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Potential Theory for Schrödinger
operators on finite networks

Enrique Bendito, Ángeles Carmona and Andrés M. Encinas

Abstract

We aim here at analyzing the fundamental properties of positive
semidefinite Schrödinger operators on networks. We show that such
operators correspond to perturbations of the combinatorial Lapla-
cian through 0-order terms that can be totally negative on a proper
subset of the network. In addition, we prove that these discrete op-
erators have analogous properties to the ones of elliptic second order
operators on Riemannian manifolds, namely the monotonicity, the
minimum principle, the variational treatment of Dirichlet problems
and the condenser principle. Unlike the continuous case, a discrete
Schrödinger operator can be interpreted as an integral operator and
therefore a discrete Potential Theory with respect to its associated
kernel can be built. We prove that the Schrödinger kernel satisfies
enough principles to assure the existence of equilibrium measures for
any proper subset. These measures are used to obtain systematic ex-
pressions of the Green and Poisson kernels associated with Dirichlet
problems.

1. Introduction

In the last years, a considerable amount of works that extend properties and
results in elliptic boundary value problems on Riemannian manifolds to the
graph framework have been published. Frequently, the discrete structure
allows to obtain the fundamental features without the technicalities that
darken the results. Moreover, the simplicity of the discrete setting enables
to use successfully tools that do not seem to have a continuous counterpart.
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772 E. Bendito, Á. Carmona and A.M. Encinas

In this paper we analyze the fundamental properties of a general class
of Schrödinger operators on networks that includes those whose associated
quadratic form is positive semidefinite but it is not a Dirichlet form. Specifi-
cally, we study the monotonicity properties of this kind of discrete operators,
the variational treatment of Dirichlet problems and the properties of their
resolvent kernels. Besides, we take advantage of considering the Schrödinger
operator as an integral operator and then we build a Discrete Potential
Theory for the (signed) kernel of such integral operator.

A Schrödinger operator on a finite network is an operator of the form
Lq = L + q, where L is the combinatorial Laplacian of the network and q
is a function on the vertex set. So, a Schrödinger operator can be seen as
a perturbation of the combinatorial Laplacian. It is well-known that the
quadratic form associated with this operator is a Dirichlet form if and only
if q is non-negative, [8]. Conversely, any Dirichlet form over a finite space,
V , can be seen as the Dirichlet form associated with a Schrödinger opera-
tor with non negative 0-order term on a network that has V as vertex set.
Here, we study under which condition the quadratic form associated with
a Schrödinger operator is positive semidefinite and we show that this con-
dition guarantees that an important family of contractions operates with
respect to it.

The monotonicity properties of Schrödinger operators are well-known in
the case q ≥ 0, see for instance [14, 20]. In this paper we extend the above
results to the case when Lq is only positive semidefinite. We also prove a
version of a discrete Hopf’s minimum principle, that has not a continuous
counterpart when q is non positive.

The Potential Theory associated with Dirichlet Forms has been exten-
sively treated in the literature, see for instance [2, 14, 20]. Alternatively, for
the standard case in which q ≥ 0, the authors developed a Potential Theory
with respect to the kernel associated with the operator Lq when it is seen
as an integral operator, see [4]. Here we extend these techniques when Lq is
positive semidefinite. This tool, that has not a continuous equivalent, allows
to obtain systematically explicit expressions of the resolvent kernels.

The paper is organized as follows. In Section 2 we give the basic concepts
and notations on networks and we analyze the functions that can be used to
perturb the combinatorial Laplacian in such a way that the corresponding
Schrödinger operator be positive semidefinite. In particular, we show that
for any proper subset we can consider functions of this type that are totally
negative on it. Moreover, we prove that the lower bound of such functions
depends only on the network geometry.

The properties of the quadratic form associated with positive semidef-
inite Schrödinger operators are studied in Section 3. We show that they
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are characterized for being non increasing with respect to a transformation
determined by the ground state, that is, the positive eigenfunction asso-
ciated to the minimum eigenvalue of the Schrödinger operator. Moreover,
we obtain that each quadratic form of this type takes the same values as
the Dirichlet form associated with a Schrödinger operator on a new network
whose conductances are given by the conductances of the original network
and by the value of the ground state.

In Section 4 we show that the monotonicity property is equivalent to a
version of a general minimum principle under the hypothesis of positive semi-
definiteness of the Schrödinger operators. As a consequence, we establish a
generalization of the well-known Condenser principle where the prescribed
value at the positive plate is given by the ground state.

In Section 5 we study the Green and Poisson kernels associated to Dirich-
let problems. We determine the relation between them and we show that
their properties are similar to the ones verified by the analogous kernels in
the continuous case. We also build the generalized Green kernels associated
with a singular Schrödinger operator. In addition we show that, in this fra-
mework, an elementary discrete version of the Schwartz’s Kernel Theorem
makes sense, which allows us to consider the kernel associated with a pos-
itive semidefinite Schrödinger operator. In the last section, we investigate
the properties of these kernels in the context of the Discrete Potential The-
ory. We prove that the Schrödinger kernel satisfies the equilibrium principle
which, in particular, enables us to obtain explicit expressions of the Green
and Poisson kernel in terms of equilibrium measures.

2. Preliminaries

Let Γ = (V,E, c) be a finite network, that is, a finite connected graph
without loops nor multiple edges, with vertex set V and edge set E, in which
each edge (x, y) has been assigned a conductance c(x, y) > 0. Moreover,
c(x, y) = c(y, x) and c(x, y) = 0 if (x, y) /∈ E. We say that x is adjacent to
y, x ∼ y, if (x, y) ∈ E and for all x ∈ V , the value

k(x) =
∑
y∈V

c(x, y)

is called total conductance at x or degree of x. A path of length m ≥ 1 is a
sequence {x1, . . . , xm+1} of vertices such that c(xi, xi+1) > 0, or equivalently
xi ∼ xi+1, i = 1, . . . ,m. That Γ is connected means that any two vertices
of V can be joined by a path. More generally, a subset F of V is said to be
connected if each pair of vertices of F is joined by a path entirely contained
in F . If x �= y, we denote by d(x, y) the minimum length between the paths
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joining x and y. Defining d(x, x) = 0, the application d determines a metric
on V whose associated topology is the discrete one. For this reason we
will prefer to use geometric concepts instead of topological ones. So, given
F ⊂ V , we denote by F c its complementary in V and we call interior, vertex
boundary, closure and exterior of F the subsets

◦
F = {x ∈ F : y ∈ F for all y ∼ x},

δ(F ) = {x ∈ V : d(x, F ) = 1},
F̄ = {x ∈ V : d(x, F ) ≤ 1} and

Ext(F ) = {x ∈ V : d(x, F ) ≥ 2},
respectively. Observe that when F �= ∅ unlike the topological case,

δ(F ) ∩ δ(F c) = ∅ and F̄ = F or
◦
F= F iff F = V .

However, the following relations, which are similar to the topological ones,
are satisfied:

F̄ = F ∪ δ(F ), F = δ(F c)∪
◦
F,

δ(F c)∩
◦
F= ∅, δ(

◦
F ) ⊂ δ(F c) and Ext(F ) = V \ F̄ .

Moreover, when F is connected then F̄ is also connected, but
◦
F is not

connected, in general.

The set of functions on V , denoted by C(V ), and the set of non-negative
functions on V , C+(V ), are naturally identified with R

n and the positive
cone of R

n, respectively, where n = |V |. If u ∈ C(V ), its support is given by
supp(u) = {x ∈ V : u(x) �= 0}. Moreover, if F is a non empty subset of V ,
we consider the sets

C(F ) = {u ∈ C(V ) : supp(u) ⊂ F},
C+(F ) = C(F ) ∩ C+(V ) and

C∗(F ) = {u ∈ C+(F ) : supp(u) = F}.
For each F ⊂ V , the characteristic function of F will be denoted by 1

F
.

When F = V we will omit the subscript, whereas when F = {x}, its char-
acteristic function will be denoted by εx.

Throughout the paper dx will denote the counting measure on V and
hence for all u ∈ C(V ), ∫

V

u dx =
∑
x∈V

u(x).

In the sequel, we suppose that C(V ) is endowed with the Hilbert space
structure induced by dx and for each u ∈ C(V ) we will denote by ‖u‖2 the
associated norm.
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The combinatorial Laplacian of Γ is the linear operator L : C(V )−→ C(V )
that assigns to each u∈C(V ) the function

L(u)(x) =

∫
V

c(x, y)
(
u(x) − u(y)

)
dy .

If F is a proper subset of V , for each u ∈ C(V̄ ) we define the normal
derivative of u as the function in C(δ(F )) given by(

∂u

∂n

)
(x) =

∫
F

c(x, y)
(
u(x) − u(y)

)
dy ,

for all x ∈ δ(F ), see for instance [4, 9]. The relation between the values of
the combinatorial Laplacian on F and the values of the normal derivative
at δ(F ) is given by the Second Green Identity, proved in [4]∫

F

(
vL(u) − uL(v)

)
dx =

∫
δ(F )

(
u

∂v

∂n
− v

∂u

∂n

)
dx, for all u, v ∈ C(F̄ ).

When F = V the above identity tell us that the combinatorial Lapla-
cian is a self-adjoint operator and that

∫
V
L(u)dx = 0 for any u ∈ C(V ).

Moreover, since Γ is connected L(u) = 0 iff u is a constant function.

A Schrödinger operator on Γ is a linear operator Lq : C(V ) −→ C(V )
that assigns to each u ∈ C(V ) the function

Lq(u)(x) = L(u)(x) + q(x)u(x),

where q is an arbitrary function in C(V ), see [11]. In an equivalent manner,
a Schrödinger operator on Γ is nothing but a 0-order perturbation of the
combinatorial Laplacian.

Observe that if u ∈ C(V ) and F = supp(u), then Lq(u) = L(u) on F c.
Moreover, if u ∈ C+(V ), then Lq(u) < 0 on δ(F ) and Lq(u) = 0 on Ext(F ).
On the other hand, a Schrödinger operator is self-adjoint in the sense that∫

V

vLq(u) dx =

∫
V

uLq(v) dx for all u, v ∈ C(V ).

For fixed q ∈ C(V ) and for each non empty subset F of V , we consider
the following boundary value problem: given f ∈ C(F ) and g ∈ C(δ(F )) find
u ∈ C(F̄ ) such that

Lq(u)(x) = f(x), if x ∈ F,

u(x) = g(x), if x ∈ δ(F ).

}
[BVP]

When F �= V this problem is known as Dirichlet problem on F , whereas if
F = V it is called Poisson equation on V .
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It is clear that when F �= V , the Dirichlet problem on F is equivalent to
the following semi-homogeneous Dirichlet problem

Lq(u)(x) = f(x) − L(g)(x), if x ∈ F,

u(x) = 0, if x ∈ δ(F ).

}
[BVP]0

So, for each non empty subset F ⊂ V , the study of existence and uniqueness
of solution for [BVP] is reduced to the study of existence and uniqueness of
solution of the following problem:

Given f ∈ C(F ) find u ∈ C(F ) such that Lq(u) = f on F . [P]

Clearly, [BVP] or equivalently [P], is a self-adjoint problem since∫
F

vLq(u) dx =

∫
F

uLq(v) dx for all u, v ∈ C(F ).

When q ∈ C+(V ) these boundary value problems have been extensively
treated, see for instance [3, 4, 10, 15, 20]. Moreover, the authors have proved
in [4] that the analysis of self-adjoint boundary value problems with general
boundary conditions, namely Neumann, Robin or mixed boundary condi-
tions, can be reduced to the study of a boundary value problem like [BVP]
on a suitable network. For this reason, although in this paper we only
consider Dirichlet problems and Poisson equations, all the results that will
be obtained here concerning Schrödinger operators are in force for general
boundary conditions.

To begin with, if σ ∈ C∗(V ), then for each u ∈ C(V ) and for each x, y ∈ V
it is verified that

σ(x)
(
u(x) − u(y)

)
= σ(x) σ(y)

(
u(x)

σ(x)
− u(y)

σ(y)

)
+

(
σ(x) − σ(y)

)
u(x).

Therefore, considering the function qσ = − 1

σ
L(σ), we obtain

(2.1)

Lq(u)(x) =
1

σ(x)

∫
V

c(x, y)σ(x)σ(y)

(
u(x)

σ(x)
− u(y)

σ(y)

)
dy+

(
q(x)−qσ(x)

)
u(x),

for each u ∈ C(V ) and for each x ∈ V . As we will see in the following
section, from this expression it follows easily that Lq is positive semidefinite
when q ≥ qσ for some σ ∈ C∗(V ). This condition turns into q ∈ C+(V ) when
σ is constant. Before we go on, let us show some properties of the qσ-type
functions.
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Lemma 2.1 If σ, µ ∈ C∗(V ) then qσ ≥ qµ iff qσ = qµ and this occurs iff
σ = aµ, for some a > 0.

Proof. The first claim follows straightforwardly from the identities∫
V

(qσ − qµ)σµ dx =

∫
V

(
σL(µ) − µL(σ)

)
dx = 0.

Moreover, it is obvious that qσ = qµ when σ = aµ, a > 0. Conversely, if
qσ = qµ then for all x ∈ V we get that

0 = σ(x)µ(x)
(
qσ(x) − qµ(x)

)
=

∫
V

c(x, y)
(
µ(x)σ(y) − σ(x)µ(y)

)
dy

=

∫
V

c(x, y)µ(x)µ(y)

(
σ(y)

µ(y)
− σ(x)

µ(x)

)
dy.

If we consider the network Γ̄ = (V,E, c̄), where c̄(x, y) = c(x, y)µ(x)µ(y),
then Γ̄ is connected and if L̄ denotes its associated combinatorial Laplacian,
then L̄(σ

µ
) = 0 and hence σ = aµ, a > 0. �

The above result establishes that the function qσ determines σ ∈ C∗(V )
up to multiplicative constant. In the most part of the paper, this lack
of uniqueness will not be relevant. However, when it be suitable we will
determine uniquely σ from qσ throughout a normalization criterium. On the
other hand, we also conclude that when qσ �= qµ, qσ determines a family of
functions q for which Lq is positive semidefinite that is essentially different
of the family determined by qµ.

When σ is not a constant function, qσ takes necessarily negative and
positive values, since ∫

V

σ qσ dx = −
∫

V

L(σ) dx = 0.

Therefore, the condition q ≥ qσ allows q to take negative values keeping the
semipositive definiteness of Lq. Next, we show throughout examples some
aspects about the behavior of function qσ. Firstly, we get upper and lower
bounds for such a function. Since for each x ∈ V ,

qσ(x) =
1

σ(x)

∫
V

c(x, y)
(
σ(y) − σ(x)

)
dy,

if σm = min
x∈V

{σ(x)} and σM = max
x∈V

{σ(x)}, then

k(x)
(σm

σM

− 1
)
≤ qσ(x) ≤ k(x)

(σM

σm

− 1
)
, x ∈ V.

In particular, this implies that qσ(x) > −k(x), for all x ∈ V .
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The function σ can be chosen in such a way that qσ be a rapidly oscillating
function. Specifically, consider a sequence of proper subsets of V , {Fi}m

i=1,
such that F̄i ⊂ Fi+1 for all i = 1, . . . ,m− 1 and take F0 = ∅ and Fm+1 = V .
Fixed t ∈ (0, 1), we define σt(x) = 1 if x ∈ Fi where i is odd and σt(x) = t,
if x ∈ Fi when i is even. Then, for all x ∈ Fi,

qσt(x) = ai

∫
Fi−1∪Fi+1

c(x, y) dy,

where ai = (t − 1), if i is odd and ai = (1
t
− 1), if i is even. In particular

when m = 1, letting F = F1, we obtain qσt(x) < 0 if x ∈ δ(F c), qσt(x) > 0
if x ∈ δ(F ) and qσt(x) = 0, otherwise.

Next we also show that for any proper subset F ⊂ V , there exists σ ∈
C∗(V ) such that qσ(x) < 0 for all x ∈ F . The key tool is the equilibrium
measure for F , with respect to the kernel L. Specifically, let νF ∈ C∗(F )
be the unique measure such that LνF = 1 in F . The existence of such a
measure was proved in [4], but it can be also deduced from the results we
will obtain throughout this paper. Letting

C
F

= max
x∈δ(F c)

∫
δ(F )

c(x, y) dy,

we define σ = νF + a 1
Fc where 0 < a < C−1

F
. Then,

qσ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1

νF (x)
, if x ∈

◦
F,

− 1

νF (x)

(
1 − a

∫
δ(F )

c(x, y)dy
)
, if x ∈ δ(F c),

−1

a

∫
δ(F c)

c(x, y)
(
a − νF (y)

)
dy, if x ∈ δ(F ),

0, if x ∈ Ext(F ).

So, qσ(x) < 0 for all x ∈ F . To end this section, we build a function of
this type for a subset F of a distance-regular graph of degree k, such that
|F | = n − 1. Fixed y ∈ V , let F = V \ {y}. In this case,

νF (x) =

d(x,y)−1∑
j=0

n − |Bj |
|∂Bj | , x ∈ V,

where Bj = {z ∈ V : d(z, y) ≤ j} and ∂Bj = {(x, y) ∈ E : x ∈ Bc
j , y ∈ Bj},

(see [4].)
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Moreover, C
F

= 1 and therefore if 0 < a < 1 then

qσ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−
( d(x,y)−1∑

j=0

n − |Bj |
|∂Bj |

)−1

, if d(x, y) ≥ 2,

− k

n − 1
(1 − a), if d(x, y) = 1,

n − 1

a
− k, if x = y.

3. Bilinear forms associated to Schrödinger operators

In this section we start obtaining the expression of the bilinear form, Eq,
associated with the Schrödinger operator Lq. Clearly, for u, v ∈ C(V ) we
get that

Eq(u, v) =
1

2

∫
V

∫
V

c(x, y)
(
u(x) − u(y)

)(
v(x) − v(y)

)
dx dy(3.1)

+

∫
V

q(x) u(x) v(x) dx.

It is well-known that when q ∈ C+(V ), the quadratic form associated with Eq

satisfies important properties. Our aim in this section is to study both
the properties that are in force and the new ones when we eliminate the
constraint on q of being non negative. So, to compare the general case with
the non negative one, it will be suitable to summarize the known properties
for the case in which the operator Lq has associated a Dirichlet form, see
[1, 2, 8, 14].

A transformation T: C(V ) → C(V ) is called contraction if for all u∈C(V ),

|T (u)(x) − T (u)(y)| ≤ |u(x) − u(y)| for all x, y ∈ V.

Moreover, a contraction T is called normal contraction if |T (u)| ≤ |u|, for
all u ∈ C(V ). The three fundamental normal contractions are:

a) The null contraction, T (u) = 0, for all u ∈ C(V ).

b) The modulus contraction, T (u) = |u|, for all u ∈ C(V ).

c) The unit contraction, T (u) = u+ ∧ 1, for all u ∈ C(V ).

If E : C(V ) × C(V ) −→ R is a symmetric bilinear form we say that a trans-
formation T : C(V ) −→ C(V ) operates with respect to E if E(T (u), T (u)) ≤
E(u, u), for all u ∈ C(V ). Clearly, the null contraction operates w.r.t. E iff
E is positive semidefinite and the modulus contraction operates w.r.t. E iff
E(εx, εy) ≤ 0, for all x, y ∈ V, x �= y.
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A symmetric bilinear form E : C(V ) × C(V ) −→ R is called a Dirichlet
form if the unit contraction operates w.r.t. E , that is if E(u+ ∧ 1, u+ ∧ 1) ≤
E(u, u), for all u ∈ C(V ). The following result is well-known, see [1].

Proposition 3.1 A symmetric bilinear form E is a Dirichlet form iff any
normal contraction operates w.r.t. E. Moreover, this condition is equivalent
to the following ones:

E(εx, εy) ≤ 0, for all x, y ∈ V, x �= y and∫
V

E(εz, εy) dy ≥ 0, for all z ∈ V .

As Eq(εx, εy) = −c(x, y), for all x, y ∈ V, x �= y, and q(x) =
∫

V
Eq(εx, εy) dy,

for all x ∈ V , from the above proposition it follows that Eq is a Dirichlet
form iff q ∈ C+(V ).

Next we tackle the study of Eq when it is not necessarily a Dirichlet form.
Since for arbitrary q ∈ C(V ) the modulus contraction operates w.r.t. Eq,
we are interested in identifying those q ∈ C(V ) for which the null contraction
operates w.r.t. Eq. Firstly, note that if σ ∈ C∗(V ), by identity (2.1), the
bilinear form Eq can be re-written as
(3.2)

Eq(u, v) =
1

2

∫
V

∫
V

c(x, y)σ(x)σ(y)

(
u(x)

σ(x)
− u(y)

σ(y)

) (
v(x)

σ(x)
− v(y)

σ(y)

)
dx dy

+

∫
V

(
q(x) − qσ(x)

)
u(x)v(x) dx.

So, Eq is positive semidefinite when q ≥ qσ. Moreover, the above expression
motivates the following concepts.

Definition 3.2 If σ ∈ C∗(V ), we say that T : C(V ) −→ C(V ) is a σ-con-
traction if for all u ∈ C(V ),∣∣∣∣T (u)(x)

σ(x)
− T (u)(y)

σ(y)

∣∣∣∣ ≤ ∣∣∣∣u(x)

σ(x)
− u(y)

σ(y)

∣∣∣∣ , for all x, y ∈ V.

A σ-contraction T is called normal σ-contraction if |T (u)| ≤ |u|, for all
u ∈ C(V ).

Note that the null and the modulus contractions are normal σ-contractions
for all σ ∈ C∗(V ). Moreover, when σ is constant then the σ-contractions
are exactly the contractions. More generally, T is a σ-contraction (normal
σ-contraction) iff there exists T̂ a contraction (normal contraction) such that
T (u) = σT̂ (u

σ
), for all u ∈ C(V ).
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The properties of the quadratic forms associated with Schrödinger oper-
ators are gathered together in the following result.

Proposition 3.3 Let Eq be the bilinear form associated with the Schrödinger
operator Lq. Then the following statements are equivalent:

(i) The bilinear form Eq is positive semidefinite.

(ii) There exist σ ∈ C∗(V ) and a ≥ 0 such that q = qσ + a 1.

(iii) There exists σ ∈ C∗(V ) such that q ≥ qσ.

(iv) There exists σ ∈ C∗(V ) such that any normal σ-contraction operates
w.r.t. Eq.

(v) There exists σ ∈ C∗(V ) such that Eq(u
+∧σ, u+∧σ) ≤ Eq(u, u), for any

u ∈ C(V ).

Proof. If Eq is positive semidefinite, then the matrix associated with Eq,
is a symmetric positive semidefinite matrix with non positive off-diagonal
entries, i.e., a symmetric M-matrix. In addition, it is irreducible since Γ
is connected. Then, its lowest eigenvalue, a, is non negative and has an
eigenvector, σ, whose entries are strictly positive, (see [6, Th. 4.16]). So,

L(σ) + q σ = a σ ,

which implies that q = qσ + a 1.
Clearly, (ii) implies (iii) and (iii) implies (iv) by expression (3.2). More-

over, (iv) implies (v), since T (u) = u+ ∧ σ is a normal σ-contraction.
At last, if (v) holds then to prove (i) it is enough to show that q ≥ qσ.

So, for each x ∈ V and t > 0 consider ut = σ + tεx. Then, u+
t ∧ σ = σ

which implies that 0 ≤ 2Eq(σ, εx) + tEq(εx, εx) for all t > 0 and hence 0 ≤
Eq(σ, εx) = (q(x) − qσ(x)) σ(x). �

Observe that if q is such that Eq is positive semidefinite then the function
qσ and the value a obtained in part (ii) of the above proposition are uniquely
determined, since if qσ +a = qµ+b and a ≥ b, then qµ−qσ ≥ 0 which implies,
by Lemma 2.1, qµ = qσ and hence a = b. Therefore, if we define

C∗
n(V ) =

{
σ ∈ C∗(V ) :

1

n

∫
V

σdx = 1

}
,

then the set ⋃
σ∈C∗

n(V )

{qσ + a : a ≥ 0}

is a partition of the set of functions q such that Eq is positive semidefinite.
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Corollary 3.4 Let Eq be the bilinear form associated with the Schrödinger
operator Lq. Then the following statements are equivalent:

(i) There exists σ ∈ C∗(V ) such that any σ-contraction operates w.r.t. Eq.

(ii) The bilinear form Eq is positive semidefinite but not strictly definite.

(iii) There exists σ ∈ C∗(V ) such that q = qσ.

Proof. If (i) is satisfied, Eq is positive semidefinite and hence

Eq(σ, σ) ≥ 0,

since any normal σ-contraction is a σ-contraction by Proposition 3.3. On
the other hand, since the transformation T (u) = u + σ is a σ-contraction,

4 Eq(σ, σ) = Eq(T (σ), T (σ)) ≤ Eq(σ, σ),

which implies that Eq(σ, σ) = 0.

If (ii) is satisfied, then by Proposition 3.3, there exists σ ∈ C∗(V ) such
that q ≥ qσ. In addition, since Eq is not strictly definite there exists non-zero
u ∈ C(V ) such that Eq(u, u) = 0 and then

0=
1

2

∫
V

∫
V

c(x, y)σ(x)σ(y)

(
u(x)

σ(x)
− u(y)

σ(y)

)2

dx dy=

∫
V

(
q(x)− qσ(x)

)
u(x)2dx.

Since Γ is connected, the first equality implies that u is a non-zero multiple
of σ and therefore q = qσ, from the second equality.

Finally, it is clear that (iii) implies (i). �

From the expression (3.2) it is clear that, if for each σ ∈ C∗(V ) we define
the network Γ̂ = (V,E, c · σ ⊗ σ) then Eq(u, v) = Ê(u

σ
, v

σ
), where Ê is the

bilinear form associated with the Schrödinger operator L̂ + (q − qσ) and
where L̂ is the combinatorial Laplacian of Γ̂. The above results show that
Eq is a positive semidefinite form iff there exists σ ∈ C∗(V ) such that Ê is a
Dirichlet form.

We conclude this section observing that we have proved that the Schrö-
dinger operator Lq is positive semidefinite iff there exists σ ∈ C∗(V ) such
that q ≥ qσ. In addition if q �= qσ, then Lq is invertible, whereas if q = qσ

then Lq is singular. In this case, the eigenvalue 0 is simple and its eigenvector
subspace is generated by σ. These properties allow to obtain the following
results about the existence and uniqueness of solution for [BVP] and about
its variational formulation.
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Proposition 3.5 (Dirichlet principle) Let F be a non empty subset of V ,
and suppose that there exists σ ∈ C∗(V ) such that q ≥ qσ. Given f ∈ C(F )
and g ∈ C(δ(F )), consider the convex set Cg = {v ∈ C(F̄ ) : v = g on δ(F )}
and the quadratic functional Jq : C(V ) −→ R determined by the expresion

Jq(u)=
1

2

∫
F̄

∫
F̄

c(x, y)
(
u(x)−u(y)

)2
dx dy+

∫
F̄

q(x) u(x)2 dx−2

∫
F

f(x) u(x) dx.

Then u ∈ C(F̄ ) is a solution of [BVP] iff u minimizes Jq on Cg. Moreover,
if it is not simultaneously true that F = V and q = qσ, then Jq has a unique
minimum on Cg. Otherwise, Jq has a minimum iff

∫
V
f(x)σ(x)dx=0. In this

case, there exists a unique minimum u ∈ C(V ) such that
∫

V
u(x)σ(x)dx = 0.

Proof. Observe first that Cg = g + C(F ) and that as

Jq(v) = Eq(v, v) − 2

∫
F

f v dx, for all v ∈ C(F ),

then by Proposition 3.3, Jq is a convex functional on C(F ) and hence on Cg.
Moreover, by Corollary 3.4, it is an strictly convex functional iff it is not
simultaneously true that F = V and q = qσ and then Jq has a unique
minimum on Cg.

On the other hand, when F = V and q = qσ simultaneously the minima
of Jq are characterized by the Euler identity:

Eq(u, v) =

∫
V

f v dx, for all v ∈ C(V ).

Since in this case Eq(u, σ) = 0 for all u ∈ C(V ), necessarily f must satisfy
that

∫
V

f σ dx = 0. Moreover if this condition holds and V denotes the
vectorial subspace generated by σ, then u ∈ V⊥ minimizes Jq on V⊥ iff
u minimizes Jq on C(V ) and the existence of minimum follows since Jq is
strictly convex on V⊥.

In any case, the equation described in [BVP] is the Euler-Lagrange iden-
tity for the corresponding minimization problem. �

The above proposition establishes that when q = qσ the Poisson equation
Lq(u) = f has a solution iff

∫
V

f σ dx = 0. Observe that under this condition
if v is a solution, then the set of solutions is given by {v + a σ : a ∈ R} and
hence

u = v − σ

‖σ‖2
2

∫
V

v σ dx

is the unique solution such that

∫
V

uσ dx = 0.
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4. Monotonicity of the Schrödinger operators

It is well-known that when q ≥ 0, the Schrödinger operator Lq, satisfies the
weak minimum principle which is equivalent to the monotonicity property,
see for instance [19, 20]. Essentially, this is the discrete analogous of the
weak minimum principle for second order elliptic operators (see [13].) In this
section, we start by showing the monotonicity property of a Schrödinger
operator when its associated bilinear form is positive semidefinite. We will
also deduce some relevant consequences of this fact. Unlike the continuous
case, in the discrete framework there is not difference between classical and
weak solutions of Dirichlet problems. Therefore, we will prove a discrete
analogue of the Hopf’s minimum principle. To our knowledge, up to now this
property has not been analyzed in the discrete case, even in the case q ≥ 0.
An important consequence of Hopf’s minimum principle is a generalization
of the condenser problem for the Schrödinger operator Lq. In addition, the
solution of this problem allows us to extend the concept of effective resistance
between two subsets of V .

If it is not mentioned otherwise, in the rest of this section we will assume
the following hypotheses:

H1: There exists σ ∈ C∗(V ) such that q ≥ qσ.

H2: It is not simultaneously true that F = V and q = qσ, that is F is any
non empty subset of V except when q = qσ in which case F is a proper
subset.

The following result establishes the monotonicity of the Schrödinger op-
erators, under the above-mentioned hypotheses.

Proposition 4.1 If u∈C(V ) is such that Lq(u)≥0 on F and u ≥ 0 on F c,
then u ∈ C+(V ).

Proof. If we denote v = u/σ, then to conclude it is enough to prove that v ∈
C+(F ). Indeed, if x ∈ F is such that v(x) = minz∈F{v(z)} it suffices to prove
that v(x) ≥ 0, or equivalently that if v(x) ≤ 0 then necessarily v(x) = 0.

Suppose that v(x) ≤ 0. Then v(x) ≤ v(y) for all y ∈ V and therefore,
from expression (2.1) we deduce that

0 ≤ Lq(u)(x) =

=
1

σ(x)

∫
V

c(x, y)σ(x)σ(y)
(
v(x) − v(y)

)
dy +

(
q(x) − qσ(x)

)
σ(x)v(x) ≤ 0,

which implies that v(x) = v(y) for all y ∈ V such that x ∼ y. Hence v = a 1,
with a ∈ R, since Γ is connected.

When F �= V , necessarily v(x) = 0, since v ≥ 0 on F c, whereas if F = V ,
as q �= qσ and 0 = Lq(u) = a (q − qσ) σ, then a = 0. �
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Observe that when q = qσ, then∫
V

σ(x)Lq(u)(x) dx = 0, for all u ∈ C(V ).

Therefore, if u ∈ C(V ) is such that Lq(u) ≥ 0, then Lq(u) = 0 and u = a σ,
a ∈ R. This result can be obtained by reasoning as in the above proposition.

Corollary 4.2 Let p ∈ C(V ) be such that p ≥ q. If u, v ∈ C(V ) satisfy that
Lq(u) ≥ Lp (v) ≥ 0 on F and u ≥ v ≥ 0 on F c, then u ≥ v ≥ 0 on V .

Proof. By the above proposition, we have that v ∈ C+(V ). On the other
hand, since Lq = Lp − (p − q), the function w = u − v satisfies that
Lq(w) = Lq(u)−Lp (v)+(p− q) v ≥ 0 on F and w ≥ 0 on F c. So, the result
follows from the above proposition. �

Now, we obtain a new proof of the existence and uniqueness of solution
for problem [P], which includes a property of the support of the solution.

Corollary 4.3 For each f ∈ C(F ) there exists a unique u ∈ C(F ) such
that Lq(u) = f on F . In addition, if f ∈ C+(F ) then u ∈ C+(F ) and
supp(f) ⊂ supp(u).

Proof. Consider the endomorphism F : C(F ) −→ C(F ) given by F(u) =
Lq(u)|F . By Proposition 4.1, F is monotone which implies that it is an
isomorphism and that u ∈ C+(F ) when f ∈ C+(F ). Moreover if u(x) = 0,
then

f(x) = Lq(u)(x) = −
∫

V

c(x, y) u(y) dy ≤ 0

and hence f(x) = 0. �
The monotonicity property of the operator Lq showed in Proposition 4.1,

can be interpreted as, and in fact is equivalent to, a weak minimum principle
for the difference operator Lq. We next show that such property is in fact
a strong minimum principle. Before describing the results we must point
out that, unlike the continuous case, in the discrete setting concepts such as
interior, boundary and closure of a set have geometrical nature. So, we can
consider two types of boundaries associated with a set F , its vertex or exte-
rior boundary δ(F ) and its interior boundary, δ(F c). Both boundaries have
been considered in the literature, depending on which set plays the role of
open set. The first case correspond to consider F as an open set, see for

instance [4, 9], whereas in the second one this role is played by
◦
F , see for

instance [12, 15]. The Second Green Identity and the fact that F ∩ δ(F ) = ∅
whereas

◦
F ∪ δ(

◦
F ) �= F in general, are some of the reasons why we prefer

the exterior boundary formulation. However, in the following results both
types of boundaries will be considered.
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Proposition 4.4 (Minimum principle) Suppose that q = qσ and let F be a
proper connected subset. If u ∈ C(F̄ ) is such that Lq(u) ≥ 0 on F , then

min
x∈δ(F )

{
u(x)

σ(x)

}
≤ min

x∈δ(F c)

{
u(x)

σ(x)

}
≤ min

x∈
◦
F

{
u(x)

σ(x)

}
.

Moreover, the first inequality is an equality iff u coincides on F̄ with a mul-
tiple of σ.

Proof. To prove the first inequality, let

m = min
x∈δ(F )

{
u(x)

σ(x)

}
and consider w = u−m σ|F̄ . Of course, Lq(w) = Lq(u) ≥ 0 on F and w ≥ 0
on F c, which implies w ≥ 0 on V , by Proposition 4.1. Therefore,

m = min
x∈F̄

{
u(x)

σ(x)

}
.

Repeating the same argument for the set H =
◦
F and for the function u|H̄

and keeping in mind that F = δ(F c)∪
◦
F and that δ(

◦
F ) ⊂ δ(F c) we get the

second inequality.
On the other hand, if we consider

v =
w

σ
=

u

σ
− m,

then v ≥ 0 on F̄ . Moreover, if x∗ ∈ F is such that m = u(x∗)
σ(x∗)

, it follows

v(x∗) = 0. Reasoning as in Proposition 4.1, we get v(z) = 0 for each z ∈ F̄
such that z ∼ x∗. Iterating this argument, we conclude that v = 0 on F̄ ,
since F̄ is connected. �

Of course an analogous result is satisfied for the maximum values of
functions u ∈ C(V ) such that Lq(u) ≤ 0 on F . The following result combines
both cases and it is a discrete analogue of the maximum and minimum
principles for functions such that Lq(u) = 0.

Corollary 4.5 Suppose that q = qσ and let F be a proper connected subset.
If u ∈ C(F̄ ) is such that Lq(u) = 0 on F , then the following properties hold:

(i) For all x ∈ F , min
z∈δ(F )

{
u(z)
σ(z)

}
≤ u(x)

σ(x)
≤ max

z∈δ(F )

{
u(z)
σ(z)

}
and either of the

two inequalities is an equality iff u coincides on F̄ with a multiple of σ.

(ii) For all x ∈
◦
F , min

z∈δ(F c)

{
u(z)
σ(z)

}
≤ u(x)

σ(x)
≤ max

z∈δ(F c)

{
u(z)
σ(z)

}
.
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We must observe that the minimum principle for discrete Schrödinger op-
erators, studied in the above proposition, is sharper than its continuous
analogue, since in the continuous case the 0-order term must vanish whereas
in the discrete setting the condition is q = qσ. In particular, when F �= V we
know that there exists σ ∈ C∗(V ) such that qσ < 0 on F . So, the minimum
principle in the discrete case can be verified for Schrödinger operators with
suitable negative 0-order terms.

Now, we prove the minimum principle when q ≥ qσ. We remark that
although the results are analogous to those of the continuous case, we can
not employ the same techniques that in [13], because they are based on
continuity arguments.

Proposition 4.6 (Hopf’s minimum principle) Consider F a non empty
connected subset and u ∈ C(F̄ ) such that Lq(u) ≥ 0 on F and suppose
that there exists x∗ ∈ F such that

u(x∗) ≤ 0 and
u(x∗)
σ(x∗)

= min
x∈F̄

{
u(x)

σ(x)

}
.

Then u coincides on F̄ with a non positive multiple of σ, Lq(u) = 0 on F
and either u = 0 or q = qσ on F .

Proof. Taking in mind the expression (2.1) for Lq, we have that

Lq(u)(x∗) ≤ 0

and therefore, Lq(u)(x∗) = 0. This implies that

u(y)

σ(y)
=

u(x∗)
σ(x∗)

for all y ∼ x∗

and either u(x∗) = 0 or q(x∗) = qσ(x∗). The result follows by reasoning as
in Proposition 4.1. �

Under the above conditions, when F = V , hypothesis H2 implies that
u = 0. On the other hand, by applying the Hopf’s minimum principle to −u,
it is easy to conclude the Hopf’s maximum principle, that is if u ∈ C(F̄ ) is
such that Lq(u) ≤ 0 on F , then the maximum value of u

σ
on F̄ can not be

attained at F if it is positive, except when u is a non negative multiple of σ.
The general minimum principle can be obtained as a consequence of

Hopf’s minimum principle. Before proving it, we show that the sets of
supersolutions and subsolutions of the equation Lq(u) = 0 are closed by
taking min and max respectively.
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Lemma 4.7 Given u, v ∈ C(V ), consider the sets

F1 =
{
x ∈ V : Lq(u)(x) ∧ Lq(v)(x) ≥ 0

}
and

F2 =
{
x ∈ V : Lq(u)(x) ∨ Lq(v)(x) ≤ 0

}
.

Then, Lq(u ∧ v)(x) ≥ 0 for all x ∈ F1 and Lq(u ∨ v)(x) ≤ 0 for all x ∈ F2.

Proof. It suffices to note that when u(x) ≤ v(x), then

Lq(u ∧ v)(x) ≥ Lq(u)(x) and Lq(u ∨ v)(x) ≤ Lq(v)(x). �

Corollary 4.8 Let F be a proper subset of V , u ∈ C(F̄ ) such that Lq(u) ≥ 0
on F . Then,

min
δ(F )

{
u ∧ 0

σ

}
≤ min

F

{u

σ

}
and min

δ(F c)

{
u ∧ 0

σ

}
≤ min

◦
F

{u

σ

}
.

Proof. If v = u ∧ 0, then from the above lemma we get that Lq(v) ≥ 0
on F . Since v ≤ 0 on V , by applying the Hopf’s minimum principle to each
connected component of F we obtain that

min
δ(F )

{ v

σ

}
≤ min

F

{v

σ

}
≤ min

F

{u

σ

}
and min

δ(F c)

{v

σ

}
≤ min

◦
F

{v

σ

}
≤ min

◦
F

{u

σ

}
,

where we have also used that u ∧ 0 ≤ u. �
Of course when Lq(u) ≤ 0, an analogous property holds for the maximum

value of u on F and on
◦
F replacing u ∧ 0 by u+. Moreover, the result is

more accurate for solutions of the equation Lq(u) = 0.

Corollary 4.9 Let F be a proper subset of V and u ∈ C(F̄ ) such that
Lq(u) = 0 on F . Then,

max
◦
F

{ |u|
σ

}
≤ max

δ(F c)

{ |u|
σ

}
≤ max

δ(F )

{ |u|
σ

}
.

Proof. Since |u| = −u ∨ u and u and −u are both subsolutions, then
applying Lemma 4.7 we get that Lq(|u|) ≤ 0 on F . Since |u| ∈ C+(V ), the
result follows from Hopf’s maximum principle. �

In the following result we show that the minimum principle implies the
monotonicity of Lq. Moreover, we can also precise the last conclusion of
Corollary 4.3.
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Proposition 4.10 Consider u∈C(F̄ ) such that Lq(u) ≥ 0 on F . If u(x)≥ 0
for all x ∈ δ(F ), then u ∈ C+(F̄ ). In addition, if H is a connected component
of F , either u = 0 or u > 0 on H.

Proof. The case F = V follows straightforwardly. So, we suppose that F
is a proper subset. Applying Corollary 4.8, we get that u ∈ C+(F ) and
therefore u ∈ C+(F̄ ). Moreover when H is a connected component of F ,
if u(x∗) = 0 for some x∗ ∈ H, then u = 0 on H by applying the Hopf’s
minimum principle to H̄. �

We conclude this section obtaining a generalization of the well-known
Condenser principle, that in its classical version is closely related to the
theory of Dirichlet Forms. The case when σ is a constant function, that is
when q ∈ C+(V ), was studied in [5].

Proposition 4.11 (Condenser principle) Let F be a proper subset of V ,
{A,B} a partition of δ(F ) and u ∈ C(F̄ ) the unique solution of the following
boundary value problem

Lq(u)(x) = 0, if x ∈ F,
u(x) = σ(x), if x ∈ A,
u(x) = 0, if x ∈ B.

⎫⎬⎭
Then, 0 ≤ u ≤ σ on V , Lq(u) ≥ 0 on A and Lq(u) ≤ 0 on B. Moreover,
if H is a connected component of F , then u > 0 on H when δ(H) ∩ A �= ∅,
u = 0 on H when δ(H) ∩ A = ∅, u < σ on H when either δ(H) ∩ B �= ∅
or q �= qσ on H and u = σ on H when δ(H) ∩ B = ∅ and q = qσ on H,
simultaneously.

Proof. When A = ∅ necessarily u = 0 since F c �= ∅, and then the result
follows. Suppose now that A �= ∅ and consider f = −Lq(σ|A)|F . Then,
u = v +σ|A where v ∈ C(F ) is the unique solution of the equation Lq(v) = f
on F . Since for all x ∈ F ,

f(x) =

∫
A

c(x, y) σ(y) dy,

it follows that f ∈ C+(F ) and hence v ∈ C+(F ), which implies that u ≥ 0.
On the other hand, consider w = σ − u. Then, w ≥ 0 on F c, Lq(w) =
(q − qσ) σ ≥ 0 on F and hence u ≤ σ. On the other hand, we have

Lq(u)(x) = −
∫

V

c(x, y) u(y) dy ≤ 0, for all x ∈ B,
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whereas

Lq(u)(x) =

∫
V

c(x, y)
(
σ(y) − u(y)

)
dy +

(
q(x) − qσ(x)

)
σ(x) ≥ 0

for all x ∈ A, by equality (2.1).

Finally, if H is a connected component of F , then applying the above
proposition it follows that either u = 0 or u > 0 on H. If u = 0 on H, then
for all x ∈ H we get that

Lq(u)(x) = −
∫

A

c(x, y) σ(y) dy,

which implies that necessarily δ(H)∩A = ∅. That u < σ on H when either
δ(H) ∩ B �= ∅ or q �= qσ on H, is deduced in the same way considering now
the function v = σ − u. �

Under the hypotheses of the above proposition, F̄ is called condenser
with positive and negative plates A and B, respectively and the boundary
value problem is called the condenser problem corresponding to F̄ . More-
over, we say that the condenser is connected if F is a connected subset.
Observe that in the conditions of the condenser principle, when x ∈ A, then
Lq(u)(x) = 0 iff q(x) = qσ(x), d(x,B) > 1 and u = σ on {y ∈ F : y ∼ x},
whereas when x ∈ B, then Lq(u)(x) = 0 iff d(A, x) > 1 and u = 0 on
{y ∈ F : y ∼ x}. Also, it is true that if H is a connected component of F ,
then Lq(u) > 0 on δ(H)∩A when δ(H)∩B �= ∅ and Lq(u) < 0 on δ(H)∩B
when δ(H) ∩ A �= ∅.

Corollary 4.12 If F̄ is a connected condenser and u is the solution of the
corresponding condenser problem, then 0 < u < σ on F , Lq(u) > 0 on the
positive plate and Lq(u) < 0 on the negative plate.

Next we introduce a concept that is closely related with the condenser
problem in the case q = qσ, namely the effective resistance between two
non empty subsets. Fixed σ ∈ C∗

n(V ), consider A,B two disjoint nonempty
subsets of V and u the unique solution of the boundary value problem

Lqσ(u)(x) = 0, if x ∈ V \ {A,B},
u(x) = σ(x), if x ∈ A,

u(x) = 0, if x ∈ B.

⎫⎪⎬⎪⎭
Observe that when δ(V \ {A,B}) = A ∪ B, then V is a condenser with

plates A and B. In this case, the positive plate, A, is called source and
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the negative plate, B is called the sink. In any case, the same arguments
that in the proof of the condenser principle show that 0 ≤ u ≤ σ on V ,
Lqσ(u) ≥ 0 on A and Lqσ(u) ≤ 0 on B. Moreover, if H is a connected
component of V \ {A,B}, then u > 0 on H when δ(H) ∩ A �= ∅, u = 0 on
H when δ(H) ∩ A = ∅, u < σ on H when δ(H) ∩ B �= ∅ and u = σ on
H when δ(H) ∩ B �= ∅. In addition, when x ∈ A, then Lqσ(u)(x) = 0 iff
d(x,B) > 1 and u = σ on {y ∈ V \ {A,B} : y ∼ x}, whereas when x ∈ B,
then Lqσ(u)(x) = 0 iff d(A, x) > 1 and u = 0 on {y ∈ V \ {A,B} : y ∼ x}.
It is also true that if H is a connected component of V \ {A,B}, then
Lqσ(u) > 0 on δ(H) ∩ A when δ(H) ∩ B �= ∅ and Lqσ(u) < 0 on δ(H) ∩ B
when δ(H) ∩ A �= ∅.

The effective conductance between A,B, with respect to σ, is defined as
the value Cσ(A,B) = Eqσ(u, u). Clearly, Cσ(A,B) > 0, otherwise, u = a σ
and hence u can not verify u = 0 on B and u = σ on A simultaneously.
The effective resistance between A and B, w.r.t. σ, is defined as the value
Rσ(A,B) = Cσ(A,B)−1. The effective conductance, and hence the effective
resistance, is a symmetric set function, that is, Cσ(A,B) = Cσ(B,A) since
Eqσ(u, u) = Eqσ(σ−u, σ−u). So, it is irrelevant which set acts as the source
and which set acts as the sink.

On the other hand, applying the Dirichlet principle we obtain that

Cσ(A,B) = min
{
Eqσ(v, v) : v = σ on A and v = 0 on B

}
and moreover,

Cσ(A,B)=

∫
V

uLqσ(u) dx=

∫
A

σLqσ(u) dx = −
∫

B

σLqσ(u) dx.

The special case q = 0, that is when σ = 1, and both A and B consist
of a single vertex has been extensively treated in the literature. Now, defin-
ing Rσ : V × V −→ (0, +∞) as Rσ(x, y) = Rσ({x}, {y}) when x �= y and
Rσ(x, x) = 0, it follows that Rσ is a symmetric function. Moreover, if u is
the unique solution of the boundary value problem Lqσ(u) = 0 on V \{x, y},
u(x) = σ(x) and u(y) = 0, then

1 = σ(x) Rσ(x, y)Lqσ(u)(x)

and hence

Rσ(x, y)Lqσ(u) =
1

σ
(εx − εy) on V .

We conclude this section with a generalization of a classical result, see for
instance [7].
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Proposition 4.13 Consider x, y∈V and v∈C(V)any solution of the Poisson
equation

Lqσ(v) =
1

σ
(εx − εy).

Then

Rσ(x, y) = Eqσ(v, v) =
v(x)

σ(x)
− v(y)

σ(y)
.

Proof. Clearly, v = Rσ(x, y) u+a σ with a ∈ R, where u satisfies Lqσ(u) = 0
on V \ {x, y}, u(x) = σ(x) and u(y) = 0. This implies that

Eqσ(v, v) = Rσ(x, y)2Eqσ(u, u) = Rσ(x, y).

Moreover, since u(y) = 0 and u(x) = σ(x), necessarily a = v(y)
σ(y)

and hence

Rσ(x, y) =
v(x)

σ(x)
− v(y)

σ(y)
.

�

5. Green and Poisson kernels associated with Schrö-
dinger operators

In this section we assume that hypothesis H1 is always satisfied and then,
we build the kernels associated with the inverse operators which correspond
either to a semihomogeneous Dirichlet problem or to a Poisson equation. In
the same way that in the continuous case, such operators will be called Green
operators and we will show that they are integral operators. In addition,
for any proper subset, we will also consider the kernel associated with the
inverse operator of the boundary value problem in which the equation is
homogeneous and the boundary data is prescribed. Such integral operator
will be called Poisson operator.

Here, we study the properties of the above-mentioned integral operators.
Firstly we establish the basic notions about integral operators and their as-
sociated kernels. Then, we prove the existence and uniqueness of Green and
Poisson operators for each proper subset F , we show some of their prop-
erties and we build the associated Green or Poisson kernels. On the other
hand, under hypothesis H2 we make an analogous study for the Green op-
erator for V . Moreover, we extend this work to the singular case, that is,
when F = V and q = qσ simultaneously and we construct all the Green
operators that represent generalized inverses of the problem. In particular,
we concentrate on the so-called orthogonal Green operator. Finally, we ex-
tend the results on monotonicity of Green kernels with respect to monotone
variations of the 0-order term proved in [20] by M. Yamasaki.
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We start introducing some concepts about kernels and integral operators.
We remark that if F1 and F2 are non empty subsets, C(F1 ×F2) denotes the
set of functions K ∈ C(V × V ) such that K(x, y) = 0 if (x, y) /∈ F1 × F2.

If F is a non empty subset of V, any function K ∈ C(F × F ) will be
called a kernel on F . Of course, if F ⊂ H, then each kernel on F is also a
kernel on H.

If K is a kernel on F , for each x, y ∈ F we denote by Kx and Ky the
functions of C(F ) defined by Kx(y) = Ky(x) = K(x, y). Moreover, when F
is a proper subset and K is a kernel on F̄ , for each x ∈ δ(F ) and each y ∈ F̄ ,
we denote by (

∂K

∂n

)
(x, y) the value

(
∂Ky

∂n

)
(x),

whereas for each x ∈ F̄ and each y ∈ δ(F ) we denote by(
∂K

∂ny

)
(x, y) the value

(
∂Kx

∂n

)
(y).

If K is a kernel on F , we define the integral operator associated with K
as the endomorphism K : C(F ) −→ C(F ) that assigns to each f ∈ C(F ), the
function

K(f)(x) =

∫
F

K(x, y) f(y) dy for all x ∈ V .

The relation between kernels, integral operators and endomorphisms of
C(F ) is given by the following result. Its first part can be seen as a discrete
version of the Schwartz’s Kernel Theorem, because the natural identification
between C(F ) and its dual space.

Proposition 5.1 (Kernel Theorem) Each endomorphism of C(F ) is an in-
tegral operator associated with a kernel on F which is uniquely determined.
Moreover, if K is an integral operator on F , K is its associated kernel and
A is a non empty subset of F , then the following statements hold: K is
self-adjoint iff K is symmetric, that is K(x, y) = K(y, x) for all x, y ∈ F ,
ImgK ⊂ C(A) iff K ∈ C(A × F ) and C(F \ A) ⊂ kerK iff K ∈ C(F × A).

Proof. It is clear that if K is the integral operator associated with the
kernel K then Ky = K(εy) for all y ∈ F . Conversely, if K is an endomor-
phism of C(F ) and we consider the function K : F × F −→ R given by
K(x, y) = K(εy)(x) for each x, y ∈ F , then K is a kernel on F and K is
the integral operator associated with it. In addition, if K is a self-adjoint
operator, then for all x, y ∈ F it must be satisfied that

K(x, y) = K(εy)(x) =

∫
F

εx K(εy) dz =

∫
F

εy K(εx) dz = K(εx)(y) = K(y, x)

and hence, K is symmetric.
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Conversely, if K is symmetric, then for all f, g ∈ C(F ) it is verified that∫
F

gK(f)dx =

∫
F

∫
F

g(x)K(x, y)f(y)dydx

=

∫
F

∫
F

f(y)K(y, x)g(x)dxdy =

∫
F

fK(g)dy

and hence K is self-adjoint.

On the other hand, let K be an endomorphism of C(F ), K its associated
kernel and A a non empty subset of F . If K ∈ C(A × F ), then for each
f ∈ C(F ),

K(f)(x) =

∫
F

K(x, y) f(y) dy = 0, for all x /∈ A

and hence K(f) ∈ C(A). Conversely, if ImgK ⊂ C(A), then K(x, y) =
K(εy)(x) = 0 for all y ∈ F and x /∈ A which implies that K ∈ C(A × F ).

Finally, if K ∈ C(F × A), then

K(f)(x) =

∫
A

K(x, y) f(y) dy for all x ∈ F

and f ∈ C(F ) and hence K(f) = 0 when f ∈ C(F \ A). Conversely, if
C(F \ A) ⊂ kerK, then K(x, y) = K(εy)(x) = 0 for all x ∈ F and y /∈ A
which implies that K ∈ C(F × A). �

Observe that since C(A) ⊂ C(F ) when A ⊂ F , the Kernel Theorem
implies that each linear operator K : C(F ) −→ C(A) is identified with an
integral operator whose kernel K satisfies that K ∈ C(A × F ). In addition,
if K : C(A) −→ C(F ) is a linear operator, then defining K(f) = K(f|A) for
all f ∈ C(F ), the operator has been extended to an endomorphism of C(F ),
that we continue calling K, such that C(F \ A) ⊂ kerK. Therefore K is an
integral operator whose kernel K satisfies that K ∈ C(F × A).

Now we are ready to introduce the concepts of Green and Poisson opera-
tors and kernels. Firstly, we consider the case in which F is a proper subset
of V . Recall that in this situation, hypothesis H1 implies that for each
f ∈ C(F ) and each g ∈ C(δ(F )) there exists a unique function u ∈ C(F̄ )
such that Lq(u) = f on F and u = g on δ(F ). In particular, for each
f ∈ C(F ) there exists a unique function u ∈ C(F ) such that Lq(u) = f
on F , whereas for each g ∈ C(δ(F )), there exists a unique function u ∈ C(F̄ )
such that Lq(u) = 0 on F and u = g on δ(F ).
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Definition 5.2 Let F be a proper subset of V . We call the endomorphism
GF of C(F ) that assigns to each f ∈ C(F ) the unique function GF (f) ∈ C(F )
such that Lq(GF (f)) = f on F the Green operator for F .

We call the linear operator PF : C(δ(F )) −→ C(F̄ ) that assigns to each
g ∈ C(δ(F )) the unique function PF (g) ∈ C(F̄ ) such that Lq(PF (g)) = 0
on F and PF (g) = g on δ(F ) the Poisson operator for F .

Of course, the Green operator for F is an isomorphism of C(F ) whose
inverse is Lq. In the following result we investigate formal properties of the
Green and Poisson operators.

Proposition 5.3 If F is a proper subset of V , then the Green and the
Poisson operators for F are formally self-adjoint in the sense that∫

F

g GF (f) dy =

∫
F

f GF (g) dy, for all f, g ∈ C(F ),∫
δ(F )

gPF (f) dy =

∫
δ(F )

f PF (g) dy, for all f, g ∈ C(δ(F )).

In addition, if N F : C(δ(F )) −→ C(F ) is the linear operator given by

N F (g) = L(g)|F

then PF = I − GF ◦N F , where I denotes the identity operator on C(δ(F )).

Proof. Given f, g ∈ C(F ), consider u = GF (f) and v = GF (g). Then
u, v ∈ C(F ) and Lq(u) = f and Lq(v) = g on F . In addition since [P] is
formally self-adjoint we get that∫

F

g GF (f) dy =

∫
F

uLq(v) dy =

∫
F

vLq(u) dy =

∫
F

f GF (g) dy.

On the other hand, PF is self-adjoint since it coincides with the identity
operator on C(δ(F )). Finally, if g ∈ C(δ(F )) and we consider u = PF (g),
then u is the unique solution of the boundary value problem Lq(u) = 0
on F and u = g on δ(F ). This problem is equivalent to the semiho-
mogeneous one Lq(v) = −Lq(g) on F with v ∈ C(F ) and hence u =
g−GF (Lq(g)|F ). The result follows taking into account that Lq(g)|F = L(g)|F
since supp(g) ⊂ δ(F ). �

By the Kernel Theorem and the subsequent remark, the Green and Pois-
son operators for F are integral operators on F and F̄ , respectively, so we
can introduce the following concepts.



796 E. Bendito, Á. Carmona and A.M. Encinas

Definition 5.4 If F is a proper subset of V , we call the Green and Poisson
kernel for F the kernels associated with the Green and Poisson operators
for F , respectively. They will be denoted by GF and P F .

It is clear that the last conclusion of the Kernels Theorem implies that
GF ∈ C(F × F ) and P F ∈ C(F̄ × δ(F )). Moreover, if f ∈ C(F ) and
g ∈ C(δ(F )), then the functions given by

u(x) =

∫
F

GF (x, y) f(y) dy and v(x) =

∫
δ(F )

P F (x, y) g(y) dy, x ∈ F̄ ,

are the solutions of the semihomogeneous boundary value problems Lq(u) =
f on F , u = 0 on δ(F ) and Lq(v) = 0 on F and v = g on δ(F ), respectively.
In particular, for each g ∈ C(δ(F )) we have that

g(x) =

∫
δ(F )

P F (x, y) g(y) dy for all x ∈ δ(F ).

So, 1 =
∫

δ(F )
P F (x, y) dy for all x ∈ δ(F ) and σ(x) =

∫
δ(F )

P F (x, y) σ(y) dy

for all x ∈ F̄ when q = qσ.

Now, the relation between an integral operator and its associated kernel
enables us to characterize the Green and Poisson kernels as solutions of
suitable boundary value problems.

Proposition 5.5 Let F be a proper subset of V and GF ∈ C(F × F ) and
P F ∈ C(F̄ ×δ(F )) the Green and Poisson kernels for F . Then for all y ∈ F ,
the function GF

y is characterized by Lq(G
F
y ) = εy on F and for all y ∈ δ(F ),

the function P F
y is characterized by Lq(P

F
y ) = 0 on F and P F

y = εy on δ(F ).

Moreover, GF is symmetric on F ,

P F (x, y) = εy(x) −
(

∂GF

∂ny

)
(x, y) for all x ∈ F̄ and y ∈ δ(F )

and
∂P F

∂n
is symmetric on δ(F ), that is(

∂P F

∂n

)
(x, y) =

(
∂P F

∂n

)
(y, x) for all x, y ∈ δ(F ).

Proof. The symmetry of GF follows directly from the Kernel Theorem.
Moreover, for each y ∈ F , GF

y = GF (εy) and hence Lq(G
F
y ) = εy. In the same

way if y ∈ δ(F ), then P F
y = PF (εy) is the unique solution of the boundary

value problem Lq(P
F
y ) = 0 on F and P F

y = εy on δ(F ). Fixed x, y ∈ δ(F )
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if we consider the functions u = P F
y and v = P F

x , then Lq(u) = Lq(v) = 0
on F and applying the Second Green Identity(

∂P F

∂n

)
(x, y) =

∫
δ(F )

v
∂u

∂n
dz =

∫
δ(F )

u
∂v

∂n
dz =

(
∂P F

∂n

)
(y, x)

and hence
∂P F

∂n
is symmetric on δ(F ).

On the other hand, the last part of Proposition 5.3 implies that P F
y =

εy − GF (L(εy)|F ), for all y ∈ δ(F ). Since for all x ∈ F ,

L(εy)(x) =

∫
V

c(x, z)
(
εy(x) − εy(z)

)
dz = −c(x, y),

we get that for all x ∈ F , and all y ∈ δ(F ),

GF (L(εy)|F )(x) = −
∫

F

GF (x, z) c(z, y) dz

=

∫
F

c(y, z)
(
GF (x, y) − GF (x, z)

)
dz =

(
∂GF

∂ny

)
(x, y).

�

The relation between the Green and Poisson kernels given in the above
proposition was obtained in [4], for the case in which q is non negative by
using the same technique.

It will be useful to extend the Poisson operator for F to the linear oper-
ator KF : C(F c) −→ C(V ) that assigns to any g ∈ C(F c) the unique solution
of the boundary value problem Lq(u) = 0 on F and u = g on F c. Of course,
KF is an integral operator which kernel satisfies KF ∈ C(V × F c). Now for
all y ∈ F c, KF

y is characterized by equations Lq(K
F
y ) = 0 on F and KF

y = εy

on F c. Therefore, KF
y = P F

y for all y ∈ δ(F ) and the solution of the previous
boundary value problem is given by

u(x)=

∫
F c

KF (x, y) g(y) dy=g(x) 1
Ext(F )

(x)+

∫
δ(F )

P F (x, y) g(y) dy, for all x ∈ V.

In the sequel we will identify KF and KF , with the Poisson operator and the
Poisson kernel for F , and we will use the notations PF and P F for them,
respectively.

Next, we define the concept of Green operator and Green kernel when
F = V both in the case q �= qσ and q = qσ. For this, we will consider the
vectorial subspace V = ker(Lq) and π the orthogonal projection on it. Of
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course, V is trivial and hence π = 0, when q �= qσ. Otherwise, V is the
subspace generated by σ, and hence

π(f) =
σ

‖σ‖2
2

∫
V

σf dx.

Recall that in any case, Lq is an isomorphism of V⊥. Moreover, for each
f ∈ C(V ) there exists u ∈ C(V ) such that Lq(u) = f − π(f) and then u + V
is the set of all functions such that Lq(v) = f − π(f).

Definition 5.6 We call any endomorphism G̃ of C(V ) that assigns to each

f ∈ C(V ) a function G̃(f) ∈ C(V ) verifying that Lq(G̃(f)) = f − π(f) a

Green operator for V . Moreover, we say that G̃ is orthogonal if G̃(f) ∈ V⊥,
for all f ∈ C(V ).

We call the kernels associated with Green operators for V the Green
kernels for V . They will be generically denoted by G̃.

It is clear that in any case there exists a unique orthogonal Green oper-
ator for V . It will be denoted by G and it is an isomorphism of V⊥, inverse
of Lq. In particular, when q �= qσ there exists a unique Green operator
for V and therefore it coincides with the orthogonal Green operator for V .
Since in this case V = {0}, the Green operator is an isomorphism of C(V ).
The kernel associated with the unique orthogonal Green operator for V will
be called the orthogonal Green kernel for V and will be denoted by G.

Proposition 5.7 If G̃ is any Green operator for V , then∫
V

g G̃(f) dx =

∫
V

f G̃(g) dx for all f, g ∈ V⊥.

Moreover, the orthogonal Green operator for V is self-adjoint, that is∫
V

g G(f) dx =

∫
V

f G(g) dx for all f, g ∈ C(V ).

Proof. Let f, g ∈ V⊥ and consider u = G̃(f) and v = G̃(g). Then
Lq(u) = f , Lq(v) = g and since Lq is self-adjoint, then∫

V

g G̃(f) dx =

∫
V

uLq(v) dx =

∫
V

vLq(u) dx =

∫
V

f G̃(g) dx.

Consider now f, g ∈ C(V ), u = G(f) and v = G(g). Then u, v ∈ V⊥,
Lq(u) = f − π(f), Lq(v) = g − π(g) and hence∫

V

gG(f) dx =

∫
V

(
g − π(g)

)
u dx =

∫
V

u Lq(v) dx =

∫
V

vLq(u) dx

=

∫
V

(
f − π(f)

)
v dx =

∫
V

f G(g) dx.
�
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If G̃ is a Green kernel for V , then G̃ ∈ C(V × V ) and if f ∈ C(V ) then
the function given by

u(x) =

∫
V

G̃(x, y) f(y) dy for all x ∈ V

is a solution of the Poisson equation Lq(u) = f−π(f). In addition, if G̃ = G,
then u is the unique solution in V⊥. The relation between an integral op-
erator and its associated kernel enables us again to characterize the Green
kernels for V as solutions of suitable boundary value problems.

Proposition 5.8 For all y ∈ V , the function Gy is characterized by equa-
tions

Lq(Gy) = εy − a σ(y) σ and a

∫
V

σ Gy dx = 0,

where a = 0 if q �= qσ and a = ‖σ‖−2
2

if q = qσ. Moreover, G is symmetric

and G̃ is a Green kernel for V iff there exist τ ∈ C(V ) such that

G̃ = G + σ ⊗ τ.

In addition, G̃ is symmetric iff τ is a multiple of σ, that is iff

G̃ = G + b σ ⊗ σ,

where b ∈ R.

Proof. In any case, for all y∈V , G̃y = G̃(εy) and hence Lq(G̃y)=εy − π(εy).
When q �= qσ, then π = 0, whereas when q = qσ, then

π(εy) =
σ

‖σ‖2
2

∫
V

σ εy dx =
σ(y)

‖σ‖2
2

σ.

When G̃ = G, it must be also satisfied that G(εy) ∈ V⊥, that is∫
V

σ Gy dx = 0 for all y ∈ V .

Moreover G is symmetric since G is self-adjoint.

Suppose that q = qσ and consider G̃ any Green kernel for V . Then, for
all f ∈ C(V ) ∫

V

(
G̃(x, y) − G(x, y)

)
f(y) dy ∈ V.

In particular, taking f = εz for each z ∈ V , we get that there exists τ(z) ∈ R

such that G̃(x, z) = G(x, z)+ τ(z) σ(x) for all x ∈ V . Since G is symmetric,

it results that G̃ is symmetric iff σ(x) τ(y) = σ(y) τ(x) for all x, y ∈ V , that
is iff τ is a multiple of σ. �
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Now, we are going to establish new relations between Green and Poisson
kernels. With this aim, if F is a nonempty subset, it will be useful to consider
for each y ∈ F̄ the set Fy defined as follows:

(1) If F is a proper subset and y ∈ δ(F ), Fy is the set of vertices of F that
are in the connected component of F ∪ {y} containing y.

(2) If y ∈ F , Fy is the connected component of F containing y.

Observe that in both cases, (1) and (2), δ(Fy) ⊂ δ(F ) for all y ∈ F̄ . More-
over, in case (1), Fy is not necessarily a connected set but y ∈ δ(H), for any
connected component H of Fy. On the other hand, when F is connected,
then Fy = F for all y ∈ F̄ .

Proposition 5.9 For all y ∈ δ(F ) it is verified that

0 < P F
y ≤ σ

σ(y)
on Fy, P F

y = 0 on F \ Fy,

Lq(P
F
y ) < 0 on δ(Fy) \ {y} and Lq(P

F
y )(y) > 0,

except when F = V \{y} and q = qσ simultaneously, in which case P F
y = σ

σ(y)

and hence Lq(P
F
y )(y) = 0. In addition, if H is a connected component of Fy

and either |δ(H)| > 1 or q �= qσ on H, then P F
y < σ

σ(y)
on H, whereas if

δ(H) = {y} and q = qσ on H simultaneously, then P F
y = σ

σ(y)
on H.

Proof. Let y ∈ δ(F ) and consider the sets A = {y} and B = δ(F )\{y} and
the function u = σ(y) P F

y . Then u is the unique solution of the condenser
problem for F̄ with plates A and B. Therefore, 0 < u ≤ σ on Fy, u = 0 on
F \Fy, Lq(u)(y) ≥ 0, Lq(u) ≤ 0 on δ(F ) \ {y} and Lq(u) < 0 on δ(Fy) \ {y}
since δ(H) ∩ A �= ∅ for any connected component of Fy. Moreover,

δ(H) ∩ B �= ∅ iff |δ(H)| > 1,

so the last conclusion follows from the condenser principle.
Finally, since

Lq(u)(y) σ(y) =

∫
V

Lq(u) u dx = Eq(u, u),

we get that Lq(u)(y) = 0 iff either u = 0 when q �= qσ or u = α σ when
q = qσ. Since u(y) = σ(y) > 0 and u = 0 on F c \ {y}, it results that
Lq(u)(y) > 0 except when q = qσ and F = V \ {y} simultaneously. �

For the sake of completeness, the Green kernel for V will be denoted
by GV in the following proposition.



Potential Theory for Schrödinger operators on finite networks 801

Proposition 5.10 Let F be a non empty subset of V and suppose that
hypotheses H1 and H2 are in force. Then, for all y ∈ F it is verified that

GF
y (y) > 0, P F\{y}

y =
GF

y

GF
y (y)

and 0 ≤ GF
y ≤ GF

y (y)
σ

σ(y)
on F .

Moreover, GF
y = σ

a σ(y)
iff F = V and q = a εy + qσ with a > 0, simultane-

ously. Otherwise, GF
y = 0 on F \ Fy and

0 < GF
y < GF

y (y)
σ

σ(y)
on Fy \ {y}.

Proof. From the characterization of GF
y and Corollary 4.3, we obtain that

0 ≤ GF
y on F and moreover, GF

y (y) > 0, for all y ∈ F .

For fixed y ∈ F , the function u = 1
GF

y (y)
GF

y satisfies that u(y) = 1, u = 0

on δ(F ) and Lq(u) = εy on F , which implies that Lq(u) = 0 on F \ {y},
u = 0 on δ(F \ {y}) \ {y} and u(y) = 1 and therefore u = P

F\{y}
y .

Finally, keeping in mind that if H = F \{y}, then δ(Hy) = {y} iff F = V ,
the rest of claims are deduced directly from the properties of the Poisson
kernel given in the above proposition. �

Corollary 5.11 Consider F a non empty and connected subset and suppose
that hypotheses H1 and H2 are in force. Then, for all y ∈ F , GF

y is strictly
positive, 1

σ
GF

y takes its maximum value at {y} and such a maximum is
strict except when F = V and q = qσ on V \ {y} simultaneously, in which
case 1

σ
GF is constant.

We finish this section by proving the announced monotonicity properties
of Green kernels w.r.t. to the 0-order term, which generalize those obtained
in [20]. Of course, these properties can be easily reformulated in terms of
Poisson kernels since both types of kernels are related by the expressions
given in Proposition 5.10.

Proposition 5.12 Let F be a non empty subset of V and suppose that
hypotheses H1 and H2 hold. Then∫

V

GF
y q dx ≤ 1 for all y ∈ F ,

with strict inequality when F �= V . In addition if {qk}∞k=1 satisfy that qk ↓ q
(respectively qk ↑ q with q1 ≥ qσ and q1 �= qσ when F = V ) and for all
k ∈ N

∗, GF
k denotes the Green kernel for F associated with the operator Lqk

,
then GF

k ↑ GF (respectively GF
k ↓ GF ).
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Proof. Fixed y ∈ F , if v = GF
y , then v ∈ C+(F ). Therefore, if F is a

proper subset then Lq(v) ≤ 0 on F c and necessarily Lq(v)(x) < 0 for some
x ∈ δ(F ). On the other hand,∫

F

GF
y q dx =

∫
F

(
εy−L(v)

)
dx = 1−

∫
V

L(v) dx+

∫
δ(F )

L(v) dx = 1+

∫
δ(F )

L(v) dx

and the first claim follows observing that the value of
∫

δ(F )
Lq(v) dx is zero

when F = V and strictly negative otherwise.
Now, for each k ∈ N

∗ consider vk = GF
ky and take u = GF

x for fixed
x ∈ F . Then applying the Second Green Identity, we obtain that

vk(x) =

∫
F

Lq(u) vk dz =

∫
F

uLq(vk) dz =

∫
F

uL(vk) dz +

∫
F

q u vk dz,

u(y) =

∫
F

Lqk
(vk) u dz =

∫
F

L(vk) u dz +

∫
F

qk vk u dz.

Taking into account that

u(y) = GF (y, x) = GF (x, y) = v(x) ,

from the above identities we obtain that

v(x) − vk(x) =

∫
V

(qk − q) vk u dz.

When qk ↓ q, Corollary 4.2 assures that v ≥ vk+1 ≥ vk. Moreover, if
α ≥ 0 is such that GF ≤ α, then u, v ≤ α and hence

0 ≤ v(x) − vk(x) ≤ α2

∫
V

(qk − q) dz,

which implies that vk ↑ v.
When qk ↑ q, then hypothesis q1 ≥ qσ with q1 �= qσ if F = V , ensures

that GF
k makes sense for all k. Moreover applying again Corollary 4.2 we

obtain that v ≤ vk ≤ vk−1. Therefore, if α ≥ 0 is such that GF
1 ≤ α, then

0 ≤ vk(x) − v(x) ≤ α2

∫
V

(q − qk) dz,

which implies vk ↓ v. �
The first claim in the above proposition is also true for any Green kernel

when F = V and q = qσ simultaneously, since in this case∫
V

G̃y qσ dx =

∫
V

(
εy − σ(y)

‖σ‖2
2

σ

)
dx−

∫
V

L(G̃y) dx = 1− σ(y)

‖σ‖2
2

∫
V

σ dx < 1.
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6. The kernel associated to a Schrödinger operator

As we have shown the discrete Schrödinger operators are difference operators
verifying analogous properties to those satisfied by self-adjoint second order
elliptic operators. In particular, they have associated quadratic forms and
resolvents or Green kernels. The aim of this section is to treat the discrete
Schrödinger operators from another point of view, which does not seem
to have a continuous counterpart. Since any Schrödinger operator, Lq, is
an endomorphism of C(V ), from the Kernel Theorem it can be seen as an
integral operator whose associated kernel is given by Lq(x, y) = Lq(εy)(x)
for all x, y ∈ V . Therefore, Lq(x, y) = −c(x, y) if x �= y and Lq(x, x) =
k(x) + q(x) and hence

Lq(u)(x) =

∫
V

Lq(x, y) u(y) dy for all u ∈ C(V ).

By considering the kernel Lq we build a Potential Theory with respect to
it. Of course the kernel Lq must satisfy some properties that justify this
new point of view. For that, we assume again that hypothesis H1 holds.
In particular, the principles satisfied by Lq will allow to build the so-called
equilibrium measures. The fundamental result of this section consists of ob-
taining systematically explicit expressions for the Green and Poisson kernels
by means of equilibrium measures. Therefore, the obtained results appear
as a generalization of those given by authors in [4, 5] when q ∈ C+(V ).

To develop a Potential Theory w.r.t. the kernel Lq, we next introduce
some concepts and notations within this framework. Here we will make
an extensive use of the natural identification between functions and Radon
measures on V , since the underlying space, V , is finite. So, for each u ∈ C(V )
we call mass of u the value

‖u‖ =

∫
V

u dx

and for each non empty subset F , we denote by

M1(F ) = {u ∈ C+(F ) : ‖u‖ = 1}.
In addition, we call potential and energy of u (w.r.t. Lq) the function and
the value given respectively by

Lq(u)(x) =

∫
V

Lq(x, y) u(y) dy and

∫
V

Lq(u) u dx.

Clearly, for each u ∈ C(V ), the energy of u coincides with the value Eq(u, u).
Now we investigate on the properties satisfied by the potentials and by the
energy w.r.t. the kernel Lq.
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Proposition 6.1 (Energy principle) The energy is an strictly convex func-
tional on M1(V ).

Proof. Observe that the verification of the energy principle is equivalent
to the property Eq(u − v, u − v) ≥ 0 for each u, v ∈ M1(V ), with equality
iff u = v, that is, it is equivalent to the positive definiteness of Eq on the
subspace of functions with null mass.

From Corollary 3.4, Eq is positive semidefinite on C(V ) and positive def-
inite when q �= qσ. Moreover, when q = qσ, Eq(w,w) = 0 iff w = a σ with
a ∈ R and hence a = 0 when ‖w‖ = 0. �

By applying Corollary 4.3 to the case f = 1
F
, we get the following result.

Proposition 6.2 (Equilibrium principle) Let F be a non empty subset of V
and suppose that hypothesis H2 is also verified. Then, there exists a unique
νF ∈ C+(F ) such that Lq(ν

F ) = 1
F

on F . In addition, supp(νF ) = F .

Under the hypotheses of the above proposition, νF will be called the equi-
librium measure for F (w.r.t. Lq) and it is clear that Eq(ν

F , νF ) = ‖νF‖.
Observe that each proper subset of V has an equilibrium measure w.r.t. Lq,
whereas V has an equilibrium measure only when q �= qσ. Moreover, it is
easy to verify that

Lq(ν
F ) = 1

F
−

(∫
F

c(·, y) νF (y) dy

)
1

δ(F )

for any proper subset F .
Next, we calculate the equilibrium measure for some simple cases. If

F = {x}, then its equilibrium measure must be a positive multiple of εx.
Moreover, since Lq(εx)(x) = k(x) + q(x) we get that

ν{x} =
1

k + q
εx.

On the other hand, if q �= qσ, then the equilibrium measure for V is a positive
multiple of σ, say νV = a σ, iff q = qσ + 1

a σ
, because Lq(σ) = (q − qσ) σ.

In particular, the equilibrium measure for V is constant iff q is a positive
constant and in this case, νV = 1

q
. Other not so elementary examples as

the equilibrium measures for proper subsets of cycles, paths and complete
graphs when q = 0, can be found in [3].

We pay special attention at the equilibrium measures for sets with cardi-
nality n− 1 because they are important in applications. So, for each x ∈ V
we will denote by νx the equilibrium measure for F = V \ {x}. Sometimes,
we can determine the explicit value of νx, for instance this is the case of
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distance-regular graphs which has been used at the beginning of this paper.
In any case, we have that for all x ∈ V ,

‖σ‖+
(
Lq(νx)(x)−1

)
σ(x) =

∫
V

Lq(νx) σ dy =

∫
V

Lq(σ) νx dy =

∫
V

νx σ(q−qσ) dy

and therefore,

Lq(νx) = 1 − 1

σ

(∫
V

νx σ(q − qσ) dy + ‖σ‖
)

εx.

In particular, when q = qσ, we have that

Lqσ(νx) = 1 − ‖σ‖
σ

εx.

The last property of kernel Lq we analyze here is related to the maxi-
mum value of its potentials. We emphasize that this property must not be
confused with the maximum principle for Lq as an operator (Corollary 4.5).

Proposition 6.3 (Frostman’s maximum principle) For all non-zero u ∈
C+(V ), we have

max
x∈V

{Lq(u)(x)} = max
x∈supp(u)

{Lq(u)(x)}.

Proof. Consider a non-zero u ∈ C+(V ). If x /∈ supp(u) we get that
Lq(u)(x) ≤ 0, since u is non negative. On the other hand, if x∗ ∈ supp(u) is
such that

u(x∗)
σ(x∗)

= max
y∈supp(u)

{
u(y)

σ(y)

}
,

then Lq(u)(x∗)≥0 from expression (2.1) and therefore, the result follows.�
In the framework of Potential Theory, the equilibrium principle is often

obtained as a consequence of the verification of the energy and the Frost-
man’s maximum principles (see for instance [3].) Moreover, both principles
can be used to obtain the equilibrium measures from the solution of either
a quadratic and convex programming problem or of a linear programming
problem. Specifically, we have that

min
u∈M1(F )

{Eq(u, u)} = min
u∈M1(F )

max
x∈F

{Lq(u)(x)} = min
u∈M1(F )

Lq(u)|F ≤ a 1
F

{a}.

If uF is the unique solution of the above problems, then the value capq(F ) =
Eq(u

F , uF )−1 is called the Wiener capacity of F (w.r.t. Lq). In addition,
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the equilibrium measure for F satisfies νF = capq(F ) uF , which implies
that ‖νF‖ = capq(F ). Therefore, if F is a proper subset of V then 0 <
capq(F ) < +∞. On the other hand, if q = qσ, then uV = ‖σ‖−1σ and hence
capq(V ) = +∞, whereas if q �= qσ, then capq(V ) < +∞. In particular, when
q = qσ + 1

a σ
we get that capq(V ) = a ‖σ‖ and capq(V ) = n

q
when q is a

positive constant.

We must note that the Wiener capacity w.r.t. kernel Lq is not the ca-
pacity usually associated with Schrödinger operators, that is the capacity
w.r.t, the associated Dirichlet form. There exist great differences between
both types of capacities. For instance, the capacity associated with Dirichlet
forms is subadditive and in fact strongly subadditive, whereas the Wiener
capacity is not subadditive since it is associated with a signed kernel. In con-
trast, the Wiener capacity w.r.t. Lq retains geometric information on the
subsets of V , in the sense that it takes into account the adjacency between
subsets as the following results show.

Proposition 6.4 Let F ⊂ V and suppose that hypothesis H2 is also verified.
If H is a proper subset of F , then νH ≤ νF . Moreover, if x ∈ H then
νH = νF on Fx when Fx ⊂ H and νH < νF on Fx, otherwise.

Proof. If u = νF − νH , then u ∈ C(F̄ ), Lq(u) = 1 − Lq(ν
H) ≥ 0 on F

and u = 0 on δ(F ). Therefore, by applying Proposition 4.10 we get that
u ≥ 0 on F and for all x ∈ H either u = 0 on Fx or u > 0 on Fx. When
Fx ∩ (F \ H) �= ∅, the result follows since u > 0 on F \ H. When Fx ⊂ H,
then for each z ∈ Fx we get that c(z, y) = 0 for all y ∈ F \ Fx. Therefore,
for all z ∈ Fx

Lq(u|Fx
)(z) =1Lq(ν

F )(z) − Lq(ν
H)(z)

+

∫
F\Fx

c(z, y) νF (y) dy −
∫

H\Fx

c(z, y) νH(y) dy = 0,

which implies that u = 0 on Fx. �

Corollary 6.5 Let F ⊂ V and suppose that hypothesis H2 is also verified.
If F1, F2 is a partition of F , then νF1 + νF2 ≤ νF and the equality holds iff
d(F1, F2) > 1.

Corollary 6.6 The Wiener capacity is an strictly increasing set function.
Moreover, if F1, F2 is a partition of F , then capq(F1) + capq(F2) ≤ capq(F )
and the equality holds iff d(F1, F2) > 1. In particular, for each subset F ,∑

x∈F

1

k(x) + q(x)
≤ capq(F )

with equality iff no two vertices in the subset F represent an edge.
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Now, we are going to obtain the expression of the Green and Poisson
kernels associated with the Schrödinger operator Lq by means of equilibrium
measures. For the moment and until otherwise be specified, we suppose that
hypotheses H1 and H2 are true and again we denote by GV the Green kernel
for V .

Proposition 6.7 Let F be a non empty subset of V . Then the following
properties hold:

i) The Green kernel for F is given by the expression

GF (x, y)=‖νF −νF\{y}‖−1νF (y)
(
νF (x)−νF\{y}(x)

)
, for all x, y ∈ F.

ii) If F is a proper subset and it is not simultaneously true that |F | = n−1
and q = qσ, then the Poisson kernel for F is given by the expression

P F (x, y) =
(
νF∪{y}(y)

)−1
(
νF∪{y}(x) − νF (x)

)
, for all x, y ∈ V.

Proof. (i) We know that for all y ∈ F , GF
y is characterized by Lq(G

F
y ) = εy

on F and GF
y = 0 on δ(F ).

Consider now K ∈ C(V × V ) the function given by K(x, y) = νF (x) −
νF\{y}(x) for all x, y ∈ V . Since Ky = Kx = 0 on F c because supp(νF ),
supp(νF\{y}) ⊂ F and νF = νF\{y} when y /∈ F , it follows that K is a kernel
on F . Moreover

Lq(Ky)(x) = Lq(ν
F )(x) − Lq(ν

F\{y})(x) =

{
0, if x �= y,

1 − Lq(ν
F\{y})(y), if x = y

and the value of 1−Lq(ν
F−{y})(y) can be obtained by applying the Second

Green Identity to νF\{y} and νF in the following manner

‖νF\{y}‖ =

∫
V

νF\{y}Lq(ν
F ) dz =

∫
V

Lq(ν
F\{y})νF dz

= ‖νF‖ − νF (y)
(
1 − Lq(ν

F\{y})(y)
)
.

(ii) Since for all y ∈ F , GF
y (y) = ‖νF − νF\{y}‖−1νF (y)2, we obtain that

GF
y

GF
y (y)

=
(
νF (y)

)−1(
νF − νF\{y}

)
.

So, for (x, y) ∈ F̄ × δ(F ), the result follows from the relation between P F
y

and G
F∪{y}
y given in Corollary 5.10.
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We conclude the proof observing that when y ∈ F , F ∪ {y} = F , which
implies that νF∪{y} = νF , whereas when y ∈ Ext(F ), νF∪{y} = νF + ν{y}.
Hence the value of the given expression for P F

y is 0 when y ∈ F and it is

ν{y}(x)

ν{y}(y)
= εy(x)

when y ∈ Ext(F ). �
Observe that the expression for GF given in part (i) of the above propo-

sition implies that GF
y ≤ νF (y) for all y ∈ F . In addition, this formula for

the Green kernel remains true for x ∈ V , since νF (x) − νF\{y}(x) = 0 when
x ∈ F c, but it can not be extended to y ∈ F c, since ‖νF − νF\{y}‖ = 0.
However, we can give an alternative expression for GF which is valid for
x, y ∈ V . Specifically, from the proof of above proposition and taking into
account that

Lq(ν
F\{y})(y) = −

∫
V

c(y, z) νF\{y}(z) dz ≤ 0, for all y ∈ V ,

we obtain

(6.1) GF (x, y) =

(
1 +

∫
V

c(y, z) νF\{y}(z) dz

)−1(
νF (x) − νF\{y}(x)

)
,

for all x, y ∈ V .

We have just proved that for any nonempty subset F , its Green kernel
can be expressed by means of equilibrium measures. Conversely, the equi-
librium measure for a subset can be obtained by means of its Green kernel.
Specifically, we have that

νF (x) =

∫
F

GF (x, y) dy, for all x ∈ V

and hence

capq(F ) =

∫
F×F

GF (x, y) dx dy.

This fact, together with the symmetry of the Green kernel, allows us to
deduce monotonicity properties of the equilibrium measures w.r.t. the 0-
order term from those verified by Green kernels given in Proposition 5.12.

Corollary 6.8 Consider F a nonempty subset of V and a sequence {qk}∞k=1

in C(V ) such that qk ↓ q, (respectively, qk ↑ q with q1 ≥ qσ and q1 �= qσ when
F = V ). If for each k ∈ N

∗ we denote by νF
k the equilibrium measure for

F w.r.t. the kernel Lqk
, then νF

k ↑ νF and capqk
(F ) ↑ capq(F ) (respectively,

νF
k ↓ νF and capqk

(F ) ↓ capq(F )).
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In addition, from the properties of the Green kernels contained in Propo-
sition 5.10, we can deduce some relations between the equilibrium measures
νF and νF\{y} when y ∈ F .

Corollary 6.9 Let F be a non empty set. Then, for all y ∈ F we get that

νF\{y} ≤ νF ≤ νF\{y} +
νF (y)

σ(y)
σ.

Moreover, νF−{y} = νF on F \ Fy and

νF\{y} < νF < νF\{y} +
νF (y)

σ(y)
σ on Fy \ {y},

except when F = V and q − qσ = aεy, a > 0 in which case

νV = νy +
νV (y)

σ(y)
σ.

In particular, if F is connected, then

νF\{y} < νF < νF\{y} +
νF (y)

σ(y)
σ on F \ {y},

except when F = V and q − qσ = aεy, a > 0.

Of course, we can obtain an analogous relation between νF and νF∪{y} for
y ∈ δ(F ), considering the expression for the Poisson kernel obtained in
the above proposition. The above corollary reaffirms that the equilibrium
measure contains global information on the connectivity between vertices
of F . So, if we connect or disconnect a single vertex to a fixed connected
set, then the equilibrium measure of the new subset takes at each vertex a
different value.

The expression of the Green kernel for F that appears in the Proposi-
tion 6.7 is analogous to that obtained in [4] for the case in which σ is a
constant function, that is, when q ∈ C+(V ). Moreover, in the mentioned
work the equilibrium measures of subsets with cardinality n − 1, that is
the measures νx, x ∈ V , allowed us to obtain a formula for the orthogonal
Green kernel for V in the case q = 0. Now, we are concerned with the
general singular case, that is when F = V and q = qσ simultaneously for
arbitrary σ ∈ C∗(V ). Our aim is to express all Green kernels for V , and
in particular the orthogonal Green kernel for V by means of equilibrium
measures and the eigenfunction σ.
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Proposition 6.10 Suppose that q = qσ and consider for each y ∈ V , uy the
unique solution of the Dirichlet problem Lqσ(u) = σ on V \ {y}. Then, any
Green kernel for V is given by the formula

G̃(x, y) = − 1

‖σ‖2
2

uy(x) σ(y) + σ(x) τ(y), with τ ∈ C(V )

and hence G̃y < σ
σ(y)

G̃y(y) on V \ {y}. In addition, the orthogonal Green
kernel for V is given by the expression

G(x, y) =
σ(y)

‖σ‖4
2

(‖σ uy‖ σ(x) − ‖σ‖2
2
uy(x)

)
, for all x, y ∈ V

and hence any symmetric Green kernel for V is given by the expression

G̃(x, y)=
(b + ‖σ uy‖)

‖σ‖4
2

σ(x) σ(y) − 1

‖σ‖2
2

uy(x) σ(y), b ∈ R, for all x, y ∈ V.

Proof. By Proposition 5.8, if G̃ is a Green kernel for V , then for all y ∈ V ,
G̃y must satisfy that

Lqσ(G̃y) = εy − σ(y)

‖σ‖2
2

σ, for all y ∈ V .

Given y ∈ V consider now uy the unique solution of the Dirichlet prob-
lem Lqσ(u) = σ on V \ {y} and u(y) = 0. Then, uy ∈ C∗(V \ {y}) from
Corollary 4.3 and applying the Second Green identity we obtain that

0 =

∫
V

uy Lqσ(σ) dx =

∫
V

σLqσ(uy) dx = Lqσ(uy)(y) σ(y) + ‖σ‖2
2
− σ(y)2

and hence Lqσ(uy) = σ − ‖σ‖2
2

σ(y)
εy. Therefore, the function

Ĝ(x,y)=−σ(y)

‖σ‖2
2

uy(x), x, y ∈ V

is a Green kernel for V . Moreover, G̃ is another Green kernel for V iff for
all y ∈ V , G̃y = Ĝy + τ(y) σ, where τ(y) ∈ R and hence

σ(x)

σ(y)
G̃(y, y) − G̃(x, y) =

σ(y)

‖σ‖2
2

uy(x) > 0 for x �= y.
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Therefore, G̃y < σ
σ(y)

G̃y(y) on V \ {y}. In addition, the orthogonal Green

kernel for V is obtained by choosing τ(y) = σ(y) ‖σ‖−4
2
‖σ uy‖ and the char-

acterization of symmetric Green kernels follows from the last claim of Propo-
sition 5.8. �

Observe that the formula given in the above proposition for the Green
kernels for V associated with Lq does not depend on the choice of σ ∈ C∗(V )
such that q = qσ. In fact, if µ ∈ C∗(V ) is such that qµ = qσ, then µ = aσ,
a > 0 and hence for all y ∈ V the unique solution of Lq(v) = µ on V \ {y},
v(y) = 0 is vy = auy. Therefore,

σ(y)

‖σ‖4
2

(‖σ uy‖ σ(x) − ‖σ‖2
2
uy(x)

)
=

µ(y)

‖µ‖4
2

(‖µ vy‖µ(x) − ‖µ‖2
2
vy(x)

)
and both expressions determine the orthogonal Green kernel for V .

On the other hand, when σ is a constant function, and hence q = 0,
then uy = σ νy for all y ∈ V and therefore the function G̃(x, y) = − 1

n
νy(x),

x, y ∈ V determines a Green kernel for V , associated with the combinatorial
Laplacian. Moreover any Green kernel for V has the expression G̃(x, y) =
− 1

n
νy(x) + τ(y) for all x, y ∈ V where τ ∈ C(V ) and the orthogonal Green

kernel for V associated with the combinatorial Laplacian is given by

G(x, y) =
1

n2

(
‖νy‖ − n νy(x)

)
, for all x, y ∈ V.

This formula was obtained in [4].
After the above proposition, to express the orthogonal Green kernel for V

in terms of equilibrium measures for the sets with cardinality n − 1, it is
enough to express each function uy by means of this type of measures. Since
for all y ∈ V ,

uy(x) =

∫
V

GV \{y}(x, z) σ(z) dz

and from identity (6.1),

GV \{y}(x, z) =
(
1 − Lqσ(νV \{y,z}(z)

)−1
(
νy(x) − νV \{y,z}(x)

)
,

for all x, y, z ∈ V , it is enough to express νV \{y,z} by means of equilibrium
measures for the sets with cardinality n − 1. For that we prove a more
general result: if q = qσ, the equilibrium measure for each proper subset F
can be expressed as a linear combination of σ and the equilibrium measures
for the sets F ∪ {y} with y ∈ δ(F ). So, iterating the argument it follows
that the equilibrium measure for F can be obtained by means of a suitable
linear combination of σ and {νy}y∈δ(F ).
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Proposition 6.11 Suppose that q = qσ and consider F ⊂ V such that
1 ≤ |F | ≤ n − 2. Then,

νF =

(∫
δ(F )

σ(y)

νF∪{y}(y)
dy

)−1 (∫
δ(F )

σ(y)

νF∪{y}(y)
νF∪{y} dy − σ

)
1F̄ .

In particular, for each x, y ∈ V such that x �= y, it is verified that

νV \{x,y}=
(
σ(x)νx(y)+σ(y)νy(x)

)−1(
σ(x)νx(y) νy+σ(y)νy(x)νx−νx(y)νy(x)σ

)
.

Proof. As |F c| ≥ 2, then for each y ∈ F c, F ∪ {y} is a proper subset and
hence there exists the equilibrium measure for F∪{y}. Consider now {A,B}
a partition of F c in such a way that A and B are non empty subsets. Also
consider u, v ∈ C(V ) the solutions of the following boundary value problems

Lqσ(u) = 0 on F

u = σ on A

u = 0 on B

⎫⎬⎭ and

Lqσ(v) = 0 on F

v = 0 on A

v = σ on B,

⎫⎬⎭
respectively. Then, from definition of the Poisson kernel for F , we have that

u(x) =

∫
F c

P F (x, y) σ|A(y) dy =

∫
A

P F (x, y) σ(y) dy,

v(x) =

∫
F c

P F (x, y) σ|B(y) dy =

∫
B

P F (x, y) σ(y) dy.

Keeping in mind the expression for P F obtained in part (ii) of Proposition 6.7
we have that

u =

∫
A

σ(y)

νF∪{y}(y)
νF∪{y} dy −

( ∫
A

σ(y)

νF∪{y}(y)
dy

)
νF ,

v =

∫
B

σ(y)

νF∪{y}(y)
νF∪{y} dy −

(∫
B

σ(y)

νF∪{y}(y)
dy

)
νF .

On the other hand, since Lqσ(σ) = 0 it is clear that u + v = σ and hence

σ =

∫
F c

σ(y)

νF∪{y}(y)
νF∪{y} dy −

( ∫
F c

σ(y)

νF∪{y}(y)
dy

)
νF .

Observe that when y /∈ δ(F ) then νF∪{y} = νF + ν{y}, which implies that
νF∪{y}(y) = ν{y}(y) and∫

Ext(F )

σ(y)

νF∪{y}(y)
νF∪{y} dy −

(∫
Ext(F )

σ(y)

νF∪{y}(y)
dy

)
νF = σ 1Ext(F)



Potential Theory for Schrödinger operators on finite networks 813

and therefore,

νF =

(∫
δ(F )

σ(y)

νF∪{y}(y)
dy

)−1 (∫
δ(F )

σ(y)

νF∪{y}(y)
νF∪{y} dy − σ 1F̄

)
.

In particular, when F = V \ {x, y}, then F ∪ {y} = V \ {x}, F ∪ {x} =
V \ {y} and hence

νV \{x,y} =

(
σ(y)

νx(y)
+

σ(x)

νy(x)

)−1 (
σ(y)

νx(y)
νx +

σ(x)

νy(x)
νy − σ

)
=

νx(y) νy(x)

σ(x) νx(y) + σ(y) νy(x)

(
σ(y)

νx(y)
νx +

σ(x)

νy(x)
νy − σ

)
. �

Proposition 6.12 If q = qσ, then for all x, y, z ∈ V we have the following
expressions

GV \{y}(x, z) =
1

‖σ‖
σ(z)

σ(y)

(
σ(y) νy(x) + σ(x) νz(y) − σ(y) νz(x)

)
,

P V \{y,z}(x,y)=
(
σ(z)νz(y)+σ(y)νy(z)

)−1(
σ(z)νz(x)+σ(x)νy(z)−σ(z)νy(x)

)
,

P V \{y,z}(x,z)=
(
σ(z)νz(y)+σ(y)νy(z)

)−1(
σ(y)νy(x)+σ(x)νz(y)−σ(y)νz(x)

)
.

Proof. First, applying the above proposition, we have that for all y, z ∈ V
with z �= y,

νy − νV \{y,z} =
(
σ(z) νz(y) + σ(y) νy(z)

)−1

νy(z)
(
σ(y) (νy − νz) + νz(y) σ

)
and keeping in mind that Lqσ(νz)(z) = 1 − ‖σ‖

σ(z)
and Lqσ(νy)(z) = 1,

1 − Lqσ(νV \{y,z})(z) =
σ(y)

σ(z)
‖σ‖

(
σ(z) νz(y) + σ(y) νy(z)

)−1

νy(z).

Finally, we obtain the formula for GV \{y} by replacing the above identities
in (6.1) and the formulae for the P V \{y,z} by applying the relation between
the Green and Poisson kernels given in Proposition 5.10. �

The symmetry of the Green kernel for each set of the form V \ {y} leads
to the following result about the relation between the values νy(x) and νx(y).

Corollary 6.13 When q = qσ, then

σ(x) νx(y) = σ(y) νy(x) + ‖σ‖−1σ(x) σ(y)
(
‖νx‖ − ‖νy‖

)
for all x, y ∈ V.

In particular, σ(x) νx(y) = σ(y) νy(x) iff capqσ
(V \ {x}) = capqσ

(V \ {y}).
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Proof. For fixed y ∈ V , by applying the formula for GV \{y} given at the
above proposition, for all x ∈ V we get that

νy(x)=

∫
V

GV \{y}(x, z)dz=νy(x)+
1

‖σ‖
1

σ(y)

∫
V

σ(z)
(
σ(x)νz(y)−σ(y)νz(x)

)
dz

which implies that∫
V

σ(z)
(
σ(x) νz(y) − σ(y) νz(x)

)
dz = 0.

On the other hand, applying the symmetry of GV \{y} we obtain that

σ(z)
(
σ(y) νy(x) − σ(x) νx(y)

)
= σ(x) σ(y)

(
νy(z) − νx(z)

)
+ σ(z)

(
σ(y) νz(x) − σ(x) νz(y)

)
and hence the result follows by integrating with respect to z. �

Observe that when σ is a constant function, then the above formula
becomes

νx(y) = νy(x) +
1

n

(‖νx‖ − ‖νy‖
)

for all x, y ∈ V .

Of course, this identity can be directly obtained from the expression of the
orthogonal Green kernel for V associated with the combinatorial Laplacian.

Proposition 6.14 When q = qσ, the orthogonal Green kernel for V is
given by

G(x, y) = α σ(x) σ(y)

∫
V

σ(z) νy(z) dz − ‖σ‖−1σ(y) νy(x)

+ α σ(y)

∫
V

σ2(z) νz(x) dz − β σ(x) σ(y)

∫
V

∫
V

σ2(z) σ(w) νz(w) dz dw,

where α = ‖σ‖−1‖σ‖−2
2

and β = ‖σ‖−1‖σ‖−4
2

.

Proof. From Proposition 6.10, we know that

G(x, y) =
‖σ uy‖
‖σ‖4

2

σ(x) σ(y) − σ(y)

‖σ‖2
2

uy(x),

where uy(x) =

∫
V

GV \{y}(x, z) σ(z) dz, for all x, y ∈ V .
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Applying the formula for GV \{y} obtained in the above proposition we
have that

uy(x) =
‖σ‖2

2

‖σ‖ νy(x) +
1

‖σ‖
σ(x)

σ(y)

∫
V

νz(y) σ(z)2 dz − 1

‖σ‖
∫

V

νz(x) σ(z)2dz,

‖σ uy‖ =
‖σ‖2

2

‖σ‖
∫

V

νy(z) σ(z) dz +
‖σ‖2

2

‖σ‖
1

σ(y)

∫
V

νz(y) σ(z)2 dz

− 1

‖σ‖
∫

V

∫
V

νz(w) σ(z)2σ(w) dz dw

and the expression for G follows by replacing uy and ‖σ uy‖ in the formula
given at the beginning of the proof. �

The above formula allows us to obtain an expression of the effective
resistance in terms of equilibrium measures. Recall that when talking about
effective resistance we need to consider σ as the unique normalized function
such that q = qσ. From now on, we consider that function σ ∈ C∗

n(V ) and
we suppose that q = qσ.

Proposition 6.15 For all x, y ∈ V ,

Rσ(x, y) =
1

n

(
νx(y)

σ(y)
+

νy(x)

σ(x)

)
.

Proof. Given x, y ∈ V , if we consider u = σ(x) P
V \{x,y}
x then Lqσ(u) = 0 on

V \{x, y}, u(x) = σ(x), u(y) = 0 and hence Cσ(x, y)=σ(x)2Lqσ(P
V \{x,y}
x )(x).

Taking into account that

P V \{x,y}
x =

(
σ(x) νx(y) + σ(y) νy(x)

)−1(
σ(y) νy + σ νx(y) − σ(y) νx

)
,

we obtain that

Lqσ(P V \{x,y}
x ) = n

(
σ(x) νx(y) + σ(y) νy(x)

)−1

σ(y)
1

σ

(
εx − εy

)
,

which implies that Cσ(x, y) = n
(
σ(x) νx(y) + σ(y) νy(x)

)−1

σ(y) σ(x). �

The above formula for Rσ generalizes the one obtained in [5], when q = 0.
On the other hand, we next obtain a generalization of the so-called Foster’s
Theorem, whose proof is obtained directly from the expression of the effective
resistance. For other type of proofs, see for instance [17, 18].
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Corollary 6.16 (Foster’s Theorem) If q = qσ, then it is verified that∫
V

∫
V

Rσ(x, y) c(x, y) σ(x) σ(y) dx dy = 2 (n − 1).

Proof. First, observe that∫
V

∫
V

σ(x) νx(y) c(x, y) dx dy =

∫
V

∫
V

σ(y) νy(x) c(x, y) dx dy ,

since c is a symmetric function. Taking into account that

Rσ(x, y)σ(x)σ(y) = n−1
(
σ(x) νx(y) + σ(y) νy(x)

)
,

we obtain∫
V

∫
V

Rσ(x, y) c(x, y) σ(x) σ(y) dx dy =
2

n

∫
V

σ(x)

(∫
V

νx(y) c(x, y) dy

)
dx.

On the other hand, since∫
V

νx(y) c(x, y) dx = −Lqσ(νx)(x) =
n

σ(x)
− 1 ,

the right hand side of the above identity equals 2
n

∫
V
(n − σ) dx = 2 (n − 1).

�
Let x, y, z ∈ V , then we say that z separates x and y iff the set V \{z} is

not connected and x and y belong to different connected components of it.
The following formula enables us to express the Green kernel for subsets with
cardinality n − 1 by means of effective resistances. In its standard version,
it can be found in [16, 17, 18].

Corollary 6.17 If q = qσ, then for all x, y, z ∈ V it is verified that

GV \{z}(x, y) =
1

2
σ(x) σ(y)

(
Rσ(x, z) + Rσ(x, y) − Rσ(x, y)

)
.

In particular, Rσ defines a distance on V . Moreover Rσ(x, y) = Rσ(x, z) +
Rσ(z, y) iff z separates x and y.

Proof. From Proposition 6.12 we know that

GV \{z}(x, y) =
1

n
σ(x) σ(y)

(
νz(x)

σ(x)
+

νy(z)

σ(z)
− νy(x)

σ(x)

)
,

GV \{z}(y, x) =
1

n
σ(x) σ(y)

(
νz(y)

σ(y)
+

νx(z)

σ(z)
− νx(y)

σ(y)

)
and the first claim follows adding both sides of the above equalities and
taking into account that GV \{z} is symmetric.
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On the other hand, the symmetry of Rσ and the nonnegativity of the
Green kernels imply that the effective resistance is a distance on the vertex
set. Moreover Rσ(x, y) = Rσ(x, z) + Rσ(z, y), that is the triangle inequality

is an equality, iff G
V \{z}
y (x) = 0. From Proposition 5.10, this condition is

equivalent to the fact that x and y are in different connected components
of V \ {z}. �
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