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A Generalized Sharp Whitney Theorem
for Jets

Charles Fefferman

Abstract

Suppose that, for each point x in a given subset £ C R", we are
given an m-jet f(x) and a convex, symmetric set o(x) of m-jets at .
We ask whether there exist a function ' € C™“(R") and a finite
constant M, such that the m-jet of F at x belongs to f(z) + Mo(x)
for all x € E. We give a necessary and sufficient condition for the
existence of such F, M, provided each o(x) satisfies a condition that
we call “Whitney w-convexity”.

1. Introduction

Generalizing [9,11], we obtain here a result used in [10] as a key step in
solving the following problem.

Whitney’s Extension Problem: Let m > 1, and let ¢ : E — R, with
E C R™ compact. How can we tell whether ¢ extends to a C™ function
on R"?

We start by recalling the result of [11], and then discuss the main theorem
of this paper. We next recall from [10] the solution of Whitney’s extension
problem. Our introduction ends with a brief historical discussion, touch-
ing on the work of Whitney [19, 20, 21], Glaeser [12], Brudnyi-Shvartsman
[3,...,7 and 14, 15, 16], Zobin [22, 23], and Bierstone-Milman-Pawlucki [1, 2].

The result of [11] deals with C™*(IR"), the space of functions ' : R — R
whose derivatives through order m are bounded and have modulus of conti-
nuity w. We assume that w is a “regular modulus of continuity” as defined
in Section 2 below. This is a very mild assumption. We seek a function
F € C™“(R"™) whose restriction to a given set E agrees with a given func-
tion f to a given tolerance o. The main theorem of [11] is as follows.
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Theorem 1 Given m,n > 1, there exists k¥, depending only on m and n,
for which the following holds.

Let w be a reqular modulus of continuity, let E C R™; andlet f : F — R
and o : E — [0,00) be given functions on E. Suppose that, given S C E
with cardinality at most k¥, there exists 'S € C™(R"), satisfying

| F® |l mw@ny < 1 and |F5(x) — f(z)| < o(z) forallz €S
Then there ezists F' € C™*(R"), satisfying
| F ||ome@ny < A, and |F(z) — f(x)] < Ao(x) forallx € E.
Here, A is a constant depending only on m and n.

Thus, to decide whether there exist a function F' € C™“(R"™) and a finite
constant M, such that |F(z) — f(z)] < M -o(zx) for all x € E, it is enough
to examine finite subsets S C E with cardinality at most k7.

Our goal here is to prove a version of Theorem 1 in which the condition
|F(z) — f(x)] < o(x) is replaced by the requirement that the m-jet of F
at x belong to a prescribed convex set. We write R, for the ring of m-jets of
smooth, real-valued functions at x € R"; and we write J,(F) for the m-jet
of F at z.

Now suppose that, for each point x € E, we are given an m-jet f(z) €
R., and a closed, symmetric convex subset o(z) C R,. Let w be a regular
modulus of continuity. We ask: How can we decide whether there exist
F e C™*(R") and a constant A < oo such that J,(F) — f(z) € A-o(z) for
all v € E?

We want to prove an analogue of Theorem 1 for this problem. We will
need some restriction on the set o(x), or else the desired analogue of The-
orem 1 will be obviously false. (For instance, any linear PDE LF = g has
the form J,(F) — f(z) € o(x) for a suitable jet f(x) and linear subspace
o(x) CR,.)

Two natural questions come to mind:

e Which hypotheses on o(z) allow us to carry over the proof of Theo-
rem 1 from [11] to our present setting?

e Which hypotheses on o(z) allow us to apply the analogue of Theorem 1
to solve Whitney’s extension problem as in [10]7

Interestingly, these two questions have very similar answers.
The correct hypothesis on o(z) is “Whitney w-convexity”. To define this
notion, we introduce a bit more notation.
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We fix m,n > 1, and let P denote the vector space of all (real-valued)
m'™ degree polynomials on R™. For functions F, we identify the m-jet J,.(F')
with the Taylor polynomial

yo S L@FW) - (-0

|a|<m

Thus, the ring R, of m-jets at x is identified with P as a vector space; and
we regard elements of R, as polynomials P € P.

We can now define the notion of “Whitney w-convexity”.

Let w be a regular modulus of continuity, let 0 C R, be a set of m-jets
at zg, and let A be a positive number.

We say that o is “Whitney w-convex, with Whitney constant A”, if the
following conditions are satisfied:

e o is closed, convex, and symmetric (i.e., P € ¢ if and only if —P € o).

e Suppose P € 0, Q € R,,, and ¢ € (0,1]. Assume that P and @) satisfy
the estimates

10°P(x0)| < w(0) - 6™ Pl and [0°Q(x0)| < 6718 for ] < m.

Then P - @) € Ao, where the dot denotes multiplication in R,,.

If we omit the factor w(d) in the above estimates, then we arrive at
the closely related notion of “Whitney convexity”. (See [10], and Section 2
below.) Note that, if o is Whitney convex, then o is also Whitney w-convex,
for any regular modulus of continuity w. (This follows at once from the
above definitions, since w(d) < 1 for 6 € (0,1] and w a regular modulus of
continuity; see Section 2.)

Our analogue of Theorem 1 for Whitney w-convex sets is as follows.

Theorem 2 Given m,n > 1, there exists k¥, depending only on m and n,
for which the following holds.

Let w be a reqular modulus of continuity, let E C R", and let A > 0.
For each © € E, suppose we are given an m-jet f(x) € R,, and a Whitney
w-conver subset o(x) C R, with Whitney constant A. Suppose that, given
S C E with cardinality at most k¥, there exists F° € C™*(R"™), satisfying

| F¥ || omw@ny < 1, and  J(F%) — f(x) € o(x) for allz € S.
Then there ezists F' € C™*(R"), satisfying
| F lememny < A, and  J(F)— f(x)€e A" -o(x) foralxeFE.

Here, A’ depends only on m,n, and on the Whitney constant A.
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The purpose of this paper is to prove Theorem 2, by carrying over the proof
of Theorem 1 from [11]. We make a few remarks about Theorem 2, and
about the notions of Whitney w-convexity and Whitney convexity.

First of all, note that Theorem 2 immediately implies Theorem 1. (In fact,
given a function o : F — [0,00), we define a set 7(xq) of m-jets, for each
xg € F, by setting

G(z0) = {P € P : |P(x0)| < o(x0)}-

One checks trivially that ¢(x) is Whitney convex with Whitney constant 1,
and that Theorem 2 for ¢ is equivalent to Theorem 1 for ¢.) Since the proof
of Theorem 2 is close to that of Theorem 1, and is presented here in detail,
we will not be publishing [11].

Next, note that Theorem 2 yields the following corollary.

Theorem 3 Let m,n > 1. Then there exists a constant k¥, depending only
on m and n, for which the following holds:

Let w be a regular modulus of continuity, and let E C R™ be an arbitrary
subset. Suppose that for each x € E we are given an m-jet f(x) € R, and
subset o(z) C R,.

Assume that each o(x) is Whitney convex, with a Whitney constant Ay
independent of x.

Assume also that, given any subset S C E with cardinality at most k¥,
there exists a map x — P* from S into P, with

(a) P* e f(x) + o(x) for allx € S;
(b) [0°P*(z)| < 1 for allx € S, |3| < m; and

(c) [0°(P* = P)(y)] < w(lz—yl) - |lz—y[" 1 for |B] < m, |z—y| <1,
x,y €85.

Then there exists ' € C™“(R"), with || F' ||cme@r) < Aq, and
Jo(F) € f(x)+Ajo(x) forallz e E.
Here, Ay depends only on m,n and the Whitney constant Ag.

To deduce Theorem 3 from Theorem 2, we simply recall that Whitney con-
vexity implies Whitney w-convexity, and we invoke Lemma 2.1 from Sec-
tion 2 below.

Theorem 3 is a crucial step in our paper [10] solving Whitney’s extension
problem for C™.
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The notions of Whitney convexity and Whitney w-convexity are somewhat
mysterious. On the one hand, there are interesting examples of Whitney
convex sets.

For instance, let £ C R™ be given, and let x5 be a point of R™, possibly
in or close to E. Then the closure of the set

0(x0) = {Juo(F) || Fllem@ny< 1and F = 0 on E} C Ry,

is easily seen to be Whitney convex, with a Whitney constant depending
only on m and n. (See the proof of Lemma 5.3 in [10].)

On the other hand, I don’t know how to decide efficiently whether a given
set 0 C R,, is Whitney convex, or Whitney w-convex; or how to compute
the order of magnitude of the best Whitney constant for o.

It would be interesting to understand these issues.

Next, we recall our solution of Whitney’s extension problem from [10].

Let ¢ : & — R be given, with £ C R" compact, as in Whitney’s
problem. By induction on ¢ > 0, we define an affine subspace Hy(zg) C P
for each point xyp € F. We start with

Ho(zg) = {P€P: P(xg) = p(zo)} foraxgeE.

The induction step is as follows. Fix ¢ > 0, and suppose we have defined
Hy(x) for all z € E. We will define an affine subspace Hyi1(z9) C Hy(zo)
for each 2y € E. To do so, let k be a large enough constant, depending only
on m and n. Let B(z,r) denote the open ball of radius r about z in R™. We
say that a given Py € Hy(xo) belongs to Hyyq(xo) if the following condition
holds:

Given € >0 there exists 6 >0 such that, for any x1, ...,z € ENB(xo,0),
there exist P € Hy(z1),..., P, € Hy(xy), with

0%(P, = Py)(x)] < ela; —ay[" " for [a] <m0 <i,j <k,

Note that Hyii(x¢) may be empty. By convention, we allow the empty set
as an affine subspace of P.

In principle, the H,(zq) are computable from ¢ : E — R.

The significance of the subspaces H,(x¢) is that, whenever F' € C™(R")
with F' = ¢ on E, then J,,(F) € H(xg) for any ¢ > 0 and 2y € E. (This
follows from an easy induction on ¢ using Taylor’s theorem.) In particular,
if any Hy(zo) is empty, then obviously ¢ cannot admit a C™ extension F'.
Conversely, [10] uses Theorem 3 to demonstrate the following result.
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Theorem 4 Let ¢ =2 -dimP + 1.

(A) If Hy(xg) is non-empty for every xo € E, then ¢ extends to a C™
function F' on R™.

(B) Suppose ¢ extends to a C™ function on R"™. Let xq € E. Then, given
Py€ Hy(xy), there exists F € C™(R") with F= ¢ on E and J,,(F)=F,.

Theorem 4 solves Whitney’s problem, and also computes the space of all
possible m-jets at a given zy € E of functions F' € C™(R") with F = ¢
on E. See Bierstone-Milman-Pawlucki [1,2]. Our proof of Theorem 4 in [10]
uses Theorem 3 from this paper, which is called the “Generalized Sharp
Whitney Theorem” in [10].

We give a brief historical discussion of Whitney’s extension problem.
Whitney began the subject in [19,20,21] in 1934, by settling the exten-
sion problem for the case of C™(R!), and by proving the classical Whitney
extension theorem.

In 1958, G. Glaeser [12] solved Whitney’s problem for C*(R™) by introdu-
cing a geometrical object called the “iterated paratangent space”. Glaeser’s
work influenced all later work on the subject. A series of papers by Y. Brud-
nyi and P. Shvartsman [3,...,7 and 14, 15, 16] studied the analogue of Whit-
ney’s problem for C™*(R") and other function spaces. Among their conjec-
tures is the case ¢ = 0 of Theorem 1. Among their results is the case 0 = 0,
m = 1 of Theorem 1, with the sharp constant k% = 3 - 2"~!, proven by the
elegant method of “Lipschitz selection”, which has independent interest. We
refer the reader to [3,...,7 and 14, 15, 16] for these and other related results
and conjectures. See also N. Zobin [22,23], for the solution of a problem
that may prove to be closely related to the ones discussed here.

The next progress on Whitney’s problem was the work of Bierstone-
Milman-Pawlucki [1]. They introduced an analogue of Glaeser’s iterated
paratangent space relevant to C™(R™). The conjectured a complete solution
of Whitney’s extension problem based on their paratangent space, and they
found supporting evidence for their conjecture. (A version of their conjec-
ture holds for sub-analytic sets E.) Theorem 4 is equivalent by duality to
the Bierstone-Milman-Pawlucki conjectures [1] with their paratangent space
replaced by a natural variant. (See [2].) Some modification of the condition
in [1] is required to treat general compact sets without loss of derivatives;
see a forthcoming paper by Bierstone, Milman, Pawlucki and the author.

It is a pleasure to thank E. Bierstone and P. Milman for very use-
ful conversations and to acknowledge the influence of [1], as well as to thank
the Courant Institute of Mathematical Sciences where this work was car-
ried out. I am particularly grateful to Gerree Pecht for making special
efforts to TEX this paper quickly and accurately. We now begin the work of
proving Theorem 2.
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2. Notation and Preliminaries

A “regular modulus of continuity” is a function w(t), defined for 0 < ¢t <1,
and satisfying the following conditions:

(1) w(0) = tlir&w(t) =0, and w(1) = 1.
(2) w(t) is increasing (not necessarily strictly) on [0, 1].
(3) w(t)/t is decreasing (not necessarily strictly) on (0, 1].

Note the obvious estimates:

>t for ¢t € [0, 1];
w(t) <w(Cit) < Ciw(t) for C; > 1, C1t < 1; and
>w(et) > qw(t) for0<c <1,te]0,1].

These estimates are immediate from (1), (2), (3).
Suppose w is a regular modulus of continuity, and suppose m > 0. We de-
fine C™*(R™) as the space of all C™ functions F' : R" — R for which

the norm

B _ 9B
| ' [|ame@ny= max{ max sup |0°F(z)|, max sup 07 F(x) = 0 F(y)|}
BI<m zern |Bl=m o yern w(lz —yl)
0<|z—y|<1
is finite.

Note that we get an equivalent norm by allowing all § with |3] < m in
the second sup.

We also define ) (R™) as the space of all functions F' that agree with
some Fx € C™*(R™) on any given compact set & C R". As usual, C}2.(R")
denotes the space of functions F' with m continuous derivatives, without any
global boundedness assumption on F' or its derivatives.

We apply repeatedly the following obvious consequence of Taylor’s The-
orem: Let w be a regular modulus continuity.

Suppose F' € Cp (R"), with
07F (x) = 0"F(y)] < M - w(|lz —y])
for |6 =m, x,y € R", |z —y| < 1. Then for |B| < m, |z —y| <1, we have
1
’36F(y) - > o (0" F(x)) - (y — )| < OMlz — y|" Plw(je —y))
rl<m—18] "

with C' depending only on m and n.
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In particular,

PG - Y @@ (-
lyl<m—|8] "

<C| F lome@ny |z —y[™ Plw(z —y]).

for |z —y| <1, |B] < m.

We fix m,n > 1 throughout this paper. We recall the following from the
Introduction.

We let P denote the vector space of all real-valued polynomials of degree
< m on R" and we let D = dim P.

If e Cp.(R™) and y € R", then we write J,(F') for the m-jet of F at y,
i.e., the polynomial

We write R, for the ring of jets at y. More precisely, R, = P, with the
multiplication operator that gives

P-Q=S (PQ,ScP) ifandonlyif 9°(PQ— S)(y)=0

for |3| < m, where PQ denotes the ordinary product of polynomials.

Fix y € R",; A > 0, and let Q be a subset of R,. Then, as in the Intro-
duction, we say that € is “Whitney convex at y with Whitney constant A”
if the following conditions are satisfied.

(a) Q is closed, convex, and symmetric about the origin. (That is, P € 2
if and only if —P € Q.)

(b) Let P€Q,Q € P,0<6 <1 be given. Assume that
10°P(y)| < o™l and 10°Q(y)| < 671, for |a| < m.

Let @ - P denote the product of @ and P in R,. Then @ - P belongs
to A- Q.

Note that if instead we have
0°P(y)| < M6 11 and  [0°Q(y)| < Mas™

for |o| < m, with M; > 1, then we obtain Q) - P € AM; M.
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Similarly, suppose y € R", A > 0, Q@ C R,, and let w be a regular
modulus of continuity. Then we say that €2 is “Whitney w-convex at y with
Whitney constant A” if the following conditions are satisfied.

(a) € is closed, convex, and symmetric about the origin.

(b) Let P Q,Q € P,0<6 <1 be given. Assume that
07P(y)] < w(@) - 6" and [07Q(y)] < 677, for |5] < m.

Let @ - P denote the product of @ and P in R,. Then @ - P belongs
to A - Q.

Note that if 0 C R, is Whitney convex, (with Whitney constant A),
then it is Whitney w-convex for any regular modulus of continuity, again
with Whitney constant A.

If 3, o are multi-indices, then g, denotes the Kronecker delta, equal to 1
if = «, and equal to zero otherwise.

We let M denote the set of multi-indices 8 = (i, ..., 3,) of order || =
Br+-+ B <m.
We write M™ for the set of all multi-indices of order < m + 1.

A subset A C M is called “monotonic” if, for any a« € A and v € M,
a+v € M implies a + v € A.
We write B(z,r) for the open ball of radius 7, centered at z € R™.

A cube @ is defined as a Cartesian product [ai,b;) X - -+ X [an, b,) C R™,
with by —a; = by —ay = -+~ = b, — a,. The diameter of a cube @ is denoted
by dg. If @ is a cube, then * denotes the cube concentric with @), and
having diameter 36g. To “bisect” a cube is to subdivide it into 2" congruent
sub-cubes in the obvious way. Later on (in Section 11), we will fix a cube
Q° C R™. Once @° is fixed, the collection of “dyadic” cubes consists of Q°,
together with all the cubes arising from Q° by bisecting & times, for any
k > 1. Note that, by this definition, every dyadic cube is contained in )°.
Moreover, any dyadic cube () other than )° arises by bisecting a “dyadic
parent” QF, with dg+ = 2d0.

We will often be dealing with functions of x € R", parametrized by
y € R™. We denote these by ¢¥(x), or by PY(x) if x — PY(x) is a polynomial
for each fixed y. When we write 9°P¥(y), we mean ((.%)ﬁ PY(z) evaluated
at x = y. We never use 9°PY(y) to denote the derivative of order 3 of the
function y — PY(y).

If S is any finite set, then we write #(.5) for the number of elements of S.
For S infinite, we define #(5) = oc.
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We close this section with the following result.

Lemma 2.1 Let w be a reqular modulus of continuity, and let S C R™ be a
finite set. Suppose we are given an m-jet P* € P associated to each point
x € S. Assume that

(a) [0°P*(x)] < 1 for |B] < m, x € S; and that

(b) [07(P* = P¥)(y)| < w(lz—yl) - |z —y[" 1 for |B] < m, |z—y| <1,
x,y €S.

Then there exists F¥ € C™*(R"), with
J(F%) = P* forallz € S, and with || F* ||cmegn < C.
Here, C depends only on m and n.

This result follows from the usual proof of the standard Whitney exten-
sion theorem. (See [13,17].)

Using Lemma 2.1, one sees that our present Theorem 2 trivially implies
the “Generalized Sharp Whitney Theorem” stated in [10] i.e., our present
Theorem 3.

3. Order Relations on Multi-Indices

We introduce order relations on multi-indices, and on subsets of M as in [9].
Let us recall these relations.

Suppose o = (aq, ..., ) and = (f1, ..., B,) are distinct multi-indices.

Then we must have a; +- -+ oy, # 51+ - -+ 3 for some k. Let k denote
the largest such k. Then we say that o < 3 if and only if a1 + -+ 4+ a3 <
0By + -+ + Bz. One checks easily that this defines an order relation. Next,
suppose A and B are distinct subsets of M. Then the symmetric difference
AAB = (AN B)U (B~ A) is non-empty. Let a denote the least element of
AAB, under the above ordering on multi-indices. Then we say that A < B
if and only if o belongs to A. Again, one checks easily that this defines an
order relation. As in [9], we have the following elementary results.

Lemma 3.1 If a, 3 are multi-indices, and if |o| < |G|, then a < (.
Lemma 3.2 If AC AC M, then A< A.
Lemma 3.3 Let A C M, and let ¢ : A — M. Suppose that
(1) ¢(a) <« for allw € A, and
(2) for each o € A, either ¢(a) = a or ¢(a) ¢ A.
Then ¢(A) < A, with equality if and only if ¢ is the identity map.
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4. Statement of Two Main Lemmas

Fix A C M. We state two results involving A.

Weak Main Lemma for A: There exists k%, depending only on m and n,
for which the following holds.

Suppose we are given constants C, ag; a reqular modulus of continuity w;
a finite set E C R™; a point y° € R"; and a family of polynomials P, € P,
indexed by a € A. Suppose also that for each x € E, we are given an m-jet
f(z) € R, and a subset o(x) C R,.

Assume that the following conditions are satisfied.

(WLO0) For each x € E, the set o(x) is Whitney w-convez at x with Whitney
constant C'.

(WL1) 9°P,(y°) = 8pa for all B,a € A.
(WL2) |0°P,(y°) — pa| < ag for alla € A, B € M.

(WL3) Given a € A and S C E with #(S) < k¥, there exists ¢35 €
Co(R™), with

Loc

(a) [0%¢5(x) — %05 (y)| < ao - w(|z —yl) for |B] = m, v,y € R",

(b) J.(p3) € Co(x) for all x € S; and
(c) Jyo(92) = P
(WL4) Given S C E with #(S) < k¥, there exists F° € C™%(R"), with

(@) || F llememn< C; and
(b) J.(F%) € f(x)+ Co(x) for allz € S.

(WL5) aqg is less than a small enough positive constant determined by C, m,n.
Then there ezists F' € C™*(R"™), with
(WL6) || F ||Cm,w(Rn)§ C/, a/n/d

(WL7) J.(F) € f(x) + C'o(z) for allz € EN B(y°, ).
Here, C" and ¢ in (WL6,7) depend only on C,m,n.
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Strong Main Lemma for A: There exists k¥, depending only on m
and n, for which the following holds.

Suppose we are given constants C,ag; a reqular modulus of continuity w;
a finite set E C R"; a point y° € R"™; and a family of polynomials P, € P,
indexed by o € A.

Suppose also that, for each x € E, we are given an m-jet f(x) € R, and
a subset o(x) C R,.

Assume that the following conditions are satisfied.

(SLO) For each x € E, the set o(x) is Whitney w-convez at x, with Whitney
constant C'.

(SL1) 9°P.,(y°) = 6 for all B,a € A.
(SL2) |0°P,(y°)| < C for all B € M, o € A with 3> «.

(SL3) Givena € A and S C E with #(S) < k%, there exists p5 € Cp(R"),
with

(a) 10°p5(x) — 0°¢(y)| < agw(lz —y|) + Clz —y| for |B| = m,
r,y eR™, |z —y| < 1;

(b) J.(¢3) € Co(x) for all z € S; and
(c) Jyo(#3) = Pa.
wen S C B wit < k7, there exists € ’ , wit
SL4) G S C E with #(S) < k¥, th FS e 0™ (R™ h
(a) || FS HCm,w(Rn)S C, (Lnd
(b) J.(F®) € f(z) + Co(x) for allx € S.
(SL5) ag is less than a small enough positive constant determined by C,m,n.

Then there exists F' € C™(R™), with
(SL6) H F HCm,w(Rn)S C/, and

(SL7) J.(F) € f(z) +C'o(x) for allz € EN B(y", ).
Here, C' and ¢ in (SL6,7) depend only on C,m,n.
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5. Plan of the Proof
We will establish the following results.

Lemma 5.1 The Weak Main Lemma and the Strong Main Lemma both hold
for A= M.

(Note that A = M is minimal for the order relation <.)

Lemma 5.2 Fiz A C M with A # M. Assume that the Strong Main
Lemma holds for each A < A. Then the Weak Main Lemma holds for A.

Lemma 5.3 Fiz A C M, and assume that the Weak Main Lemma holds for
each A < A. Then the Strong Main Lemma holds for A.

Once we establish these lemmas, the two Main Lemmas must hold for
all A C M, by induction on A. In particular, taking A to be the empty set
in, say, the Weak Main Lemma, we see that hypotheses (WL1,2,3) hold vac-
uously, and that the constant ay appears only in hypothesis (WL5). Hence,
we obtain the following result.

Local Theorem: There exists k¥, depending only on m and n, for which
the following holds.

Suppose we are given a reqular modulus of continuity w; a finite set
E C R"; and, for each v € E, an m-jet f(z) € R, and a subset o(x) C R,.

Assume that the following conditions are satisfied.

(I) For each x € E, the set o(x) is Whitney w-conver at x, with Whitney
constant C'.

(I) Given S C E with #(S) < k¥#, there exists F* € C™*(R"™), with
| FS || gme@n< C, and J,(F) € f(z)+ C-o(z) for eachx € S.

Let y° € R™ be given. Then there exists F' € C™%(R™), with
| F HCWW(R")S C’ and J.(F) € f(z) +C" - o(x)

for each x € EN B(y°,c); here, C" and ¢ depend only on C,m,n in (I)
and (IT).

Once we have the above Local Theorem, we may remove the restriction
to finite sets E, by a compactness argument using Ascoli’s Theorem. We
may then use a partition of unity to pass from a local to a global result,
completing the proof of Theorem 2.
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6. Starting the Main Induction

In this section, we give the proof of Lemma 5.1. We will show that the
Strong Main Lemma holds for A = M. The Weak Main Lemma for A = M
then follows at once.

Let C,ag,w, E, f,0,4°, (P.)aem satisfy (SLO,...,5) with A = M and
k#* = 1. We must produce F' € C™*(R") satisfying (SL6,7). We will show
that (SL6,7) hold with F' = 0. To see this we argue as follows.

We write c¢1,Cq, ", etc., to denote constants determined by C,m,n in
(SLO,...,5). We introduce a small enough constant § > 0, to be picked later,
and we assume that

Now suppose we are given
(2) '€ ENB®,9).

Taking S = {2’} in (SL3), we obtain, for each o € M, a function ¢, €
Cw?(R™), with

(3) 0%a(w) = 0%¢a(y)| < agw(lz —yl) + Clz —y

for |3 =m,z,y €R", o —y| < 1

(4) Jo(pa) € Co(2); and
(5) Jyo(pa) = Pa.

From (SL1) with A = M, we sce that Py(z) = 5 (z — y°)*, hence (5)
gives

(6) 9 0a(y°) = 05o for B, € M.
Since w(t) <1 for t € [0,1], we obtain from (1), (3) that
(7)) 10%palz) = Ppaly”)| < 10 for allw € B(y",0), if 5] = m.

By downward induction on |3|, we show that (7) holds for |3] < m. We
have just proven (7) for |3| = m. For the induction step, suppose |G| < m,
and suppose (7) holds for multi-indices of order || + 1.

Then we have

(8) (V0P 0o (Z) — VOPpa(y®)| < Cy6  for all & € B(y°,6).
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On the other hand, for z € B(y°,§), the mean value theorem produces an &
on the line segment joining 4" to x, for which we have

(9)  Ppa(x) = 0%0a(y’) =V %0a(Z) - (x —1°)

= [V°pu(T) = VO 0u(y°)] - (z — ") + VI 0u(y°) - (z — °).
From (6) we have at once
(10) VP 0a(y°)| < Cs.

Putting (8) and (10) into (9), and recalling that |z — y°| < §, we find
that [0%0q(7) — 0%pa(y°)] < C6% + C36 < C4d, provided § < 1. This
completes the downward induction, proving (7) with a constant that may
depend on |3|. Since 0 < |B] < m, we conclude that (7) holds with a
constant depending only on C,m,n in (SLO,...,5).

From (2), (6), (7), we have

(11) 10900 (2) — 0pa| < C56  for all B,a € M.

Together with (4), and the fact that o(z’) is convex and symmetric
about 0, (11) shows that

(12) Given any P € P, if [0°P(z2')| < 1 for |3| <m, then P € Cg - o(x'),
provided we take

(13) o< Cy.

Next, we apply hypothesis (SL4), with S = {2'}. Thus, we obtain F*¥ €
C™#(R™) satisfying in particular

(14) |0°F5(2")| < C (]3] <m) and
(15) Ju(F®) € f(2') + Co(2).

From (12) and (14), we see that J(F®) € Cg - o(2'), and therefore (15)
shows that

(16) f(z") € Cy - o(a').

(We have again used the hypothesis that o(z’) is convex and symmetric
about 0). Thus, if assumption (1) holds, and if ¢ is taken small enough that
the above arguments work, then we have shown that every 2’ € ENB(y°,d)
satisfies (16).

We may take d to be a small enough constant ¢/, determined by C,m,n
in (SLO,...,5). If ¢ is taken small enough, then the above arguments work.
Moreover, with 6 = ¢/, our assumption (1) follows from hypothesis (SL5).
Thus, we have (16) for all 2’ € B(y°,¢') N E. This implies immediately that
the function F' = 0 satisfies (SL6,7). The proof of Lemma 5.1 is complete. l
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7. Non-Monotonic Sets

In this section, we prove Lemma 5.2 in the easy case of non-monotonic A.

Lemma 7.1 Fiz a non-monotonic set A C M, and assume that the Strong
Main Lemma holds for all A < A. Then the Weak Main Lemma holds for A.

Proof: Suppose A is non-monotonic, and let C,ag,w, E, f,7,9°, (Pa)aca
satisfy (WLO,...,5). We must show that there exist C’, ¢ depending only on
C,m,n, and that there exists F' € C"™*(R") satisfying (WL6,7) for those C’
and ¢. We write ¢, (s, etc., for constants depending only on C,m,n. We
call ¢1, Cy, ete. “controlled constants”.

Since A is not monotonic, there exist multi-indices &, 7, with

(1) aceA a+yeM~A

(2) A=Au{a+7},
and take k* as in the Strong Main Lemma for A. Note that A < A, by
Lemma 3.2 and (1).
Define
a! 1 .5 0 0\ G+7
B)  Pass(r) = > P ) (@ =)

(@+9)!

Thus, P, € P is defined for all o € A.
From (3) we obtain easily that

[ RGN - 4 orsome §
" Fary(y) = - -
0 if 8 doesn’t have the form § 4 % for a multi-index
Consequently, (WL2) gives
(4) |85P@+,—Y(y0> — 6ﬁ7a+,7| S Cl(lo for all ﬂ e M.
From (4) and another application of (WL2), we see that
(5) 10° P, (y°) — 0pa| < Crag forallac A, 3 € M.

From (5) and (WL5), we see that the matrix (0° P, (y°)) 5 ac 4 is invertible,
and its inverse matrix (My/o)a aca Satisfies

(6) |Muyo| < Cy forall o, a € A.
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By definition of (M), we have

(7) Spo =Y _ 0"Pur(y) - Myo forall B,a € A
o’'€EA
We define
(8) Po= Pu-My, foralacA
a’'cA

Thus, P, € P for a € A, and, from (7), (8) we have

(9) 9°P,(y°) = dpo for all B,a € A.
Also, from (5), (6), (8) and (WL5), we have

(10) 10°P,(y°)| < Cs forall e M, ac A.

Next, let S C E be given, with #(S) < k#. For a € A, we let ¢5 €
Cr?(R™) be as in (WL3). We define also

Loc

(11) 9064—5-'7(33) = ( )l (z — ?/0)7 - x(z — yo) ' 902(33) on R",
where
(12) || x llem+t1@< Cyy, x =1 on B(0,1/20), suppx C B(0,1/10).

We prepare to estimate the derivatives of 5, .. From (WL3)(a) and the
fact that w(t) <1 for t € [0, 1] (since w is a regular modulus of continuity),
we have

0965(2) — 05(3°)] < ao for = € B, 1) and |5] = m.
Also, from (WL2) , (WL3)(c), (WL5), we have
10%03(y°)| < Cs for |B] < m.
Consequently,
(13) 10°p5(x)] < Cs  for x € B(y°,1) and |8] < m.
From (11), (12), (13), we see that

(14) |86<,0§H(x)| < C7; forx e R" |G| < m.
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Next, we prepare to estimate the modulus of continuity of 9%p2 + for
|B] = m. Set

¥ = — 9 _ .0
(x) G+7) (z—y")" - x(z—y")
Thus, (11), (12) give
(15) 90§+ﬂ7 =X 8027 and
(16) I X llemr@ny < Cs,  suppx C B(y’,1/10).

Since ¥, 92 € Ci* (R"), we know that, for |3| = m, we have

Loc

(17) 0” g0§+;{(1:) - aﬁ§0g+~7(y) =
= (3, 8107 X () - 0703 () — 0¥ X(y) - 07 @5 (y)]

= X(2) - [0%¢5(2) — %¢a(y)] + [X(x) = X(W)] - 975 ()
+ Z o8, (07 X(2)) - (07" 03 (x) — 07 93 (y)]

- Z F)07%) = 07 XW)] - (07 0)).

Suppose z,y € B(y°, 1) and |z —y| < 1/2. Then, by virtue of (13) and (16),
the last two sums on the right in (17) have absolute values less than or equal
to Cy - |x —y|. Also, from (13) and (16), we have |[x(z) — X(y)] - 0°¢2 (y)| <
Cyo - |* — y|. Hence, (17) shows that

(18) 10703 5(2) = 0%05 5 ()| < [X(2) 1003 () =703 ()] + Cui-|a —yl
for z,y € B(y’, 1), |v —y| < 1/2.

Putting (WL3)(a) and (16) into (18), we learn that
(19)  10%5 (x) — 0%¢5 5 (y)| < Craow(|z —y|) + Crofz — y|

for z,y € B(y", 1), [o —y| < 1/2, 8] =

On the other hand, if |z —y| < 1/2 and z or y lies outside B(y°, 1), then
we have |z —y°|, |y —¢°| > 1/2, and therefore 9°¢3 - (x) = 9°¢3, (y) = 0,
by (15), (16). Hence, the hypothesis z,y € B(y’, 1) may be dropped
from (19). Thus, we have

(20) 10705 5(2) = 0%055(y)] < Craagw(| = yl) + Cralz — |

for x,y e R", |z —y| < 1/2, 5] =
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Also, for 1/2 < |z — y| < 1, we see from (14) that
|aﬁ@§+ﬁ(x)_aﬁ@§+ﬁ(y)’ < |aﬁ90§+ﬁ(x)| + ’aﬁ¢§+7(y)| < Ci3 < 203|z—yl.
Together with (20), this implies that

(21) |0%5, o (x) — 005 5 (y)] < Cuaow(|x —yl) + Cialz —yl for z,y € R™,
|z —y| <1, |B] = m. In particular, ¢, . € C"™“(R"), thanks to (14),
(21), and the estimate ¢ < w(t) valid on [0, 1] for a regular modulus of
continuity.

From (WL3)(a) and (21), we conclude that
(22) 1072 (2) — 0%ga(y)] < Cisagw(|z = y|) + Cislz — y|

for |v —y| <1, a € A, |3| = m.
At last, we have estimated the modulus of continuity of the mth deriva-
tives of the 3 (a € A). In particular, we have ¢ € C)V“(R") for a € A.

Loc
Next, suppose € SN B(y°, 1).
From (13), (16) and (WL3)(b), we have

0% (c16a) ()], 187 (c16 X) ()| <1 for |3] <m; and  Jp(ciepa) € o(2).

Taking P = ¢16J.(¢a), @ = c16J2(X), and 6 = 1 in the definition of Whitney
w-convexity, we conclude that J,(X) - J.(pa) € Ci70(z), where the multipli-
cation is taken in R.,.

Together with (15), this shows that
Jx(wgﬂ) € Cyo(x) for x € SN By, 1).

On the other hand, for x € S\ B(y°, 1), we have J,(¢3, ) = 0 by (15), (16);
and therefore J, (3 ,5) € Ciz0(x) since o(x) is convex and symmetric about
the origin. Thus,

Jo(p5,5) € Crro(x) forallz € S
Together with (WL3)(b), this shows that
(23) Jo(02) € Cigo(x) forallz € S, a € A.
Also, from (11), (12), and (WL3)(c), we have

Poiale) = e o= Fale) = olle — i) as s — o
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On the other hand, (3) shows that
Pars(2) — ——— (2 —y°)" Pa(z) = o(|z — ¢°|™) as z — ¢°.
Hence,
Pais(2) = Pars(@) = oz — ") as © — 3",
Since also Py € P and @3 - € C™(R"), we have
Jyo(‘PgH) = Pais-
Together with (WL3)(c), this shows that
(24) Jyo(p2) = P, forall a € A

Thus, the (¢2),c.1 satisfy (22), (23), (24).

Next, given S C E with #(S) < k¥, let the ¢ (o € A) be as above,
and define

(25) Po =) 9% My, forallae A

o’'€A

Thus, @2 € C°(R"), for all a € A.

Loc

From (6), (22), (23), we have
(26) 10°92(x) — 073 (y)| < Crgagw(|z — yl) + Crolz — y]
for x,y € R”, |z —y| <1, |3 =m, a € A and
(27) Jo(@3) € Cyy - () forallz € S, a € A

(We use the fact that o(x) is convex and symmetric about the origin to
prove (27).)
Also, comparing (8) with (25), and recalling (24), we see that

(28) Jyo(@3) =P, forallac A

Next, we check that the hypotheses of the Strong Main Lemma for A
are satisfied by Cyy, ao, E, f,0,9°,w, P, (a € A), provided Cy; is a large
enough controlled constant, and ag is a small enough constant determined
by Cs1,m,n. In fact, Cs; and agy are constants; w is a regular modulus of
continuity; £ C R™ is a finite set; y° € R”; and P, € P for all a € A.
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Also, for each x € E, f(z) € R, is an m-jet, and o(x) is Whitney
w-convex with Whitney constant C' (hence also with Whitney constant

021 > O)
Thus, (SLO) holds. From (9) we see that (SL1) holds.

Taking Cy; > Cs, we see from (10) that (SL2) holds, even without the
restriction to # > «. To see that (SL3) holds, we let « € A and S C E,
with #(S5) < k#. Let @2 be as in (26),(27),(28). Thus, ¢ € C;“(R"),

and (26), (27),(28) imply (SL3)(a),(b),(c), provided we take Cy > Cig,
Cs1 > Cy, and provided we have

(29) 019 cag < ag.

However, (29) follows from hypothesis (WL5), since we are taking ag to
be a small enough constant determined by Cy; and m,n. (In fact, since Cy;
is a controlled constant, so is ag, and therefore, (29) just says that a is less
than a certain controlled constant.) This shows that (SL3) holds.

Also, (SL4) follows from our hypothesis (WL4), provided we take Cy > C.
Finally, (SL5) holds here, since we picked @y to be a small enough constant,
determined by Ca1, m,n.

This completes the verification of the hypotheses of the Strong Main
Lemma for A, for Cay, dg,w, E, f,0,9°, (P)aci-

Since A < A, we are assuming that the Strong Main Lemma holds for A.
Applying that Lemma, we obtain F' € C™*(R"), with

(30) | F llomequn< C°

and

(31) J.(F) € f(z)+ C'o(x) forallze ENB(y°,d);
with

(32) C’ and ¢ determined by Cy,m,n.

Since Cy is a controlled constant, (32) shows that C’ and ¢ are also
controlled constants. Hence, (30), (31) are the conclusions (WL6,7) of the
Weak Main Lemma.

Thus, the Weak Lemma holds for A.
The proof of Lemma 7.1 is complete. [
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8. A Consequence of the Main Inductive Assumption

In this section, we establish the following result.

Lemma 8.1 Fiz A C M, and assume that the Strong Main Lemma holds
for all A < A. Then there exists kﬁd, depending only on m and n, and
there exists a function A — a3“(A) mapping (0,00) — (0,00), for which

the following holds.

Let A > 0 be given. Let Q C R™ be a cube of diameter < 1,w a regular
modulus of continuity, E a finite subset of R™. Suppose that, for each z € F,
we are given an m-jet f(x) € R, and a subset o(x) C R,.

Suppose also that, for each y € Q™*, we are given a set Av < A, and a
family of polynomials PY € P, indexed by o € AY.

Assume that the following conditions are satisfied.

(GO) For each x € E, the set o(x) is Whitney w-convex, with Whitney con-
stant A.

(G1) 9°PY(y) = 6pa for all B,a € AY, y € Q™.
(G2) 10°PY(y)| < As5™ for all B € M,a € A¥, y € Q™ with § > a.

G3) Given S C E with #(5) < k., and given y € Q** and o € AY, there
old
exists 3 € C,(R™), with

Loc

al-m—1 o al-m  w(|z'—x"
(2) 0965 (a) — 0% pS(a")| < AGS" o[ = 2| +agd(A) - g5 - el
or |x' —2"| < g and |G| = m;
Q

5‘04—771

(b) J.(¢3)e A §(5Q) - o(x) forallz € S;

(c) Jy(%@g) = _o?f'
(G4) Given S C E with #(5) < kﬁd there exists F° € C™*(R"™), with
(a) [| 0°F% [[copm< A-w(dg) - 5$_W| for |B] < m;

(b) |0°F5(a") — O°F5(2")| < A-w(l2’ — 2"|) for |B] = m,a',2" € R",
‘x/ _ x//‘ S §Q;

(c) J.(F%) e f(x)+ A-o(z) forallx € S.
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Then there exists ' € C™“(R™), with
(G5) || 0°F ||comm< A"~ w(dq) - b " for |8] < m;

(G6) |0°F(a') — O°F(2")] < A" - w(|a’ — 2"|) for |B] = m, 2/,2" € R,
[ —2"| < dg;

(G7) J.(F) € f(z)+ A" -o(x) for allz € ENQ*.
Here, A" is determined by A, m,n.

Proof: By a rescaling, we may reduce matters to the case g = 1. We spell
out the details. Let A, Q,w, E, f,0, AY, (PY),civ be as in the hypotheses of
Lemma 8.1. We set

(1) Q= 05" @

(2) S= 058 for SCE;

(3) E= 65" E;

(4) W (t) = (w(d)) " w(dgt) for t € [0,1];

(5) y= 5ty fory e Q™

(6) f’z (z) = (53“' - PY(6g x) fory e Q™ ze R", o € AY;
(7) ?)i () = 651 p5(6g 7) for ze R, av € A¥, y € Q™
(8) ? (7) = (w(dg) - 58)_1 [(f(6g x))o1], for T€E, where
(9) (') =dgx’ forallz’ecR"

(10) o (7) = {(w(6g) - 65) " - [Por]: Peo(dgr)} for T€E;
1) F (@)= () 63t F5(sT) for 7€ R

(12) :tg: AV = A%V for EECT*

Note that (4) makes sense, since we have assumed that ép < 1, and w is
defined on [0, 1].

We check in detail that

satisfy the hypotheses of Lemma 8.1, with (55 = 1. The verification is as

follows:
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Evidently, A > 0; E)C R™ is a cube of diameter < 1 (in fact 65 = 1;

see (1)); w is a regular modulus of continuity (see (4) and the definition of
a regular modulus of continuity); and £ is a finite subset of R” (see (3)).
Also, for each € E, we have 6o 7€ E (see (3)), hence

flo2)ER. - = R_-

S (z)

(see (9)), hence [f(dg Z) o 7] € R, and thus f (z) € R= (see (8)).

Similarly, for each ze E, we have 6o 7€ E (see (3)), hence

o(0g ) C R,: =R

(@)’

hence {Po7: P € o(dg 1)} C R-, hence o (1) C R- (see (10)).

= k%

= =y = =
For y€@ , we have 4 = A%Y < A since dg Y€ Q** (see (1), (12)).

|

= k%

= =Y =

Also, for ye@) , the family of polynomials P_ & P is indexed by a € 4
(see (1), (5), (6), (12)). )
-y

We check that A, g), w, LZC, 7, o, A satisfy hypotheses (GO),...,(G4).
We begin with (G0). We note first that, given z€F, the set o (7) is
closed, convex, and symmetric about the origin. This is obvious from (10)

and the corresponding property of o(z), where z = dg ze E.

Next, suppose we are given

(13) TER, Qe R-, Peo(z)CR- and <1,

with

(14)  [0° P @) <w (5)- 6™ 10°Q (@) <5 7 for o] < m.

Then by definition (10), we have

(15) P=(w(dg) - 63)~ - [P o],
with

(16) Peo(z),

where

(17) r =001
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For a suitable polynomial @ € R,, we have

(18) Q=[Qo7.

Let us estimate the derivatives of P and @. From (15), (18), we have

P = (w(dg)-03) - [Por Y], and Q=[Qor .

Therefore, (17) and (14) show that

(19)  [0°P(x)| = (w(dg) - 55) - |6, 0* P ()]
< wibo) o5 555

= W) - i [ we )] 5

= w(0g 8) - (g o)™ "

and
(20) 10°Q()] = 6510 Q (@)] < (5 8)7°!.

We have dg E < 1, since we assumed that dgp < 1, E < 1. Moreover,
o(z) is Whitney w-convex, with Whitney constant A, by hypothesis (GO)
for A7 QJ W, E7 f7 g, Ayv (Pozz/)OzE.[\y‘

Therefore, (16), (19), (20) imply that

(21) QP e Ao(z),

where the multiplication in (21) is taken in R,.
On the other hand, (15) and (18) show that

(22) Q- P= (w(bg) - 65) - [(Q- P)o7].

Here, @ - P is as in (21), and the multiplication E) . P is taken in R-.
From (21) and (22), we see that

ANQ - P) € {(w(dg)-83) " - [SoT] : S €al(a)}.

Comparing this with the definition (10) of o(z), and recalling (17), we see
that A~Y(Q - P) €0 (7).
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Thus, we have shown that (13), (14) imply 52 .P€ Ao (), with the
multiplication taken in R=. This shows that o (z) is Whitney w-convex,
with Whitney constant A.

Thus, (GO) holds for A, 5,5, etc.

Next, we check that (G1) holds for Al@,uzj, ete.

Suppose we are given 3, € ,,_4??, ye @** Then, with y = d¢ Z, we have
Bya € AY, y € Q™ (see (1), (12)). Hence, (G1) for A,Q,w, E, f, 0, etc. tells
us that
(23) 0"FY(y) = dpa-

Moreover, (6) gives
(24) 9° P(y) = sl 97 By(y).

From (23) and (24) we obtain

(Y) = 6pa

i
Q<

aﬁ

which proves (G1) for A,E),u:), ;j, etc.

Next, we check that (G2) holds for A,E),EJ,E, etc. Suppose we have
geM, a Ej@, ;EE)**, with 0 > a.

Taking y = 6 Z, we then have

BeEMae A yeQ™ B=a,
thanks to (1), (12). Hence, (G2) for A, Q,w, E, f, 0, etc. tells us that
8 D laf—|3]
(25) 97 PY(y)| < A5SI.
On the other hand, (6) gives
0" PL(H) = 05 9°PLy),
as in (24), and therefore (25) implies

O PU(y)l < A = AL (see (1)),
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Suppose we are given 5 C E with #(E) < k:ﬁd, together with ZGCZQ
and o €4 Y. Then we set S = 6y SC E (see (2), (3)), y = dg ¥ye Q*
(see (1), (5)). We have
SCFE with #(S)<k®, ye@Q™ and acA’.  (Sce (12).)

Hence, hypothesis (G3) for A, Q,w, E, etc., produces a function S €
C“(R™), satisfying conditions (G3)(a),(b),(c). We define 3 as in (7). We

foc

will check that (G3)(a),(b),(c) hold for 8205, E, etc.
First, we check (G3)(a). Suppose we are given 3,7’ z”, with

‘ﬁ‘:ma ;7; eRn7 ’;_;//‘S(S

Then, setting 2’ = dg z', x" = 9o 2", we have |z — | < dg, and

107 9S(x") — 0% 95" = 05175 (a') — 89S (x")] (see (7))
= i "107e0(a') — 97"
(|2’ — 2"))

w(dg)

(thanks to hypothesis (G3)(a) for A, Q,w, E, etc. and the fact that |2’ —z"| <dg)

S A(Sél ‘l‘/ —JJN‘ + agld(A) .

w(dg - | z'—z"|)
- - W(fcz)
_ AT =] 4 al(A) 5 (| T=T"]) (see (4)).

- AT T+ ).

This shows that (G3)(a) holds for ;E, E, etc.; and also that ZE € CZZE(R").
Next, we check (G3)(b) for SZOE, E, etc.

Suppose T € 5. Then z = do T belongs to S, and therefore (G3)(b) tells
us that

Ad\akm
Jo (o3 e —2 . o).
(w8 e T o)
Consequently,
; Asg
26 J=(pooT) € - |PoTt|: Pco(z),.
(26) (ton) e{Tes 1Porl: Peot)}
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On the other hand (7) and (9) show that ;E = (53“' - (¢S o 7), and
therefore (26) gives

J-(25) € {A- (w(dg) - 62) ™ - [Por]: P €o(dg )}

Comparing this to the definition (10) of & (z), we find that

($5) e A7 ().

S

ol

Since 65 — 1, and hence also w (55) = 1 (because w is a regular modulus

of continuity), it follows that

Aslem
Q

)

Q Wl

5 (@)

(¥

xT

)Ew(aé

This shows that (G3)(b) holds for SZDE, E, ctc.

Next, we check that (G3)(c) holds for 9:05, E, etc. Hypothesis (G3)(c)
for o2, E, etc., tells us that J, (¢ %) = PY. From the definitions (7) and (6),

we see that Jg( ) =0 1 J,(¢5) o and pY= g 1Py o7, with 7 as in (9).
(Here, we use also (5)).
Therefore, -
503 =P
This proves (G3)(c) for s:0§ E, ete.
We have now checked (G3)( ),(b),(c) for ZE, E, etc. Thus, (G3) holds

for A,Q, 5, B, f, 7, A", (P"),_~5.

Next, we check that (G4) holds for A, Q,w E etc.

Suppose SCE with #(S) < k.. Wedefine S =dg- S (see (2)). Thus,
S C E with #(S) < k7. (See (3).) Applying hypothesis (G4) for A, Q,w, E
etc., we obtain a function F¥ € C™«(R"), satisfying (G4)(a),(b),(c).

We then define FS by (11). Thus, FSe C’m’i(R").
We check that (G4)(a),(b),(c) hold for ]?E, A, 5, E, etc.
We first check (G4)(a) for }ZWE, A, E), etc. From (11), we have

197 FS [leomn = ((bg) - 05) - 35" || 9°FS ||cogn) for |B] < m.
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Therefore, (G4)(a) for ¥, A,Q,w, E, etc., implies

| 8° FS [|comm< A for |8] <m.

Since 55 =w (6=) = 1, this is equivalent to

Q
|07 FS oo < AG (55) 627 for 5] <m.

Thus, (G4)(a) holds for Z:?E,A, g), etc.

Next, we check (G4)(b) for F S A,Q, ete. From (11), we have, for
|| = m, that
(27) 0% FS(3") = 0°F5(@")] = (w(6q)) 0P FS(a') — 9° F5(a"),
with o' = 5Qx and x” = 5Qx )

If \:?’—:?:”| < (55, ie., if |::C’—9:E”] <1 (see (1)), then we have |2’ —2"| < d¢,
and therefore (G4)(b) for F¥, A, Q, etc. applies. From (27) and (G4)(b) for
FS A, Q, etc., we find that

DPFS@E) = OPFS(E") < Alw(de)) ™ - w(la’ — )
wog - [7'—7

w(dq)
Thus, for |3| = m, 2/, 2" € R" with | z/— 2"| < 55, we have

=A- i) = A-w(|z'—2"]) (see (4)).

0° FS(z') - 0° F ( | < A-w (| x'—z")).

e
This means that (G4)(b) holds for FS A, Q etc.
(

Next, we check that (G4)(c) holds for FS, A, Q, ete. Suppose T € S. We
set = dg re S (see (2)), and apply (G4)(c) for ¥, A, @, etc. Thus,

J(F%) € f(x) + A-o(x).

Consequently,
To((@(0)63) ™" - [F® o7]) € (w(3@)0g) " [f (x) o 7]
A

Comparing this with (8), (10), (11), we see that

J(F%) €] (5) + 4 7 (7).
This shows that (G4)(c) holds for ;’g,A, 62, etc.
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We have now checked (G4)(a), (b ), (c) for EE ,6:2, etc

Thus, (G4) holds for A Q. 0, LZU

At last, we have checked (GO ), . (G4) for A Q, B, etc.
) e

Thus, 4,Q.&. B, f.7. A" (P
with g) having diameter 1.

= satlsfy the hypotheses of Lemma 8.1,

If Lemma 8.1 holds for cubes of diameter 1, then we obtain for A, 5, w,
etc., a function Fe C™(R"), satisfying (G5), (G6), (G7) for A, Q,w, etc.
Since 65 =w (55) = 1, this means that

(28) | o’ ;‘|CU(R”) < A" for 18] < m;
(29) 07 F (2) —9° F (2") < A"

w0 (‘;/ . ;// )

for |3| =m, 2, 2" € R*, |z’ — z”| < 1; and
(30) J-(F) €f () + A'- 3 (z) for all Z€E NQ*.
Here, A’ is determined by A, m,n.

We now define F' on R”, by setting

(31) F = (w(dg) - 03)-
(32) F(z) = (w(d) - 03)-

Since F € Cm’“:’(R”), we have F' € C"™“(R").

We will check that the function F' satisfies conclusions (G5), (G6), (GT7)
for A,Q,w, E, f, o, etc., with the same constant A’ as in (28), (29), (30).

First, we check (G5) for F, A, Q,w, etc. Immediately from (28), (32), we
have

| O°F llcony = (@(d0) - 83) - 3" 1| 9 Flloogn < Aw(do)dg "

for |3| < m. Thus, (G5) holds for F, A, Q,w, etc.

Next, we check (G6) for F, A, Q,w, etc.

Suppose |G| = m,_x’,xj € R, |2/ —2"| < 0. Setting T = (56_211‘/,
x" =6, we have | z'— z”| <1, hence (29) applies. From (29), (32) we
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obtain
0°F(a') — 07F (2")] = (w(dg)d5)d,"" 107
< Aw(dg)- w (| ‘?i x
. w<5Q| r'— l’”D (see (4))

F(x') -9 F (2")]
)

(recall, |B] = m)

= Auw(dg| T'— ")) = Aw(|a’ —2")).

Thus, (G6) holds for F, A, Q,w, etc.
Next, we check that (G7) holds for F) A, Q,w, etc. Suppose z € ENQ*.

Setting r= 56_2137, we have T€E N C_Q*, hence (30) applies. Thus,

J-(F) ef (z) + A’ o (2).

gl

Consequently,

(33) Ju(w(dg) - 05 - [F o77']) € w(50)83 - [(/ (

We have from (8) that
()05 - [(f (@) o771 =w(de) - 65 - [(w(3e)d3) ™"+ {(f(6g ) o T} o 7]
= f(bg 7) = f(x).

Together with (31), this yields

aell
Mm

SY
—

(34) Jo(F) € f(z) + A" - {w(dg)dg - [P oT ']:
From (10), we see that

{w(dQ)d3 - [P or ] :PET (1)} =
= {w(d)d5 - [(W(6e)53) ' [Por] o 771 : P € o(dg 1)}

/ Q
= 0(dg v) = o(x).

Hence, (34) shows that
J.(F) € f(x) + A - o(x).

Thus, (G7) holds for F, A, Q,w, etc.
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We have now shown that Lemma 8.1 holds, provided it holds in the case
dg = 1. For the rest of the proof of Lemma 8.1, we suppose that dg = 1.
We take kﬁd to be a constant determined by m and n, satisfying

(35) Koy > 1,
and
(36) k%, > k¥, with k# as in the Strong Main Lemma for any A < A.

(Note that (36) makes sense, since one of the hypotheses of Lemma 8.1 is
that the Strong Main Lemma holds for each A < A.)

We will take ag!d(A) to be a small enough constant, depending only on
A,m,n, to be picked below.

Now suppose 4, Q,w, E, f,0, A (y € Q**), and PY(a € AY, y € Q**) are
as in the hypotheses of Lemma 8.1, with 6y = 1, and with &%, and a3'(A)
as described above.

We must show that there exists F'€ C™“(R"), satisfying (G5), (G6), (G7).

The first step is to correct f, as follows.

Given z € E, we let S = {z}. Thus, S C E and #(S) < k7, by (35).

Applying (G4), we obtain a function F¥ € C™“(R"), satisfying in par-
ticular |0°F9(z)| < A for |3] <m, and J,(F®) € f(x) + Ao(z).

Setting f(z) = J,(F®), we have
(37)

(In (37), note that since f(z) € R,, the expression 0°[f(z)](z) makes sense;

it means ((%)B [f(2)](y) evaluated at y = z.)

In view of (37) and (G4), we have the following property of f.
(38) Given S C E with #(S) < k7, there exists F¥ € C™*(R"), with

(@) || 0°FF ||cowny < A for |B] < mj

b) |0°F%(a') —0°FS(2")| < A - w(|z’ —2"|) for || = m, 2/, 2" € R™,

(

’x/ o JZ”’ <1

(c) J.(FS) € f(z) + 2A - o(z) forall z € S.
(Recall that 6 = 1, hence also w(dg) = 1 since w is a regular modulus of
continuity.)

We now check the following.
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(39) Claim: For each y € Q™ the hypotheses of the Strong Main Lemma for
AY are satisfied, with our present

2A7 a’gld (A)7 w, E7 Y, (py)aeftya f,O',

in place of
C? a/O’ w? E7 y07 (Pa)aéfb f7 2

in the statement of the Strong Main Lemma for AY.

In fact, 2A and a3'%(A) are positive constants; w is a regular modulus
of continuity and £ C R" is finite (by hypothesis of Lemma 8.1); y € R";
PY € P is indexed by o € AY (again, by hypothesis of Lemma 8.1); and, for
each z € E, we have f(z) € R, and o(x) C R, (yet again by hypothesis of
Lemma 8.1). To check (39), we must show that conditions (SLO),...,(SL5)
hold for 24, ad'(A), w, E, etc.

Condition (SL0) for 24, ag'd(A), etc., says that, for each z € E, the set o(x)
is Whitney w-convex x, with Whitney constant 2A. This follows at once
from our present hypothesis (GO).
Condition (SL1) for 24, ag'd(A), etc., says that 9°PY(y) = s, for B, € AY.
Since y € Q**, this is immediate from our present hypothesis (G1).
Condition (SL2) for 24, ag'"(A), etc., says that |[9°PY(y)| < 2A for § €
M, a € AY with § > a.

Since 6g = w(dg) =1 and y € Q**, this follows at once from our present
hypothesis (G2).

Condition (SL3) for 24, ag'd(A), etc., says the following.

(40) Given o € AY and S C FE with #(S) < k#, there exists ¢35 € C)0“(R"),
with

(a) [09p5(a") — pa(a")| < 242" — 2" + a§d(A) - (|2’ — 2”|) for
1Bl =m, o', 2" € R, |2/ — 2"| < 1

(b) J.(¢3) € 2A0(x) for all x € S; and

(c) Jy(pd) = Py

Here k7 is as in the Strong Main Lemma for 4Y.

We recall from the hypotheses of Lemma 8.1 that AY < A, since y € Q**.
Hence, (36) gives k7, > k#. Also, we again recall that 0o = w(dg) = 1.
In view of the above remarks, (40) follows at once from our present hypoth-
esis (G3). Thus, (SL3) holds for 24, ad4(A), etc.

Condition (SL4) for 24, ag'd(A), etc., says the following.
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(41) Given S C E with #(S) < k#, there exists F¥ € C™<(R"), with

(a) || FS HCm,w(Rn)S 214, and
(b) J,(FS) e f(z) 4 240 (x) for all z € S.

Here again, k7 is as in the Strong Main Lemma for AY, hence k7 < k:jfd,
by (36). Consequently, (41) follows at once from (38).

(Here, we use the precise definition of the C"“-norm from the section
on Notation and Preliminaries.) Thus, (SL4) holds for 24, ag'd(A), etc.

Condition (SL5) for 24, ag'd(A), etc., says that
(42) ag'd(A) is less than a small enough constant determined by 24, m, n.

We now specify a34(A), which so far was “to be picked later”. We
old

simply pick af“(A) to be a positive number, determined by A, m,n, and
small enough to satisfy (42). Thus, (SL5) holds for 24, ag'd(A), etc.
The verification of our claim (39) is complete.

~ We now recall two hypotheses of Lemma 8.1: For y € Q**, we have
AY < A; and the Strong Main Lemma holds for A < A.

Consequently, from (39), we may draw the following conclusion.

(43) Given y € Q**, there exists F' € C"™*(R"), with || F |[¢memn) < 4,
and J,(F) € f(x)+ A'o(x) for all x € EN B(y,d).

Here, A" and o' depend only on A, m,n. We fix A" and d’ for the rest of
our proof of Lemma 8.1.

We write Ay, Ag, - - for constants depending only on A, m,n.

To exploit (43), we use a partition of unity

Vmax

(44) 1= 6, onQx
v=1
with
(45) || 0,/ ||Cm+l(Rn) S 14]_7
(46) suppf, C Bl(y,,d’) withy, € Q**; and
(47) Vmax S AQ.

We can find {6,} as in (44),...,(47), since g = 1.
Since each ¥, belongs to Q**, we may apply (43).
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Thus, for each v (1 < v < vyay), we obtain F, € C"™“(R"), with
(48) ” FI/ HC”m,w(Rn)g Al’

and
Jo(F,)) € f(z) + A - o(x) for all z € E N B(y,,d).

In particular, we have

(49) J.(F) = f(x)+ A - P* forallze ENB(y,,d),
with
(50) P co(x), forallze ENB(y,,d).

From (48), we have |0°F,(z)| < A’ for |8] < m, x € R".
From (37), we have |0°(f(z))(z)] < A for |3| < m, z € E.
Together with (49), these estimates show that

(51) 0°P*(x)| < A3 for || <m, x € EN B(y,,d).

611

If we hadn’t taken the trouble to pass from f(x) to f(z) as above, then

we would not have been able to obtain (51).
We now define

Vmax

(52) F=)>06,-F € C"(R".
v=1
From (45), (47), (48), we conclude that
(53) | F [|ememn< Ag.
Next, fix x € @*NE and let Q = {v: 1 < v < vyax and x € B(y,,d’)}.
Then, with “” denoting multiplication in R,, we may argue as follows.
We have
(54) J(F) = > J.(0,) - Jo(F) (see (52))
1<v<vmax
veQ
= Ju(0,) - f@) + > Ju(0,) - AP (see (49))
veQ veQ

1<v<vmax vEN

veQ)



612 C. FEFFERMAN

We note that

(55) |07 @ ()] <1 for |B] <m, thanks to (45),
5

and also

x

(56) 107 (%) ()] <1 for|B] <m,vef, thanksto (51).
6

We may take Ag > 1 in (56). Hence, we have also

(57) (A—”) €o(x) forveQ, thanks to (50).
6
(Recall that o(z) is convex and symmetric about 0.)

From (55), (56), (57), and from hypothesis (GO) of Lemma 8.1, we con-
clude that

(58) J.(0,) - PJ € Aro(x) forall v e Q.

(Here, we take § = 1 in the definition of Whitney w-convexity.)

From (47), (58), and the fact that o(x) is convex and symmetric about 0,
we conclude that

Z Jx(eu) ' Prjc € AgO’(l’) )

ves)

and consequently (54) implies that
(59) J.(F) € f(z) + Ago(x).

From (37) we recall that f(z) — f(z) € Ao(x). Hence, (59) yields
Jo(F) € f(z) + Aypo(z).
Thus, we have shown that
(60) Jo(F) € f(x) + Ajppo(x) forall z € ENQ*.

In particular, we have produced a function F' € C™*“(R"), satisfying (53)
and (60). Since the constants A, and Ay in (53) and (60) are determined
by A,m,n, we see that F satisfies the conclusions (G5), (G6), (G7), and
that the constant called A" in (G5), (G6), (G7) may be taken to depend
only on A, m,n.

Thus, we have proven Lemma 8.1 in the case of dg = 1. Since we already
reduced the general case to the case dg = 1, the proof of Lemma 8.1 is
complete. [ |
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9. Set-Up for the Main Induction

In this section, we give the set-up for the proof of Lemma 5.2 in the monotonic
case. We fix m,n > 1, and A C M.

We let k% be a large enough integer, determined by m and n, to be
picked later. We suppose we are given the following data:

e Constants Cp, ay,as > 0.

e A regular modulus of continuity w.

e A finite set £ C R".

For each = € E, an m-jet f(x) € R, and a set o(x) C R,.
A point ¢y° € R™.

A family of polynomials P, € P, indexed by a € A.

We fix Cy, a1, a9, w, E, f,0,9°, (Pa)aca until the end of Section 16. We
make the following assumptions.

(SUO) A is monotonic, and A # M.
(SU1) The Strong Main Lemma holds for all A < A.

(SU2) For each = € E, the set o(z) C R, is Whitney w-convex at x, with
Whitney constant Cj.

SU3) 9°P,(y°) = dp, for all 5, € A.

SU4) [0°P.(y°) — 0pal < ay for all B € M, a € A.

SU5) a, is less than a small enough constant determined by Cy, m and n.

(SU3)
(SU4)
(SU5)
(SU6) Givena € Aand S C E with #(S) < k# there exists ¢ € Cy”(R™),
with

(a) [0%p5(2")—=0%p5 (2")| < ag-w(|a’—2"|) for all B, z, 2’, with || = m,
2, 2" € R, |£C, _ l‘”| <1

(b) J.(¢3) € Coo(z) for all z € S; and

(c) Jp(e3) = P
(SUT) aq is less than a small enough constant determined by aq, Cy, m, and n.
(SU8) Given S C E with #(S) < k#, there exists F'® € C™*(R"), with

(a) || FS HCm,w(Rn)S CO, and
(b) J.(F%) € f(x) + Coo(x) for all z € S.
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The main effort of this paper goes into proving the following result.
Lemma 9.1 Assume (SUO),...,(SU8). Then there exists F'€ C™*(R") with
(a) || F |lememny < A, and
(b) J.(F) € f(z) + Ao(z) for allz € ENB(Y°, a);
here, A and a are determined by ay, as, m,n,Cy.
In this section, we prove the following result.
Lemma 9.2 Lemma 9.1 implies Lemma 5.2.

Proof: Assume that Lemma 9.1 holds. To establish Lemma 5.2, we fix
A C M, with A # M, and we assume that the Strong Main Lemma holds
for all A < A. We must prove the Weak Main Lemma for A under the
above assumptions. We may assume also that A is monotonic, thanks to
Lemma 7.1.

Let C,ap,w, E, f,0,9°, (Pa)aca be as in the hypotheses of the Weak Main
Lemma for A, with the “small enough constant” in (WL5) to be picked below.
We take k% as in (SUO),..., (SUS).

We then pick the constants Cy, ay, as as follows.

First, we take Cy = C.

Next, we pick a; > 0, depending only on C,m and n, and small enough
to satisfy (SU5).

Finally, we pick ay > 0, depending only on C,m,n, and small enough to
satisfy (SUT). (This can be done, since our a; depends only on C,m and n.)

We now take the “small enough constant determined by C,m,n” in
(WL5) to be small enough that (WL5) implies ay < min(ay, as).

With the constants picked as explained above, we have satisfied (SU5)
and (SUT), and we have ensured that

ap < min (ay, as),

since we are assuming (WL5).

We now check that Cy,ay,as,w, E, f,0,y", (P.)aca satisfy conditions
(SU0),..., (SUB).

In fact, we have assumed (SUO) and (SU1), and we have picked the
constants aj, as to satisfy (SU5) and (SUT).

Conditions (SU2), (SU3), (SU4) are immediate from hypotheses (WL0),
(WL1), (WL2), since C = Cj and ag < a.

Similarly, conditions (SU6) and (SU8) are immediate from hypotheses
(WL3), (WL4), since C = Cj and ag < as.

Thus, as claimed, Cy, ay, as,w, E, f,7,4°, (Pa)aca satisfy (SU0),.. ., (SUS).
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Since we are assuming Lemma 9.1, it follows that there exists F' €
C™“(R™), with

|| F HCm,w(Rn) S A, and Wlth

1) Jo(F) € f(z) + Ao(z), for allz € ENB(y", a),

where A and a are determined by Cy,m,n,a;,as. However, we picked
Cy, a1, as above, so that Cy = C, and a; and ay are determined by C,m,n.

Consequently, A and a in (1) are also determined by C, m,n. Hence, (1) is
equivalent to the conclusions (WL6), (WLT) of the Weak Main Lemma for A.

Thus, we have proven that Lemma 9.1, together with the Strong Main
Lemma for all A < A, implies the Weak Main Lemma for .A. This shows that
Lemma 9.1 implies Lemma 5.2. The proof of Lemma 9.2 is complete. [

We begin the work of proving Lemma 9.1. Until the end of Section 16, we
fix Co, a1, a9, w, E, f,0,9°, (Py)aca, and we assume that (SUO),..., (SUS)
are satisfied. Also, until the end of Section 16, except in Section 15, we write
¢, C, ', ete., to denote constants determined by Cy, m, n in (SUO),. .., (SU8);
and we call such constants “controlled”. However, in Section 15, ¢,C, C’,
etc. will denote constants depending only on m and n.

Also, until the end of Section 16, we fix a constant kﬁd, depending only
on m and n, as in Lemma, 8.1.

10. Applying Helly’s Theorem on Convex Sets
In this section, we start the proof of Lemma 9.1 by applying repeatedly the
following well-known result (Helly’s theorem; see [18]).

Lemma 10.0 Let F be a family of compact, convex subsets of R%. Suppose
that any (d + 1) of the sets in F have non-empty intersection. Then the
whole family F has non-empty intersection.

We assume (SUO,.. ., 8), and adopt the conventions of Section 9.
For M >0, S C E, y € R, we define

(1) Ky, 5.0M) = {J,(F) : F € C" (R), | F llomegsny < M.
Jo(F) € f(x) + Mo(x) on S}.

For M > 0,k > 1, y € R", we then define
(2) Ky kM) = ({Ks(y, S, M) : S C E, #(5) < k}.

Note that K¢(y, S, M) is a convex subset of P.
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Moreover, if F; € C™“(R") with || F} [|cme@n< M and J,(F;) € f(x)+
Mo(x) for all x € S, for i = 1,..., then by Ascoli’s theorem, we may pick
out a subsequence of { F;} that converges in C"™-norm on compact sets in R".
The limit F' of that subsequence will satisfy F' € C™“(R"), || F' ||cmw@n) <
M, and J,(F) € f(z) + Mo(z) for all z € S. (Here, we recall that o(z)
is closed, since it is Whitney w-convex.) Consequently, K¢(y, S, M) is a
compact, convex subset of P. Hence, also, Kf(y,k, M) is compact and
convex.

Lemma 10.1 Suppose we are given k¥, with k# > (D+1)-k¥, and kI > 1.
Let Cy be as in (SUO) ,..., (SUS). Then Ks(y, ki, Co) is non-empty, for each
yeR".

Proof: Fixy € R", and let Sy,...,Spy1 C E, with #(S;) < kfﬁ for each i.

Let S = S1U---USpy;. Thus, S C E with #(S) < k#. Applying (SUS)
to S, and setting P = J,(F¥) with F¥ as in (SU8), we have P € K((y, S;, Co)
for i = 1,...,D + 1. Consequently, any (D + 1) of the sets K;(y, S, Cp)
(S C E,#(S) < ki) have non-empty intersection. Hence, Lemma 10.1
follows from Helly’s theorem and (2). |

Lemma 10.2 Suppose k¥ > (D + 1) - k¥, let A > 0, and suppose we
are given P € Ky(y, ki, A). Then, for |y —y| < 1, there exists P' €
Ki(y' kY, A), with

0°(P—P")(y)|, 10°(P—=P") ()| < CAw(ly—y/|) - ly—y/|"™" for |B] <m.
Proof: For S C F, define

Keempl(S) = {Jy(F) : F € C™(RY), || F flcmequn < A,
Jo(F) € f(x) + Ao(z) on S, J,(F) = P}.

Each Kiemp(S) is a compact convex subset of P, as we see from Ascoli’s
theorem, just as above for Kr(y, S, M). Let Sy, ..., Sp41 C E, with #(5;) <
k¥ for each i. Set S = Sy U---U Spy; note that S C E, with #(S) < ki
Since P € /Cf(y,k#,A), there exists F € C™“(R") with || F' ||¢me@n)< A,
Jo(F) € f(x)+Ao(x)on S, and J,(F) = P. In particular, .J,/(F) belongs to
Ktemp(S;) for each i. Thus, any (D +1) of the sets Kiemp(S) (S C E, #(5) <
k‘# ) have non-empty intersection. By Helly’s theorem, the intersection of all
the sets Kiemp(S) (S C E,#(S) < k¥) is non-empty. Let P’ belong to this
intersection. Thus, by definition, P’ has the following property.

(3) Given S C E with #(S) < k¥, there exists F' € C"™*(R"), with

| F leme@mm< A, Jo(F) € f(z) + Ao(z) for all z € S, J,(F) = P,
Jy(F) = P,
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In particular, we have P’ € K;(y, k¥, A). Also, taking F' as in (3) with
S = empty set, we have from Taylor’s theorem that

0°(P =Pl =1 ) % (@*P(y)) - (v —y) —°P'(y))]
[v|<m—|B]

= > ~ L @) - o — ) - PF)
[v|<m—|B]

< CAw(ly =) - ly —y/ ",
and similarly for [0°(P — P’)(y)|. The proof of Lemma 10.2 is complete. B

Lemma 10.3 Suppose k# > (D +1)- k¥, and let y € B(y°, a1) be given.
Then there exist polynomials PY € P, indexed by o € A, with the follow-
g properties:

(WL1)Y 9°PY(y) = 6pa for B,a € A.
(WL2)Y |0PPY(y) — dpa| < Cay for all a € A, B € M.

(WL3)Y Givena€ A and S C E with #(S) < kI, there exists 5 € C)*(R"),
with

(a) [0°%pS(2") — 0PpS(2")] < Cagw(|z’ — 2"|) for || = m,2',2" € R",
|l'/ _ :L‘”| <1;

(b) J.(¢3) € Co(x) for all z € S; and
(c) Jy(cpg) =Py
Proof: We may assume y # 3°, since otherwise the lemma is immediate

from (SU3,4,6).
For a € A, S C F, we define
Ka(S) ={Jy(p) : o € Cr(R™), Jyo(¢) = Pa, Ju(p) € Coo(z) for all z € S
and 10%p(2") — 0P p(2")] < asgw(|2’ —2"|) for |B] =m
33173:// € R, |$/ B ZL‘”| < 1}

(Here, as and Cj are as in (SUO,...,8).)
Each I, (5) is a convex subset of P. We check that I, (S) is also com-
pact. In fact, suppose P; € K, (S) for i =1,2,....

Then there exist ¢; € Cp(R™), with J,(¢;)

Jo(pi) € Coo(x) for all x € S, and |0Pp;(2") — OPp; (")
1B =m, 2/, 2" € R", |2/ — x”| <1.

P, Jyo
<a
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In particular, since Jy,o(¢;) is fixed and the 9°p; (|3] = m) have a com-
mon modulus of continuity, Ascoli’s theorem picks out a subsequence {;,}
that converges in C" norm on compact subsets of R”. The limit ¢ will then

satisfy ¢ € Cyi(R™), Jyo(p) = Pa, Ju(p) € Coo(z) for all z € S, and

Loc
10%p(2") — 0%p(2")| < agw(|a’ —2”|) for |B| =m, o', 2" € R" |2’ —2"| < 1.

(Here, we use the fact that o(x) is closed, since it is Whitney w-convex.)

It follows that J,(¢) belongs to ICy(5).

On the other hand, since ¢;, — ¢ in C™-norm on compact sets, we have
P, = J,(¢i,) — Jy(p) in P. Thus, any sequence {PF;} of points of ICy(5)
has a subsequence that converges to a point of I, (S). Hence, as claimed,
Ko(S) is compact.

Next, suppose Si,...,Spy1 C E, with #(S;) < kfﬁ for each i. Set
S =S, U---USpy1; note that S C E with #(S) < k%,

Applying (SU6), and letting ¢ be as in (SU6), we see that J,(¢3) be-
longs to KCn(S;) for each i. Thus, any (D + 1) of the sets K, (S5) (S C
E.#(S) < k¥) have non-empty intersection.

Consequently, by Helly’s theorem, there exists PY € P, belonging to each
Kal(S)(SCE,#S) < k{).

By definition, the PY have the following property.

(4) Given S C E with #(S) < kf&, and given a € A, there exists @5 €
Cm?(R™), with

toc
(a) [0°@5(2") — 0P@5(2")| < asw(|2’ — 2”]) for |B| = m, 2/, 2" € R™,
|2/ — 2" < 1;
(b) J.(¢3) € Cyo(z) for all x € S;
(c) Jpo(@2) = Pa;
(d) J,(p2) = P

[0}

In particular, taking S= empty set in (4), we find that, for |3| < m, we have

) 1
(5)  10°Piy) — D S (@R (y—¢°)
v
[v|<m—|B]
1
=%y = D S @G - (y—°)]
ly|<m—[8] "
< Casw(ly =¢°)) - ly =9I
S Cag.

(Recall that w is a regular modulus of continuity and that y € B(y°, ay),
with a; < 1 by (SU5).)
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From (SU4,5), we have |07 P,(y°)| < 2 for all « € A, 3’ € M.

Since also y € B(y°,a1) with ay < a; < 1 (see (SU5,7)), we have
PP (y0)| - [(y — y°)?| < Cay for v # 0, and therefore (5) implies

10°PY(y) — 9°P.(y°)] < Cay fora € A, B € M.
In view of (SU4), we therefore have
(6) 10°PY(y) — 0pa| < Cay for a € A, f € M.

From (6) and (SU5), we see that the matrix (0°PY(y))s.aca is invertible,
and its inverse matrix (Maya)o aca satisfies

(7) Mo — 0ora| < Cay  for o/, € A.
For each a € A, we now define
(8) PY = > PYMy, € P.
a’eA

By definition of M, we have

9) P PY(y) = Z (0°PY(y))Muro = 05 for B,a € A.
o’c A
Also, from (6), (7), (8), we see that
(10) 10°PY(y) — 0pa| < Cay forall e M, a e A

Next, suppose we are given S C E, with #(5) < sz For each a € A,
let @3 € C)2“(R") be as in (4), and then define

Loc

(11) S = Z @3 My, for each a € A.

a’eA
Thus, ¢35 € C;¥(R™). From (4)(a), (7), (SU5), and (11), we see that
|0705(a) — 078 (a")| < Casw(|2’ — 2"))

for |G| =m, o/,2" € R", |2/ —2"| < 1.
From (4)(b), (7), (SU5), and (11), we see that

J.(p2) € Co(x) forallz € S.

(Here, we also use (SU2).)
From (4)(d), (8), (11), we obtain

Jy(p3) = PV for a € A



620 C. FEFFERMAN

Thus, we have proven the following.

(12) Given o € A and S C E with #(S) < k7, there exists ¢35 € CJ"*(R),
with

(a) [07¢a(a") = 0%p2(a")| < Cagw(|2’ — 2"|) for [B] = m, o', 2" € R",
’x/ - :C”’ <1
(b) J.(¢3) € Co(z) for all z € S; and
(c) Jy(e2) = P
The conclusions of Lemma 10.3 are (9), (10) and (12).
The proof of Lemma 10.3 is complete. [

Lemma 10.4 Suppose k#* > ki - (D +1) and k¥ > kI - (D +1).

Let y € B(y° a1), and let (PY)aea satisfy conclusions (WL1)Y, (WL2)Y,
(WL3)Y, as in the conclusion of Lemma 10.3. Let y' € R™ be given.

Then there exist polynomials ]53/(0( € A), with the following property:
Given a € A and S C E with #(S) < ki, there exists ©3 € C)7(R™),
with
(a) |97 ¢i(a’) = 0°p3(a")] < Casw(la’—2"])  for |B] =m,a’ 2" € R",
|$/ . ZE”| < 1;

(b) J.(¢3) € Co(z) for all z € S;
(c) Jy(ea) = PY: and
(d) Jy(p3) = PY.

Proof: The lemma is trivial for ¢y = y; we just set 150%' = P, and ap-
ply (WL3)v.
Suppose iy’ #y. For a € A, S C E, we set
KEI(S) = {Jy(p) : o € O (R");10%0(2') — 9% p(a")] < Cagw(|z’ — 2))
for |8 =m, 2’2" e R", |2’ — 2" < 1;
J.(¢3) € Co(z) for all z € S; J,(p) = PV},

with C' as in (WL1)Y, (WL2)Y, (WL3)V.

As in the proof of Lemma 10.3, we see that K[®)(.S) is a compact, convex
subset of P. Suppose Si,...,Spy1 C E, with #(57) < kf for each 1.

Set S =S5, U---USpsy; note that S C E, with #(S) < k.

Taking 3 € C/v“(R") as in (WL3)¥, we see that J,(¢3) belongs to

Klel(S;) for each i.
Thus, Kl(S))N---N KA (Spyy) is non-empty.
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~ Applying Helly’s theorem, we see that, for each o € A, there exists
PY € P, belonging to K*(S) for each S C E with #(S) < k¥ .

Properties (a),...,(d) for P¥ now follow from the definition of K)(S).
The proof of Lemma 10.4 is complete. [

Next, for y e R, k> 1, M > 0, we define
K7 (y,k, M) = {P € Ks(y.k,M): 0°P(y) =0 for all 3 € A}.

Lemma 10.5 Suppose k# > (D + 1) - k¥ and k¥ > 1 Then, for a large
enough controlled constant C', the set Iij7£ (v, kfﬁ, C') is non-empty for each
y € By’ a).

Proof: Fix y € B(y°,a;). By Lemma 10.1, there exists P € K;(y, k¥, Co).
Thus, P € P, and

(13) given S C E with #(S) < k7, there exists FS € Cj»“(R"), with

(a) || F? | emow@ny < Co;
(b) J.(F%) € f(x) + Coo(x) for all z € S; and
(c) J,(F5) = P.

By Lemma 10.3, there exist PY € P (all « € A), with properties (WL1)Y,
(WL2)¥, (WL3)¥. We define

(14) P=P - (0°P(y)) - PY € P.
acA

For § € A, we have

(15) 0°P(y) = 9°P(y) = > _(9°P(y)) - ("Piy)) = 0,

acA

thanks to (WL1)Y.
Taking S = empty set in (13), we see that

(16) 10°P(y)| < C forall B € M.
We introduce a cutoff function 6 on R", with
(17) | 0 [[cmir@ny< C,0 =1 on B(y,1/20), supp ¢ C B(y,1/10).

Now, let S C E, with #(S) < k#. We let [ be as in (13), and for each
a € A, we let ¢F be as in (WL3)Y.
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We then define

(18) FS = F5 =" [0°P(y)] - 055 € C™(R")
acA

(Note that F'S € C™*(R"), ¢35 € CjnX(R"), § € C™(R"), and suppf C

Loc

B(y,1/10). Hence, FS € C™(R"), as asserted in (18).)

Let us estimate the derivatives of F'S. From (WL2)? and (WL3)¥ (a), (c),
we have

(19) 10°p5(2)| < C for |B| < m and 2’ € B(y, 1).

(Recall that a; < 1, by (SU5).)
From (19), (WL3)(a), and (17), we see that

(20) 1603 llomw@mn< C for a € A.
From (13)(a), (16), (18), (20), we conclude that
(21) | ¥ [lome@n < C.
Next, suppose € S N B(y, 1). Then (WL3)(b) and (19) show that
To(epn) € o(x), and [0°[Ju(cp))(x)] <1 for [B] < m.
Also, (17) gives
071 Jo(c)] ()] <1 for |B] < m.

Recalling our assumption (SU2), and taking 6 = 1 in the definition of
Whitney w-convexity, we see that

Jo(0p5) € Co(z) for x € SN B(y,1).

On the other hand, if x € S ~ B(y, 1), then from (17) we see that
J.(005) =0 € Co(x).

Thus, we have proven that
(22) J.(0p5) € Co(z) forallz € S, ac A.
Hence, from (13)(b), (16), (18), (22), we obtain

(23) J.(F%) € f(z)+ Co(z) forallzeS.
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Next, note that (13)(c), (14), (WL3)(c), (17), (18) show that

(24) J(FS) = 3,(FS) = 3 [0°P(9)] - J,(063)
) SR A
PSRl p
p

In view of (21), (23), (24), we have proven the following result.
Given S C E with #(S) < k¥, there exists FS € C™«(R"), with

| F¥ [|gmwmny < C, J.(FS) € f(z)+Co(z) for allz € S, and J,(F®) = P.

By definition, this means that P € K;(y, k}’, C).
This, in turn, implies P € IC?E(y, k:fé, ('), thanks to (15).
Thus, K?(y, /{:If, (') is non-empty.
The proof of Lemma 10.5 is complete. [

11. A Calderon-Zygmund Decomposition

In this section, we again place ourselves in the setting of Section 9, and we
assume (SUO,...,8). We fix a cube Q° C R", with the following properties.

(1) Q" is centered at y°.
(2) (@)™ C B(y", m).
(3) ca; < §Q0 < aj.

Recall that a subcube Q@ C @V is called “dyadic” if Q = Q or else @
arises from Q° by successive “bisection”. A dyadic cube @ # Q° arises
by bisecting its dyadic “parent” Q*, which is again a dyadic cube, with
dg+ = 20g. Only Q" and subcubes of Q° may be called “dyadic”, according
to the above definition.

Two distinct dyadic cubes will be said to “abut” if their closures have
non-empty intersection.
We say that a dyadic cube @ is “OK” if it satisfies the following condition:

(OK) For every y € Q**, there exist AY < A and polynomials PY € P (a € .AY),
with the following properties:
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(OK1) 9°P¥(y) = dp, for all B, € AY.
(OK2) 657110 Py(y)| < (ar)~("+? for all a € AY, 3 € M with § > a.

(OK3) Given o € AY and S C E with #(S) < k7, there exists ¢5¥ €
Coo(R™), with

Loc

(2) 1075 (a) =P g5 (a")] < (a1)~("+2).55 17" o/ —a |4 (@)~ (7 +)
jal-m _ w(|z’ —2"|)
o O AU T
2 e w(dq)
for |B]=m,2", 2" e R", |2’ —2"| <ég;
b) J.(o3Y) € (a))~ D) . 5l (w(Gp)) Y - a(z) for all z € S;
« Q Q
(c) Jy(ehY) = PY.

Here, kﬁd is as in Lemma 8.1 and Section 9.

We say that a dyadic cube @ is “almost OK” if either () is OK or Q**
contains at most one element of .

We say that a dyadic cube @) is a “CZ” or “Calderén-Zygmund” cube, if ()
is almost OK, but no dyadic cube @' properly containing () is almost OK.
Recall that, given any two dyadic cubes )1, (Q2, we always have one of the
three alternatives: Q1 C @2, Q2 C @1, @1 and Q)5 disjoint. Consequently,
any two distinct CZ cubes are disjoint. Moreover, since £ C R" is finite, any
sufficiently small cube () can contain at most one element of E/. Hence, any

sufficiently small dyadic cube @ is almost OK, and is therefore contained in
a CZ cube.

Thus, we have the following easy result.

Lemma 11.1 The CZ cubes form a partition of Q° into finitely many dyadic
subcubes.

Next, we prove that the CZ cubes have “good geometry”.
Lemma 11.2 If two CZ cubes Q, Q" abut, then 1dg < g < 20q.
Proof: Suppose not. Without loss of generality, we may assume that dg <d¢.
Since 6o = 27¥3g0 and g = 27¥§g0 for some integers k, k' (because
Q, Q' are dyadic), we must have 6o < iéQ/.
Hence, @ # @Q, and the dyadic parent Q* abuts Q" and satisfies
1
Consequently, we have

() (@)™ c (@)



A GENERALIZED SHARP WHITNEY THEOREM FOR JETS 625

We know that @’ is almost OK, since it is a CZ cube. We will show
that @* is almost OK. In fact, if (Q')** contains at most one element of F,
then the same is true of (Q7)* by (5), and hence QT is almost OK, as
claimed. If instead (Q’)** contains at least two distinct elements of E, then,
since @)’ is almost OK, we know that @’ is OK. In this case, we will show
that Q7 is also OK. This will complete the proof that Q" is almost OK.

To see that QF is OK whenever Q' is OK, we let AY, PY (o € AY) be
as in (OK1,2,3) for y € (Q')**. Thus, AY, PY(a € AY) are defined for each
y € (Q")**, and so, in particular, for each y € (Q")**, thanks to (5).

Moreover, conditions (OK1,2,3) for Q%1 follow from (OK1,2,3) for @,
thanks to (5) and the following inequalities:

opel < o for B> o,
55‘,|_m_1 < 553',_”7’_1 for a € M,
5\5,|—m < (5‘51_7” for « € M,
(W)™ < (w(dg+)) ™"

These inequalities are immediate from (4) and the fact that w is a regular
modulus of continuity. Thus, (OK1,2,3) hold for Q*, AY, PY(a € AY),
completing the proof that Q* is OK in this case. This also completes the
proof of our claim that Q% is almost OK.

However, Q" cannot be almost OK, since it is a dyadic cube prop-
erly containing the CZ cube (). This contradiction completes the proof
of Lemma 11.2. |

As an easy consequence of Lemma 11.2, we have the following.

Lemma 11.3 For a small enough constant ¢c; > 0 depending only on the
dimension n, the following holds:

Suppose © € Q, x' € Q', for CZ cubes Q and Q'. If the balls B(z,c1dq)
and B(2', c10¢) intersect, then the cubes Q, Q" coincide or abut.

Proof: Without loss of generality, we may suppose d¢ < dg.

If Bz, c1dqg) intersects B(2', ¢1d¢y), then |z — 2’| < ¢10¢g + c16g < 2¢10¢
hence 2’ € {y € R™: distance (y, Q) < 2¢10g} = 2. However, if ¢; is a small
enough constant depending only on the dimension n, then the set QN QY is
covered by () and the CZ cubes that abut it, thanks to Lemma 11.2.

Consequently, 2’ € @Q”, where Q" is some CZ cube that coincides with
or abuts (). Since also 2’ € @', the cubes @', Q" cannot be disjoint. Since
two CZ cubes are either equal or disjoint, we must have Q' = @)”. Hence,
@' and @ coincide or abut. The proof of the lemma is complete. [ |

Until the end of Section 16, we fix the cube Q° and the collection of CZ
cubes.



626 C. FEFFERMAN

12. Controlling Auxiliary Polynomials I

We again place ourselves in the setting of Section 9, and we assume
(SUO ,..., 8). In this section only, we fix an integer kfé, a dyadic cube @, a
point y € R", and a family of polynomials PY € P, indexed by a € A; and
we make the following assumptions.

(CAP1) k#* > (D+1) -k, and k¥ > (D +1) - k7).

(CAP2) y € Q.

(CAP3) Q is properly contained in Q°.

(

CAP4) The PY(a € A) satisfy conditions (WL1)¥, (WL2)Y, (WL3)¥. (See
Lemma 10.3.)

(CAP5) (a1)~"*) < maxpent 35 [O7PY(y)] < 271 - (ar) =m0,
ac

Note that A is non-empty, since the max in (CAP5) cannot be zero.
Our goal in this section is to show that the dyadic cube Q% is OK. Let

(1) y € (Q")* be given.

Then y,y' € Q™ C (Q°)** C B(y°,a,), by (11.2).

_ Applying Lemma 10.4, with k:;éﬁ = k:fléd, we obtain a family of polynomials

PY € P, indexed by o € A, with the following property.

(2) Given o € Aand S C E with #(S) < k¥, there exists 93 € Cp“(R™),
with

(a) [07¢3(a") = 0%p3(a")| < Cagw(|a’ — 2"|) for [B] = m, o', 2" € R™,
’x/ - :C”’ <1
(b) J.(¢3) € Co(z) for all z € S;
(c) Jy(¥2) = P and
(d) Jy(ed) = PY.
We fix polynomials ]50?{' satisfying (2). The basic properties of the ]501{',
aside from (2), are as follows

Lemma 12.1 We have

3) e (@) <max sy TN RY )] < O (ar) 0
acA

(4) SN RY () < Chay forae A BEM, B> a;

(5) 0°PY () —1| < C - ay forae A; and

(6) 35 NOPPY ()| < O for Ba € A.
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Proof: We apply (2), with S = empty set. Thus, for each o € A, we obtain
Yo € CZZSU(Rn)a with Jy(‘zpa) = Py, Jy’(‘;@a) = PE{/, and

10°pa (1) =0 pu(2")| < Cagw(|z’—2"|) for |B] = m, 2, 2" € R", |2’ —2"| < 1.

For 8 € M, Taylor’s theorem implies

(7)
PP~ X @RI - =] -
Iv|<m—|B]
=10%a(y) = D i,(@”ﬁcﬂa(y))-(y’—y)”l
<m—tg T
< Caw(ly —yl) -y —y|™
and
®) R~ Y ORI - =y =
lyl<m—|8] *

)~ Y (@) - (v o)
i <m—1g "

< Caw(ly' —yl) - Iy —yI™ .
In view of (CAP2) and (1), we have
(9) Iy —y| < Cég < Cogo < Cay < 1.

(We have also used the fact that Q is dyadic, hence Q C QV; as well as (11.3)
and (SUb).)
From (CAP5), we have

(10) 07 PY ()| < 2 - (ag) 0D L gl

forae A BeM, |y <m-—|p.
Putting (9) and (10) into (7), we find that

(11) laﬁﬁ’g/(y’ﬂ <C (al)—(m+1) 55\—\@ +Cay 53—\@ < (al)—(m+1) 55\—\@

forae A, g e M.

(Here, we use the fact that g < dgo < 1, by virtue of (11.1)...(11.3),
and also the fact that w(|y’ — y|) < 1 since |y — y| < 1 and w is a regular
modulus of continuity. See also (SU5,7).)
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On the other hand, if we put
(12) Q =max 35 "' [9°PY (y)],

BEM
acA

then we have

(13) 7R W) < Qog T forae A e M, | <m 5]
Putting (9) and (13) into (8), we find that

(14)  [9°PY(y)| < CQo5T 4 Capsy ! < O [+ 1) - 55

forae A, g€ M.

Comparing (14) with (CAP5), we see that C-[Q+1] > (a;)~™*Y | hence
Q> c-(a;)~™*D. Together with (11) and (12), this proves conclusion (3).

Next, suppose o € A, § € M and > «. From (WL2)? and Lemma 3.1,
we have
07 PY(y)] < Cay for [y <m —|6].

Putting this and (9) into (7), and recalling (SU7), we have
0°PY ()| < Cay + Cay < C'ay .
Since also dg < 1, and || > |a| for § > a, we conclude that
55N PY ()| < C'ay forae A BeM,B>a.

Thus, we have proven conclusion (4).

Next, suppose a € A, and take § = a. By (SU0), we have v+ € A
for |y] < m — |B]. Hence, (WL1)Y gives " °PY(y) = 0,450 = 0,0, and
therefore (7) yields

|0°PY (i) — 1| < Cay < Cay, thanks to (SUT).

This proves conclusion (5).

Next, suppose «, f € A. Then, again (SUO) gives v+ § € A for |y| <
m — |3|; hence, (WL1)Y gives 0°TPY(y) = g4+ .-
In particular, we have

7P (y)| < 657 for |y < m — 18]
Putting this and (9) into (7), we find that
|8ﬂ]5é/<y/)‘ < C(')*g\—|/3| + Cay 5g—|ﬁ\ < 0/55\—\@

This proves conclusion (6). The proof of Lemma 12.1 is complete |
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Define a matrix

M = (Mﬁa)ﬁ,aEA
by setting

(15) Mso = 55‘_‘04 PP (y) for B,a € A.
From (4), (5), (6) we see that

|Mso| < Cay for B> a (3,0 € A,

(16) Moo — 1| < Cay for a € A,
|J\;[5a\ < C forall f,ac A.

That is, M lies within distance Ca; of a triangular matrix with 1’s on the
main diagonal, and with entries bounded by C.

It follows that the inverse matrix
M = (Moz’a)a’,ozEA

satisfies the same property, i.e.,

(17) IMyo| < Cay ifd >a(d,a€ A
(18) Moo — 1| < Cay if a € A;

and

(19) |Myol < C forall o,a € A

By definition, we have

20 Mgy My = 05 forall B,a € A.
B B
a’'eA
That is,
(21) ST 6N PY(Y) - Maa = dga for all fa € A.
a’'eA

We define the polynomials PY € P by setting

(22) Py =551 ST 6, BY - My, forallae A.

a’eA
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The basic properties of the PY are as follows.
Lemma 12.2 We have
(23) O°PY (y') = dpa for all B,a € A;

(24) c- (al)—(m+1) < rﬁne%(;glfla”aﬂpoy/(y/)‘ < C . (al)—(m—i-l);

acA
(25) 65 NOPBY (y)| < C-(ar)™ for alla € A, B € M with § > a;

(26) Given o € A and S C E with #(S) < k¥, there exists 35 € C[*(R"),
with

(a) [0°¢5(2') — 975 (@")| < Cay iy ™ - sl
for |B] =m, o', 2" € R", |2/ — 2"| < 1000¢;
(b) J.(¢3) € 055‘_7” (w(dg)) to(x) forallz € S; and
(c) Jy(#S) = BY.
Proof: Conclusion (23) is immediate from (21) and (22).

From (22), we have
en [ w)] = S [P W)] - Maa
a’'eA

for g e M,a € A.

Since M and M are inverse matrices, (27) implies
28) R )] = X (80 PLG)] - M
a’'cA
for 6 e M, a € A.
From (16), (19), (27), (28), we conclude that

¢ - max [5‘5‘*'“‘\8@3’(;/)1] < max [5'5"‘0"\8ﬁ]53/(3/')\]

BeM BeEM
acA acA
< C-max |0 0" BY ()]
- BEM Q@ o \Y )
acA

Together with (3), this proves conclusion (24).

Next, suppose 0 € M, a € A, with 8 > «. Then, for each o/ € A, we
have either § > o/ or o > a. If > ¢/, then (4) and (19) yield

657V (y)] - Mura| < Cay < Cla)™ by (SUS5).
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If instead o/ > a, then (3) and (17) yield
ST 5 PY ()] - Mura] < C'- (a1) 0™ - C - (a1) = C" - (ar) ™™

Consequently, (27) implies conclusion (25).

Finally, let S C E, with #(5) < kjfd. For each a € A, let ¢ € C}7 (R™)
be as in (2). We define

(29) o = 5'5‘ Z 563‘&,' 03 Myo for a € A
o’eA

Thus, @5 € C)“(R"). Also, for || = m, 2/,2" € R", |2/ — 2| < 1004,

Loc

(2)(a) and (19) show that

0955 (2") — 025 (a")] < 651 > 6" 1075 (o) — 0%5 ()] - [ Ml

a’'e A
< Z 55“_|a/| - Cagw(|z’ —2"])-C < ' (5‘5|_ma2w(|x' —2"|)
a’'eA
< Cragitn 0 =)

w(9Q)
which shows that the @3 satisfy (26)(a).
From (2)(b), (19), (29) we see that for z € S we have

Jo(23) € 0513 6 | Muva] - o) € Y €85 o (a)

a’eA a’eA
colol-m
C Q

C O3 "o (1) © — o

o(x).

This shows that the ¢ satisfy condition (26)(b).

For each a € A, (2)(d), (22), (29) together show that the @3 satisfy
condition (26)(c).

Thus, given a € A, S C E with #(5) < k‘ﬁd, we have exhibited a
function 3 € C)“(R") satisfying (26)(a),(b),(c). This completes the proof

Loc
of conclusion (26), hence also that of Lemma 12.2. |

Next, we pick 3 € M and @ € A to maximize 55‘7@\86153(3/)\. By
definition of 3, &, and by (24), we have
(30) e (@)™ < gL ()] < € - (an)
(31)  aSNaP Y ()| < TN PY (y)| for all B € M, a € A;
(32) feEM, ac A
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If 3 € A, then (23) gives 5g‘_|a‘|8315§/(y’)\ = 034 < 1, contradicting (30)
thanks to (SU5). Hence,

(33) B¢ A
In particular, 3 # a. If 3 > a, then (30) contradicts (25). Hence,
(34) B < a.

Now define
(35) AV = (AN {a})u{s},

+ / ~ o

(36) PY =PV foral ae A\ {a},
(37) Py = PYJ(0°PY ().

The denominator in (37) is non-zero, thanks to (30). We have defined

133’ € P for all a € A, as we see from (35), (36), (37).

~ In view of (32),...,(35), the least element of the symmetric difference
AY A A is 3, which lies in AY". Hence, by definition of our ordering on sets
of multi-indices, we have

(38) AV < A

+ .
The basic properties of the PY are as follows.

Lemma 12.3 We have
(30) 8" PY = 855 for all fe AV

(40) @° PY(y') = 850 for all Boa € AY ~ {5}

(41) §8-1N98 Bl ()| < €' - (@)~ for all B e M, a € AY;
181-181) 58 By’ (s .

(42) 6o 0" P (W) <1 for all B € M; and

(43) Given a € AY and S C E with #(S) < k¥, there emists ;55 €
Ci?(R™), with
+ + al—m w(lz' —z"
() 107 2 5(x') — 0% 9 S(a")] < Candly ™™ 222D for |5 = m, 2!, a" €
R”, 2" — 2| < 1000¢;
5y o 90"
(b) L(53) € S

+
(c) J, () =PV

o(z) for all x € S; and
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Proof: To check (39), we note that for 5 € AY \ {3} = A~ {a}, we have
from (37) that

0" PY(y) = O°PY(y)/(0°FY (/) = 0, thanks to (23).

On the other hand, (37) gives also that

& PU(y) = Y () ) (0°FY () = 1.
This proves conclusion (39). Conclusion (40) is immediate from (23)
and (36), since AY \ {3} = A~ {a}.
Similarly, conclusion (41) for a € AY \ {3} = A\ {a} follows at once
from (24) and (36).
On the other hand, (31) and (37) show that

—|B Tt / —|a oY (] B|—~1al 98 py' (,/
050 P = (106107 PY () /185 M0 P ()] < 1

for all B € M. This proves conclusion (42), and also shows that conclu-
sion (41) holds for & = 3. The proof of (41) is complete.

For a € AV \ {#} = A~ {a}, conclusion (43) is immediate from (26)
and (36). It remains to prove (43) in the case o = 3.

Suppose a = 3, and let S C E, with #(S) < kfl&d We let @2 € C,2“(R™)
be as in (26), and we define

+ 354 )

(44) v5 = &/(0°PLY)).

From (26)(a) and (30), we have, for |3 = m, 2/, 2" € R" with |2/ —2"| <
1000, that

+ " N |— A / > 1
07 0 5(a') — 0% P 5" = [PPY ()7 - 10°p5 (') — 0955 (")

(m-+1) 5|3~ a jal-m w(]z" — 2"]) Blm w(|2’ — 2"])

< . M e A N e VA

< [Ca{™gllal] [0 265 (5Q) ] < Cayd)y S
This proves conclusion (43)(a) for a = f3.

From (26)(b) and (30), we have for € S that

J(%5) = 0PPL W7 Jalgd) € 7P ()] - €O (w(50)) o)
C[C - (an)™" - 657 O35 " (w(Fq)) ol >cca‘ﬁ' " (w(de))™!
This proves conclusion (43)(b) for 5 = a.
Finally, comparing (37) with (44), and recalling (26)(c), we obtain con-

7) )
clusion (43)(c) for § = a. Thus, (43) holds for § = a. The proof of
Lemma 12.3 is complete. [
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Next, we define polynomials P¥ € P(a € AY), by setting
(45) P =pY, and
B B’

— + / 2 + / + !
(46) Py =pY —[0" PL()]- P

for all € A\ {a}.
The basic properties of these polynomials are as follows.
Lemma 12.4 We have
(47) O°PY (y') = dpa for all B,a € AY;
(48) (55'_‘0"\85153,@')‘ <C-(a)"™Y forall e M, a € AY; and

(49) Given o € AY and S C E with #(S) < k7, there exists 5 € C<(R™)
with

(a) |8ﬁ@§( ) aﬁQOQ( //)| <C ( ) (m+1) 5\04 . w((\f(/(;;)u\)
fO’f’ |ﬂ|—m,x,x ER”: ‘I //‘ §1005Q7

o] —m
9q

(m+1) .
(b) Ju (9004) eC- ) w(30)

(C) Jy'(@a) = c% .

Proof: For a = 3, conclusion (47) is immediate from (39) and (45).
For a € AV ~ {B} = A~ {a}, (46) gives

o(z) forall z € S; and

/

(50) O°PY(y) = 0" PY()— 0" PLW)] - 9 PY(Y) forall Ge M,

If 3 € A~ {a}, then (39), (40) give 9° Jgg(y’) = 0po and 9° ]JS%/@/) =0;
hence (50) gives conclusion (47) in this case.

If instead, 3 = 3, then from (39) we have 9” ]g%l(y’) = 1; hence (50)
gives 9°PY (i) = 0 = 64, 50 again (47) holds in this case.

Thus, conclusion (47) holds in all cases.

_ Next, conclusion (48) holds for a = 3, by (41) and (45). Suppose a €
AV {B} = A~ {a}, and let B € M. Then (41), (42), (46) show that

o NORY ()] <
P + ’ Bl —|o 3 . / IR + . /
3o P wl| + 67107 P - |95 0 B )
<10 a) ]+ (O (@) ] 1] S € )

Hence, conclusion (48) holds in all cases.
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Next, conclusion (49) holds for v = 3, thanks to (43), (45), and (SU5).
It remains to check conclusion (49) for o € AY . {3} = A~ {a}.

Suppose o € AN {a}, and let S C E, with #(S) < k¥ .. We apply (43)
(for the given «, and for ), and we define

(51) 35 =5 —[0° PU(Y)]- 95 € Ol (RY).

Loc

From (43)(a) and (41), we learn that whenever |3| = m, a’,2"” € R",
|2" — 2| < 1006g, we have
07Ga(a") = 07p3(a")] <
< |Cagaig-m <l =)
- ¢ w(9)

< C/ - (a —(m+1) | @ - 6\a|—m ' u)(|x’_$//|)7
(@) P w(dq)

This proves conclusion (49)(a) for the given a.
Also, for x € S, we obtain from (41), (43)(b), (51) that

} + [C«(al)—(mﬂ) 55\—\@] {Caﬁ'ﬂ_m W(‘Zl((;_Q;j”D

thanks to (SU5).

o glal=-m a1 C61B—m
_S Q ) —(m+1) slal=18]
Jo(a) € w(dq) o(@) + [C (@) % w(bq) 7t@)
5\a|7m
C C" - (ap)"m D) wQ(TQ) o(x), again thanks to (SU5).

This proves conclusion (49)(b) for the given a.
Finally, comparing (46) with (51), and applying (43)(c), we obtain con-
clusion (49)(c) for the given a.
Thus, conclusion (49) holds also for « € AN {a}. The proof of Lemma 12.4
is complete |
We are ready to give the main result of this section.
Lemma 12.5 The cube Q% is OK.
Proof: For every y' € (@)™ (see (1)), we have constructed AV < A
(see (38)) and PY € P for a € AY, satisfying (47), (48), (49).
We will check that the AY and PY satisfy (OK1,2,3) for the cube Q.
In fact, (OK1) for Q7 is just (47).
Condition (OK2) for Q7 says that

SO PY ()| < (@)™ for all a € AY, B € M with # > a.

This estimate, without the restriction to § > «, is immediate from (48)
and (SU5S), since dg+ = 20q.
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Condition (OK3) for QF says that, given a € AY and S C E with
#(S) < k¥, there exists @5 € C"*(R"), with

Loc

(52)(a)  [0°95(x') — D@5 (a")] < (@) 4D o5l [ —

w(|z’ — "))

o)™ - a 554;7” . w(dg+)

for [0 = m, o/," € R, [a/ — 27| < 6o
(52)(b)  Ju(@f) € (ar)” "+ 55Jr_m (w(dg+)) ™' - o(x) for all z € S; and

(52)(c)  Jy(@5) = PY.

We check that these conditions follow from (49). To do so, we recall
that w is a regular modulus of continuity, and that dg+ = 20g < 1. Hence,
w(0g) < w(dg+) < 2w(dg).

In view of these remarks and (SU5), assertions (52)(a),(b),(c) are imme-
diate from (49)(a),(b),(c), respectively.

Thus, conditions (OK1,2,3) hold for the cube @, the sets of multi-indices
AY (y € (Q1)™), and the polynomials PY (o € AY', 3/ € (Q+)**).

This shows that the cube QT is OK. The proof of Lemma 12.5 is com-
plete. |

13. Controlling Auxiliary Polynomials II

In this section, we again place ourselves in the setting of Section 9, and we
assume (SUO,...,8). The result of this section is as follows.

Lemma 13.1 Fix an integer k:f, satisfying

(1) > (D+1) - k¥, kf>D+1) -k,

Suppose that

(2) Q is a CZ cube,

and

(3) yeQ™.

Let PY € P be a family of polynomials, indexed by o € A, and assume that
(4) Conditions (WL1)Y, (WL2)Y, (WL3)¥ hold for the PY.

(See Lemma 10.3.). Then we have the estimate
(5) 351N PY(y)| < (@) Y for alla € A, B e M.
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Proof: Suppose (5) fails. There are finitely many dyadic cubes Q contain-
ing () (since, according to our definition, only subcubes of Q" are allowed as
dyadic cubes). For such @), define

(6) (Q) = max 5,7 0" PY(y)|.
acA

Since (5) fails, we have ®(Q) > (a1)~™* V. Let Q be the maximal dyadic
cube containing Q with ®(Q) > (a;)~™*Y. Thus,

(7) ®(Q) > (ar)~ ",
(8) QCQ, and
9) either Q = Q°, or else ®(Q*) < (ay)~ ™Y,

We can easily check that Q # Q°. In fact, (11.3), (WL2)¥ and (SU5)
show that

o AT PY(y)| < Coge 1 < Cogr < C'(an) ™™ < (ay) T

for all « € A, 3 € M. Thus, ®(Q°) < (a;)~ ™+, and hence Q # Q° by (7).

From (9) we now see that ®(Q*) < (a;)~(™*D. A glance at the definition
of ® shows that ®(Q) and ®(Q™) can differ at most by a factor of 2.
Therefore, ®(Q) < 2™ - (a;)~(m+b.

Together with (6) and (7), this implies that
(10) (@)™ < mex o5 P < 27 - (@),

BeEM
acA

Note also that

(11) yeQ™,
thanks to (3) and (8).

We prepare to apply the results of Section 12 to the cube Q. Let us
check that the assumptions (CAPL,...,5), made in that section, hold here
for Q. In fact, (CAP1) is merely our present hypothesis (1); (CAP2) for Q
is our present observation (11); (CAP3) holds for @, since we showed above
that Q # Q° (CAP4) is our present hypothesis (4); and (CAP5) for Q is
precisely our present result (10).

Hence, the results of Section 12 apply to the cube Q. In particular,
Lemma 12.5 shows that the cube Q% is OK. Consequently, Q7 is almost OK.
On the other hand, (8) shows that Q* properly contains the CZ cube Q.
Hence, by definition of a CZ cube, the cube Q* cannot be almost OK. This
contradiction proves that (5) cannot fail.

The proof of Lemma 13.1 is complete. |
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14. Controlling the Main Polynomials

In this section, we again place ourselves in the setting of Section 9, and we
assume (SUO ,.. ., 8). Our goal is to control the polynomials in IC?E(y, kM)

in terms of the CZ cubes @, for suitable kfﬁ and M.

Lemma 14.1 Let Q, Q" be CZ cubes that abut or coincide. Suppose we are

given,

(1) ye@™, ye@)
and

(2) P e Kf(y. kf.C),
with

(3) K*>(D+1) -k, kK >D+1) -k, and ki >k%,
Then there exists

(4) Pl E K?(y/7 k#’ Ol)?

with

(5) 10°(P' = P)(y)] < C" - (&)™ - w(dg) - 657" for all p e M.

Proof: By Lemma 10.2, there exists

(6) PeKsly, ki, 0),
with
(7) 0°(P — P)(y)] < C'w(dq) - 55 "1 for g € M.

(Here, we use the fact that |y —y/| < C"dg. This follows from (1) and
Lemma 11.2, since Q and @)’ are CZ cubes that abut or coincide.

Note also that w(|ly — v'|) < C'w(dg), since w is a regular modulus of
continuity. We note also the fact that y € Q** C (Q°)** C B(¥°, ay)
by (11.2), and similarly ¢ € (Q')** C (Q°)** C B(y°,a;).)

From (6) and the definition of Ky, we have the following.
(8) Given S C E with #(S) < k¥, there exists F'S € C™*(R"), with
| S (lome@n< C, J(FS) € f(z) + Co(x)

for all z € S and J,(F®) = P.
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In particular, taking S = empty set in (8), we learn that
(9) 0°P(y)] < C for all § € M.

Also, (2) and the definition of IC;?é give 3°P(y) = 0 for all 3 € A.
Applying (SUO), we see that 9P P(y) =0 for all B € A, |y| < m —|3|.

Since 9° P is a polynomial of degree at most m — |3|, it follows that 9° P
is the zero polynomial, for all 5 € A. Hence, (7) implies

(10) 0°P(y)| < C'w(dg) - 51 for all § € A.

Next, since y' € B(y°,a1) as noted above, Lemma 10.3 applies, with 3/
in place of . Thus, we obtain polynomials PY € P(a € A), satisfying
conditions (WL1)¥', (WL2)¥', (WL3)¥'.

We now check that the hypotheses of Lemma 13.1 hold here, with our
present Q', 1, PY (o € A) in place of Q,y, PY(a € A).

In fact, hypothesis (1) of Lemma 13.1 is immediate from our present hy-
pothesis (3); and hypothesis (2) of Lemma 13.1 (with @’ in place of Q) is a
hypothesis of the Lemma we are now proving. Hypothesis (3) of Lemma 13.1
(with @',y in place of @, y) is contained in our present hypothesis (1). Fi-
nally, hypothesis (4) of Lemma 13.1 (with Q',y, PY" in place of Q,y, PY)
says that (WL1)Y', (WL2)¥', (WL3)¥" hold for the PY¥ (a € A); this is pre-
cisely the defining property of the Pg/. Thus, as claimed, the hypotheses
of Lemma 13.1 hold for @, 9/, (PY )aca. Applying that lemma, we conclude
that

(11) oo NP PY ()] < (a1) ") foralla € A, B € M.
We now define
(12) P'=P-> [0"P(y)] - P €P.
acA
Note that
(13) O°P'(y) = O°P(y') = Y _[0°P(y)] - 9°PY(y) =0 forall B € A,
acA

thanks to (WL1)Y'.
Note also that, for any a € A and € M, we have
0°{[0°P(y)] - PYY()| = [0°P(y)| - |0°PL ()]
< [C'w((5Q) ) 5glfla\] ) [(al)f(m+1)5\5l|*\ﬂ\]
< C"(ar)” " Mu(dq) - 55,
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thanks to (10), (11), and Lemma 11.2. Hence (12) shows that
(14)  [9°(P' = P)(y)| < C"(ar)" " w(dg) - a5 " for all € M.
Together with (7) and (SU5), (14) implies

07(P' = P)(y)] < C" - (@)™ (3g)op " for all B € M,

which is conclusion (5). Moreover, suppose S C E with #(S) < k¥ (and
hence also #(S) < k' see (3)).

Let FS be as in (8), and, for each a € A, let ¢S € C7“(R™) be as in
(WL3)¥". We introduce a cutoff function # on R”, with

(15) || 0 [[emer @< C', 0 =1o0n B(y,1/20), suppf C B(y',1/10),
and we define

(16) FS = F% =Y [0°P(y)] 05
acA

Thus, 5 € C™¥(R™), since F'S € C™<(R™), @5 € C;**(R™), § € C™(R™),

Loc

and supp 0 C B(y',1/10). We prepare to estimate the C"™“-norm of F'*.
From (WL2)¥', (WL3)¥ (c), and (SU5), we have

(17) 0702yl < C" for [l <m, o € A.
Hence, (WL3)¥ (a) shows that
(18) 10905 (2")] < C" for |8 =m, a € A, o' € B(y,1).
From (17) and (18), we obtain
(19) 10°05| < C" on B(y,1), for |B] <m, a € A
From (15), (19), and (WL3)¥ (a), together with (SU7), we obtain
| 0% ||omw@ny < C for all a € A.
Together with (9), this yields
(20) 10 P)] - 095 lomeqn < € forall a € A,
Putting (8) and (20) into (16), we learn that
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Next, suppose x € SNB(y',1). Then from (WL3)¥ (b) and (19), we have
(22)  Ju(erpn) € o(x) and [0°[Jo(crga)l()| < 1 for |B] <m, o € A,

for a small enough controlled constant ¢; > 0.
From (15), we have also

(23) 07 Ja(f)](x)] < 1 for [B] < m,

for a small enough controlled constant ¢y > 0.

From (22), (23), and the Whitney w-convexity assumption (SU2), we see
that
(24) J(005) € C'o(x) for all a € A.

(Here, we take 6 = 1 in the definition of Whitney w-convexity.)
We have proven (24) for z € SN B(y/, 1), but of course it holds also for
v €S,z ¢ B(y,1), since then (15) gives J,(0¢3) = 0.
Thus, (24) holds for all z € S. From (9), (24) we obtain
(25) LY [0°P(y)] - 0¢3) € C'o(x) forallz € S.
acA

Also, from (8), we have

(26) J(F%) € f(z) + Co(z) forallz e S.
Putting (25), (26) into (16), we find that
(27) J.(FS) € f(z) + C'o(x) forallx € S.
Moreover, (8), (12), (15), (16), and (WL3)¥ (c) show that
(28) Ty(F%) = Jy(F%) = 3 [0°P(y)] Jy(67)
acA
= Jy(FS) = Y [0°Py)] Iy (#7)
acA
=P- > [0°PWy)| Py =P
acA

In view of (21), (27), (28), we have proven the following:

Given S C E with #(S) < k¥, there exists FS e C™(R"), with
|F |omew@n< C', Jo(F%) € f(z)+C'o(z) for all z € S, and J,, (F*) = P'.

By definition, this means that P’ € Ks(y/’ ,k# ,C"). Since also P’ satis-
fies (13), we have

P e K¥(y, ky,C),

which is conclusion (4). Thus, we have proven that P’ € P satisfies (4)
and (5). The proof of Lemma 14.1 is complete. n
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Lemma 14.2 Fiz kI with
(29) K*>(D+41) -k and K >(D+1) - k7,

Suppose that

(30) Q is a CZ cube,

(31) ye ™, and

(32) P17P2 EIC}#(Q,]{??,O)
Then

(33) [97(Pi = Po) ()| < () ™ azt - w(dq) - 057 for B < m.
Proof: Suppose (33) fails. Under this assumption, we will show that

(34) Q@ is a proper subcube of Q°, and
(35) Q* is OK.

This will lead to a contradiction, since Q* is a dyadic cube that properly
contains a CZ cube, and therefore Q" cannot be almost OK.

Consequently, the proof of Lemma 14.2 is reduced to showing (34) and (35)
under the assumption that (33) fails.

In view of (32), we know that
(36) 0°Py(y) = 0°Py(y) = 0 for all B € A, and

(37) Given S C E with #(S) < k¥, there exist F5, Ff € C"™(R"), with
| F2 lomewn < C, JL(F?) € f(x)+Co(z) forall z € S, and J,(Ff) =
P(i=1,2).

In particular, taking S = empty set in (37), we find that
(38) 07 Pr(y)l, 107 Pa(y)l < € for |B] < m.

It is now easy to check (34). Since @ is dyadic, it is enough to show that
Q# Q"

We have ca; < dgo < a1 (see (11.3)), hence also w(dgo) > w(car) > cay
since w is a regular modulus of continuity. Hence, for |G| < m, we have

(39) (@)™ - ay' - w(dgo) - 55{‘5‘ > (a)" ™Y aztay -0 = dagl
Also, for |5] < m, (38) gives

(40) 07(PL = R)(y)| < C".
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From (39), (40) and (SUT), we have
07(PL = Py)(y)| < (a1)™ " az w(8g0)dg " for |5 < m.

On the other hand, we are assuming that (33) fails. Hence, Q # Q°,
proving (34).

We start the proof of (35). We are assuming that (33) fails. Let
(41) y @)
be given.

Then y,y' € Q**, and P, P, € K¥ (y,k{',C). Also, k* > (D +1) -k}’
and ki > (D +1) - k7. Applying Lemma 14.1, with kj = k7%, we obtain
polynomials
(42) Pi, Py e Ky k. C"),
with
(43)  10°(Pi= P)W)| < € (@) - w(dg) - 05 for |5 < m.

From (43), we see that

(44) maxlw(0g)0g 17 - 0°(P = P)(W)] <

<20 (@) Y+ max [w(oo)p - 10°(B - B)()].

Also, for § € M we have

1 / /
(P =)l =| 3D @R = P)) - )|
i<m—|g] ©
< € max 8|0 (P = P (since .y € Q)
< 05" - max 81 - |07 (P~ P) ()]

and therefore,
(15) maxlo(Gq) - 5577 - 10°(Py — Py <
m—|[Bl1-1 8 ’
< C-m : _ ,
< € maxfw(dg)dg 7 - 10°(Pr — Po)(y)|

Also, since we are assuming that (33) fails, we have

(46) ()™ oy < maxfw()ig T - 10°(P = ) ()l
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Combining (44), (45), (46), we learn that

(@) a3 < O o)) + e l(8Q)ig ™) P (P-Ra) W)

Consequently, by (SU7), we have

(47)  maxlw(dg) g T (P = P)(W)] 2 ¢ - (an) T g

From (42) and the definition of IC?, we have
(48) OPP(y) = °Py(y) =0 for B e A;
and also
(49) Given S C E with #(S) < k7, there exist F'S, F¥ € O™« (R"), with
| ES |emo@m < C', Jo(FS) € f(z) + Clo(z) forallz € S,
Jy(FS) = Pi=1,2).
Immediately from (49), we obtain
(50) Given S C E with #(S) < k7, there exists FS € C™(R"), with
| F¥ [|gmuwmny < C', Jo(FS) € C'o(x) for all € S, and
5, (F) = By — B,
Now pick § € M to maximize [w(3g) - 6 |7 - [9%(P, — B5)(y/)], and
define
(51) Q= 0P — Py)(y).

By definition, and by (47), we have

and
(53) Q] > ¢ (@)™ gyt - w(dy) - 58_|B"

In particular, Q2 # 0. We define

(54) P=(P-PR)/QecP.
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From (51), (52) we have

(55) 9°P(y)| < 6577 forall B e M,
and
(56) O°P(y) = 1.
From (48) we have
(57) O°P(y) = 0 forall B € A
Comparing (56) to (57), we see that
(58) B¢ A

Also, from (50), (53), (54), we learn the following.
(59) Given S C E with #(S) < k7, there exists IS € C"™(R"), with

!

@) | FS flome@n < & < C" (a1)™ - ap - [w(dg) - g 7Y

€2
(b) Ju(FS) € Gro(z) €C" - (a))™ - az - [w(dg)- 5 "] L o) for
all x € S; and

(C) Jyl(FS) = P
In view of (59)(a), the function F'¥ in (59) satisfies
(60) |09 FS(a)—0F5(a")| < C" (a1)™ " -y - 85 el for |8] =
" e R |2’ — 2" < 1.

Recall that v/ € (QT)* C Q** C (Q°)™* C B(y°,a1) (see 11.2).

Hence, Lemma 10.3 shows that there exist polynomials PY (o € A), for
which

(61) (WL1)¥', (WL2)¥', (WL3)¥" hold for the PY (o € A).
We now define

(62) A = Au{p},

(63) Pz = P, and

(64) P, =PV —[9°PY(y)] - P forallac A

Thus, we have defined P; € P for all 5 € AV Note that (63) and (64)
do not conflict, and moreover A is a proper subset of AY thanks to (58).
Hence, Lemma 3.2 shows that

(65) AV < A
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We will check that
(66) 0°Py(y) = s forall B,a € AY.

In fact, (66) holds for o = 3, thanks to (56), (57), (63).
For o, B € A, we have

P (y) = O°PY(y) — [0°PY (y)] - °P(Y) = Opa

by (WL1)¥" and (57). Hence, (66) holds for «, 3 € A.
Finally, for a € A, 3 = 3, we have

P Pu(y) = 3°PY(y) — [0°PY (y)) - 9°P(y) = 0,

thanks to (56). Hence, (66) holds also for a € A, 5 = (.
Thus, (66) holds in all cases.

Next, we apply Lemma 13.1, with ¢ and Pg in place of y and PY. We
check that the hypotheses of that lemma are satisfied. In fact, we have
k# > (D +1)-k¥ and kf > (D +1) - k%, by our present hypothesis (29).
Also, @ is a CZ cube, by our present hypothesis (30).

We have 3y’ € Q***, thanks to (41).
Finally, (WL1)¥', (WL2)¥', (WL3)¥" hold for the PY (o € A); see (61).

Thus, as claimed, the hypotheses of Lemma 13.1 are satisfied, with our
present 3 and PY in place of y, PY. Applying that lemma, we learn that

(67) oINS BY (y)] < (a1) ™) foralla € A, § € M.
Using (67), we can check that

(68) 10°P,(y)] < C - (ar)~ D . 5‘5'—‘5‘ forall o € AY, B € M.

In fact, for a = 3, (68) is immediate from (55), (63), and (SU5).
For a € A, € M, we learn from (55), (64), (67) that

07 Pa(y)| < 107PY ()] + 10°PY ()| - [0°P(y)]
< [lar) 02181 4 [(ay) e 0glel17 . (gl
< C - (a)" Y. (5'5‘_W|, so again (68) holds.

Thus (68) holds in both cases.
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Let S C E be given, with #(S) < k%,. Let FS € C™(R™) be as in (59),
and, for a € A, let ¢S5 € C)¥(R") be as in (WL3)¥. (Note that (WL3)¥
applies, since kfﬁ > k:jfd.) We define

) 5 = S
and
(70) @ = 3 — [35Pay,(y’)] - FS forall a € A.

Thus @5 € C7(R™) for all a € AV
We will check that
/ 1
71 58 (a') — @S (a")| < Cap-ofgim . A 2D
) e - i A

for a € A, |B| = m, o', 2" € R*, |2/ — 2"| < 5060.
Q

In fact, for o = 3, (71) is immediate from (60), (69), and (SU5).
Suppose a € A. Then, for |5| =m, o/, 2" € R", |2’ — 2"| < 1, we have
0795 (") — 8°g5(a")] <
<10°p5(a") = 0°5(a")| + |0°PY ()| - [0°F (') — 97 P (")
_mw(| = 2")

< [Cagw(|$l _II/D] + [Oal—(m+1)5\5|—\5|][C//(al)m—klagég\ w((SQ)

]

(see (WL3)Y'(a), (67), (59))
_mw(lr =2
w(dq)
since |a] <m and g, w(dg) < 1. So, again (71) holds.
Thus, (71) holds in all cases.
Next, we check that

72 Jo (%) € C8S™(w(80)) to(x) forallz €S, ae AV,
« Q Q

In fact, for a = 3, (72) is immediate from (59)(b), (69), (SU5) and (SU7).
Suppose o € A. Then, for x € S, we have

To(@3) = Ju(9) = [0°PY ()] - Ju(F5) (see (70))
€ [Co(x)] + |07PY ()] - [C" - (@)™ - as - (w(0g)) ™" - 65 "o ()]
(see (WL3)¥ (b) and (59)(b))
C [Co(@)] + a7 ™ 6517 - [0al™ ™ gy 5T (w(8q)) o))
(see (67))
C Co(z) + C"asds " (w(dg)) Lo(x) C C'851 ™ (w(dg)) to(x),

_mw(lr =2

= Caqw(|]z' — 2"|) + C’@(SS" o0a)

< C'aydyy)
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since dg,w(dg) < 1, |a] < m, and as < 1 (see (SUT)). Hence, again (72)
holds.
Thus, (72) holds in all cases. We also check that

(73) Jy(@3) = P, forallae AY.

In fact, for « = 3, (73) is immediate from (59)(c), (63), (69).
Suppose a € A. Then

Jy(@2) = Jy(02) = [0PFL ()] - Jy(F¥)  (see (70))
= P —[0°PL()] - P (see (WL3)(c) and (59)(c))
=P, (see (64)).

So, again (73) holds. Thus, (73) holds in all cases.

Given 3 € (Q*)™ (see (41)), we have constructed AY < A (see (65)),
along with P, € P(a € AY) (see (63), (64)), satisfying (66) and (68).
Moreover, given a € AY and S C E with #(5) < k‘ﬁd, we have exhibited
@5 € C)n“(R"), satisfying (71), (72), (73).

We will now check that AY" and P,(a € AY) satisfy conditions (OK1,2,3)
for the cube Q™.

In fact, (OK1) for AY, P,,Q% says simply that 9°P,(y) = &g, for
B,a € AV, which is precisely (66).

Condition (OK2) for AY, P,, Q" says that
(60+) 17 OP P (v)| < (a))™ ™) foralla € AY, B € M with 3 > a.
This assertion, without the restriction to § > «, is immediate from (68)
and (SUS), since dg+ = 20q.
Condition (OK3) for AY, P,, Q" says that

(74) given o € AY and S C E with #(S) < k%, there exists @5 €
Cm?(R™), with

loc
(a) 0°5S(a') — 0%3S (") < ay ™IS el — 2| 4 ()0
g - 651—”1, .

. w(lz’=a"])
w(5Q+)

(b) Jo(5) € ()" I650 ™ (w(dg+)) " - o(x) for all z € S; and
(c) Jy(@) = Pa
We use the @5 € C)“(R") that satisfy (71), (72), (73).

Loc

for |B] =m, o', 2" € R, |2/ — 2"| < dg+;
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Since dg+ = 20¢ and w is a regular modulus of continuity, we have
w(dg) < w(dg+) < 2w(dg).

Hence, (74)(a) is immediate from (71) and (SU5); and (74)(b) is immediate
from (72) and (SU5).

Also, (74)(c) is precisely (73).

Thus, as claimed, (OK1,2,3) hold for Q*, AY, P,(a € AY'), for any given
y' € (Q1)**. By definition, this tells us that @* is OK.

The proof of (35) is complete.

Hence, also, the proof of Lemma 14.2 is complete. [ |

Lemma 14.3 Suppose y € Q** and y' € (Q')**, where Q and Q' are CZ
cubes that abut. Let P € /C?E(y, kzﬁ,C’) and P' € K?(y’,kﬁ,o) be given,
where

(75) K*>(D+1)-k% and ki > (D+1)2 k.

Then we have

(76) [0°(P' = P)(y")] < " (1)~ (a3) ™ w(3g) - 6 for 18] < m.
Proof: Let kﬁ =(D+1)- k:fléd. Then, by Lemma 14.1, there exists P €
K¥(y, kf;,C"), with

(77) 10°(P = P)(y)| < C" - (a))" ™ - w(dq) - 657" for 5] < m.

In particular, both P and P’ belong to Iij7£ (v, kﬁ, C"), with ¢’ € (Q')**.
Thus, Lemma 14.2 shows that

(78) 10°(P' = P)(y)| < (a1) ™V - (a5) ™" - w(bg) 6™ for 5] < m.
By Lemma 11.2, we have
1
5(5@ < (5@/ < 25@.

Since w is a regular modulus of continuity, it follows that

%w((SQ) < w(dey) < 2w(dg).

Putting these remarks into (78), we find that
(79) 10°(P'=P)(y)| < C-(ar)™ " - (az) " w(dg) -5~ for |3 < m.

Adding (77) and (79), and recalling (SU7), we obtain the conclusion (76)
of Lemma 14.3. The proof of the lemma is complete. |



650 C. FEFFERMAN

We shall need analogues of Lemmas 14.1 and 14.3 in which the cubes
@, Q' need not abut.

Lemma 14.4 Let Q, Q' be distinct CZ cubes, with centers y, 1y’ respectively.
Let

(80) PeKi(y. k. 0),

with

(81) K> (D4+1)- K K >(D+1)- Kk and K > k%,
Then there exists

(82) P e Kf(y.k5.C"),

with

(83)  |0°(P'=P)(y)| < C"- (a)" "V - w(ly —y]) - |y -y "
for |B] < m.

Proof: We have y,y € Q° C B(y°,ay), hence |y — ¢/| < 2a; < 1.
Hence, Lemma 10.2 shows that there exists

(84) Pe Ky, k. 0),

with

(85) 0P =Py < Cwlly—y]) - ly—y"* for |5] <m.
From (84), we have

(86) Given S C E with #(S) < kI, there exists FS € C™“(R"), with

| F5 [|omw@n < O, Jo(FS) € f(x)+Co(x) foralla € S, J,(F5%) = P.
In particular, taking S = empty set in (86), we obtain
(87) °P(y)| < C for 8] <m.

Also, (80) gives 9°P(y) = 0 for all 3 € A. Hence, by (SUO), we have
also M*PP(y) =0 for all B € A, |y| < m — |B]. Since &°P is a polynomial
of degree of most m — |3, it follows that &°P is the zero polynomial, for all
B € A. Hence, (85) implies

(88) 0°P)| < C'w(ly—y|) - ly—y ™" for g € A.

Next, since 3 € B(y°, a;), Lemma 10.3 applies, with ¢/ in place of y.
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Let PV € P(a € A) satisfy (WL1)Y', (WL2)¥', (WL3)¥". From (WL2)¥
and (SU5), we have

(89) O°PY ()| < C' forac A, | <m.

We next check that the hypotheses of Lemma 13.1 hold for the cube @',
the point 3/, and the polynomials PY (a € A).

In fact, (81) shows that k# > (D +1)- k¥ > (D+1) - k7%,

We are assuming in Lemma 14.4 that Q)" is a CZ cube, and that 3/ is the
center of @', hence 3 € (Q')**. The defining property of the PY € P is
that they satisfy (WL1)¥',...,(WL3)¥". Thus, as claimed, the hypotheses of
Lemma 13.1 hold for @, 4/, (PY)aca. Applying that lemma, we learn that

(90) 55'—'“‘yaﬁpg’(y’)| < (a)"™ for all a € A, || < m.

Now define
(91) P'=P- ) [0"P(y)] - P/ €P.
acA
Note that

(92) 9°P'(y) = °P(y) — Y _[0°P(y)] - O°PY(y) = 0 for f € A,
acA
thanks to (WL1)Y'.
We check that P’ € K;(y/, k¥, C"). In fact, let S C E, with #(S) < k¥ .
Then also #(S) < k. Let F'$ € C™“(R") be as in (86), and, for each
ac A, let o3 € C7“(R"™) be as in (WL3)Y'.

Loc

We introduce a cutoff function 8 on R”, satisfying
93) || 0 |emirwny < C', =1 0n B(y',1/20), suppé C B(y',1/10).
We then define

(94) F$ = FS = > "[0°P(y)] - ) onR".
acA

Note that FS € C™“(R"), since FS € C™(R"), ¢35 € C“(R"), 6 €

C™L(R"), and suppf C B(y’,1/10). Let us estimate the derivatives of F*°.
From (WL2)¥', (WL3)¥(c), and (SU5), we have

(95) 005 < O for a € A, [B] < m.
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Hence, (WL3)¥'(a) and (SU7) show that
(96) 10705 < C"on B(y/, 1), for a € A, |8 = m.

(Here, we use the fact that w is a regular modulus of continuity, hence
w(t) <lfor0<t<1.)

From (95), (96), it follows that

(97) 10°p%| < €' on B(y,1), for a € A, || < m.
Again using (WL3)¥'(a) and (SUT7), we see that
(98) [0%2(a") = 0%p3(a")] < w(la’ — ")

fora e A, |B] =m, 2/, 2" e R", |2/ —2"| < 1.
From (93), (97), (98), we conclude that

(99) | 950 |ome@n < O for all a € A.
Putting (86), (87), (99) into (94), we see that
(100) | FS fomegn < C'.

Next, suppose a € A and # € SN B(y',1). Then J.(¢3) € Co(x) by
(WL3)¥ (b) and also |0%(J.(¢3))(x)| < C" for |3] < m, by (97). Moreover,
we have |0°(J,(0))(x)| < C’ for |3] < m, by (93). Hence, our Whitney
w-convexity assumption (SU2) shows that

(101) J.(002) € C'o(x).
(Here, we take § = 1 in the definition of Whitney w-convexity.)

We have proven (101) fora € A, 2 € SN B(y, 1).

However, for a € A, x € S~ B(y/,1), (101) holds trivially, since then
J.(003) = 0 by (93). Thus (101) holds for all « € A, x € S.

Putting (86), (87), (101) into (94), we find that
(102)  J(FS) € J,(F%) + C'o(z) C f(z) +C"c(x) forallzeS.
Next, note that

(103)  Jy(F) = Jy(F%) = Y [0°P(y)] - Jy(693)  (see (94))
acA

= Jy(FS) = Y [0°P(y)] - Jy(pl) (see (93))
acA
=P—> [0°P(y)] - P! (see (86) and (WL3)¥'(c))
acA
= P (see (91)).
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Thus, given S C E with #(S) < k¥, we have exhibited F € C™(R"),
satisfying (100), (102), (103). By definition, we therefore have

P e Ky k0.
Since also (92) holds, we conclude that
(104) P e Ki(y k. C).
Next, we estimate the derivatives of P’ — P at 3. From (19) we have

(105)  [°(P' = P)(y)| < Y 10°PWy)| - [0°PY (y), for 8] < m.

acA
If |5] > |af, a € A, then (88) and (89) yield
(106) 0°P(y)| - [0°PY ()| < C'w(ly—y) - [y —y/ |71

< Cwlly =yl -y =y
If instead |3] < |al, o € A, then (88) and (90) imply
(107) 10 P(y)|- 10°PY (3/)] < C'aoly—y/1)-ly =/~ (o)) 551

Moreover, since y and y’ are centers of the distinct CZ cubes @, Q’, we
have d¢g < C'|ly — ¥/|, hence, with |3| < |a|, (107) implies

(108) [0°P(y)|-10° P (y)] < C"- (a1)™" V- w(ly = o/) - ly —y/|™ .
Putting (106) and (108) into (105), and recalling (SU5), we have
(109)  [2°(P' = P)(y)| < C" - (&)™ - w(ly —y/|) - ly— o™,

for |B| < m.
From (85), (109), and (SU5), we conclude that

(110)  [9°(P' = P)(y)| < C" - (a))"" ™ - w(ly —y|) - Jy — y/ ™!

for |3] < m. Our results (104) and (110) are the conclusions of Lemma 14.4.
The proof of the lemma is complete. [ |

Lemma 14.5 Let Q, Q' be distinct CZ cubes, with centersy,y’, respectively.
Let

(111) PeK¥(y.k%,C) and P €K¥(y ki, C)
be given, with

(112) K*>(D+1)- k%, and k%> (D+1)?- k7,
Then we have

(113) [0°(P=P)(y)| < C"(a1)”" Y a3 w(ly—y' Dly—y'[" 1 for | < m.
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Proof: Let kﬁ =(D+1)- k:ffd. Then, by Lemma 14.4, there exists

(114) Pe ki, kL, C).

with

(115) [97(P=P)(y)| < C"(a)"" D -w(ly—y'])-ly—y/|" " for |3 < m.

By (111) and (114), both P’ and P belong to K7 (i, k};, C"), with ' the
center of the CZ cube @Q'.

Hence, Lemma 14.2 gives
116) |0°(P' — P)(/)| < (a1)"™ . a7t - w(by) - 5P for 18] < m.
2 Q Q

Since y and ¥ are the centers of distinct CZ cubes @, Q)’, we have cig <
ly — ¢/, hence also cw(dg) < w(cdy) < w(ly — y|) since w is a regular
modulus of continuity. (Here, we may suppose ¢ < 1.)

Putting these remarks into (116), we find that

(117) [0°(P' = P)(y)| < C" - (a))" "™ - ax - w(ly —y]) - ly— /"

for |8 < m.
Adding (115) and (117), and recalling (SU7), we obtain the conclu-
sion (113) of Lemma 14.5. The proof of the lemma is complete. |

15. Patching Local Solutions

Let Q1,...,Qp,.. be the CZ cubes. For 1 < p < fimax, we define y, =
center (Q,), 0, = 0, = diameter (Q,), and

(1) Q, = {y € R* : dist(y,Q,) < 10} C @, with ¢; > 0 a small
enough constant depending only on the dimension n. Note that Qu
is not a cube. From the proof of Lemma 11.3, we have the following
geometric fact.

(2) If x € Q, and B(zx,c;d,) meets @u, then @, and @, abut or coincide,
and, moreover B(z,c14,) C Q.

We fix the constant ¢; as in (1), (2) throughout this section.

We suppose that for each u(l < g < fimax), we are given functions
6, € C™(Q°) and F, € C™(R™), and a polynomial P, € P. For a constant
A > 0, not assumed to be a controlled constant, we make the following
assumptions.
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(PLS1) > 6,=1onQ".

1<p<pimax
(PLS2) If x € Q° QN#, then 6, = 0 on a neighborhood of z in Q°.
(PLS3) [0%0,(z)] < A8, for |3 <m+1 and z € Q°.
(PLS4) 0" P, ()| < A for |3 < m.

(PLS5) [0°%(P, — P)(y)| < A-w(8,) - o0 " for |8] < m, if Q, and Q,
abut.

(PLS6) [0°(P,—P,)(yu)| < Aw(lyu— v ]) - [y —yu| ™V for 8] < m, pu# v
(PLST) |0°F,(x)] < Aw(d,) -6, " for [8] < m,z € Q5.
(PLS8) [0°F, (&) — 0°F,(9)| < Aw(|@ — g|) for |3| =m, &, € Q.

Throughout this section, we assume (PLS1,...,8). In this section only, we
write A’; A”| etc., to denote constants determined by A, m, n in (PLS1,. .. 8).
In this section only, we write ¢, C, C’, etc. for constants depending only on
m and n. We reserve the name ¢; for the constant in (1) and (2).

We define a function F on Q°, by setting

(3) F= Y 0, [P.+F)] onQ°

]-Sﬂgﬂmax

The goal of this section is to control the derivatives of F. We begin with a
few remarks on the polynomials P, and the modulus of continuity w. First
of all; we have

(4) [0°(P, — P,)(x)] < A'w(8,,) - 6 for 8] < m, x € Q. if Q and Q,
coincide or abut.

In fact, when @), and @), abut, then (4) follows from (PLS5) and Taylor’s
theorem for polynomials, since [r —y,| < C6, for z € Q5. When @, and Q,
coincide, then P, = P, and (4) is obvious.

Also,

(5) [0°(P, = P)(&) = 0°(Py — P,)(@)] < A'w(d,) - o™ | — ] for
T,9 € Qr, |8 <m, if Q, and @, abut or coincide.

In fact, when @, and @, abut and |3| < m, then (5) follows from (PLS5).
When |3| = m or Q, and @, coincide, then the left-hand side of (5) equals
zero, so (5) is obvious. (Recall that P, — P, is a polynomial of degree < m.)
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Similarly,

(6) |0° Fu(#) — 07 Fu(3)] < A'w(8,) - o " fo —g| for 3,9 € Q;,
|B] < m — 1, as follows at once from (PLST7).

We recall that any regular modulus of continuity w has the following
property.

(7) fo<t<§<1,withd >0 then @-tﬁw(t).

Now we start studying the derivatives of F. From the definition (3) of F,
and from our assumptions on 6, F,,, P,, we see that F belongs to C"(Q°),
and we have

8) O°F= 3 83 0%0,) (07 P+ F) for |5] <m,

G+6"=0 7

with ¢(0, 3) = 1. We have also

> (076,) =30 on Q°,

In

by (PLS1). Hence, (8) implies

(9) OF=0"P,+ Y B8 (076,)- (0" [P, - P)

G+B"=0 P
+ Z (5, 5") Y _(076,)(0" F,).
G+p= "

for |G| < m, and for any v (1 < v < pimax). Our estimates below for the
derivatives of F" are all based on formula (9).

Lemma 15.1 We have

(10)  [9°F(x) = 0°Py(w)| < A'w(6,) - 0)' 17 for |5 <m, x € Q.
Proof: Fix z € Q,, and suppose 970, (x) # 0. Then (PLS2) gives
(11) T € Qu,

hence (2) shows that

(12) @, and @), abut or coincide.
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Consequently, Lemma 11.2 implies

(13) 5, <6, < 26,,

N —

and
(14) There are at most C distinct p for which 070, (x) # 0, for fixed z.

Since w is a regular modulus of continuity, (13) implies

(14a) Jo(6,) < w(8,) < 2(8).

With p as in (11),...,(14), we estimate the summands in (9). We have

(15)  |0760,(2)| - 107" [Py = PJ(2)| < (A- 8,171 - (A w(8,) - 717"
(by (PLS3), (4), (12))
< A"w(8,) -0 (by (13)).

Similarly,

(16) 107 0,(2)] - 107 Fu()] < (A6, 1) - (Aw(8,) - 60~)
(by (PSL3), (PLS7), (1), (11))
< A'w(8,) - 0™ 1P (by (13) and (14a)).

Putting (14),...,(16) into (9), we obtain the conclusion (10) of Lemma 15.1.
The proof of the Lemma is complete. [ |

Lemma 15.2 Suppose x € Q,, ' € Q,, |v — 2’| > ¢10,, |x — 2| > ¢16,.
Then we have

(17) 0°F(2) — 0P F(a")| < A w(|x — 2'|) for |B] =m.
Proof: First of all, note that z € @), C Q° and ' € QQ,» C @Q°, hence
(18) |z — 2’| < dgo < a1 (see (11.3)).

In particular, |z — 2’| <1 by (SU4), so w(|z — 2'|) is well-defined.

Next, note that 0°P, and 9°P, are constant functions on R”, when
|B| = m, since P,, P,, € P. Consequently, (PLS6) and Lemma 15.1 yield

|aﬁpy _ 3ﬁPV,| < Aw(lyy - yu’|)7
07F(x) = 0P, < A'w(3,),  and
P F(2") = 7P| < A'w(é)

for |6l =m, x € Q,, 2 € Q,.
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Hence, for such (3, z, 2’, we have
(19) 0°F(x) = 9°F(a)] < Aw(ly — yur]) + A w(8,) + A w(b,).

Since T, Yy € Ql/ and x/ayu’ € Qu’a we have |l' - yu| < 6Va |ZE, - yy’| < 51/”
and therefore

(20) ’yz/_yu’| < |I—l’/| +5l/+6y/.

Suppose |z — 2’| > ¢6, and |z — 2’| > ¢1,,. Then, in view of (20), we
have

(2]‘) 511551/; |yy - yy’| S C|ZE — x/| S 17

where the last inequality follows from (18) and (SU5). From (21) and the
fact that w is a regular modulus of continuity, we obtain the estimates

(22) w(0y), w(du),w(lyy — yu]) < Cw(lz —2')).

The desired conclusion (17) is immediate from (19) and (22). The proof
of Lemma 15.2 is complete. [ |

Lemma 15.3 Suppose z € Q,, ' € Q,/, and |x —2'| < ¢19,. Then we have
(23) 07F(2) = O°F(2)] < A'w(|e —a'|)  for 5] =
Proof: Fixz € Q,, 2’ € Q,, 8 with |3| = m. Two applications of (9) yield
(24) 8 F(x) = 0°F(a') = [0°P,(x) — 0°P,(«)]

+ Z (8.8 (076,(x) = 076,(«")) - (07 [P, — P](x))

+B'= "

+ Z (0.6 3(070,(")) - (97" [P, — PJ(x) — 07" [P, — PJ(x"))
BI+8"= u

4 Z (.83 (07 0,(x) — 97 9,(2")) - (97" Fy(x))

BI+8"= I

+ Z (.83 (07 8,(x") - (07 Fy(x) — 07 Fu(a')).

B+3"= "

Suppose 85/@(35) or 070, (z') is non-zero. Then, since x, 2" € B(z,c10,),
we see from (PLS2) that B(x,c¢16,) N Q, # ¢, with z € Q). Hence, by (2),

(25) @, and @, abut or coincide, and
(26) r, 7" € Q.
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From (25) and Lemma 11.2, we see that
1
(27) 551/ S 5u S 25117

and

(28) For our fixed 2’ there are at most C distinct y for which 9'6,,(z) or
970, (z') # 0.

With p as in (25),...,(28), and with |§'| + |3”| = m, we estimate the
terms on the right in (24).

First of all,
(29) [0°P,(z) — 0°P,(2')] =0, since P, € P and |3 = m.
Next, (PLS3), (4), (25), (26), and (7) imply the estimates

(30)  [070,(2) — 076, (a")] - 107 [P, — P)(x)| <
< (A G = 2]) - (A w(6y,) - o)
=A" M]as — 2| <A w(|lz —2)).
Op
Similarly, (PLS3), (5), (25) , (26), and (7) imply the estimates

(31) [070,(x")| |07 [P, = P,J(x) = 07 [F, = P,J(2')] <
< (AG, Ty - (A'w(@,) - g o — )
= a0 ) < (e — )
O
Also, (PLS3), (PLS7), (26), and (7) imply the estimates

(32)  [0°0,(x) — 07 0,(a")| - 10" F(a)] <
< (AT e — o)) - (Aw(s,) - 571

:A// w((su) |.T—I/| S AHW(|.T—.T/|).
5#

If |3"] < m, then (PLS3), (6), (26), and (7) imply the estimate
107 0,(2")] - 10" Fy(x) — 07 F(a')] <
< (A0 (A w(@,) - T o — )

=A" _w?M) e =2 | < AMw(|x — 2)).

m
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If instead |3”| = m, then 5’ = 0, and (PLS3), (PLS8), (26) yield
070, (") - 107 F(w) = 07 Fu(a)] < (A) - (Aw(|a = '])).
Hence, in either case, we have
(33) 107 0.(2")] - 107" Fu(x) = 07 Fu(a')] < A" w(lz — 2.
Putting (29),...,(33) into (24), and recalling (28), we obtain the desired

conclusion (23). The proof of Lemma 15.3 is complete. |

Similarly, we have

Lemma 15.4 Suppose v € Q,, ¥’ € Q,/, and |v — 2’| < ¢16,,. Then we
have |0°F(x) — 0P F(2')| < A'w(|x — 2']) for |B| = m.

Proof: This is just Lemma 15.3, with the roles of z,v interchanged with
those of 2/, V' [ |

The main result of this section is as follows.

Lemma 15.5 Let Q,(1 < p < fimax) be the CZ cubes, with centers y,
and diameters 8, and let Q, = {y € R™ : dist(y, Q) < ¢16,}, with ¢ as in
Lemma 11.5. Suppose we are given functions 6, € C™(Q°), F,, € C™(R"),
and polynomials P, € P (1 < p < pmax). Assume that (PLS1,...,8) are
satisfied, for a given constant A. Define

F= > 6, [P.+F] onQ.
1S/1S,umax

Then we have

(34) 0°F ()] < A" for |B] <m, x € Q%

and

(35)  [07F(x) — 0P F(a)| < A-w(lz ') for|B]=m, z.2' € Q%
with A" depending only on A, m,n.

Proof: Suppose x € Q,. Then |0°P,(z)] < A’ for |3| < m, by (PLS4) and
Taylor’s theorem for polynomials. Hence, (34) follows from Lemma 15.1.

Next, suppose z € Q,, ' € Q. If |z — 2| < ¢10, or |z — 2| < 10,
then (35) follows from Lemma 15.3 or Lemma 15.4. If instead |z — 2’| > ¢4,
and |z — 2’| > ¢19,/, then (35) follows from Lemma 15.2.

The proof of Lemma 15.5 is complete. [
In spirit, the results of this section go back to Whitney [19] and Glaeser [12].
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16. Proof of Lemmas 5.2 and 9.1

In this section, we give the proof of Lemma 9.1. This will also complete
the proof of Lemma 5.2, thanks to Lemma 9.2. We are in the setting of
Section 9, and we assume (SUO),..., (SU8). As in the previous section, we
let Q1, ..., Q. be the CZ cubes, and we set J, = dg, = diameter (Q,),
y, = center (Q,).

Recall that

(1) 9, < a; <1 for each v,
thanks to (11.3).

We take
(2) = (D+1)% - k7,

Lemma 10.5 shows that IC}éﬁ (Y, (D+1)%- k(ﬁd, (') is non-empty for each v,
where C' is a large enough controlled constant. For each v, fix

(3) P, € K¥(y,. (D +1)* - k4, C).
Applying Lemmas 14.3 and 14.5, we see that
(4) 07(Py = P)(yu)l < €+ (@) 0 - aytw(s,) - o5

for |5] < m, if Q,,Q, abut; and
(5) 10°(Py = P)(y) < C" - (a)™ "V - (a2) ™" - (g = wl) - 1 — ™7
for [8] < m. p# .

Lemma 16.1 Fiz v. For each S C EN Q¥ with #(S) < k7., there exists
F3% e C™(R"), with

(6) 0°F7 (2")] < C'w(8,) - 67718 for |B] < m, 2’ € R™;
(7) 0°FS(a') — 0°FF (2")| < C'w(|2’ — 2”))
for |8l =m, ', 2" e R" |2/ — 2"| < ,; and

(8) J(F5) e (f(x) = P,)) + C'o(x) for all z € S.

(In (8), we regard P, = J,(P,) as a jet at z.)

Proof: Let C; be a large enough controlled constant, to be fixed in a mo-
ment, and let # be a cutoff function on R", with

(9) 0=1on Q"
(10) suppd C B(y,, (Cy —1)-6,)
(11) 0%0(2")| < €6, for |8 < m+1, 2’ € R™.
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In view of (10), we see that

(12) If |2" —2”| < 6, and at least one of 2/, 2" fails to belong to B(y,, C19,),

then Jx/(é) = 0, Jx//(é) =0.
We pick C; large enough that there exists 6 satisfying (9), (10), (11),
and we pick 6 satisfying these conditions.

Now let S € E N Q%, with #(S) < k7,. By (3), there exists F €
C™#(R™), with

(13 | FS flemegen < C.
(14) J.(F%) € f(z) + Co(x) for all z € S, and
(15) J (FS) = P,

By (13), we have
(16)  [07[F® = B](z) = 0°[F" — B](2")| < Cuw(]a’ —2"|) < Cw(s,)

for |G| =m, o', 2" e R", |2/ — 2"| < 6,.

We have also
(17) Jy, (F® = P,) =0,

by (15).
From (16) and (17), we see that

(18) 0°(FS — B,)(2')] < C'w(8,) - 6 1P

for |3| < m, 2’ € B(y,,C16,), with C as in (9),...,(12).
Also, (14) gives

(19) J.(FS —P,)) € (f(x)—P,)+Co(x) forallzcS.
We set

(20) FS=0-(FS—P).
Since

F% e C™(R"), P,eP, § € C"™(R"), and suppf C B(y,, (C1 —1)6,),

we have F5 € C™*(R"). We estimate the derivatives of F5.
Immediately from (11), (18), (20), we obtain

0°F5 ()] < C'w(6,)6™ V1 for |8] < m, 2’ € B(y,,C1d,).
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Since also F¥ is supported in B(y,, C14,) (see (10), (20)), we have
(21) 0°F% ()| < C'w(8,) - 6711 for |B] < m, 2’ € R™

We estimate |9°F5(z') — 9P FS (") for |8] = m, 2/, 2" € R", |2/ — 2| < 6,,.
If either of 2/, 2" fails to belong to B(y,,C14,), then (12) and (20) give
OPF3 (") = 0°F,(2") = 0. Suppose 2/, 2" € B(y,,C1d,).
Then (11), (16), (18), (20), and the fact that w is a regular modulus of
continuity show that

(22) 07F (@) — 9P FJ (2")] < C'w(la’ — 2")).
To see (22), we write

(23)  9°FS=0.0°[F°— P+ Z o(3,6")-9%0- 9% [F° — P,

+8"=0
,8 #0

0-0°[F°—P)+G.

By (11) and (18), we have |[VG| < C'w(68,) - 60 1Y = C'w(s,) - 671,
so (23) implies

(24) |0°FJ(2) = 0°F) (a")| < 0«0 [F® = P,](a') = O(z")°[F® — P,)(a")]
+ C'w(6,)d; 2" — 2”).

Moreover,

(25)  [0(2")2°[F® — P)(a') — O(")0"[F® — P)(")| <
<|0(z")| - |0°[F® — B)(z) = O°[F* — P,](a")]
+10(a") = 0(2")| - |9°[F® — P,](z")]
<Cw(la’ —2"|) + C'5; 2" — 2] - w(6,)

thanks to (11), (16), (18). (Recall that we have here 2/,2" € B(y,,C1,)
and |8 = m.)
From (24) and (25), we have

(26)  [9°F)(a) — 0°F;(a")] < C'w(la’ — a"|) + C'w(4,)5, |2’ — 2"].
Since |z’ — 2”| < 0, and w is a regular modulus of continuity, we have
w(0,)8, |2" — 2" S w(|2’ — ")),

and therefore, (26) implies (22). The proof of (22) is complete.
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Thus, we have shown that
(27) 07F7 (o) = 0] (a")] < C'w (|2’ — "))

for |B] =m, o', 2" e R, |2/ —2"| < 4,.

Next, suppose = € S. Then we have also z € Q% (we assumed S C

~

ENQ?), hence (9) gives J,(6) = 1, and therefore (19), (20) show that
J(EY) = J.(FS = PB,) € (f(x) = B,) + Co(x).

Thus,

(28) J(FS) e (f(x) = P,) + Co(z) forallze S,

We have exhibited F¥ € C™«(R") satisfying (21), (27), (28). These
conditions are precisely the conclusions of Lemma 16.1. The proof of the
lemma is complete. n

Since @, is a CZ cube, it is almost OK, i.e., either it is OK or Q"
contains at most one point of E.

Lemma 16.2 Fiz v, and assume that Q, is OK. For each y € @, let
AV < A and PY € P (a € AY) be as in (OK1,2,3) for the cube Q,.
Then the hypotheses of Lemma 8.1 are satisfied for the following data:

e The constant A = (a;)~(m+2);

e The cube Q,;

e The regular modulus of continuity w;

o The finite set EN Q%

o The map v — f(x) — P, € R, forx € ENQ;

o The subset o(x) C R, forx € ENQ};

o The set AY < A fory € Q*;

e The polynomials PY € P(a € AY) for y € Q.
Proof: The hypotheses of Lemma 8.1 are that the Strong Main Lemma holds
for all A < A, and that (GO),..., (G4) hold.

We are already assuming that the Strong Main Lemma holds for all A< A.
(See (SUL).) We check that (GO),..., (G4) hold for our data (as in the

statement of Lemma 16.2).
In fact, (GO) for our data says that, for each € ENQ3, the set o(x) is

Whitney w-convex, with Whitney constant (a;)~(™*2). This follows at once

from (SU2) and (SU5).
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Next, (G1) for our data says that
9°PY(y) = 8 for B,a € AY, y € Q3.

This is precisely condition (OK1) for the cube @,.
Similarly, (G2) for our data says that

0°PY(y)| < (ar) "2l for Be M 0 € A,y € Qi3> a.

This is precisely condition (OK2) for the cube @,.
Next, (G3) for our data says the following.

(29) Given S C ENQ%, with #(5) < kﬁd, and given y € Q** and o € AY,
there exists ¢S € C)0*(R™), with

Loc

() [0%p5(a) — 0PpS(a")] < (ar) (D8 ol — 27| 4

alem w(lz’ — 2"
+a81d((a1)_(m+2)) . 51'1‘ (I )

w(dy)
for |G| =m, o', 2" € R™, |2/ — 2"| < d,;

(b) Jo(£5) € (a1)~ ™6™ (w(5,)) o (z) for all z € S; and
(c) Jy(p3) = P

This condition follows at once from (OK3) for @, provided we have
(30) (@)~ - ay < ag((ar) ).

However, (30) holds, thanks to our assumption (SUT7).
Thus, (29) holds as well, and therefore our data satisfy (G3).
Finally, (G4) for our data says the following.

(31) Given S € ENQ% with #(S) < k7, there exists F$ € C™<(R"), with

(@) [| 9°FS lcogn < (a1)~0"2 - w(8,) - 67 for |8] < m:
(b) [0°F%(a’) = 07F*(a")] < (a2)~"™*? - w(|a’ — a"])
for |B] =m, o',2" € R, |2’ — 2"| < §,; and
(c) J(F%) e (f(x)—P,) + (a1) "™ g(x) forall z € S.
However, (31) follows at once from Lemma 16.1 and our assumption (SU5).

Thus (GO),. .., (G4) hold for our data.
The proof of Lemma 16.2 is complete. |



666 C. FEFFERMAN

Lemma 16.3 For each v (1 < v < pimax), there exists F,, € C"™“(R"), with

(32) | 9, looen) < Aw(8,) - 677 for |8 < m;
(33)  |0°R(2) — 9°F,(")] < Alw(l’ — )

for |8l =m, o/, 2" € R*, |2’ — 2"| < §,; and
(34) J.(F,) € (f(x)—PB,) + Ao(x) forall z € ENQ;.
Here, A" depends only on ay, m,n, and the constant Cy in (SUO,..., 8).

Proof: Fix v. Either ), is OK, or E N ()} contains at most one point.

If @, is OK, then the conclusion of Lemma 16.3 is immediate from Lem-
mas 16.2 and 8.1. If instead there is at most one point in £ N )}, then the
conclusion of Lemma 16.3 is immediate from Lemma 16.1, with S = ENQ;.

Thus, the lemma holds in all cases. [ |

For each v, we fix F, as in Lemma 16.3. For the rest of this section,
we write A, A’, A", etc. to denote constants determined by aq, as, m,n, Cy

in (SUO),..., (SUS).
We prove a slight variant of (33), namely

(35) |0°F, (') — 85Fy(x”)\ < Aw(la" = 2"]) for |B] =m, 2/, 2" € Q.

To see this, recall that @7 has diameter 34,. Hence,, if 2/, 2" € @, then
by subdividing the line segment from x’ to x” into 3 equal parts, we obtain
points xg, x1, Te, T3, with g = 2/, x3 = 2", |z; — x;14| = % |2/ — 2" < 0,.

For || = m, we apply (33) to z;, z;1, to obtain
|0°F, (;) = O°F,(zi1)] < A"w(|z; — 2i11]) < A"w(|z —2|)

for i = 0,1,2. Summing over i, we obtain (35).

Next, we introduce a partition of unity on Q°. With a small constant
¢1 > 0 as in Section 15 (on Patching Local Solutions), we introduce a cutoff
function 6, on R™ for each v (1 < v < fimax), with

(36) 0 < 6, <1 onR",
(37) 6, =1 on Q,,

(38) supp 0, C Q, = {y € R : dist (y,Q,) < ¢16,} C Q* (note that Q,, is
not a cube),

(39) 18%6,| < '8, for |8 < m + 1.
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We then define B )
0, = QV/ZHM on Q°.
m

Note that 6, is defined only on Q°. In view of (36),...,(39), we have the
following properties of the 6,,.

(40) Z 6,=1o0nQ"

1<p<pmax

(41)  Tfz € Q" Q,, then 6, = 0 on a neighborhood of z in Q.
42 9%0,,(z)| < €6, for |8 < m+ 1, z € Q°,
1

thanks to Lemma 11.2 and the proof of Lemma 11.3.
We note also a simple consequence of (3), namely

(43) 0°P.(w)] < C for |5 < m, all v
In fact, (43) follows from (3) by taking S =empty set in the definition

of K (etc.).

Next, we note that the functions 6, on Q°, F, on R", and the polyno-
mials P, satisfy conditions (PLS1,..., 8) in the section on Patching Local
Solutions, with a constant A determined by m,n, Cy, a1, az in (SUO,..., 8).

In fact, (PLS1, 2, 3) are immediate from (40), (41), (42). Also, (PLS4,5,6)
are immediate from (43), (4), (5) and Lemma 11.2. Finally, (PLS7, 8) are im-
mediate from (32) and (35).

Thus, (PLS1,..., 8) hold for the 0,, F,,, P,, as claimed.
Therefore, Lemma 15.5 applies to our 6, F,,, P,.
We define

(44) F= Y 6,-[P+F] onQ"
1<v<pmax

From Lemma 15.5, we have
(45) 0°F(z)| < A" for |8] < m, z € Q% and
(46)  |9°F(2') — 9°F(a")| < Aw(|z’ —2"|) for || = m, o/, 2" € Q°.
Note that F is defined only on Q°.

Next, suppose z € E N Q°. We pick v(1 < v < pimay), with @, contain-
ing x.

Note that, for any pu with 2 € @7,, we have
(47) Jo(P,+ F,) € f(z) + Ao(x),
by (34). In particular, (47) holds whenever 2 € Q,, (sce (38)).
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For our given , let Q be the set of all u(1 < p < fimay) With 2 € Q,.
Then (41) and (44) give

(48) Jr(ﬁ) = ij(eu) ’ JI(PH+F#)7

nEeER

with the multiplication in (48) performed in R,.
We rewrite (48) in the form

(49) Jo(F) = L(Po+ F) + Y Jo(0,) - [Jo(Pu+ F) — Jo(P, + F)).

neN

(This holds, thanks to (40).)

We study the summands in (49). Recall that if z € @, and also x € QM,
then @, and @, abut or coincide.

Hence, we have

1
(50) 551, <4, <26, forpe( by Lemma 11.2; and
(51)  |0°(Pu— P,)(yu)| < Aw(6,)87 171 for |B] <m, € Q, by (4).

(Of course, (51) holds trivially if @, and @, coincide.)
Since x,y,, € @u for 1 € Q, we have also |z —y,| < C6§, < C'6, by (50).
Hence, (51) implies that

(52) 0° (P = P) ()| < A'w(6,)07 17 for |B] < m, u€ Q.
Also, we have
(53) |07F ()] < Aw(d,)- 5 < Aw(3,)- 00 for |8 < m, peQ,

thanks to (32), (50), and the fact that w is a regular modulus of continuity.
In particular, since x € @, C @, we have v € €2, hence (53) implies

(54) |85Fy(x)| < A”w(&,)él’,”_'m for |8 < m.
Estimates (52), (53), (54) show that
(55) ‘8B[JI(PM + FM) - JI(P,, + FI/)] (33)| < A/w<5V> : 531_%‘

for |B] < m, p € Q.
We have also

Jo(P,+ F,), J.(P,+ F,) € f(x) + Ao(x),
for € Q, by (47) and the fact that v € Q.
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Hence,

(56) [J.(P,+ F,) — J.(P, — F,)] € Ao(xz) forall ue.
From (42), (50) we have also

(57) [ 1.(6,)](x)] < 6,10 for 5] <m, p € Q.

Our Whitney w-convexity assumption (SU2), together with (55), (56), (57),
now shows that

(58)  Ju(0,) - [Jo(Pu+ F,) — Jo(P,+ F,)] € A'o(z) forall € Q.

For each p € Q, we have x € Q# C @, and %5,, <6, < 260,. Hence,
there are at most C' distinct p in the set €.

Consequently, we may sum (58) over all u € 2. We find that
(59) > u0) - [P+ Fy) = (P + )] € Ao(x).
HES

From (47), we have also
(60) Jo(Py+ F) € f(z) + Alo(x),
since v € Q. Putting (59), (60) into (49), we find that J,(F) € f(x)+A'o(x).
Since we took x to be an arbitrary point of £ N Q°, we have proven that
(61) Jo(F) € f(z)+ A'o(z) forallz e ENQPC.

Our function F has the good properties (45), (46), (61), but it is defined
only on Q°. To remedy this, we multiply F by a cutoff function. We recall
(see (11.1), (11.3)) that Q" is centered at y° and has diameter ca; < dgo < a;.

We introduce a cutoff function # on R", with
(62) |6 [|cmrimny < A, =1 on B(y° c'ar), supp 0 C Q°.

We then define F = 6§ - F on R*. From (45), (46), (62), we obtain
F e C™¥(R"™), with

(63) | F flome@ny < A's
and from (61), (62), we have
(64) J.(F) € f(z) + Alo(x) forallz € EN By, cay).

Since the constants A" and ¢’a; in (63), (64) are determined by m, n, Cy, a1, as
in (SUO,..., 8), our results (63), (64) immediately imply the conclusion of
Lemma 9.1.

The proof of Lemma 9.1 is complete.

In view of Lemma 9.2, the proof of Lemma 5.2 is also complete. [
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17. Rescaling Lemmas

Lemma 17.1 Let 7 : R™ — R" be the linear map
(T1,. oy Tn) = (MT1, - AnTn),

with

(1) o<\ <1 (t=1,...,n).

Let w be a reqular modulus of continuity. Let & € R™, and let x = 7(Z).
Suppose o C R, is Whitney w-convez, with Whitney constant Cy.
Define d C Rz by = {APoT1: P € o}, where A is a given positive

number.

If A exceeds a large enough constant determined by cy, m,n, then & is
Whitney w-convex with Whitney constant Cy.

Proof: We know that & is closed, convex, and symmetric about the origin,
since o has these properties.

Suppose we are given P, Q, 0, with

(2) Pea,

(3) Q € Rz,

(4) 0<0<1,

(5) 0°P(z)] < w(d) - 6™ for 8] < m,
(6) 18°Q(z)| < 618 for |B] < m.

We must show that

(7) P -Q € Cyz, where the multiplication is performed in R;.

We set

(8) P=A"'"Por and Q = Qo7
By (2), (8) and the definition of &, we have

9) P e o

We have also
(10) 1Q(z)| <1, and |0°Q(z)| < €581 for 1 < |B| < m; and
(11) 0°P(z)] < CA w(s) - om 1Al

with C in (10), (11) determined by ¢y, m,n. In fact, (10) and (11) follow
from (1), (5), (6), (8) and the definition of 7.
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In view of (10), we may find a small constant ¢, determined by cg, m, n,
for which we have

(12) 0°Q(x)] < (e5)" for 8] <m,
and
(13) 0<e<l1.

Since w is a regular modulus of continuity, we have w(d) < (€)' w(cd).
This estimate and (11) together yield

(14) |0°P(x)| < w(@d) - (@)™ P for |8] < m, with ¢ as in (12), (13),
provided A exceeds a large enough constant determined by cq, m, n.
In view of (4), (13), we have also
(15) 0<es < 1.
From (9), (12), (14), (15) and the Whitney w-convexity of o, we see that
P - @ € Cyo, where the multiplication is performed in R,.
Hence, by definition of &, we have
A[P-Q|oT e Cyo.
On the other hand, from (8) we have APo7 = Pand Qo7 = Q.
Hence, o
AP-QJoT =P - Q
(where, on the right, the multiplication is performed in R;). Thus,
P - QeCy,
which is the desired conclusion (7).
The proof of Lemma 17.1 is complete. |

The next lemma is copied from [9,11], and its proof appears in [9].

Recall that M™ is the set of multi-indices § = (fi,...,5,) of order
B8] = 1+ -+ B, < m+ 1, while M is the set of multi-indices 3 of
order |G| < m.

Lemma 17.2 Let A C M, and let Cy,a be positive numbers. Suppose we
are given real numbers F, 5, indezed by a € A and € M™.
Assume that the following conditions are satisfied.

(16) Foo#0 forall a € A.
(17) |Fopl < Ci|Foa| forall a € A, € MT with §> a.
(18) F,3=0 forall o, € A with o # .
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Then there exist positive numbers Ay,..., A, and a map ¢ : A — M,

with the following properties.
(19) ¢ < A\ <1, where ¢ is a positive constant determined by Cy,a, m,n.
(20) o) < « for all a € A.
(21) For each a € A, either ¢(a)) = a or ¢(a) ¢ A.
(22) Suppose we define Faﬁ forae A, = (01,...,0,) € MT, by

(a) Fup = N AD Fap.

Then we have
(b) |Fopl < a1|Fpg) for ala € A, 8 € MY with 5 # ¢(a).

18. Proof of Lemma 5.3

In this section, we give the proof of Lemma 5.3. We fix A C M, and assume
that the Weak Main Lemma holds for all 4 < 4. We must show that the
Strong Main Lemma holds for .A. We may assume that the constant k% in
the Weak Main Lemma for A < A is independent of A. (In fact, we may just
replace k% the value of k# in the Weak Main Lemma for A, by max g< 4 k:jf)

Fix k# as in the Weak Lemma for any A < A.

Let C| ag be positive constants; let w be a regular modulus of continuity;
let £ C R" be a finite set; let y° be a point of R™; and let P, € P be a
family of polynomials indexed by o € A.

Also, suppose that for each x € E we are given an m-jet f(z) € R, and
a subset o(x) C R,. Assume that these data satisfy conditions (SLO,. .., 5).
We must show that there exists F' € C"™“(R"), satisfying (SL6,7) with a
constant C” determined by C, m,n.

This will tell us that the Strong Main Lemma holds for A.
Without loss of generality, we may suppose that

(1) yo =0.
It will be convenient to introduce two positive constants @ and A, which
are assumed to satisfy the following conditions.

(2) a is less than a small enough positive constant determined by C,m,n.
(3) A exceeds a large enough positive constant determined by a, C, m, n.

(4) ap is less than a small enough positive constant determined by A,
a,C,m,n.
Assumptions (2), (3), (4) are not hypotheses of the Strong Main Lemma
for A. At the end of our proof, we will remove these assumptions.
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We say that a constant is “controlled” if it is determined by C,m,n in
(SLO,..., 5). We write ¢, C,C’, etc., to denote controlled constants. Simi-
larly, we say that a constant is “controlled by a” if it is determined by a,
together with C,m,n in (SLO,. .., 5). We write ¢(a), C(a), C'(a), etc., to de-
note constants controlled by a. Finally, we say that a constant is “controlled
by @ and A” if it is determined by A,a and by C,m,n in (SLO,..., 5). We
write c(a, A), C(a,A), C'(a,A), etc., to denote constants controlled by a
and A.

Our plan is simply to rescale the problem, using the linear map 7: R” —R",
given by

(5) T (T, Tn) = (MT1,y ooy Ann),

for A\1,..., A, > 0 to be picked below. We define

(6) E=7"YE),Py,=P,or,j’ =0,

(7) f(z) = (f(r(z))oT € Ry forze€E,

and

(8) 5(z) = {APo7:Peo(r(z))} CR, forzek.

(Note that (7) makes sense, since f(7(z)) is an m-jet at 7(Z).)
We keep w unchanged.

Thus, w is a regular modulus of continuity, £ is a finite subset of R™,
10 is point of R”, P, € P is a polynomial indexed by a € A; and for each
T € E, f(¥) € Ry is an m-jet and (%) C Rs.

Evidently,

(9) O°Paly®) = X' AT PL(y’) fora€ A B=(Br....0) €M
To pick Aq,..., \,, we appeal to Lemma 17.2, with

(10) F.3 = 0°P,(3°) forac A, B3e M,
and
(11) F.p=1 forac A, |f|l=m+1.

Note that the hypotheses of Lemma 17.2 are satisfied here, with a as
in (2), (3), (4); and with C a controlled constant. In fact, (SL1) shows that
F,o#0forall « € A. Also, (SL1,2) and (10), (11) show that

‘Fa,ﬁ’ S Cl‘Fa,a|

forae A, e M. 3> a.
Finally, F,,3 = 01if a, f € A and a # (3, thanks to (SL1) and (10).
Thus, the hypotheses of Lemma 17.2 are satisfied by a, C, F,, 3 as claimed.
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Applying that lemma, we obtain positive numbers Aq,..., A, and a map
¢ : A — M, with the following properties.

(12) c(@) < \; < lforeachi=1,...,n

(13) ¢(a) < a for each o € A.

(14) For each o € A, either ¢(a) = a or ¢(a) ¢ A.
(15) For any o € A, 3 € M with § # ¢(«), we have

|aﬂpa(y )’ <a- ’a¢(a a(g )‘

(16) For any o € A, we have
AN < g |02 P (50| for By + -4 By = m+ 1.

Here, (15) and (16) follow from the conclusions of Lemma 17.2, together
with (9), (10), (11).

Let S C E be given, with #(S) < k#. Set S = 7(S), and apply (SL3).
Let ©5(a € A) be as in (SL3), and define

(17) 7 = Sor, forac A

Thus, @5 € C)2?(R™), since ¢ € C)2° (R™).

Loc

For 6 = (B1,...,0,) with |5] = m, and for &' = (z},...,7)), 7" =

n

(],...,2!) in R" with |2/ — 2"| < 1, we have |7(Z') — 7(2")| < 1 (see (5)

rn

and (12)), hence

075a(a") = Pp3(a")] = A A7 (r (@) — 073 (r(a")]
< XA faow(I7(@) = (@) + Ol (@) = 7(@")[] by ((SL3)(a))

< mul( =1) + O X Al =] (b (), 12)

< ayw(|7’ — ") + Calo* P, (7 Z |, — 2| (by (16))
< aw(|7' — ") + C'a|o*" P (7)) - va — 2’
< aw(|7' — ") + C'a|o”VP(y)] - w(|T' 7)),
since w is a regular modulus of continuity, and hence # > # = 1 for

0 <t<1 (also w(0) =0). Thus,

(18) for |5 = m, #',z" € R", |z' — 1"| < 1, we have
|aﬁ ( ) 6ﬂgpa( //)| < [ao + C’a|8¢’ (yO)H . u)(|f’—j”|)_



A GENERALIZED SHARP WHITNEY THEOREM FOR JETS 675

Also, from (9), (15), (SL1), (12), we have, for a = (ay,...,a,) € A, that

(19) 07V Ba(i°)] = [0°Pa(@®)] = AT* -~ XG0 Pa(y”)]

= A" AN > c(a).
From (18), (19), we have the following.
(20) [0°5(x') = 0°p3(x")| < [C(a)-ao + C"-a - |0" ™ Pa(y")]- w(|z' —2"])

foraec A, |B|l=m, 7,7 e R", |7/ —2"| < 1.
Also, (SL3)(b), together with (17) and (8), shows that, for 7 € S, we

have

Ja(@2) = [JT(j)(cpg)] or€{Por: PcCo(r(z))} = CA'5(z).

«

Thus,
(21) J:(75) e CA™'5(z) forallae A, 7€ S.
From (SL3)(c), (17), (6), we have
Tp(@) = Up(@) o7 = Puor = B
Thus,
(22) Jp(p3) = P, foralla e A.
Since @3 satisfies (20), (21), (22), we have proven the following.

(23) Given S C E with #(5) < k#, and given o € A, there exists @5 €
C?(R™), with
(a) 10°@5(7")~0°35(@")| < [C(a) - o+ C'a]- |07 Pa(y®)|-w(|z’'~"])
for |6 =m, @, 7" e R, |7/ — 2" < 1;
(b) Jx(@3) € CA~'5(z) for all € S; and
(C) JQ()(SBOCS) = Pa-
Similarly, let S C E be given, with #(S) < k#. Again, we set S = 7(9),
and we apply (SL4). Let F*¥ be as in (SL4), and define
(24) F¥ =F%or.

Thus, F¥ € O™ (R"), since ¥ € C™¥(R").
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For 8 = (f4,...,B,) with |5] <m, (SL4)(a) and (112) give
(25) || 8ﬁF§ HC’O(R") = )\fl T )\g" || aﬁFS HCO(Rn) < C.

Also, for = (04,...,0,) with |3] = m, and with z/,z” € R™ with
|z' — "] <1, we have |7(Z') — 7(2")| < 1 by (12), hence (SL4)(a) and (12)
give

() [OPFS() — PFS@)| = A - NFOPFS (@) - 9°FS ()
<N NP -l (@) 7)) < CuwllE — )
From (25), (26), we see that
(27) | B flomen < C.
Suppose T € S. Then (24), (SL4)(b), (7), (8) give

Jo(F?) = [Jo@(F9)] o € [f(7(2)) + Co(r(z))] o7 =
= f(r(z))oT + {CPoT: Pca(r(z)} = f(7) + CA'5(z).

Thus,
(28) Jo(F%) € f(z) + CA'5(z) forallz e S.
Since F° satisfies (27) and (28), we have proven the following.
(29) Given S C E with #(S5) < k#, there exists FS € C™*(R"), with
| F¥ [|gmw@ny < C, and Jz(FS) € f(z) + CA~'5(z) for all 7 € S.
Now define
(30) A = ¢(A)
and let ¢ : A — A satisfy

(31) d(Y(a)) = a forallac A
Note that
(32) A < A,

by (13), (14), (30), and Lemma 3.3.
For each & € A, define

(33) Py = Pya)/(0°Pya)(5°)) € P.
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Note that, with a = ¥ (&), we have
(30) [0 Py )| = [0°OP(")] > (@) forac A by (19).

Hence, the denominator in (33) is non-zero.
We derive the basic properties of the P for @ € A.
From (15), with a = (&), we have, for & € A, 3 € M, 3 # @, that

07 Pa(3°)] = |0°Pa(§")| / 107 Pu(y’)] < @ (since G = ¢(a)).

Also, for a € A, we have

O*Pa(y’) = (0" Pua)(#))/ (0" Py (3°)) = 1.
Hence,
(35) 0°Po(7°) — 0pa| < @ forallac A, 3 e M.
Also, from (23) (with a = ¢(@)), (19) and (33), we obtain the following.

(36) Given a € A and S C E with #(5) < k#, there exists 35 € CJ"“(R"),
with
(a) [07¢3(z') — 0°¢3(@")| < [C(a) - @ + C'a] - w(|7’ — 7))
for |6 =m, @, 7" e R", |7/ —7"| < 1;
(b) J:(¢3) € C(a) - A'5(z) for all Z € S; and
(c) Jp(23) = Pa
n fact, we just set G5 = 35/ (0°Pya (%)) with @ = ¥(@) and @5 as
In f j o 5/ (0% Pyay(y° h 0 d @3
in (23).)
From (35) and (2), we see that the matrix (0° P5(9")) 5.ac.4 has an inverse
(MO(,7C_Y)CV/,&GA7 Wlth
(37) |Mys — dwal < Ca for of,a € A.
We now define
(38) Pa= Y Py Mys €P forallac A

a’'cA

From (37), (38), we have

(39) 0° P (i°) = 0sa for B,a € A.
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Also, from (35), (30), and (2), we have

(40) 10° Ps (7°) — 64a| < Ca forac A3 e M.

Given S C E with #(5) < k#, we let ¢3 be as in (36) for each @ € A.
We then define
(41) 25 =3 @5 My forallac A

a’'€A

From (36)(a), (37), (2), and (41), we have, for each & € A, that
(42) 187 e3(@) - 0° 93" < [C'(@) -ap + C" - a) - (|7 — ")

for |6 =m, 7/,7" e R", |7/ — 2" < 1.

Similarly, from (36)(b), (37), (2), and (41), we have, for each @ € A,
that
(43) J.(#5) e C'(@)A'5(z) forall z € S.

Also, comparing (38) with (41), and recalling (36)(c), we have, for each
a € A, that

(44) Jpo(®
Since (42), (43), (44) hold for the @ 5 we have proven the following.

(45) Given @ € Aand § C E with #(5) < k#, there exists 95 € I (R™),
with

(a) ‘aﬁ Zg(i./) — 9B ‘Eg(i")‘ < [C'@) - G + C"a) - w(|T — 7))
for .2 € R", [#/ — 2] < 1, |6 = m:

(b) Jo(¢3) € [C'(a) - AYo(z) for all Z € S; and
(c) Jp(PS) = Pa.

Next, we establish the Whitney w-convexity of ¢(z), and estimate its
Whitney constant.

We check that the hypotheses of Lemma 17.1 are satisfied by the sets
o(7(z)), o(x), with ¢y and Cy in Lemma 17.1 taken here to be ¢(a) and C,
respectively. In fact, the hypothesis ¢g < A; < 1 in Lemma 17.1 holds
here, thanks to (12). The hypothesis “o(7(z)) is Whitney w-convex, with
Whitney constant Cy” in Lemma 17.1 holds here, thanks to (SL0O). We note
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that o(z) is defined from o(7(Z)) as in Lemma 17.1, thanks to (8). Finally,
the hypothesis “A exceeds a large enough constant determined by cq, m,n”
in Lemma 17.1 holds here, thanks to our assumption (3).

Thus, all the hypotheses of Lemma 17.1 hold here, as claimed. Applying
that lemma, we now see that the following holds.

(46) For any Z € E, the set (%) C R; is Whitney w-convex at Z, with
Whitney constant C'.

In view of (29) (45), (46), (40), and (39), we can pick a controlled con-
stant C for which the following hold:

(47) For each T € E, the set 6(z) is Whitney w-convex at Z, with Whitney
constant C1.

(48) 8ﬁ ;@ (ﬂo) = 65@ for ﬂ,o_é c A
(49) |0° Pa (3°) — 64s] < Cafor alla € A, B € M.

(50) Given @ € Aand § C E with #(S) < k#, there exists 95 € CI"“(R™),
with
(a) [0° 95() — 0% 9S(z")| < [C'(a) - ap+C" - a) - w(|@ — 7"|)
for |6 =m, @, 7" e R", |7/ — 7"| < 1;

(b) Ja(93) € [C'(@) - A5 () for all T € S; and

(¢) Jyp(#5) =Pa.

(51) Given S C E with #(S5) < k#, there exists FS € C™*(R"), with
(a) || F¥ ||lgme@n < Ci; and
(b) J:(F®) e f(z) + CA'5(z) forall Z € S.

We prepare to invoke the Weak Main Lemma for A. (Recall A < A;
(see (32)).)

We now pick a small constant ag, for use in the hypotheses of the Weak
Main Lemma for A. In fact, we take ag to be a controlled constant, small
enough to satisfy (WL5) in the Weak Main Lemma for any A" < A, with C
in (WLO,...,5) taken here to be C; as in (47) and (51). We can achieve
this with a small enough controlled constant ag, because C' is a controlled
constant.
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We now check that the hypotheses of the Weak Main Lemma for A are
satisfied by the following data:

e The constants C; (as in (47) and (51)) and ag (as just discussed).
e The regular modulus of continuity w.

e The finite set £ C R™.

e The point §° € R™.

e The family of polynomials ;@E P, indexed by & € A.

e The m-jet f(z) associated to each Z € E.

e The subset 5(Z) C R; associated to each T € E.

In fact, for these data, hypothesis (WL5) holds, thanks to our choice of ay.

Comparing hypotheses (WLO,. .. ,4) with our results (47),..., (51) we see
the following.

(WLO) for our data is precisely (47).
WL1) for our data is precisely (48).
WL2) for our data follows from (49), provided we have

(
(

(52) Ca S agp.
(WL3) for our data follows from (50), provided we have
)

(53 [C'(@) - ap + C"a] < ag

and

(54) [C'(@) - A7'] < Cu.
(WL4) for our data follows from (51), provided we have

(55) [CA™Y] <

1 .

Hence, to check the hypotheses of the Weak Main Lemma for A for our
data, it is enough to check that conditions (52),. .., (55) hold. However, (52)
holds, thanks to (2), since we picked ag to be a controlled constant. (In
fact, C' and ap in (52) are both determined by C,m,n in (SLO,..., 5); see
the definition of “controlled constants”.)

Similarly, to check (53), we note that C”a < 3ao, thanks to (2); and
C’'(a) - ap < 3ao, thanks to (4). (Here again, we use the fact that ag is a
controlled constant.) Hence, (53) holds.

Finally, (54) and (55) hold, thanks to (3).

This completes the verification of the hypotheses of the Weak Main
Lemma for A, for the above data.
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We recall that we are assuming that the Weak Main Lemma holds for A,
since A < A. Applying that lemma to our data, we learn the following.

There exists F' € C™“(R"), with

(56) | F lgme@y < €', and
(57) Jo(F) € f(z) + C'5(z) forallz € En B’ ¢).

We fix F as above, and define
(58) F=For '

Thus, FF € C"™“(R™). We estimate its norm. By definition of 7, and
by (12), we have from (56) that

(59) || 8ﬁF ||CO(RTL) = /\1_ﬁl e /\;’Bn || 85}7“ ||CO(Rn) < O(d),

fOI’ ‘ﬁ‘ S m, ﬁ = (ﬁla <. >ﬁn)

Also, for |8 =m, B = (B1,...,Bn), o', 2" €R", |771() — 771 (a")| < 1,
we have
(60) [0PF(x!) — 0P F(a")] = X -+ ;[0 F(r L (s')) — 0 F(r (")

< C(a) - w(lr (@) =77 @")]).

Recall that w is a regular modulus of continuity, and note that |771(z") —
1 z")| < C(a) - |2 — 2"|, by (12). Consequently, for a suitable constant
c1(a), we find that |2/ — 2”| < ¢ (a) implies |77 (2') — 771(2”)] < 1 and
w(lT™H (@) =771 @")]) < C(@) - w(a’ —2")).

Together with (60), this yields

(61) 07F (') = 0°F(2")| < C(a) - w(l2’ —2"])

for |B] =m, |2/ — 2" < ¢1(a).
On the other hand, if |G| = m, ¢;(a) < |2/ — 2"| < 1, then we have
w(]z" — 2"|) > ¢1(a) since w is a regular modulus of continuity, and

|8ﬂF(x') — 8ﬁF(Jc”)| < |8ﬂF(x')\ + |8ﬂF(x")| < C(a).
Hence,
(62) |07 F(a') = 97F (2")] < C(a) - w(|a’ — 2"|)

if er(a) < |2’ —2"| <1, |B] =m.
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From (61) and (62), we have
0°F (') = 0°F(a")| < C(a) - w(la’ — ")

for |5 =m, /2" e R", |2’ —2"| < 1.
Together with (59), this shows that

(63) | F [[eme@ny < C(a).
Next, suppose

(64) v € EN B, cy(a)),

and set

(65) T =r11(2).

-
If we take co(a) small enough in (64), then we will have
(66) T€ ENB(y, ), with asin (57);

this follows from (6) and (12), and from the definition of 7.
From (57) and (66) we obtain

J:(F) € f(z) + C'5(2).
Composing with 771, we obtain
(67) J(For™He(f(z)or +{C'Port:Pcs(a)}
From (7), we obtain
(68) (f(@)or " = [(f(r(
From (8), we have

(69) {C'Por':Pea(x)}={C[APoT]or ! :Pco(r(z))}
={C'AP: P eco(1(z))} = C'Ao(7(Z)) = C"Ao(x)

&I
N—
N—
N—
e}
il
e}
\]
L

Il
~
—~

\]
—

&I
N—
N—

Il
-
—

&
N—
—~

[

10’

o)
Yy

(@)

ot
N——
N—

(see (65) again).
Substituting (58), (68), (69) into (67), we learn that

(70) J.(F) € f(x) + C'Ao(z) for all x € EN B(y°, c2(a)).

Our results (63) and (70) look a lot like the conclusions of the Strong
Main Lemma for .A. However, the constants in (63), (70) depend on a and A,
which do not appear in the Strong Main Lemma. Also, we recall that we are
assuming conditions (2), (3), (4) on the additional constants a and A. We
now remove the assumptions (2), (3), (4), and complete the proof of the

Strong Main Lemma for A.
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We take a to be a controlled constant (ie., determined by C,m,n in
(SLO,..., 5)), small enough to satisfy (2). Next, since a is controlled, we
may take A to be a controlled constant, large enough to satisfy (3). Fi-
nally, since A and a are controlled, (4) says merely that ag is less than a
small enough constant determined by C,m,n in (SLO),...,(SL5). Conse-
quently, (4) follows at once from hypothesis (SL5). Thus, we have taken A
and a to be controlled constants, for which assumptions (2), (3), (4) are
satisfied.

With our A and a, results (63) and (70) are valid, since assumptions (2),
(3), (4) hold. Moreover, since A and a are controlled, the quantities C'(a),
C'A, and cy(a) are controlled constants. Therefore, (63) and (70) show that
F e ™% (R") satisfies

(71) || Fllegme@n< C', and J,(F)€ f(z) + C'o(x) for all ze EN B(y°, ),
with C” and ¢ determined by C,m,n in (SLO,..., 5).
However, (71) is precisely the conclusion of the Strong Main Lemma for A.

Thus, assuming the Weak Main Lemma for all A < A, we have proven the
Strong Main Lemma for A. The proof of Lemma 5.3 is complete. [

19. Proof of the Main Result

In this section, we prove Theorem 2 from the Introduction.

We have proven Lemmas 5.1, 5.2, 5.3. Consequently, we have proven the
Local Theorem stated in Section 5 (“Plan of the Proof"). That result applies
to finite sets E. We now remove the finiteness assumption on F, by Ascoli’s
theorem.

Lemma 19.1 There exists k7, depending only on m and n, for which the
following holds.

Suppose we are given a reqular modulus of continuity w; an arbitrary set
E C R™; and, for each x € E an m-jet f(x) € R, and a subset o(x) C R,.

Assume that the following conditions are satisfied.

(1) For each x € E, the set o(x) is Whitney w-convezx at x, with Whitney
constant C.

(2) Given S C E with #(S) < k#, there exists F'° € C™*(R"), with
| F¥ lemw@n< C, and J,(F°) € f(z) + Co(z) for each x € S.
Then, for any y° € R", there exists F € C™*(R"), with
| F |lgmegeny < C', and J,(F) € f(z)+ C'o(z) for allz € ENB(y°, ).
Here, C" and ¢ depend only on C;m,n in (1) and (2).
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Proof: Let k%, C’,c be as in the Local Theorem, suppose w, E, f,o sat-
isfy (1) and (2), and let y* € R™.
Applying the Local Theorem, we learn the following.
(3) Given a finite subset E; C E, there exists F' € C"“(R"), with
| F[|gme@n< C', and J,(F) € f(z)+C'o(z) for all z € EyNB(y°, ).
Now set
X ={FeC™(B):| F |cmnemn < C'},

where B denotes the closed ball with center y° and radius ¢/, and

OPF(z') — O°F (x
| F' ||gme(py= max<{ max [0°F(z)|, max  sup | (=) ()] |
\i\eﬁén |ﬂ‘:m o 2" eB w(’x/ _ x//’)

o< |z/ -2 |<1

We equip X with the C™-topology. Thus, X is compact, by Ascoli’s theorem.
For each x € E'N B, we define

F.,={FeX: J(F) € f(z) + C'o(x)}.

Each F, is a closed subset of X, since the set o(x) is closed. (Recall that,
by definition, a Whitney w-convex set is closed.)

From (3), we see that any finite list F,,, ..., F,,(z; € E N B) has non-
empty intersection. Since X is compact, it follows that the intersection of
all the F, (z € E'N B) is non-empty.

Letting £ belong to this intersection, we see that

(4) F € C™(B),|| F ||omem< C', and J,(F) € f(z) + C'o(z) for all
re ENBDB.

Unfortunately, F is defined only on B. To remedy this, we introduce a
cutoff function 6 on R", satisfying

=1 on By’ d/2), suppf C B(y’,c) and |0 ||cmwrn< C”

determined by m and n and the Whitney constant.

We then define F = 0 - F on R”. From (4) and the defining properties
of 6, we deduce easily that F' € C™“(R"),

(5) [| F||gme@n< C" and J,(F)€ f(x)+C"o(x) for all z€ EN B(y°, ' /2).

Here, C" depends only on C,m,n in (1) and (2). Our result (5) is the
conclusion of Lemma 19.1. The proof of the lemma is complete. |
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Proof of Theorem 2:

Let k% be as in Lemma 19.1, and let w, £, A, f, o be as in the hypotheses
of Theorem 2. We write a, A, A”, etc. to denote constants determined by

A, m,n. Lemma 19.1 tells us that, for suitable constants A, a’, the following
holds.
Given y € R", there exists F¥ € C"*(R"), with

(6) | FY ||cm,u(Rn)§ A, and
(7) J.(FY) € f(z) + A'o(z) forall z € EN B(y,d).

To exploit this, we introduce a partition of unity,

(8) 1 = ZQV on R",

with

1 !
9) supp b, C B(y,, ga ),
(10) || 81, ||C’m+1(Rn) S A//7

We may suppose also that
(11) Any ball of radius 1 in R" intersects at most A” of the balls B(y,,a’).

We then define

(12) F =Y 6,F",

with F'% as in (6), (7). From (6), (9), (10), we see easily that
0,F% € C™“(R"), with || 0,F% ||cme@n < A

Together with (11), this shows that F' € C"™“(R"), with

(13) | P o < A%,

Next, suppose € E. We fix p with « € B(y,, %a’). (There must exist p
with this property, thanks to (8) and (9).)

Suppose we have any v, for which 2 € B(y,, 5a’). Then (7) gives

(14) Jo(F¥), J.(F*) € f(z) + Alo(x).
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Also, (8), (12) imply that

F = Zgypyu + ZQV (FY — FY) = F% 4 ZQV . (F% — Fw)

on R™, hence

(15) Jx<F) - Jm(Fyu) + ij(el/) ’ Jm(FyU - Fyu)7

with the multiplication performed in R,.
From (14), we see that

(16) Jo(F% — F) € 2A'0(x) if B(y,,3d’) contains x.
From (6), we have that
(A7) (O[T (FY — FU)(x)] < [0°F% (2)| + |07F%(x)] < 24’
for [B] < m.
From (10), we have
(18) 107[J2(0.))(x)| < A" for |B] < m.

In view of the hypothesis of Theorem 2, to the effect that o(x) is Whitney
w-convex with Whitney constant A, we learn from (16), (17), (18) that
(19)  Ju(6,) - Jo(F*" — F%) € A*o(z) if B(y,,3a’) contains z.

Also, if ¢ B(y,, 5a’), then J,(6,) = 0, by (9).

Therefore, (14), (15), (19) together imply that

To(F) = J(F") + > Ju(8,) - Jo(F¥ — F¥)
B(yv,a'/3)>x
€(fx) + Ao(x)) + Y Ao(z).
B(yv,a’/3)>x

This in turn implies
J.(F) € f(z) + A%o(z),

thanks to (11). Thus, we have proven that

(20) J.(F) € f(z) + A%o(z) forallz e E.

We have exhibited a function F' € C"™“(R"), satisfying (13) and (20).
The constants A% in (13) and A** in (20) are determined in A, m,n in the
hypotheses of Theorem 2.

Thus, (13) and (20) are the conclusions of Theorem 2.
The proof of the theorem is complete. [ |
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