)

From (95), (96), it follows that

(97) |∂βϕSα| ≤ C ′ on B(y′, 1), for α ∈ A, |β| ≤ m.

Again using (WL3)y
′
(a) and (SU7), we see that

(98) |∂βϕSα(x′) − ∂βϕSα(x
′′)| ≤ ω(|x′ − x′′|)

for α ∈ A, |β| = m, x′, x′′ ∈ R
n, |x′ − x′′| ≤ 1.

From (93), (97), (98), we conclude that

(99) ‖ ϕSαθ ‖Cm,ω(Rn) ≤ C ′ for all α ∈ A.

Putting (86), (87), (99) into (94), we see that

(100) ‖ F S ‖Cm,ω(Rn) ≤ C ′.

Next, suppose α ∈ A and x ∈ S ∩ B(y′, 1). Then Jx(ϕ
S
α) ∈ Cσ(x) by

(WL3)y
′
(b) and also |∂β(Jx(ϕSα))(x)| ≤ C ′ for |β| ≤ m, by (97). Moreover,

we have |∂β(Jx(θ))(x)| ≤ C ′ for |β| ≤ m, by (93). Hence, our Whitney
ω-convexity assumption (SU2) shows that

(101) Jx(θϕ
S
α) ∈ C ′σ(x).

(Here, we take δ = 1 in the definition of Whitney ω-convexity.)

We have proven (101) for α ∈ A, x ∈ S ∩B(y′, 1).

However, for α ∈ A, x ∈ S � B(y′, 1), (101) holds trivially, since then
Jx(θϕ

S
α) = 0 by (93). Thus (101) holds for all α ∈ A, x ∈ S.

Putting (86), (87), (101) into (94), we find that

(102) Jx(F
S) ∈ Jx(F̃

S) + C ′σ(x) ⊂ f(x) + C ′′σ(x) for all x ∈ S.

Next, note that

Jy′(F
S) = Jy′(F̃

S) −
∑
α∈A

[∂αP̃ (y′)] · Jy′(θϕSα) (see (94))(103)

= Jy′(F̃
S) −

∑
α∈A

[∂αP̃ (y′)] · Jy′(ϕSα) (see (93))

= P̃ −
∑
α∈A

[∂αP̃ (y′)] · P y′
α (see (86) and (WL3)y

′
(c))

= P ′ (see (91)).
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Thus, given S ⊂ E with #(S) ≤ k#
2 , we have exhibited F S ∈ Cm,ω(Rn),

satisfying (100), (102), (103). By definition, we therefore have

P ′ ∈ Kf (y
′, k#

2 , C
′).

Since also (92) holds, we conclude that

(104) P ′ ∈ K#
f (y′, k#

2 , C
′).

Next, we estimate the derivatives of P ′ − P at y′. From (19) we have

(105) |∂β(P ′ − P̃ )(y′)| ≤
∑
α∈A

|∂αP̃ (y′)| · |∂βP y′
α (y′)|, for |β| ≤ m.

If |β| ≥ |α|, α ∈ A, then (88) and (89) yield

|∂αP̃ (y′)| · |∂βP y′
α (y′)| ≤ C ′ω(|y − y′|) · |y − y′|m−|α|(106)

≤ C ′ω(|y − y′|) · |y − y′|m−|β|.

If instead |β| ≤ |α|, α ∈ A, then (88) and (90) imply

(107) |∂αP̃ (y′)|· |∂βP y′
α (y′)| ≤ C ′ω(|y−y′|)·|y−y′|m−|α| ·(a1)

−(m+1) ·δ|α|−|β|
Q′ .

Moreover, since y and y′ are centers of the distinct CZ cubes Q,Q′, we
have δQ′ ≤ C ′|y − y′|, hence, with |β| ≤ |α|, (107) implies

(108) |∂αP̃ (y′)| · |∂βP y′
α (y′)| ≤ C ′ · (a1)

−(m+1) · ω(|y − y′|) · |y − y′|m−|β|.

Putting (106) and (108) into (105), and recalling (SU5), we have

(109) |∂β(P ′ − P̃ )(y′)| ≤ C ′ · (a1)
−(m+1) · ω(|y − y′|) · |y − y′|m−|β|,

for |β| ≤ m.

From (85), (109), and (SU5), we conclude that

(110) |∂β(P ′ − P )(y′)| ≤ C ′′ · (a1)
−(m+1) · ω(|y − y′|) · |y − y′|m−|β|

for |β| ≤ m. Our results (104) and (110) are the conclusions of Lemma 14.4.
The proof of the lemma is complete. �
Lemma 14.5 Let Q,Q′ be distinct CZ cubes, with centers y, y′, respectively.
Let

(111) P ∈ K#
f (y, k#

A , C) and P ′ ∈ K#
f (y′, k#

A , C)

be given, with

(112) k# ≥ (D + 1) · k#
A , and k#

A ≥ (D + 1)2 · k#
old.

Then we have

(113) |∂β(P ′−P )(y′)| ≤ C ′(a1)
−(m+1) a−1

2 ω(|y−y′|)|y−y′|m−|β| for |β| ≤ m.
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Proof: Let k#
B = (D + 1) · k#

old. Then, by Lemma 14.4, there exists

(114) P̃ ∈ K#
f (y′, k#

B , C
′).

with

(115) |∂β(P̃−P )(y′)| ≤ C ′ ·(a1)
−(m+1) ·ω(|y−y′|) · |y−y′|m−|β| for |β| ≤ m.

By (111) and (114), both P ′ and P̃ belong to K#
f (y′, k#

B , C
′′), with y′ the

center of the CZ cube Q′.

Hence, Lemma 14.2 gives

(116) |∂β(P ′ − P̃ )(y′)| ≤ (a1)
−(m+1) · a−1

2 · ω(δQ′) · δm−|β|
Q′ for |β| ≤ m.

Since y and y′ are the centers of distinct CZ cubes Q,Q′, we have cδQ′ ≤
|y − y′|, hence also cω(δQ′) ≤ ω(cδQ′) ≤ ω(|y − y′|) since ω is a regular
modulus of continuity. (Here, we may suppose c ≤ 1.)

Putting these remarks into (116), we find that

(117) |∂β(P ′ − P̃ )(y′)| ≤ C ′ · (a1)
−(m+1) · a−1

2 · ω(|y − y′|) · |y − y′|m−|β|

for |β| ≤ m.

Adding (115) and (117), and recalling (SU7), we obtain the conclu-
sion (113) of Lemma 14.5. The proof of the lemma is complete. �

15. Patching Local Solutions

Let Q1, ..., Qµmax be the CZ cubes. For 1 ≤ µ ≤ µmax, we define yµ =
center (Qµ), δµ = δQµ = diameter (Qµ), and

(1) Q̃µ = {y ∈ R
n : dist(y,Qµ) ≤ c1δµ} ⊂ Q∗

µ, with c1 > 0 a small

enough constant depending only on the dimension n. Note that Q̃µ

is not a cube. From the proof of Lemma 11.3, we have the following
geometric fact.

(2) If x ∈ Qν and B(x, c1δν) meets Q̃µ, then Qµ and Qν abut or coincide,
and, moreover B(x, c1δν) ⊂ Q∗

µ.

We fix the constant c1 as in (1), (2) throughout this section.

We suppose that for each µ(1 ≤ µ ≤ µmax), we are given functions
θµ ∈ Cm+1(Q◦) and Fµ ∈ Cm(Rn), and a polynomial Pµ ∈ P. For a constant
A > 0, not assumed to be a controlled constant, we make the following
assumptions.
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(PLS1)
∑

1≤µ≤µmax

θµ = 1 on Q◦.

(PLS2) If x ∈ Q◦
� Q̃µ, then θµ = 0 on a neighborhood of x in Q◦.

(PLS3) |∂βθµ(x)| ≤ Aδ
−|β|
µ for |β| ≤ m+ 1 and x ∈ Q◦.

(PLS4) |∂βPµ(yµ)| ≤ A for |β| ≤ m.

(PLS5) |∂β(Pµ − Pν)(yµ)| ≤ A · ω(δµ) · δm−|β|
µ for |β| ≤ m, if Qµ and Qν

abut.

(PLS6) |∂β(Pµ−Pν)(yµ)| ≤ Aω(|yµ−yν |) · |yµ−yν |m−|β| for |β| ≤ m, µ �= ν.

(PLS7) |∂βFµ(x)| ≤ Aω(δµ) · δm−|β|
µ for |β| ≤ m,x ∈ Q∗

µ.

(PLS8) |∂βFµ(x̂) − ∂βFµ(ŷ)| ≤ Aω(|x̂− ŷ|) for |β| = m, x̂, ŷ ∈ Q∗
µ.

Throughout this section, we assume (PLS1,. . . ,8). In this section only, we
write A′, A′′, etc., to denote constants determined by A,m, n in (PLS1,. . . ,8).
In this section only, we write c, C,C ′, etc. for constants depending only on
m and n. We reserve the name c1 for the constant in (1) and (2).

We define a function F̃ on Q◦, by setting

(3) F̃ =
∑

1≤µ≤µmax

θµ · [Pµ + Fµ] on Q◦.

The goal of this section is to control the derivatives of F̃ . We begin with a
few remarks on the polynomials Pµ and the modulus of continuity ω. First
of all, we have

(4) |∂β(Pµ − Pν)(x)| ≤ A′ ω(δµ) · δm−|β|
µ for |β| ≤ m, x ∈ Q∗

µ, if Qµ and Qν

coincide or abut.

In fact, when Qµ and Qν abut, then (4) follows from (PLS5) and Taylor’s
theorem for polynomials, since |x−yµ| ≤ Cδµ for x ∈ Q∗

µ. When Qµ and Qν

coincide, then Pµ = Pν and (4) is obvious.

Also,

(5) |∂β(Pµ − Pν)(x̂) − ∂β(Pµ − Pν)(ŷ)| ≤ A′ ω(δµ) · δm−|β|−1
µ · |x̂ − ŷ| for

x̂, ŷ ∈ Q∗
µ, |β| ≤ m, if Qµ and Qν abut or coincide.

In fact, when Qµ and Qν abut and |β| < m, then (5) follows from (PLS5).
When |β| = m or Qµ and Qν coincide, then the left-hand side of (5) equals
zero, so (5) is obvious. (Recall that Pµ−Pν is a polynomial of degree ≤ m.)



656 C. Fefferman

Similarly,

(6) |∂β Fµ(x̂) − ∂β Fµ(ŷ)| ≤ A′ ω(δµ) · δm−|β|−1
µ · |x̂− ŷ| for x̂, ŷ ∈ Q∗

µ,
|β| ≤ m− 1, as follows at once from (PLS7).

We recall that any regular modulus of continuity ω has the following
property.

(7) If 0 ≤ t ≤ δ ≤ 1, with δ > 0 then
ω(δ)

δ
· t ≤ ω(t).

Now we start studying the derivatives of F̃ . From the definition (3) of F̃ ,
and from our assumptions on θµ, Fµ, Pµ, we see that F̃ belongs to Cm(Q◦),
and we have

(8) ∂βF̃ =
∑

β′+β′′=β

c(β′, β′′)
∑
µ

(∂β
′
θµ) · (∂β′′

[Pµ + Fµ]) for |β| ≤ m,

with c(0, β) = 1. We have also

∑
µ

(∂β
′
θµ) = δβ′0 on Q◦,

by (PLS1). Hence, (8) implies

∂βF̃ = ∂βPν +
∑

β′+β′′=β

c(β′, β′′)
∑
µ

(∂β
′
θµ) · (∂β′′

[Pµ − Pν ])(9)

+
∑

β′+β′′=β

c(β′, β′′)
∑
µ

(∂β
′
θµ)(∂

β′′
Fµ) ,

for |β| ≤ m, and for any ν (1 ≤ ν ≤ µmax). Our estimates below for the
derivatives of F̃ are all based on formula (9).

Lemma 15.1 We have

(10) |∂βF̃ (x) − ∂βPν(x)| ≤ A′ ω(δν) · δm−|β|
ν for |β| ≤ m, x ∈ Qν.

Proof: Fix x ∈ Qν , and suppose ∂β
′
θµ(x) �= 0. Then (PLS2) gives

(11) x ∈ Q̃µ,

hence (2) shows that

(12) Qµ and Qν abut or coincide.
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Consequently, Lemma 11.2 implies

(13)
1

2
δν ≤ δµ ≤ 2δν ,

and

(14) There are at most C distinct µ for which ∂β
′
θµ(x) �= 0, for fixed x.

Since ω is a regular modulus of continuity, (13) implies

(14a) 1
2
ω(δν) ≤ ω(δµ) ≤ 2ω(δν).

With µ as in (11),. . . ,(14), we estimate the summands in (9). We have

|∂β′
θµ(x)| · |∂β′′

[Pµ − Pν ](x)| ≤ (A · δ−|β′|
µ ) · (A′ ω(δν) · δm−|β′′|

ν )(15)

(by (PLS3), (4), (12))

≤ A′′ ω(δν) · δm−|β|
ν (by (13)).

Similarly,

|∂β′
θµ(x)| · |∂β′′

Fµ(x)| ≤ (Aδ−|β′|
µ ) · (Aω(δµ) · δm−|β′′|

µ )(16)

(by (PSL3), (PLS7), (1), (11))

≤ A′ ω(δν) · δm−|β|
ν (by (13) and (14a)).

Putting (14),. . . ,(16) into (9), we obtain the conclusion (10) of Lemma 15.1.
The proof of the Lemma is complete. �
Lemma 15.2 Suppose x ∈ Qν, x

′ ∈ Qν′, |x − x′| ≥ c1δν, |x − x′| ≥ c1δν′.
Then we have

(17) |∂βF̃ (x) − ∂βF̃ (x′)| ≤ A′ ω(|x− x′|) for |β| = m.

Proof: First of all, note that x ∈ Qν ⊆ Q◦ and x′ ∈ Qν′ ⊆ Q◦, hence

(18) |x− x′| ≤ δQ◦ ≤ a1 (see (11.3)).

In particular, |x− x′| ≤ 1 by (SU4), so ω(|x− x′|) is well-defined.

Next, note that ∂βPν and ∂βPν′ are constant functions on R
n, when

|β| = m, since Pν , Pν′ ∈ P. Consequently, (PLS6) and Lemma 15.1 yield

|∂βPν − ∂βPν′| ≤ Aω(|yν − yν′ |),
|∂βF̃ (x) − ∂βPν | ≤ A′ ω(δν), and

|∂βF̃ (x′) − ∂βPν′| ≤ A′ ω(δν′)

for |β| = m, x ∈ Qν , x
′ ∈ Qν′ .
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Hence, for such β, x, x′, we have

(19) |∂βF̃ (x) − ∂βF̃ (x′)| ≤ Aω(|yν − yν′|) + A′ ω(δν) + A′ ω(δν′).

Since x, yν ∈ Qν and x′, yν′ ∈ Qν′ , we have |x− yν | ≤ δν , |x′ − yν′ | ≤ δν′ ,
and therefore

(20) |yν − yν′| ≤ |x− x′| + δν + δν′ .

Suppose |x − x′| ≥ c1δν and |x − x′| ≥ c1δν′ . Then, in view of (20), we
have

(21) δν , δν′ , |yν − yν′ | ≤ C|x− x′| ≤ 1;

where the last inequality follows from (18) and (SU5). From (21) and the
fact that ω is a regular modulus of continuity, we obtain the estimates

(22) ω(δν), ω(δν′), ω(|yν − yν′|) ≤ C ω(|x− x′|).
The desired conclusion (17) is immediate from (19) and (22). The proof

of Lemma 15.2 is complete. �

Lemma 15.3 Suppose x ∈ Qν, x
′ ∈ Qν′, and |x−x′| ≤ c1δν. Then we have

(23) |∂βF̃ (x) − ∂βF̃ (x′)| ≤ A′ ω(|x− x′|) for |β| = m.

Proof: Fix x ∈ Qν , x
′ ∈ Qν′ , β with |β| = m. Two applications of (9) yield

∂β F̃ (x) − ∂βF̃ (x′) = [∂βPν(x) − ∂βPν(x
′)](24)

+
∑

β′+β′′=β

c (β′, β′′)
∑
µ

(∂β
′
θµ(x) − ∂β

′
θµ(x

′)) · (∂β′′
[Pµ − Pν ](x))

+
∑

β′+β′′=β

c (β′, β′′)
∑
µ

(∂β
′
θµ(x

′)) · (∂β′′
[Pµ − Pν ](x) − ∂β

′′
[Pµ − Pν ](x

′))

+
∑

β′+β′′=β

c (β′, β′′)
∑
µ

(∂β
′
θµ(x) − ∂β

′
θµ(x

′)) · (∂β′′
Fµ(x))

+
∑

β′+β′′=β

c (β′, β′′)
∑
µ

(∂β
′
θµ(x

′)) · (∂β′′
Fµ(x) − ∂β

′′
Fµ(x

′)) .

Suppose ∂β
′
θµ(x) or ∂β

′
θµ(x

′) is non-zero. Then, since x, x′ ∈ B(x, c1δν),
we see from (PLS2) that B(x, c1δν) ∩ Q̃µ �= φ, with x ∈ Qν. Hence, by (2),

Qµ and Qν abut or coincide, and(25)

x, x′ ∈ Q∗
µ.(26)
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From (25) and Lemma 11.2, we see that

(27)
1

2
δν ≤ δµ ≤ 2δν ,

and

(28) For our fixed x, x′ there are at most C distinct µ for which ∂β
′
θµ(x) or

∂β
′
θµ(x

′) �= 0.

With µ as in (25),. . . ,(28), and with |β′| + |β′′| = m, we estimate the
terms on the right in (24).

First of all,

(29) [∂βPν(x) − ∂βPν(x
′)] = 0, since Pν ∈ P and |β| = m.

Next, (PLS3), (4), (25), (26), and (7) imply the estimates

|∂β′
θµ(x) − ∂β

′
θµ(x

′)| · |∂β′′
[Pµ − Pν ](x)| ≤(30)

≤ (A′ δ−|β′|−1
µ · |x− x′|) · (A′ ω(δµ) · δm−|β′′|

µ )

= A′′ ω(δµ)

δµ
|x− x′| ≤ A′′ ω(|x− x′|).

Similarly, (PLS3), (5), (25) , (26), and (7) imply the estimates

|∂β′
θµ(x

′)| · |∂β′′
[Pµ − Pν ](x) − ∂β

′′
[Pµ − Pν ](x

′)| ≤(31)

≤ (Aδ−|β′|
µ ) · (A′ ω(δµ) · δm−|β′′|−1

µ · |x− x′|)
= A′′ ω(δµ)

δµ
|x− x′| ≤ A′′ ω(|x− x′|).

Also, (PLS3), (PLS7), (26), and (7) imply the estimates

|∂β′
θµ(x) − ∂β

′
θµ(x

′)| · |∂β′′
Fµ(x)| ≤(32)

≤ (A′δ−|β′|−1
µ · |x− x′|) · (Aω(δµ) · δm−|β′′|

µ )

= A′′ ω(δµ)

δµ
|x− x′| ≤ A′′ ω(|x− x′|).

If |β′′| < m, then (PLS3), (6), (26), and (7) imply the estimate

|∂β′
θµ(x

′)| · |∂β′′
Fµ(x) − ∂β

′′
Fµ(x

′)| ≤
≤ (Aδ−|β′|

µ ) · (A′ ω(δµ) · δm−|β′′|−1
µ · |x− x′|)

= A′′ ω(δµ)

δµ
· |x− x′| ≤ A′′ ω(|x− x′|).
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If instead |β′′| = m, then β′ = 0, and (PLS3), (PLS8), (26) yield

|∂β′
θµ(x

′)| · |∂β′′
Fµ(x) − ∂β

′′
Fµ(x

′)| ≤ (A) · (Aω(|x− x′|)).
Hence, in either case, we have

(33) |∂β′
θµ(x

′)| · |∂β′′
Fµ(x) − ∂β

′′
Fµ(x

′)| ≤ A′′ ω(|x− x′|).
Putting (29), . . . , (33) into (24), and recalling (28), we obtain the desired
conclusion (23). The proof of Lemma 15.3 is complete. �

Similarly, we have

Lemma 15.4 Suppose x ∈ Qν, x
′ ∈ Qν′, and |x − x′| ≤ c1δν′. Then we

have |∂βF̃ (x) − ∂βF̃ (x′)| ≤ A′ ω(|x− x′|) for |β| = m.

Proof: This is just Lemma 15.3, with the roles of x, ν interchanged with
those of x′, ν ′. �

The main result of this section is as follows.

Lemma 15.5 Let Qµ(1 ≤ µ ≤ µmax) be the CZ cubes, with centers yµ
and diameters δµ, and let Q̃µ = {y ∈ R

n : dist(y,Qµ) ≤ c1δµ}, with c1 as in
Lemma 11.3. Suppose we are given functions θµ ∈ Cm+1(Q◦), Fµ ∈ Cm(Rn),
and polynomials Pµ ∈ P (1 ≤ µ ≤ µmax). Assume that (PLS1,. . . ,8) are
satisfied, for a given constant A. Define

F̃ =
∑

1≤µ≤µmax

θµ · [Pµ + Fµ] on Q◦.

Then we have

(34) |∂βF̃ (x)| ≤ A′ for |β| ≤ m, x ∈ Q◦;

and

(35) |∂βF̃ (x) − ∂βF̃ (x′)| ≤ A′ · ω(|x− x′|) for |β| = m, x, x′ ∈ Q◦;

with A′ depending only on A,m, n.

Proof: Suppose x ∈ Qν . Then |∂βPν(x)| ≤ A′ for |β| ≤ m, by (PLS4) and
Taylor’s theorem for polynomials. Hence, (34) follows from Lemma 15.1.

Next, suppose x ∈ Qν , x
′ ∈ Qν′ . If |x − x′| ≤ c1δν or |x − x′| ≤ c1δν′ ,

then (35) follows from Lemma 15.3 or Lemma 15.4. If instead |x−x′| ≥ c1δν
and |x− x′| ≥ c1δν′ , then (35) follows from Lemma 15.2.

The proof of Lemma 15.5 is complete. �
In spirit, the results of this section go back to Whitney [19] and Glaeser [12].
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16. Proof of Lemmas 5.2 and 9.1

In this section, we give the proof of Lemma 9.1. This will also complete
the proof of Lemma 5.2, thanks to Lemma 9.2. We are in the setting of
Section 9, and we assume (SU0),. . . , (SU8). As in the previous section, we
let Q1, . . . , Qµmax be the CZ cubes, and we set δµ = δQµ = diameter (Qµ),
yµ = center (Qµ).

Recall that

(1) δν ≤ a1 ≤ 1 for each ν,

thanks to (11.3).

We take

(2) k# = (D + 1)3 · k#
old.

Lemma 10.5 shows that K#
f (yν , (D+1)2 · k#

old, C) is non-empty for each ν,
where C is a large enough controlled constant. For each ν, fix

(3) Pν ∈ K#
f (yν , (D + 1)2 · k#

old, C).

Applying Lemmas 14.3 and 14.5, we see that

(4) |∂β(Pµ − Pν)(yµ)| ≤ C ′ · (a1)
−(m+1) · a−1

2 ω(δν) · δm−|β|
ν

for |β| ≤ m, if Qµ, Qν abut; and

(5) |∂β(Pµ − Pν)(yµ)| ≤ C ′ · (a1)
−(m+1) · (a2)

−1 · ω(|yµ − yν |) · |yµ − yν |m−|β|

for |β| ≤ m, µ �= ν.

Lemma 16.1 Fix ν. For each S ⊂ E ∩ Q∗
ν with #(S) ≤ k#

old, there exists

F̂ S
ν ∈ Cm,ω(Rn), with

|∂βF̂ S
ν (x′)| ≤ C ′ω(δν) · δm−|β|

ν for |β| ≤ m,x′ ∈ R
n;(6)

|∂βF̂ S
ν (x′) − ∂βF̂ S

ν (x′′)| ≤ C ′ω(|x′ − x′′|)(7)

for |β| = m,x′, x′′ ∈ R
n, |x′ − x′′| ≤ δν; and

(8) Jx(F̂
S
ν ) ∈ (f(x) − Pν) + C ′σ(x) for all x ∈ S.

(In (8), we regard Pν = Jx(Pν) as a jet at x.)

Proof: Let C1 be a large enough controlled constant, to be fixed in a mo-
ment, and let θ̂ be a cutoff function on R

n, with

θ̂ = 1 on Q∗
ν(9)

supp θ̂ ⊂ B(yν , (C1 − 1) · δν)(10)

|∂β θ̂(x′)| ≤ C ′δ−|β|
ν for |β| ≤ m+ 1, x′ ∈ R

n.(11)



662 C. Fefferman

In view of (10), we see that

(12) If |x′−x′′| ≤ δν and at least one of x′, x′′ fails to belong to B(yν , C1δν),
then Jx′(θ̂) = 0, Jx′′(θ̂) = 0.

We pick C1 large enough that there exists θ̂ satisfying (9), (10), (11),
and we pick θ̂ satisfying these conditions.

Now let S ⊂ E ∩ Q∗
ν , with #(S) ≤ k#

old. By (3), there exists F S ∈
Cm,ω(Rn), with

‖ F S ‖Cm,ω(Rn) ≤ C.(13)

Jx(F
S) ∈ f(x) + Cσ(x) for all x ∈ S, and(14)

Jyν (F
S) = Pν .(15)

By (13), we have

(16) |∂β[F S − Pν ](x
′) − ∂β[F S − Pν ](x

′′)| ≤ Cω(|x′ − x′′|) ≤ Cω(δν)

for |β| = m, x′, x′′ ∈ R
n, |x′ − x′′| ≤ δν .

We have also

(17) Jyν (F
S − Pν) = 0,

by (15).

From (16) and (17), we see that

(18) |∂β(F S − Pν)(x
′)| ≤ C ′ω(δν) · δm−|β|

ν

for |β| ≤ m, x′ ∈ B(yν , C1δν), with C1 as in (9), . . . , (12).

Also, (14) gives

(19) Jx(F
S − Pν) ∈ (f(x) − Pν) + Cσ(x) for all x ∈ S.

We set

(20) F̂ S
ν = θ̂ · (F S − Pν).

Since

F S ∈ Cm,ω(Rn), Pν ∈ P, θ̂ ∈ Cm+1(Rn), and supp θ̂ ⊂ B(yν , (C1 − 1)δν),

we have F̂ S
ν ∈ Cm,ω(Rn). We estimate the derivatives of F̂ S

ν .

Immediately from (11), (18), (20), we obtain

|∂βF̂ S
ν (x′)| ≤ C ′ω(δν)δ

m−|β|
ν for |β| ≤ m, x′ ∈ B(yν , C1δν).
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Since also F̂ S
ν is supported in B(yν , C1δν) (see (10), (20)), we have

(21) |∂βF̂ S
ν (x′)| ≤ C ′ω(δν) · δm−|β|

ν for |β| ≤ m, x′ ∈ R
n.

We estimate |∂βF̂ S
ν (x′)− ∂βF̂ S

ν (x′′)| for |β| = m, x′, x′′ ∈ R
n, |x′ − x′′| ≤ δν .

If either of x′, x′′ fails to belong to B(yν , C1δν), then (12) and (20) give
∂βF̂ S

ν (x′) = ∂βF̂ν(x
′′) = 0. Suppose x′, x′′ ∈ B(yν , C1δν).

Then (11), (16), (18), (20), and the fact that ω is a regular modulus of
continuity show that

(22) |∂βF̂ S
ν (x′) − ∂βF̂ S

ν (x′′)| ≤ C ′ω(|x′ − x′′|).
To see (22), we write

∂βF̂ S
ν = θ̂ · ∂β[F S − Pν ] +

∑
β′+β′′=β

β′ �=0

c(β′, β′′) · ∂β′
θ̂ · ∂β′′

[F S − Pν ](23)

≡ θ̂ · ∂β[F S − Pν ] +G .

By (11) and (18), we have |�G| ≤ C ′ω(δν) · δm−(|β|+1)
ν = C ′ω(δν) · δ−1

ν ,
so (23) implies

|∂βF̂ S
ν (x′) − ∂βF̂ S

ν (x′′)| ≤ |θ̂(x′)∂β[F S− Pν ](x
′) − θ̂(x′′)∂β[F S − Pν ](x

′′)|(24)

+ C ′ω(δν)δ
−1
ν |x′ − x′′|.

Moreover,

|θ̂(x′)∂β[F S − Pν ](x
′) − θ̂(x′′)∂β[F S − Pν ](x

′′)| ≤(25)

≤|θ̂(x′)| · |∂β[F S − Pν ](x
′) − ∂β[F S − Pν ](x

′′)|
+ |θ̂(x′) − θ̂(x′′)| · |∂β[F S − Pν ](x

′′)|
≤C ′ω(|x′ − x′′|) + C ′δ−1

ν |x′ − x′′| · ω(δν)

thanks to (11), (16), (18). (Recall that we have here x′, x′′ ∈ B(yν , C1δν)
and |β| = m.)

From (24) and (25), we have

(26) |∂βF̂ S
ν (x′) − ∂βF̂ S

ν (x′′)| ≤ C ′ω(|x′ − x′′|) + C ′ω(δν)δ
−1
ν |x′ − x′′|.

Since |x′ − x′′| ≤ δν and ω is a regular modulus of continuity, we have

ω(δν)δ
−1
ν |x′ − x′′| ≤ ω(|x′ − x′′|),

and therefore, (26) implies (22). The proof of (22) is complete.
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Thus, we have shown that

(27) |∂βF̂ S
ν (x′) − ∂βF̂ S

ν (x′′)| ≤ C ′ω(|x′ − x′′|)

for |β| = m, x′, x′′ ∈ R
n, |x′ − x′′| ≤ δν .

Next, suppose x ∈ S. Then we have also x ∈ Q∗
ν (we assumed S ⊂

E ∩Q∗
ν), hence (9) gives Jx(θ̂) = 1, and therefore (19), (20) show that

Jx(F̂
S
ν ) = Jx(F

S − Pν) ∈ (f(x) − Pν) + Cσ(x).

Thus,

(28) Jx(F̂
S
ν ) ∈ (f(x) − Pν) + Cσ(x) for all x ∈ S.

We have exhibited F̂ S
ν ∈ Cm,ω(Rn) satisfying (21), (27), (28). These

conditions are precisely the conclusions of Lemma 16.1. The proof of the
lemma is complete. �

Since Qν is a CZ cube, it is almost OK, i.e., either it is OK or Q∗∗
ν

contains at most one point of E.

Lemma 16.2 Fix ν, and assume that Qν is OK. For each y ∈ Q∗∗
ν , let

Āy < A and P̄ y
α ∈ P (α ∈ Āy) be as in (OK1,2,3) for the cube Qν.

Then the hypotheses of Lemma 8.1 are satisfied for the following data:

• The constant A = (a1)
−(m+2);

• The cube Qν;

• The regular modulus of continuity ω;

• The finite set E ∩Q∗
ν;

• The map x 	→ f(x) − Pν ∈ Rx for x ∈ E ∩Q∗
ν;

• The subset σ(x) ⊂ Rx for x ∈ E ∩Q∗
ν;

• The set Āy < A for y ∈ Q∗∗
ν ;

• The polynomials P̄ y
α ∈ P(α ∈ Āy) for y ∈ Q∗∗

ν .

Proof: The hypotheses of Lemma 8.1 are that the Strong Main Lemma holds
for all Ā < A, and that (G0),. . . , (G4) hold.

We are already assuming that the Strong Main Lemma holds for all Ā<A.
(See (SU1).) We check that (G0),. . . , (G4) hold for our data (as in the
statement of Lemma 16.2).

In fact, (G0) for our data says that, for each x ∈ E ∩Q∗
ν , the set σ(x) is

Whitney ω-convex, with Whitney constant (a1)
−(m+2). This follows at once

from (SU2) and (SU5).
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Next, (G1) for our data says that

∂βP̄ y
α(y) = δβα for β, α ∈ Āy, y ∈ Q∗∗

ν .

This is precisely condition (OK1) for the cube Qν .

Similarly, (G2) for our data says that

|∂βP̄ y
α(y)| ≤ (a1)

−(m+2)δ|α|−|β|
ν for β ∈ M , α ∈ Āy , y ∈ Q∗∗

ν , β ≥ α .

This is precisely condition (OK2) for the cube Qν .

Next, (G3) for our data says the following.

(29) Given S ⊂ E ∩Q∗
ν , with #(S) ≤ k#

old, and given y ∈ Q∗∗ and α ∈ Āy,
there exists ϕSα ∈ Cm,ω

�oc (Rn), with

(a) |∂βϕSα(x′) − ∂βϕSα(x
′′)| ≤ (a1)

−(m+2)δ
|α|−m−1
ν |x′ − x′′|+

+aold
0 ((a1)

−(m+2)) · δ|α|−mν
ω(|x′ − x′′|)

ω(δν)

for |β| = m, x′, x′′ ∈ R
n, |x′ − x′′| ≤ δν ;

(b) Jx(ϕ
S
α) ∈ (a1)

−(m+2)δ
|α|−m
ν (ω(δν))

−1σ(x) for all x ∈ S; and

(c) Jy(ϕ
S
α) = P̄ y

α .

This condition follows at once from (OK3) for Qν, provided we have

(30) (a1)
−(m+2) · a2 ≤ aold

0 ((a1)
−(m+2)).

However, (30) holds, thanks to our assumption (SU7).

Thus, (29) holds as well, and therefore our data satisfy (G3).

Finally, (G4) for our data says the following.

(31) Given S ⊂ E ∩Q∗
ν with #(S) ≤ k#

old, there exists F S ∈ Cm,ω(Rn), with

(a) ‖ ∂βF S ‖C0(Rn) ≤ (a1)
−(m+2) · ω(δν) · δm−|β|

ν for |β| ≤ m;

(b) |∂βF S(x′) − ∂βF S(x′′)| ≤ (a1)
−(m+2) · ω(|x′ − x′′|)

for |β| = m, x′, x′′ ∈ R
n, |x′ − x′′| ≤ δν ; and

(c) Jx(F
S) ∈ (f(x) − Pν) + (a1)

−(m+2) σ(x) for all x ∈ S.

However, (31) follows at once from Lemma 16.1 and our assumption (SU5).

Thus (G0),. . . , (G4) hold for our data.

The proof of Lemma 16.2 is complete. �
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Lemma 16.3 For each ν (1 ≤ ν ≤ µmax), there exists Fν ∈ Cm,ω(Rn), with

‖ ∂βFν ‖C0(Rn) ≤ A′ω(δν) · δm−|β|
ν for |β| ≤ m;(32)

|∂βFν(x′) − ∂βFν(x
′′)| ≤ A′ω(|x′ − x′′|)(33)

for |β| = m, x′, x′′ ∈ R
n, |x′ − x′′| ≤ δν; and

(34) Jx(Fν) ∈ (f(x) − Pν) + A′σ(x) for all x ∈ E ∩Q∗
ν .

Here, A′ depends only on a1,m, n, and the constant C0 in (SU0,. . . , 8).

Proof: Fix ν. Either Qν is OK, or E ∩Q∗
ν contains at most one point.

If Qν is OK, then the conclusion of Lemma 16.3 is immediate from Lem-
mas 16.2 and 8.1. If instead there is at most one point in E ∩Q∗

ν , then the
conclusion of Lemma 16.3 is immediate from Lemma 16.1, with S = E∩Q∗

ν .

Thus, the lemma holds in all cases. �
For each ν, we fix Fν as in Lemma 16.3. For the rest of this section,

we write A,A′, A′′, etc. to denote constants determined by a1, a2,m, n, C0

in (SU0),. . . , (SU8).

We prove a slight variant of (33), namely

(35) |∂βFν(x′) − ∂βFν(x
′′)| ≤ A′ω(|x′ − x′′|) for |β| = m, x′, x′′ ∈ Q∗

ν .

To see this, recall that Q∗
ν has diameter 3δν . Hence,, if x′, x′′ ∈ Q∗

ν , then
by subdividing the line segment from x′ to x′′ into 3 equal parts, we obtain
points x0, x1, x2, x3, with x0 = x′, x3 = x′′, |xi − xi+1| = 1

3
|x′ − x′′| ≤ δν .

For |β| = m, we apply (33) to xi, xi+1, to obtain

|∂βFν(xi) − ∂βFν(xi+1)| ≤ A′′ω(|xi − xi+1|) ≤ A′′ω(|x− x′|)
for i = 0, 1, 2. Summing over i, we obtain (35).

Next, we introduce a partition of unity on Q0. With a small constant
c1 > 0 as in Section 15 (on Patching Local Solutions), we introduce a cutoff
function θ̃ν on R

n for each ν (1 ≤ ν ≤ µmax), with

(36) 0 ≤ θ̃ν ≤ 1 on R
n,

(37) θ̃ν = 1 on Qν ,

(38) supp θ̃ν ⊂ Q̃ν = {y ∈ R
n : dist (y,Qν) ≤ c1δν} ⊂ Q∗

ν (note that Q̃ν is
not a cube),

(39) |∂β θ̃ν | ≤ C ′δ−|β|
ν for |β| ≤ m+ 1.
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We then define
θν = θ̄ν

/∑
µ

θ̃µ on Q0.

Note that θν is defined only on Q0. In view of (36), . . . , (39), we have the
following properties of the θν .∑

1≤µ≤µmax

θµ = 1 on Q0.(40)

If x ∈ Q0
� Q̃µ, then θµ = 0 on a neighborhood of x in Q0.(41)

|∂βθµ(x)| ≤ C ′δ−|β|
µ for |β| ≤ m+ 1, x ∈ Q0,(42)

thanks to Lemma 11.2 and the proof of Lemma 11.3.

We note also a simple consequence of (3), namely

(43) |∂βPν(yν)| ≤ C for |β| ≤ m, all ν.

In fact, (43) follows from (3) by taking S = empty set in the definition
of Kf (etc.).

Next, we note that the functions θν on Q0, Fν on R
n, and the polyno-

mials Pν satisfy conditions (PLS1,. . . , 8) in the section on Patching Local
Solutions, with a constant A determined by m,n,C0, a1, a2 in (SU0,. . . , 8).

In fact, (PLS1, 2, 3) are immediate from (40), (41), (42). Also, (PLS4, 5, 6)
are immediate from (43), (4), (5) and Lemma 11.2. Finally, (PLS7, 8) are im-
mediate from (32) and (35).

Thus, (PLS1,. . . , 8) hold for the θν , Fν , Pν , as claimed.

Therefore, Lemma 15.5 applies to our θν , Fν , Pν .

We define

(44) F̃ =
∑

1≤ν≤µmax

θν · [Pν + Fν ] on Q0.

From Lemma 15.5, we have

|∂βF̃ (x)| ≤ A′ for |β| ≤ m, x ∈ Q0; and(45)

|∂βF̃ (x′) − ∂βF̃ (x′′)| ≤ A′ω(|x′ − x′′|) for |β| = m, x′, x′′ ∈ Q0.(46)

Note that F̃ is defined only on Q0.

Next, suppose x ∈ E ∩Q0. We pick ν(1 ≤ ν ≤ µmax), with Qν contain-
ing x.

Note that, for any µ with x ∈ Q∗
µ, we have

(47) Jx(Pµ + Fµ) ∈ f(x) + A′σ(x),

by (34). In particular, (47) holds whenever x ∈ Q̃µ (see (38)).
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For our given x, let Ω be the set of all µ(1 ≤ µ ≤ µmax) with x ∈ Q̃µ.
Then (41) and (44) give

(48) Jx(F̃ ) =
∑
µ∈Ω

Jx(θµ) · Jx(Pµ + Fµ),

with the multiplication in (48) performed in Rx.

We rewrite (48) in the form

(49) Jx(F̃ ) = Jx(Pν + Fν) +
∑
µ∈Ω

Jx(θµ) · [Jx(Pµ + Fµ) − Jx(Pν + Fν)].

(This holds, thanks to (40).)

We study the summands in (49). Recall that if x ∈ Qν and also x ∈ Q̃µ,
then Qν and Qµ abut or coincide.

Hence, we have

1

2
δν ≤ δµ ≤ 2δν for µ ∈ Ω, by Lemma 11.2; and(50)

|∂β(Pµ − Pν)(yµ)| ≤ A′ω(δν)δ
m−|β|
ν for |β| ≤ m, µ ∈ Ω, by (4).(51)

(Of course, (51) holds trivially if Qµ and Qν coincide.)

Since x, yµ ∈ Q̃µ for µ ∈ Ω, we have also |x−yµ| ≤ Cδµ ≤ C ′δν by (50).

Hence, (51) implies that

(52) |∂β(Pµ − Pν)(x)| ≤ A′ω(δν)δ
m−|β|
ν for |β| ≤ m, µ ∈ Ω.

Also, we have

(53) |∂βFµ(x)| ≤ A′ω(δµ) · δm−|β|
µ ≤ A′′ω(δν) · δm−|β|

ν for |β| ≤ m, µ ∈ Ω,

thanks to (32), (50), and the fact that ω is a regular modulus of continuity.
In particular, since x ∈ Qν ⊂ Q̃ν , we have ν ∈ Ω, hence (53) implies

(54) |∂βFν(x)| ≤ A′′ω(δν)δ
m−|β|
ν for |β| ≤ m.

Estimates (52), (53), (54) show that

(55) |∂β[Jx(Pµ + Fµ) − Jx(Pν + Fν)] (x)| ≤ A′ω(δν) · δm−|β|
ν

for |β| ≤ m, µ ∈ Ω.

We have also

Jx(Pµ + Fµ), Jx(Pν + Fν) ∈ f(x) + A′σ(x),

for µ ∈ Ω, by (47) and the fact that ν ∈ Ω.
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Hence,

(56) [Jx(Pµ + Fµ) − Jx(Pν − Fν)] ∈ A′σ(x) for all µ ∈ Ω.

From (42), (50) we have also

(57) |∂β[Jx(θµ)](x)| ≤ C ′δ−|β|
ν for |β| ≤ m, µ ∈ Ω.

Our Whitney ω-convexity assumption (SU2), together with (55), (56), (57),
now shows that

(58) Jx(θµ) · [Jx(Pµ + Fµ) − Jx(Pν + Fν)] ∈ A′′σ(x) for all µ ∈ Ω.

For each µ ∈ Ω, we have x ∈ Q̃µ ⊂ Q∗
µ, and 1

2
δν ≤ δµ ≤ 2δν . Hence,

there are at most C distinct µ in the set Ω.

Consequently, we may sum (58) over all µ ∈ Ω. We find that

(59)
∑
µ∈Ω

Jx(θµ) · [Jx(Pµ + Fµ) − Jx(Pν + Fν)] ∈ A′σ(x).

From (47), we have also

(60) Jx(Pν + Fν) ∈ f(x) + A′σ(x),

since ν ∈ Ω. Putting (59), (60) into (49), we find that Jx(F̃ ) ∈ f(x)+A′σ(x).
Since we took x to be an arbitrary point of E ∩Q0, we have proven that

(61) Jx(F̃ ) ∈ f(x) + A′σ(x) for all x ∈ E ∩Q0.

Our function F̃ has the good properties (45), (46), (61), but it is defined
only on Q0. To remedy this, we multiply F̃ by a cutoff function. We recall
(see (11.1), (11.3)) thatQ0 is centered at y0 and has diameter ca1 < δQ0 < a1.

We introduce a cutoff function θ on R
n, with

(62) ‖ θ ‖Cm+1(Rn) ≤ A′, θ = 1 on B(y0, c′a1), supp θ ⊂ Q0.

We then define F = θ · F̃ on R
n. From (45), (46), (62), we obtain

F ∈ Cm,ω(Rn), with

(63) ‖ F ‖Cm,ω(Rn) ≤ A′;

and from (61), (62), we have

(64) Jx(F ) ∈ f(x) + A′σ(x) for all x ∈ E ∩B(y0, c′a1).

Since the constantsA′ and c′a1 in (63), (64) are determined bym,n,C0, a1, a2

in (SU0,. . . , 8), our results (63), (64) immediately imply the conclusion of
Lemma 9.1.

The proof of Lemma 9.1 is complete.

In view of Lemma 9.2, the proof of Lemma 5.2 is also complete. �
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17. Rescaling Lemmas

Lemma 17.1 Let τ : R
n → R

n be the linear map

(x̄1, . . . , x̄n) 	→ (λ1x̄1, . . . , λnx̄n),

with

(1) c0 < λi ≤ 1 (i = 1, . . . , n).

Let ω be a regular modulus of continuity. Let x̄ ∈ R
n, and let x = τ(x̄).

Suppose σ ⊂ Rx is Whitney ω-convex, with Whitney constant C0.

Define σ̄ ⊂ Rx̄ by σ̄ = {AP ◦ τ : P ∈ σ}, where A is a given positive
number.

If A exceeds a large enough constant determined by c0,m, n, then σ̄ is
Whitney ω-convex with Whitney constant C0.

Proof: We know that σ̄ is closed, convex, and symmetric about the origin,
since σ has these properties.

Suppose we are given P̄ , Q̄, δ̄, with

P̄ ∈ σ̄,(2)

Q̄ ∈ Rx̄,(3)

0 < δ̄ ≤ 1,(4)

|∂βP̄ (x̄)| ≤ ω(δ̄) · δ̄m−|β| for |β| ≤ m,(5)

|∂βQ̄(x̄)| ≤ δ̄−|β| for |β| ≤ m.(6)

We must show that

(7) P̄ · Q̄ ∈ C0σ̄, where the multiplication is performed in Rx̄.

We set

(8) P = A−1P̄ ◦ τ−1 and Q = Q̄ ◦ τ−1.

By (2), (8) and the definition of σ̄, we have

(9) P ∈ σ.

We have also

|Q(x)| ≤ 1, and |∂βQ(x)| ≤ Cδ̄−|β| for 1 ≤ |β| ≤ m; and(10)

|∂βP (x)| ≤ CA−1ω(δ̄) · δ̄m−|β|;(11)

with C in (10), (11) determined by c0,m, n. In fact, (10) and (11) follow
from (1), (5), (6), (8) and the definition of τ .
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In view of (10), we may find a small constant c̄, determined by c0,m, n,
for which we have

(12) |∂βQ(x)| ≤ (c̄δ̄)−|β| for |β| ≤ m,

and

(13) 0 < c̄ ≤ 1.

Since ω is a regular modulus of continuity, we have ω(δ̄) ≤ (c̄)−1 ω(c̄δ).
This estimate and (11) together yield

(14) |∂βP (x)| ≤ ω(c̄δ) · (c̄δ)m−|β| for |β| ≤ m, with c̄ as in (12), (13),

provided A exceeds a large enough constant determined by c0,m, n.

In view of (4), (13), we have also

(15) 0 < c̄δ̄ ≤ 1.

From (9), (12), (14), (15) and the Whitney ω-convexity of σ, we see that

P · Q ∈ C0σ, where the multiplication is performed in Rx.

Hence, by definition of σ̄, we have

A[P ·Q] ◦ τ ∈ C0σ̄.

On the other hand, from (8) we have AP ◦ τ = P̄ and Q ◦ τ = Q̄.
Hence,

A[P ·Q] ◦ τ = P̄ · Q̄
(where, on the right, the multiplication is performed in Rx̄). Thus,

P̄ · Q̄ ∈ C0σ̄,

which is the desired conclusion (7).
The proof of Lemma 17.1 is complete. �

The next lemma is copied from [9,11], and its proof appears in [9].

Recall that M+ is the set of multi-indices β = (β1, . . . , βn) of order
|β| = β1 + · · · + βn ≤ m + 1, while M is the set of multi-indices β of
order |β| ≤ m.

Lemma 17.2 Let A ⊂ M, and let C1, ā be positive numbers. Suppose we
are given real numbers Fα,β, indexed by α ∈ A and β ∈ M+.

Assume that the following conditions are satisfied.

Fα,α �= 0 for all α ∈ A.(16)

|Fα,β| ≤ C1|Fα,α| for all α ∈ A, β ∈ M+ with β ≥ α.(17)

Fα,β = 0 for all α, β ∈ A with α �= β.(18)
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Then there exist positive numbers λ1, . . . , λn and a map φ : A → M,
with the following properties.

c < λi ≤ 1, where c is a positive constant determined by C1, ā,m, n.(19)

φ(α) ≤ α for all α ∈ A.(20)

For each α ∈ A, either φ(α) = α or φ(α) /∈ A.(21)

Suppose we define F̂α,β for α ∈ A, β = (β1, . . . , βn) ∈ M+, by(22)

(a) F̂α,β = λβ1

1 · · · λβn
n Fα,β.

Then we have

(b) |F̂α,β| ≤ ā1|F̂α,φ(α)| for all α ∈ A, β ∈ M+ with β �= φ(α).

18. Proof of Lemma 5.3

In this section, we give the proof of Lemma 5.3. We fix A ⊆ M, and assume
that the Weak Main Lemma holds for all Ā ≤ A. We must show that the
Strong Main Lemma holds for A. We may assume that the constant k# in
the Weak Main Lemma for Ā ≤ A is independent of Ā. (In fact, we may just
replace k#

Ā , the value of k# in the Weak Main Lemma for Ā, by maxĀ≤A k
#

Ā .)

Fix k# as in the Weak Lemma for any Ā ≤ A.

Let C, ā0 be positive constants; let ω be a regular modulus of continuity;
let E ⊂ R

n be a finite set; let y0 be a point of R
n; and let Pα ∈ P be a

family of polynomials indexed by α ∈ A.

Also, suppose that for each x ∈ E we are given an m-jet f(x) ∈ Rx and
a subset σ(x) ⊂ Rx. Assume that these data satisfy conditions (SL0,. . . , 5).
We must show that there exists F ∈ Cm,ω(Rn), satisfying (SL6,7) with a
constant C ′ determined by C,m, n.

This will tell us that the Strong Main Lemma holds for A.

Without loss of generality, we may suppose that

(1) y0 = 0.

It will be convenient to introduce two positive constants ā and A, which
are assumed to satisfy the following conditions.

(2) ā is less than a small enough positive constant determined by C,m, n.

(3) A exceeds a large enough positive constant determined by ā, C,m, n.

(4) ā0 is less than a small enough positive constant determined by A,
ā, C,m, n.

Assumptions (2), (3), (4) are not hypotheses of the Strong Main Lemma
for A. At the end of our proof, we will remove these assumptions.
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We say that a constant is “controlled” if it is determined by C,m, n in
(SL0,. . . , 5). We write c, C,C ′, etc., to denote controlled constants. Simi-
larly, we say that a constant is “controlled by ā” if it is determined by ā,
together with C,m, n in (SL0,. . . , 5). We write c(ā), C(ā), C ′(ā), etc., to de-
note constants controlled by ā. Finally, we say that a constant is “controlled
by ā and A” if it is determined by A, ā and by C,m, n in (SL0,. . . , 5). We
write c(ā, A), C(ā, A), C ′(ā, A), etc., to denote constants controlled by ā
and A.

Our plan is simply to rescale the problem, using the linear map τ : R
n→R

n,
given by

(5) τ : (x̄1, . . . , x̄n) 	→ (λ1x̄1, . . . , λnx̄n),

for λ1, . . . , λn > 0 to be picked below. We define

Ē = τ−1(E), P̄α = Pα ◦ τ, ȳ0 = 0,(6)

f̄(x̄) = (f(τ(x̄))) ◦ τ ∈ Rx̄ for x̄ ∈ Ē,(7)

and

(8) σ̄(x̄) = {AP ◦ τ : P ∈ σ(τ(x̄))} ⊂ Rx for x̄ ∈ Ē.

(Note that (7) makes sense, since f(τ(x̄)) is an m-jet at τ(x̄).)

We keep ω unchanged.

Thus, ω is a regular modulus of continuity, Ē is a finite subset of R
n,

ȳ0 is point of R
n, P̄α ∈ P is a polynomial indexed by α ∈ A; and for each

x̄ ∈ Ē, f̄(x̄) ∈ Rx̄ is an m-jet and σ̄(x̄) ⊂ Rx̄.

Evidently,

(9) ∂βP̄α(ȳ0) = λβ1

1 · · · λβn
n ∂

βPα(y
0) for α ∈ A, β = (β1, . . . , βn) ∈ M

To pick λ1, . . . , λn, we appeal to Lemma 17.2, with

(10) Fα,β = ∂βPα(y
0) for α ∈ A, β ∈ M,

and

(11) Fα,β = 1 for α ∈ A, |β| = m+ 1.

Note that the hypotheses of Lemma 17.2 are satisfied here, with ā as
in (2), (3), (4); and with C1 a controlled constant. In fact, (SL1) shows that
Fα,α �= 0 for all α ∈ A. Also, (SL1,2) and (10), (11) show that

|Fα,β| ≤ C1|Fα,α|
for α ∈ A, β ∈ M+, β > α.

Finally, Fα,β = 0 if α, β ∈ A and α �= β, thanks to (SL1) and (10).

Thus, the hypotheses of Lemma 17.2 are satisfied by ā, C1, Fα,β as claimed.
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Applying that lemma, we obtain positive numbers λ1, . . . , λn and a map
φ : A → M, with the following properties.

(12) c(ā) < λi ≤ 1 for each i = 1, . . . , n.

(13) φ(α) ≤ α for each α ∈ A.

(14) For each α ∈ A, either φ(α) = α or φ(α) /∈ A.

(15) For any α ∈ A, β ∈ M with β �= φ(α), we have

|∂βP̄α(ȳ0)| ≤ ā · |∂φ(α)P̄α(ȳ
0)|.

(16) For any α ∈ A, we have

λβ1

1 · · · λβn
n ≤ ā · |∂φ(α)P̄α(ȳ

0)| for β1 + · · · + βn = m+ 1.

Here, (15) and (16) follow from the conclusions of Lemma 17.2, together
with (9), (10), (11).

Let S̄ ⊂ Ē be given, with #(S̄) ≤ k#. Set S = τ(S̄), and apply (SL3).
Let ϕSα(α ∈ A) be as in (SL3), and define

(17) ϕ̄S̄α = ϕSα ◦ τ, for α ∈ A.

Thus, ϕ̄Sα ∈ Cm,ω
�oc (Rn), since ϕSα ∈ Cm,ω

�oc (Rn).

For β = (β1, . . . , βn) with |β| = m, and for x̄′ = (x̄′1, . . . , x̄
′
n), x̄

′′ =
(x̄′′1, . . . , x̄

′′
n) in R

n with |x̄′ − x̄′′| ≤ 1, we have |τ(x̄′) − τ(x̄′′)| ≤ 1 (see (5)
and (12)), hence

|∂βϕ̄S̄α(x̄′) − ∂βϕ̄S̄α(x̄
′′)| = λβ1

1 · · · λβn
n |∂βϕSα(τ(x̄′)) − ∂βϕSα(τ(x̄

′′))|
≤ λβ1

1 · · ·λβn
n · [ā0ω(|τ(x̄′) − τ(x̄′′)|) + C|τ(x̄′) − τ(x̄′′)|] by ((SL3)(a))

≤ ā0 ω(|x̄′ − x̄′′|) + Cλβ1

1 · · · λβn
n

n∑
j=1

λj|x̄′j − x̄′′j | (by (5), (12))

≤ ā0 ω(|x̄′ − x̄′′|) + Cā|∂φ(α)P̄α(ȳ
0)| ·

n∑
j=1

|x̄′j − x̄′′j | (by (16))

≤ ā0 ω(|x̄′ − x̄′′|) + C ′ā|∂φ(α)P̄α(ȳ
0)| · |x̄′ − x̄′′|

≤ ā0 ω(|x̄′ − x̄′′|) + C ′ā|∂φ(α)P̄α(ȳ
0)| · ω(|x̄′ − x̄′′|),

since ω is a regular modulus of continuity, and hence ω(t)
t

≥ ω(1)
1

= 1 for
0 < t ≤ 1 (also ω(0) = 0). Thus,

(18) for |β| = m, x̄′, x̄′′ ∈ R
n, |x̄′ − x̄′′| ≤ 1, we have

|∂βϕ̄S̄α(x̄′) − ∂βϕ̄S̄α(x̄
′′)| ≤ [ā0 + C ′ā|∂φ(α)P̄α(ȳ

0)|] · ω(|x̄′ − x̄′′|).
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Also, from (9), (15), (SL1), (12), we have, for α = (α1, . . . , αn) ∈ A, that

|∂φ(α)P̄α(ȳ
0)| ≥ |∂αP̄α(ȳ0)| = λα1

1 · · · λαn
n |∂αPα(y0)|(19)

= λα1
1 · · · λαn

n ≥ c(ā).

From (18), (19), we have the following.

(20) |∂βϕ̄S̄α(x̄′)−∂βϕ̄S̄α(x̄′′)| ≤ [C(ā)· ā0 + C ′ · ā] · |∂φ(α)P̄α(ȳ
0)|· ω(|x̄′−x̄′′|)

for α ∈ A, |β| = m, x̄′, x̄′′ ∈ R
n, |x̄′ − x̄′′| ≤ 1.

Also, (SL3)(b), together with (17) and (8), shows that, for x̄ ∈ S̄, we
have

Jx̄(ϕ̄
S̄
α) = [Jτ(x̄)(ϕ

S
α)] ◦ τ ∈ {P ◦ τ : P ∈ Cσ(τ(x̄))} = CA−1σ̄(x̄).

Thus,

(21) Jx̄(ϕ̄
S̄
α) ∈ CA−1σ̄(x̄) for all α ∈ A, x̄ ∈ S̄.

From (SL3)(c), (17), (6), we have

Jȳ0(ϕ̄S̄α) = [Jy0(ϕSα)] ◦ τ = Pα ◦ τ = P̄α.

Thus,

(22) Jȳ0(ϕ̄S̄α) = P̄α for all α ∈ A.

Since ϕ̄S̄α satisfies (20), (21), (22), we have proven the following.

(23) Given S̄ ⊂ Ē with #(S̄) ≤ k#, and given α ∈ A, there exists ϕ̄S̄α ∈
Cm,ω
�oc (Rn), with

(a) |∂βϕ̄S̄α(x̄′)−∂βϕ̄S̄α(x̄′′)| ≤ [C(ā) · ā0 +C ′ā]·|∂φ(α)P̄α(y
0)|·ω(|x̄′−x̄′′|)

for |β| = m, x̄′, x̄′′ ∈ R
n, |x̄′ − x̄′′| ≤ 1;

(b) Jx̄(ϕ̄
S̄
α) ∈ CA−1σ̄(x̄) for all x̄ ∈ S̄; and

(c) Jȳ0(ϕ̄S̄α) = P̄α.

Similarly, let S̄ ⊂ Ē be given, with #(S̄) ≤ k#. Again, we set S = τ(S̄),
and we apply (SL4). Let F S be as in (SL4), and define

(24) F̄ S̄ = F S ◦ τ.

Thus, F̄ S̄ ∈ Cm,ω(Rn), since F S ∈ Cm,ω(Rn).
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For β = (β1, . . . , βn) with |β| ≤ m, (SL4)(a) and (112) give

(25) ‖ ∂βF̄ S̄ ‖C0(Rn) = λβ1

1 · · · λβn
n ‖ ∂βF S ‖C0(Rn) ≤ C.

Also, for β = (β1, . . . , βn) with |β| = m, and with x̄′, x̄′′ ∈ R
n with

|x̄′ − x̄′′| ≤ 1, we have |τ(x̄′)− τ(x̄′′)| ≤ 1 by (12), hence (SL4)(a) and (12)
give

|∂βF̄ S̄(x̄′) − ∂βF̄ S̄(x̄′′)| = λβ1

1 · · ·λβn
n |∂βF S(τ(x̄′)) − ∂βF S(τ(x̄′′))|(26)

≤ λβ1

1 · · · λβn
n · Cω(|τ(x̄′) − τ(x̄′′)|) ≤ Cω(|x̄′ − x̄′′|).

From (25), (26), we see that

(27) ‖ F̄ S̄ ‖Cm,ω(Rn) ≤ C.

Suppose x̄ ∈ S̄. Then (24), (SL4)(b), (7), (8) give

Jx̄(F̄
S̄) = [Jτ(x̄)(F

S)] ◦ τ ∈ [f(τ(x̄)) + Cσ(τ(x̄))] ◦ τ =

= f(τ(x̄)) ◦ τ + {CP ◦ τ : P ∈ σ(τ(x̄))} = f̄(x̄) + CA−1σ̄(x̄).

Thus,

(28) Jx̄(F̄
S̄) ∈ f̄(x̄) + CA−1σ̄(x̄) for all x̄ ∈ S̄.

Since F̄ S̄ satisfies (27) and (28), we have proven the following.

(29) Given S̄ ⊂ Ē with #(S̄) ≤ k#, there exists F̄ S̄ ∈ Cm,ω(Rn), with

‖ F̄ S̄ ‖Cm,ω(Rn) ≤ C, and Jx̄(F̄
S̄) ∈ f̄(x̄) + CA−1σ̄(x̄) for all x̄ ∈ S̄.

Now define

(30) Ā = φ(A)

and let ψ : Ā → A satisfy

(31) φ(ψ(ᾱ)) = ᾱ for all ᾱ ∈ Ā.

Note that

(32) Ā ≤ A,
by (13), (14), (30), and Lemma 3.3.

For each ᾱ ∈ Ā, define

(33) P̃ᾱ = P̄ψ(ᾱ)

/
(∂ᾱP̄ψ(ᾱ)(ȳ

0)) ∈ P.
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Note that, with α = ψ(ᾱ), we have

(34) |∂ᾱP̄ψ(ᾱ)(ȳ
0)| = |∂φ(α)P̄α(ȳ

0)| ≥ c(ā) for ᾱ ∈ Ā, by (19).

Hence, the denominator in (33) is non-zero.

We derive the basic properties of the P̃ᾱ for ᾱ ∈ Ā.

From (15), with α = ψ(ᾱ), we have, for ᾱ ∈ Ā, β ∈ M, β �= ᾱ, that

|∂βP̃ᾱ(ȳ0)| = |∂βP̄α(ȳ0)|/ |∂φ(α)P̄α(y
0)| ≤ ā (since ᾱ = φ(α)).

Also, for ᾱ ∈ Ā, we have

∂ᾱP̃ᾱ(ȳ
0) = (∂ᾱP̄ψ(ᾱ)(ȳ

0))
/

(∂ᾱP̄ψ(ᾱ)(ȳ
0)) = 1 .

Hence,

(35) |∂βP̃ᾱ(ȳ0) − δβα| ≤ ā for all ᾱ ∈ Ā, β ∈ M.

Also, from (23) (with α = ψ(ᾱ)), (19) and (33), we obtain the following.

(36) Given ᾱ ∈ Ā and S̄ ⊂ Ē with #(S̄) ≤ k#, there exists ϕ̃S̄ᾱ ∈ Cm,ω
�oc (Rn),

with

(a) |∂βϕ̃S̄ᾱ(x̄′) − ∂βϕ̃S̄ᾱ(x̄
′′)| ≤ [C(ā) · ā0 + C ′ā] · ω(|x̄′ − x̄′′|)

for |β| = m, x̄′, x̄′′ ∈ R
n, |x̄′ − x̄′′| ≤ 1;

(b) Jx̄(ϕ̃
S̄
ᾱ) ∈ C(ā) · A−1σ̄(x̄) for all x̄ ∈ S; and

(c) Jȳ0(ϕ̃S̄ᾱ) = P̃ᾱ.

(In fact, we just set ϕ̃S̄ᾱ = ϕ̄S̄α
/

(∂ᾱP̄ψ(ᾱ)(ȳ
0)) with α = ψ(ᾱ) and ϕ̄S̄ᾱ as

in (23).)

From (35) and (2), we see that the matrix (∂βP̃ᾱ(ȳ
0))β,ᾱ∈Ā has an inverse

(Mα′,ᾱ)α′,ᾱ∈Ā, with

(37) |Mα′ᾱ − δα′ᾱ| ≤ Cā for α′, ᾱ ∈ Ā.

We now define

(38)
=

P ᾱ =
∑
α′∈Ā

P̃α′ · Mα′ᾱ ∈ P for all ᾱ ∈ Ā.

From (37), (38), we have

(39) ∂β
=

P ᾱ (ȳ0) = δβᾱ for β, ᾱ ∈ Ā.
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Also, from (35), (30), and (2), we have

(40) |∂β =

P ᾱ (ȳ0) − δβᾱ| ≤ Cā for ᾱ ∈ Ā, β ∈ M.

Given S̄ ⊂ Ē with #(S̄) ≤ k#, we let ϕ̃S̄ᾱ be as in (36) for each ᾱ ∈ Ā.
We then define

(41)
=
ϕ S̄
ᾱ =

∑
α′∈Ā

ϕ̃S̄α′ Mα′ᾱ for all ᾱ ∈ Ā.

From (36)(a), (37), (2), and (41), we have, for each ᾱ ∈ Ā, that

(42) |∂β =
ϕ S̄
ᾱ(x̄

′) − ∂β
=
ϕ S̄
ᾱ(x̄

′′)| ≤ [C ′(ā) · ā0 + C ′′ · ā] · ω(|x̄′ − x̄′′|)
for |β| = m, x̄′, x̄′′ ∈ R

n, |x̄′ − x̄′′| ≤ 1.

Similarly, from (36)(b), (37), (2), and (41), we have, for each ᾱ ∈ Ā,
that

(43) Jx̄(
=
ϕ S̄
ᾱ) ∈ C ′(ā)A−1σ̄(x̄) for all x̄ ∈ S̄.

Also, comparing (38) with (41), and recalling (36)(c), we have, for each
ᾱ ∈ Ā, that

(44) Jȳ0(
=
ϕ S̄
ᾱ) =

=

P ᾱ .

Since (42), (43), (44) hold for the
=
ϕ S̄
ᾱ, we have proven the following.

(45) Given ᾱ ∈ Ā and S̄ ⊂ Ē with #(S̄) ≤ k#, there exists
=
ϕ S̄
ᾱ ∈ Cm,ω

�oc (Rn),
with

(a) |∂β =
ϕ S̄
ᾱ(x̄

′) − ∂β
=
ϕ S̄
ᾱ(x̄

′′)| ≤ [C ′(ā) · ā0 + C ′′ā] · ω(|x̄′ − x̄′′|)
for x̄′, x̄′′ ∈ R

n, |x̄′ − x̄′′| ≤ 1, |β| = m;

(b) Jx̄(
=
ϕ S̄
ᾱ) ∈ [C ′(ā) · A−1]σ̄(x̄) for all x̄ ∈ S̄; and

(c) Jȳ0(
=
ϕ S̄
ᾱ) =

=

P ᾱ.

Next, we establish the Whitney ω-convexity of σ̄(x̄), and estimate its
Whitney constant.

We check that the hypotheses of Lemma 17.1 are satisfied by the sets
σ(τ(x̄)), σ̄(x̄), with c0 and C0 in Lemma 17.1 taken here to be c(ā) and C,
respectively. In fact, the hypothesis c0 < λi ≤ 1 in Lemma 17.1 holds
here, thanks to (12). The hypothesis “σ(τ(x̄)) is Whitney ω-convex, with
Whitney constant C0” in Lemma 17.1 holds here, thanks to (SL0). We note
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that σ̄(x̄) is defined from σ(τ(x̄)) as in Lemma 17.1, thanks to (8). Finally,
the hypothesis “A exceeds a large enough constant determined by c0,m, n”
in Lemma 17.1 holds here, thanks to our assumption (3).

Thus, all the hypotheses of Lemma 17.1 hold here, as claimed. Applying
that lemma, we now see that the following holds.

(46) For any x̄ ∈ Ē, the set σ̄(x̄) ⊂ Rx̄ is Whitney ω-convex at x̄, with
Whitney constant C.

In view of (29) (45), (46), (40), and (39), we can pick a controlled con-
stant C1 for which the following hold:

(47) For each x̄ ∈ Ē, the set σ̄(x̄) is Whitney ω-convex at x̄, with Whitney
constant C1.

(48) ∂β
=

P ᾱ (ȳ0) = δβᾱ for β, ᾱ ∈ Ā.

(49) |∂β =

P ᾱ (ȳ0) − δβᾱ| ≤ Cā for all ᾱ ∈ Ā, β ∈ M.

(50) Given ᾱ ∈ Ā and S̄ ⊂ Ē with #(S̄) ≤ k#, there exists
=
ϕ S̄
ᾱ ∈ Cm,ω

�oc (Rn),
with

(a) |∂β =
ϕ S̄
ᾱ(x̄

′) − ∂β
=
ϕ S̄
ᾱ(x̄

′′)| ≤ [C ′(ā) · ā0 + C ′′ · ā] · ω(|x̄′ − x̄′′|)
for |β| = m, x̄′, x̄′′ ∈ R

n, |x̄′ − x̄′′| ≤ 1;

(b) Jx̄(
=
ϕ S̄
ᾱ) ∈ [C ′(ā) · A−1]σ̄(x̄) for all x̄ ∈ S̄; and

(c) Jȳ0(
=
ϕ S̄
ᾱ) =

=

P ᾱ.

(51) Given S̄ ⊂ Ē with #(S̄) ≤ k#, there exists F̄ S̄ ∈ Cm,ω(Rn), with

(a) ‖ F̄ S̄ ‖Cm,ω(Rn) ≤ C1; and

(b) Jx̄(F̄
S̄) ∈ f̄(x̄) + CA−1σ̄(x̄) for all x̄ ∈ S̄.

We prepare to invoke the Weak Main Lemma for Ā. (Recall Ā ≤ A;
(see (32)).)

We now pick a small constant a0, for use in the hypotheses of the Weak
Main Lemma for Ā. In fact, we take a0 to be a controlled constant, small
enough to satisfy (WL5) in the Weak Main Lemma for any A′ ≤ A, with C
in (WL0,. . . ,5) taken here to be C1 as in (47) and (51). We can achieve
this with a small enough controlled constant a0, because C1 is a controlled
constant.
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We now check that the hypotheses of the Weak Main Lemma for Ā are
satisfied by the following data:

• The constants C1 (as in (47) and (51)) and a0 (as just discussed).

• The regular modulus of continuity ω.

• The finite set Ē ⊂ R
n.

• The point ȳ0 ∈ R
n.

• The family of polynomials
=

P ᾱ∈ P, indexed by ᾱ ∈ Ā.

• The m-jet f̄(x̄) associated to each x̄ ∈ Ē.

• The subset σ̄(x̄) ⊂ Rx̄ associated to each x̄ ∈ Ē.

In fact, for these data, hypothesis (WL5) holds, thanks to our choice of a0.

Comparing hypotheses (WL0,. . . ,4) with our results (47),. . . , (51) we see
the following.

(WL0) for our data is precisely (47).

(WL1) for our data is precisely (48).

(WL2) for our data follows from (49), provided we have

(52) Cā ≤ a0.

(WL3) for our data follows from (50), provided we have

(53) [C ′(ā) · ā0 + C ′′ā] ≤ a0

and

(54) [C ′(ā) · A−1] ≤ C1.

(WL4) for our data follows from (51), provided we have

(55) [CA−1] ≤ C1.

Hence, to check the hypotheses of the Weak Main Lemma for Ā for our
data, it is enough to check that conditions (52),. . . , (55) hold. However, (52)
holds, thanks to (2), since we picked a0 to be a controlled constant. (In
fact, C and a0 in (52) are both determined by C,m, n in (SL0,. . . , 5); see
the definition of “controlled constants”.)

Similarly, to check (53), we note that C ′′ā ≤ 1
2
a0, thanks to (2); and

C ′(ā) · ā0 ≤ 1
2
a0, thanks to (4). (Here again, we use the fact that a0 is a

controlled constant.) Hence, (53) holds.

Finally, (54) and (55) hold, thanks to (3).

This completes the verification of the hypotheses of the Weak Main
Lemma for Ā, for the above data.
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We recall that we are assuming that the Weak Main Lemma holds for Ā,
since Ā ≤ A. Applying that lemma to our data, we learn the following.

There exists F̄ ∈ Cm,ω(Rn), with

‖ F̄ ‖Cm,ω(Rn) ≤ C ′, and(56)

Jx̄(F̄ ) ∈ f̄(x̄) + C ′σ̄(x̄) for all x̄ ∈ Ē ∩B(ȳ0, c′).(57)

We fix F̄ as above, and define

(58) F = F̄ ◦ τ−1.

Thus, F ∈ Cm,ω(Rn). We estimate its norm. By definition of τ , and
by (12), we have from (56) that

(59) ‖ ∂βF ‖C0(Rn) = λ−β1

1 · · ·λ−βn
n ‖ ∂βF̄ ‖C0(Rn) ≤ C(ā),

for |β| ≤ m, β = (β1, . . . , βn).

Also, for |β| = m, β = (β1, . . . , βn), x
′, x′′ ∈ R

n, |τ−1(x′) − τ−1(x′′)| ≤ 1,
we have

|∂βF (x′) − ∂βF (x′′)| = λ−β1

1 · · · λ−βn
n |∂βF̄ (τ−1(x′)) − ∂βF̄ (τ−1(x′′))|(60)

≤ C(ā) · ω(|τ−1(x′) − τ−1(x′′)|).

Recall that ω is a regular modulus of continuity, and note that |τ−1(x′)−
τ−1(x′′)| ≤ C(ā) · |x′ − x′′|, by (12). Consequently, for a suitable constant
c1(ā), we find that |x′ − x′′| ≤ c1(ā) implies |τ−1(x′) − τ−1(x′′)| ≤ 1 and
ω(|τ−1(x′) − τ−1(x′′)|) ≤ C(ā) · ω(|x′ − x′′|).

Together with (60), this yields

(61) |∂βF (x′) − ∂βF (x′′)| ≤ C(ā) · ω(|x′ − x′′|)

for |β| = m, |x′ − x′′| ≤ c1(ā).

On the other hand, if |β| = m, c1(ā) ≤ |x′ − x′′| ≤ 1, then we have
ω(|x′ − x′′|) ≥ c1(ā) since ω is a regular modulus of continuity, and

|∂βF (x′) − ∂βF (x′′)| ≤ |∂βF (x′)| + |∂βF (x′′)| ≤ C(ā).

Hence,

(62) |∂βF (x′) − ∂βF (x′′)| ≤ C(ā) · ω(|x′ − x′′|)

if c1(ā) ≤ |x′ − x′′| ≤ 1, |β| = m.
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From (61) and (62), we have

|∂βF (x′) − ∂βF (x′′)| ≤ C(ā) · ω(|x′ − x′′|)
for |β| = m, x′, x′′ ∈ R

n, |x′ − x′′| ≤ 1.

Together with (59), this shows that

(63) ‖ F ‖Cm,ω(Rn) ≤ C(ā).

Next, suppose

(64) x ∈ E ∩B(y0, c2(ā)),

and set

(65) x̄ = τ−1(x).

If we take c2(ā) small enough in (64), then we will have

(66) x̄ ∈ Ē ∩B(ȳ0, c′), with c′ as in (57);

this follows from (6) and (12), and from the definition of τ .

From (57) and (66) we obtain

Jx̄(F̄ ) ∈ f̄(x̄) + C ′σ̄(x̄).

Composing with τ−1, we obtain

(67) Jx(F̄ ◦ τ−1) ∈ (f̄(x̄)) ◦ τ−1 + {C ′P̄ ◦ τ−1 : P̄ ∈ σ̄(x̄)}
From (7), we obtain

(68) (f̄(x̄)) ◦ τ−1 = [(f(τ(x̄))) ◦ τ ] ◦ τ−1 = f(τ(x̄)) = f(x) (see (65)).

From (8), we have

{C ′P̄ ◦ τ−1 : P̄ ∈ σ̄(x̄)} = {C ′[AP ◦ τ ] ◦ τ−1 : P ∈ σ(τ(x̄))}(69)

= {C ′AP : P ∈ σ(τ(x̄))} = C ′Aσ(τ(x̄)) = C ′Aσ(x)

(see (65) again).
Substituting (58), (68), (69) into (67), we learn that

(70) Jx(F ) ∈ f(x) + C ′Aσ(x) for all x ∈ E ∩ B(y0, c2(ā)).

Our results (63) and (70) look a lot like the conclusions of the Strong
Main Lemma for A. However, the constants in (63), (70) depend on ā and A,
which do not appear in the Strong Main Lemma. Also, we recall that we are
assuming conditions (2), (3), (4) on the additional constants ā and A. We
now remove the assumptions (2), (3), (4), and complete the proof of the
Strong Main Lemma for A.
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We take ā to be a controlled constant (ie., determined by C,m, n in
(SL0,. . . , 5)), small enough to satisfy (2). Next, since ā is controlled, we
may take A to be a controlled constant, large enough to satisfy (3). Fi-
nally, since A and ā are controlled, (4) says merely that ā0 is less than a
small enough constant determined by C,m, n in (SL0),. . . ,(SL5). Conse-
quently, (4) follows at once from hypothesis (SL5). Thus, we have taken A
and ā to be controlled constants, for which assumptions (2), (3), (4) are
satisfied.

With our A and ā, results (63) and (70) are valid, since assumptions (2),
(3), (4) hold. Moreover, since A and ā are controlled, the quantities C(ā),
C ′A, and c2(ā) are controlled constants. Therefore, (63) and (70) show that
F ∈ Cm,ω(Rn) satisfies

(71) ‖F ‖Cm,ω(Rn)≤ C ′, and Jx(F )∈f(x) + C ′σ(x) for all x∈E ∩B(y0, c′),

with C ′ and c′ determined by C,m, n in (SL0,. . . , 5).

However, (71) is precisely the conclusion of the Strong Main Lemma for A.
Thus, assuming the Weak Main Lemma for all Ā ≤ A, we have proven the
Strong Main Lemma for A. The proof of Lemma 5.3 is complete. �

19. Proof of the Main Result

In this section, we prove Theorem 2 from the Introduction.

We have proven Lemmas 5.1, 5.2, 5.3. Consequently, we have proven the
Local Theorem stated in Section 5 (“Plan of the Proof”). That result applies
to finite sets E. We now remove the finiteness assumption on E, by Ascoli’s
theorem.

Lemma 19.1 There exists k#, depending only on m and n, for which the
following holds.

Suppose we are given a regular modulus of continuity ω; an arbitrary set
E ⊂ R

n; and, for each x ∈ E an m-jet f(x) ∈ Rx and a subset σ(x) ⊂ Rx.

Assume that the following conditions are satisfied.

(1) For each x ∈ E, the set σ(x) is Whitney ω-convex at x, with Whitney
constant C.

(2) Given S ⊂ E with #(S) ≤ k#, there exists F S ∈ Cm,ω(Rn), with

‖ F S ‖Cm,ω(Rn)≤ C, and Jx(F
S) ∈ f(x) + Cσ(x) for each x ∈ S.

Then, for any y0 ∈ R
n, there exists F ∈ Cm,ω(Rn), with

‖ F ‖Cm,ω(Rn) ≤ C ′, and Jx(F ) ∈ f(x) + C ′σ(x) for all x ∈ E ∩B(y0, c′).

Here, C ′ and c′ depend only on C,m, n in (1) and (2).
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Proof: Let k#, C ′, c′ be as in the Local Theorem, suppose ω,E, f, σ sat-
isfy (1) and (2), and let y0 ∈ R

n.

Applying the Local Theorem, we learn the following.

(3) Given a finite subset E1 ⊂ E, there exists F ∈ Cm,ω(Rn), with

‖F ‖Cm,ω(Rn)≤ C ′, and Jx(F ) ∈ f(x)+C ′σ(x) for all x ∈ E1∩B(y0, c′).

Now set
X = {F ∈ Cm,ω(B) : ‖ F ‖Cm,ω(B) ≤ C ′},

where B denotes the closed ball with center y0 and radius c′, and

‖ F ‖Cm,ω(B) = max

{
max
|β|≤m
x∈B

|∂βF (x)|, max
|β|=m

sup
x′,x′′∈B

0<|x′−x′′|≤1

|∂βF (x′) − ∂βF (x′′)|
ω(|x′ − x′′|)

}
.

We equipX with the Cm-topology. Thus,X is compact, by Ascoli’s theorem.

For each x ∈ E ∩B, we define

Fx = {F ∈ X : Jx(F ) ∈ f(x) + C ′σ(x)} .

Each Fx is a closed subset of X, since the set σ(x) is closed. (Recall that,
by definition, a Whitney ω-convex set is closed.)

From (3), we see that any finite list Fx1 , . . . ,FxN
(xi ∈ E ∩ B) has non-

empty intersection. Since X is compact, it follows that the intersection of
all the Fx (x ∈ E ∩B) is non-empty.

Letting F̃ belong to this intersection, we see that

(4) F̃ ∈ Cm,ω(B), ‖ F̃ ‖Cm,ω(B)≤ C ′, and Jx(F̃ ) ∈ f(x) + C ′σ(x) for all
x ∈ E ∩B.

Unfortunately, F̃ is defined only on B. To remedy this, we introduce a
cutoff function θ on R

n, satisfying

θ = 1 on B(y0, c′/2), supp θ ⊂ B(y0, c′) and ‖ θ ‖Cm,ω(Rn)≤ C ′′

determined by m and n and the Whitney constant.

We then define F = θ · F̃ on R
n. From (4) and the defining properties

of θ, we deduce easily that F ∈ Cm,ω(Rn),

(5) ‖F ‖Cm,ω(Rn)≤ C ′′′ and Jx(F )∈f(x)+C ′′′σ(x) for all x∈E ∩B(y0, c′/2).

Here, C ′′′ depends only on C,m, n in (1) and (2). Our result (5) is the
conclusion of Lemma 19.1. The proof of the lemma is complete. �
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Proof of Theorem 2:

Let k# be as in Lemma 19.1, and let ω,E,A, f, σ be as in the hypotheses
of Theorem 2. We write a,A′, A′′, etc. to denote constants determined by
A,m, n. Lemma 19.1 tells us that, for suitable constants A′, a′, the following
holds.

Given y ∈ R
n, there exists F y ∈ Cm,ω(Rn), with

‖ F y ‖Cm,ω(Rn)≤ A′, and(6)

Jx(F
y) ∈ f(x) + A′σ(x) for all x ∈ E ∩B(y, a′).(7)

To exploit this, we introduce a partition of unity,

(8) 1 =
∑
ν

θν on R
n,

with

supp θν ⊂ B(yν ,
1

3
a′),(9)

‖ θν ‖Cm+1(Rn) ≤ A′′,(10)

We may suppose also that

(11) Any ball of radius 1 in R
n intersects at most A′′′ of the balls B(yν , a

′).

We then define

(12) F =
∑
ν

θνF
yν ,

with F yν as in (6), (7). From (6), (9), (10), we see easily that

θνF
yν ∈ Cm,ω(Rn), with ‖ θνF yν ‖Cm,ω(Rn) ≤ Ã.

Together with (11), this shows that F ∈ Cm,ω(Rn), with

(13) ‖ F ‖Cm,ω(Rn) ≤ A#.

Next, suppose x ∈ E. We fix µ with x ∈ B(yµ,
1
3
a′). (There must exist µ

with this property, thanks to (8) and (9).)

Suppose we have any ν, for which x ∈ B(yν ,
1
3
a′). Then (7) gives

(14) Jx(F
yµ), Jx(F

yν ) ∈ f(x) + A′σ(x).
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Also, (8), (12) imply that

F =
∑
ν

θνF
yµ +

∑
ν

θν · (F yν − F yµ) = F yµ +
∑
ν

θν · (F yν − F yµ)

on R
n, hence

(15) Jx(F ) = Jx(F
yµ) +

∑
ν

Jx(θν) · Jx(F yν − F yµ),

with the multiplication performed in Rx.

From (14), we see that

(16) Jx(F
yν − F yµ) ∈ 2A′σ(x) if B(yν ,

1
3
a′) contains x.

From (6), we have that

(17) |∂β[Jx(F yν − F yµ)](x)| ≤ |∂βF yν (x)| + |∂βF yµ(x)| ≤ 2A′

for |β| ≤ m.

From (10), we have

(18) |∂β[Jx(θν)](x)| ≤ A′′ for |β| ≤ m.

In view of the hypothesis of Theorem 2, to the effect that σ(x) is Whitney
ω-convex with Whitney constant A, we learn from (16), (17), (18) that

(19) Jx(θν) · Jx(F yν − F yµ) ∈ A∗σ(x) if B(yν ,
1
3
a′) contains x.

Also, if x /∈ B(yν ,
1
3
a′), then Jx(θν) = 0, by (9).

Therefore, (14), (15), (19) together imply that

Jx(F ) = Jx(F
yµ) +

∑
B(yν ,a′/3)�x

Jx(θν) · Jx(F yν − F yµ)

∈ (f(x) + A′σ(x)) +
∑

B(yν ,a′/3)�x

A∗σ(x) .

This in turn implies
Jx(F ) ∈ f(x) + A∗∗σ(x),

thanks to (11). Thus, we have proven that

(20) Jx(F ) ∈ f(x) + A∗∗σ(x) for all x ∈ E.

We have exhibited a function F ∈ Cm,ω(Rn), satisfying (13) and (20).
The constants A# in (13) and A∗∗ in (20) are determined in A,m, n in the
hypotheses of Theorem 2.

Thus, (13) and (20) are the conclusions of Theorem 2.

The proof of the theorem is complete. �
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