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Corrigenda:

(n, 2)-sets have full Hausdorff dimension

REV. MAT. IBEROAMERICANA 20 (2004), no. 2, 381-393.

Themis Mitsis

1. Introduction

In [1] the author claimed that an (n,2)-set must have full Hausdorff dimen-
sion. However, as pointed out by Terence Tao and John Bueti, the proof
contains an error. More precisely, on page 389, the argument doesn’t really
show that P C TI¢°. In this note we outline how one can correct this, by
constructing families of plates so that their intersections with a given one
contain line segments of fixed length. The price we pay is a weaker result.
Namely, we show that the Hausdorff dimension of an (n,2)-set is at least
(2n+ 3)/3, which is, nevertheless, an improvement on the previously known
(2n+2)/3.

Asin [1], the Hausdorff dimension bound is a consequence of the following
which should replace Proposition 4.1 in [1]

Proposition 1.1 Suppose E is a set in R", X < 1 and B = {P;}}L, is a
d-separated set in G, with diam(B) < 1/2, such that for each j there is a
plate P;S satisfying
PS OB > AP,
Then
|E| > 06—156)\aM(Qn—3)/(6(n—2))5n—27

where a is a positive constant depending on n.

2. Preliminaries

Our terminology and notation are the same as in [1]. The only difference
is that P"° denotes a plate of dimensions [ x { x § x --- x 8, 1 < [ < 4,
0 < d < 1. Also, when we write x Z5 y we mean z 2 |logd|~“y, for some
positive a. As is customary, C' denotes positive constants not necessarily
the same each time they occur.
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We will make use of the following.

Lemma 2.1 Suppose E is a set in R, 3,k < 1 and € = {P;}}L, is an
n-separated subset of G, with diam(E) < 1/2, such that for each j there is a
plate Pj’" satisfying

[PV ENT(2)] 2 ||
for alle € S™ 1, z € R*. Then

B| R G20 e g

Proof. This is a 2-dimensional version of Bourgain’s “bush” argument. The
proof is almost identical to the proof of the result in [2], so we omit it. B
3. Proof of the proposition

First, by an argument analogous to that of [1, page 386], one shows that

there is a family C" C {P/}}L,, with [C'| > M/2 so that for each P} € C'

there is a set A} C P? N E of measure [A}] > A", such that for each
r e Al
{y € P OEN\B(x,c0) : [{k : [w,y] € P} > po} 2 A6" 2,

where ¢ is a small fixed constant, [z, y] is the line segment joining = and v,
and

(3.1) fio ~ M|E|72\26%("=2),

Then using the pigeonhole principle as in [1, page 387], we conclude that
there is a number p with 6 < p < 1, a family C C C’ with |C| s M, and a
subset A; C A’ with [A;] Zs A6" 2 so that for each P! € C and each = € A;

‘{y GP;s N E\B(z,c) :
[{k + [oy] © P and p < d(Py, i) < 2] Zo so}| 2o 26”2,
Next, for each Pf € C, let

Dy = (P} :p < d(P, P) <2p
and P} N Pf contains a line segment of length at least ¢}

Arguing as in [1, page 387] we show that

(3.2) D] Z5 (A3 po.
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Now we are in a position to carry out a version of Wolft’s “hairbush” argu-
ment. Namely, for each Pf € C take a maximal §/p-separated set of points
{eji}i on the (n — 3)-dimensional unit sphere S"~' N P;-, and let

H]l = Cj + le

Jjv

where ¢; is the center of Pf and IT’; is the 3-plane spanned by ej; and P;.
Using the fact that the intersection of each P € D; with Pf contains a line
segment of length at least ¢y, one can indeed show that for every P} € D;
there exists an i such that P) C II§?. Therefore, letting

D;; ={P} € D;: P} C I},
we have

Dj = U Dﬂ

Now for each P;S € C, let P;l’c’) be a plate with direction plane P;, the

same center as P;S and the indicated dimensions. Proceeding as in [1, pages
390-391] one shows that for all e € S ! 2 € R"

Y

PR B\ T ()] 29" W62 Y Dyl 7,

where v = | log §|~!. Using this, (3.1), (3.2) and the inequality
D] < Z Djil < po! Z Dyl
we get
(3.3) PPN ENT) (2)] 2 A"TMIE| 2 p5% T
Now let € be a maximal Cp-separated subset of {P; : P! € C}. Then
€] Zs (0p )2 M.
So, rewriting (3.3) as
PP A BT (2)] 2 075X MBI~ | A,

we see that the family {P;l’Cp : P; € £} satisfies the conditions of Lemma 2.1
with [ =4, n=Cp, =7 = Nlogd|™! and

K = O;l(SGAn+4M|E|_2p3_n53n_7.
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Hence, after some algebra,
(3.4) [B| > G2l A (5p7 ) eI M0g2,
for some a; > 0. Note that (3.3) trivially implies

|E| > C71 oA (ps ™) /2 M52
for some ay > 0. So, if p > MY 2"=2) then
(3.5) |B| > C71oe A M8/ G2 g2,
On the other hand, if p < M/ (("=2) then (3.4) gives
(3.6) |B| > C7 o A M3/ 62 g2,

Combining (3.5) and (3.6) we complete the proof.

References

[1] MiTsis, T.: (n,2)-sets have full Hausdorff dimension. Rev. Mat. Iberoame-
ricana 20 (2004), 381-393.

[2] MrTsis, T.: Norm estimates for a Kakeya-type maximal operator. Math.
Nachr., to appear.

Recibido: 6 de mayo de 2005

Themis Mitsis

Department of Mathematics
University of Crete

Knossos Ave.

GR-71409, Iraklio (Greece)

mitsis@fourier.math.uoc.gr



