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Solution to the gradient problem
of C.E. Weil

Zoltán Buczolich

Abstract

In this paper we give a complete answer to the famous gradient
problem of C. E. Weil. On an open set G ⊂ R

2 we construct a
differentiable function f : G → R for which there exists an open set
Ω1 ⊂ R

2 such that ∇f(p) ∈ Ω1 for a p ∈ G but ∇f(q) �∈ Ω1 for
almost every q ∈ G. This shows that the Denjoy-Clarkson property
does not hold in higher dimensions.

1. Introduction

The gradient problem of C. E. Weil is the following question: Assume n ≥ 2
and G ⊂ R

n is open, f : G → R is a differentiable function. Then ∇f
maps G into R

n. Assume Ω ⊂ R
n is open. Is it true that (∇f)−1(Ω) =

{p ∈ G : ∇f(p) ∈ Ω} is either empty, or of positive n-dimensional Lebesgue
measure?

When n = 1 then the answer is positive and is the so called Denjoy-
Clarkson property of the derivative functions [8], [7]: If f : (a, b) → R is
a differentiable function and (α, β) is an open interval then (f ′)−1(α, β) is
either empty, or of positive (one dimensional) Lebesgue measure. In [12] it
was shown that the kth Peano derivatives and the approximate derivatives
also have the Denjoy-Clarkson property.

The gradient problem was one of the well-known and famous unsolved
problems in Real Analysis. It was around since the paper [12] appeared in
the 1960s. I have learned it in 1987 and have worked on it since then. In 1990
at the Fourteenth Summer Symposium on Real Analysis it was advertised
and appeared in print in [13].
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In this paper we answer this question by giving a two dimensional coun-
terexample. We show that there exists a nonempty open set G ⊂ R

2, a differ-
entiable function f : G → R and an open set Ω1 ⊂ R

2 for which there exists
a p ∈ G such that ∇f(p) ∈ Ω1 but for almost every (in the sense of two
dimensional Lebesgue measure, λ2,) q ∈ G the gradient ∇f(q) is not in Ω1.

The result in [2] which was reproved by different methods in [10] shows
that in the above example, although λ2((∇f)−1(Ω1)) = 0, if H1 denotes the
one dimensional Hausdorff measure then H1((∇f)−1(Ω1)) > 0. The results
in [10] imply more than this. It turns out that any projection of (∇f)−1(Ω1)
onto a line is of positive λ1 measure, (∇f)−1(Ω1) is non-σ-porous and is
porous at none of its points. The results in [5] also show that if v is an
interior point of

R1
def
=Ω1 ∩ {∇f(p) : p ∈ G}

then H1((∇f)−1(v)) > 0, which implies that (∇f)−1(Ω1) is of non-σ-finite
H1 measure. Furthermore, the range R1 satisfies a certain interesting con-
vexity/concavity property. Actually, this convexity/concavity property is
behind the construction of the counterexample given in this paper. These
results from [5] show that our counterexample function has some strange
properties.

On the other hand, [3] shows that if ∇f �= (0, 0) on G (this will be true
in our counterexample) then the level set structure of f is relatively simple,
f−1({y}) has components which are homeomorphic to differentiable arcs and
there are no bifurcation points on these components. Related to our work
on the gradient problem in [6] a pathological C1-function, with “too many
tangent planes” was constructed. This result pointed in the direction that
maybe the counterexample function of this paper exists.

In [11] G. Petruska verified that if F : R → R is a differentiable function
of one variable and f = F ′ then f takes each of its values on Af , where Af

denotes the approximate continuity points of f . In [4] we showed that if
F : R

n → R is differentiable and i ∈ {1, . . . , n} then f = ∂iF takes each
of its values on Af . On the other hand, there exists a continuous function
F : R

2 → R such that f = ∂F/∂x1 exists everywhere and f does not
take each of its values on Af . In Theorem 3 of [4] a differentiable function
f : R

2 → R is constructed such that ∇f does not take each of its values
on A∇f .

Assume f : R
n → R is a differentiable function. We call a point y ∈ R

n

a regular value of ∇f if there is an x ∈ A∇f such that ∇f(x) = y. Denote
the set of regular values by REG(∇f). Our question in [4] about the density
of REG(∇f) in the range of ∇f receives a negative answer by the negative
answer to the gradient problem. On the other hand our question about the
characterization of REG(∇f) remains open.
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There is a new question related to the gradient problem: Assume that
G ⊂ R

n is an open set, f : G → R is a differentiable function and Ω ⊂ R
n

is such an open set that (∇f)−1(Ω) �= ∅. Then what can we say about the
Hausdorff-dimension of (∇f)−1(Ω). The results discussed above imply that
(∇f)−1(Ω) is of Hausdorff dimension at least one, and our counterexample
in this paper shows that it is possible that λ2((∇f)−1(Ω)) = 0.

2. Main Result

This section is devoted to the proof of our main result, Theorem 1.

We put G=(−1, 1)×(−1, 1) and Ω0 =[−1
2
, 1

2
]×[0, 2], Ω1 =(−0.49, 0.49)×

(0, 1.99), and Ω2 =[−0.51, 0.51] × [0, 2.01].

Theorem 1. There exists a differentiable function f : G → R such that
∇f(0, 0) = (0, 1) and ∇f(p) �∈ Ω1 for almost every p ∈ G.

The construction of f is quite complicated and is done in Subsection 2.2.
Here is an informal plan of what we are doing. We start with a function
h−1(x, y) = y. Then ∇h−1 = (0, 1) everywhere on G. Now our aim is to
choose a sequence of functions hn so that

f(x, y)
def
=

∞∑
n=−1

hn(x, y)

satisfies Theorem 1. Each function hn+1 can be regarded as a perturbation of
the previous partial sum

∑n
k=−1 hk. Our aim is to push ∇f(p) outside of

Ω1 for almost every p ∈ G. In the construction we will have a nested se-
quence of open sets Gn such that for almost every p outside of Gn we will
have ∇f(p) �∈ Ω1. We use a “stopping time argument” by not perturb-
ing the function at almost every point, p any more, once ∇f(p) �∈ Ω0. For
these points

∑∞
n=−1 hn(x, y) =

∑n0

n=−1 hn(x, y) for a suitable n0. We will
show that λ2(Gn) → 0. The main difficulty is to show that f is differ-
entiable at those points p ∈ ∩∞

n=0Gn which are subject to infinitely many
perturbations. To handle this difficult case an argument which originates
from dynamical systems is used, I learned the heuristic behind this argument
when I worked on the proof of [1]. This important argument is discussed first
in Subsection 2.1. Reading this subsection one should think that p is a given
point in G and the trajectory xn is the first coordinate of ∇(

∑n−1
k=−1 hk(p))

(apart from some vanishing error term) and yn is the second coordinate
(again with some vanishing error term). A sequence {gn} of concave down
auxiliary functions is also defined. These functions will determine the way
we move in the gradient space and the motivation for the introduction of
these functions originates from the convexity/concavity result in [5].
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2.1. Trajectories in the gradient space, the dynamics behind our
construction

Set x0 = 0, y0 = 1, a(0, 1) = 0, k0 = 1, A0 = {0}, g0(x) = 1 − 1
4
x4.

Suppose n ≥ 0 and the trajectory xk ∈ [−1, 1], for k = 1, . . . , n is given
together with another sequence yk ∈ R. This second sequence is computed
based on the trajectory {xk}.

We also have a set An ={a(n, j) : j = 1, . . . , kn} which gives the indices of
the so called active points of the trajectory: xa(n,1), . . . , xaa(n,kn)

. We assume
that a(n, j) < a(n, j+1), j = 1, . . . , kn−1 and a(n,kn) = n. The point x0 = 0
will always be regarded to be active. Hence a(n, 1) = 0 for all n. We also
have a collection of functions gk, k = 1, . . . , n which are concave down and
gk(xk) = yk. We also assume, xj+1 − xj �= 0 for j = 0, . . . , n − 1. Suppose
that the next term xn+1 �= xn of the trajectory is given. Denote by τ(x)
the tangent of gn at the point (xn, gn(xn)). Set yn+1 = τ(xn+1). Since gn is
concave we clearly have yn+1 ≥ gn(xn+1). See Figure 1.

�

�

.......................

...............
...........................

0 = x0 = xa(1,1)x1 = xa(1,2) x2

(x1, y1)

g1

(x2, y2) τ(x)

Figure 1: The functions gn.

If the trajectory at step n + 1 is not changing direction, that is,

(xn − xn−1)(xn+1 − xn) > 0

then xn becomes inactive and this means that it will not belong to An+1.
(At the first step, by definition, we do not change direction.)

If the trajectory at step n + 1 is changing direction, that is,

(xn − xn−1)(xn+1 − xn) < 0

then xn stays active, that is, xn ∈ An+1, provided it is not decativated by
the “passing over” rule given below.

The last point of the trajectory xn+1 is always active, so

n + 1 = a(n + 1, kn+1) ∈ An+1.
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Inactive points cannot become active but some active points might get
deactivated when xn is “passing over” them, or over their predecessors.
This means that if xa(n,j) ∈ (xn, xn+1] for a j ∈ {1, . . . , kn} then all xa(n,j′)
with j ≤ j′ ≤ kn, j′ �= 1 become inactive and these a(n, j′)’s will not belong
to An+1. If 0 = x0 ∈ (xn, xn+1] we say that we are resetting the active
trajectory, and An+1 = {0, n + 1} in this case.

The elements of An which are not deactivated by the above process will
belong to An+1.

The only way xn can survive step n + 1 as an active point is by being a
turning point of the trajectory. Hence, all active points are (some earlier)
turning points, that is,

(xa(n,j) − xa(n,j−1))(xa(n,j+1) − xa(n,j)) < 0.

Assuming xa(n,2) < xa(n,1) = 0 the “cancellation by passing over” rule im-
plies that we have xa(n,2(j−1)) ≤ xa(n,2j), xa(n,2j−1) ≥ xa(n,2j+1) and xa(n,2j) ≤
xn ≤ xa(n,2j′−1) for all j, j′ for which the arguments of a(n, .) are defined.
See Figure 2. In case xa(n,2) > xa(n,1) = 0 we have a mirror image and all
inequalities are reversed.

0 = xa(n,1)xa(n,2) xa(n,3)xa(n,4) xn = xa(n,kn)

Figure 2: Active points at step n.

If a, b ∈ R we denote the closed interval with endpoints a and b by [a, b]
irregardless whether a ≤ b, or b ≤ a, we adopt similar convention for other
type of intervals as well.

Next we show how gn is defined. We define its derivative g′
n on R and

assume that it also satisfies the initial condition gn(xn) = yn.
We still assume xa(n,2) < xa(n,1) = 0, the case xa(n,2) > xa(n,1) = 0

is similar, the case xa(n,2) = xa(n,1) = 0 is trivial, we set g′
n(x) = −x3.

On [xa(n,1), +∞) and on (−∞, xa(n,2)] we put g′
n(x) = −(x−xa(n,1))

3 = −x3.
This also defines g′

n(xa(n,2)) = −(xa(n,2) − xa(n,1))
3. Assume

g′
n(xa(n,j)) = −(xa(n,2)−xa(n,1))

3−(xa(n,3)−xa(n,2))
3−· · ·−(xa(n,j)−xa(n,j−1))

3.

For a j ∈ {2, . . . , kn − 1} on [xa(n,j+1), xa(n,j−1)) we put g′
n(x) = g′

n(xa(n,j))−
(x − xa(n,j))

3. Which implies

g′
n (xa(n,j+1)) = −(xa(n,2) − xa(n,1))

3 − (xa(n,3) − xa(n,2))
3

− · · · − (xa(n,j) − xa(n,j−1))
3 − (xa(n,j+1) − xa(n,j))

3.

Finally, on the interval (xa(n,kn−1), xa(n,kn)) put g′
n(x) = g′

n(xa(n,kn)) − (x −
xa(n,kn))

3. Since g′
n(xa(n,kn)) = g′

n(xa(n,kn−1)) − (xa(n,kn) − xa(n,kn−1))
3 the

function g′
n is continuous at xa(n,kn−1).
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We set gn(x) = yn +

∫ x

xn

g′
n(x)dx.

Observe that g′
n is continuous at the points xa(n,j), j = 1, . . . , kn and is

monotone decreasing on the intervals determined by these active points.

Hence gn is concave (down) on R.

We will only be interested in gn when the trajectory, {xn}, is in [−1, 1]
and with this assumption we also have |g′

n(x)| ≤ 1 for x ∈ [−1, 1].

Lemma 2. For all x ∈ R and n = 0, 1, . . . we have gn+1(x) ≥ gn(x).

Proof. We separate three cases.

Case I: There is no cancellation of active points and at step n + 1 the tra-
jectory is not turning its direction. This implies kn+1 = kn.

Case II: There is no cancellation and at step n+1 the trajectory is changing
its direction. Then xn stays active and xn+1 becomes active. Thus
kn+1 = kn + 1 > kn.

Case III: There is some cancellation of active points. Then kn+1 ≤ kn and
kn+1 = kn is possible only when kn+1 = kn = 2 and at step n + 1 we
reset the trajectory.

During the whole proof we assume xa(n,2) < xa(n,1) = 0, the case xa(n,2) >
xa(n,1) = 0 is similar, the case xa(n,2) = xa(n,1) = 0 is trivial.

Case I: Without limiting generality we can also suppose that u
def
=xa(n,kn−1)

= xa(n+1,kn+1−1) < xn < xn+1 < w = xa(n,kn−2) = xa(n+1,kn+1−2) ≤ xa(n,1), see
Figure 3. By using the definition of the functions gn and g′

n+1 on (−∞, u]
and on [xn+1, +∞) we have g′

n = g′
n+1, this might not completely clear on

(xn+1, w) but on this interval g′
n(x) = g′

n+1(x) = g′
n(u) − (x − u)3. Thus it

is enough to show gn+1 ≥ gn on [u, xn+1].

0 = xa(n,1)u = xa(n,kn−1) w = xa(n,kn−2)xn = xa(n,kn) xn+1

�
� �

Figure 3: Case I.

On [xn, xn+1] we have g′
n(x) = g′

n(u)− (x− u)3 and g′
n+1(x) = g′

n+1(xn+1)−
(x − xn+1)

3 = g′
n(u) − (xn+1 − u)3 − (x − xn+1)

3. So

g′
n+1(x) − g′

n(x) = −(xn+1 − u)3 − (x − xn+1)
3 + (x − u)3

= −((xn+1 − x) + (x − u))3 + (xn+1 − x)3 + (x − u)3 < 0,
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therefore, using x < xn+1 we infer

gn+1(x) − gn+1(xn+1) − (gn(x) − gn(xn+1)) =

∫ x

xn+1

(g′
n+1(t) − g′

n(t))dt > 0,

which based on yn+1 = gn+1(xn+1) ≥ gn(xn+1), yields gn+1(x) ≥ gn(x) for
all x ∈ [xn, xn+1].

On [u, xn] we have

g′
n(x) = g′

n(xn) − (x − xn)3 = g′
n(u) − (xn − u)3 − (x − xn)3

and

g′
n+1(x) = g′

n+1(xn+1) − (x − xn+1)
3 = g′

n+1(u) − (xn+1 − u)3 − (x − xn+1)
3

= g′
n(u) − (xn+1 − u)3 − (x − xn+1)

3.

Now,

g′
n+1(x) − g′

n(x) = −(xn+1 − u)3 − (x − xn+1)
3 + (xn − u)3 + (x − xn)3,

g′
n+1(u) − g′

n(u) = 0, and

g′′
n+1(x) − g′′

n(x) = −3(x − xn+1)
2 + 3(x − xn)2 < 0.

Thus g′
n+1 − g′

n ≤ 0 on [u, xn]. Hence, again

gn+1(x) − gn+1(xn) − (gn(x) − gn(xn)) =

∫ x

xn

(g′
n+1(t) − g′

n(t))dt ≥ 0.

Since we have already verified that gn+1(xn) ≥ gn(xn) this implies gn+1(x) ≥
gn(x) on [u, xn].

Case II. Now kn+1 > kn.

Again, without limiting generality, we assume xn+1 < xn < xa(n,1) =
xa(n+1,1) = 0 and setting

u
def
=xa(n,kn−1) < xn+1 and w

def
=xa(n,kn−2)

we have u < xn+1 < xn < w ≤ xa(n,1), see Figure 4. Now, by our assumptions
xn = xa(n+1,kn) and xn+1 = xa(n+1,kn+1).

0 = xa(n,1)u = xa(n,kn−1) w = xa(n,kn−2)xn = xa(n,kn)xn+1

�
�

�

Figure 4: Case II.
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On (−∞, u] and on [w,+∞) by our definitions we have g′
n = g′

n+1.

On [xn, w] we have

g′
n(x) = g′

n(u) − (x − u)3 = g′
n+1(u) − (x − u)3 = g′

n+1(x).

On [u, xn+1] we also have g′
n(x) = g′

n(xn) − (x − xn)3 and

g′
n+1(x) = g′

n+1(xn) − (x − xn)3 = g′
n(x).

On [xn+1, xn],

g′
n+1(x) = g′

n+1(xn+1) − (x − xn+1)
3 = g′

n(xn) − (xn+1 − xn)3 − (x − xn+1)
3,

and g′
n(x) = g′

n(xn) − (x − xn)3.

Hence

g′
n+1(x) − g′

n(x) = −(xn+1 − xn)3 − (x − xn+1)
3 + (x − xn)3

= ((xn − x) + (x − xn+1))
3 − (x − xn+1)

3 − (xn − x)3 > 0

and

gn+1(x) − gn+1(xn+1) − (gn(x) − gn(xn+1)) =

∫ x

xn+1

(g′
n+1(t) − g′

n(t))dt > 0.

This, together with yn+1 = gn+1(xn+1) ≥ gn(xn+1), implies again that
gn+1(x) ≥ gn(x).

Case III. Now kn+1 ≤ kn and there are some deactivated points of the
trajectory.

First we assume that the trajectory at step n+1 is not changing its direc-
tion, this is called Case IIIa. Without limiting generality we can assume
xn < xa(n,1), xn < xn+1 and, due to the cancellation, uj = xa(n,kn−2j) ∈
(xn, xn+1] for j = 1, . . . , j0 with some j0 ≥ 1. Set wj = xa(n,kn−2j+1),
j = 1, . . . , j0. Then wj0 < · · · < w2 < w1 < xn < u1 < · · · < uj0 ≤ xn+1,
see Figure 5.

u1 u2 uj0xn xn+1w1w2wj0wj0+1

�
�

�
�

�
�

�.....................................................�

Figure 5: Case IIIa.
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For t ∈ [xn, xn+1] we define some auxiliary functions gn,t.

For t ∈ [xn, u1) set gn,t(t) = gn(t) and g′
n,t(x) = g′

n(x) for x ≤ w1 or
x ≥ u1. For x ∈ [t, u1) set

g′
n,t(x) = g′

n,t(w1) − (x − w1)
3 = g′

n(w1) − (x − w1)
3 = g′

n(x).

See Figure 6. This implies gn,t(x) = gn(x) for all x ≥ t. For x ∈ (w1, t] set

g′
n,t(x) = g′

n,t(t) − (x − t)3 = g′
n,t(w1) − (t − w1)

3 − (x − t)3.

�...
...
...
...
...
...
...
...
...
...
...
...
...
...
.

...

...

...

...

...

...

...

..

.........................................
w1 t u1

gn(x)gn,t(x)

common tangent of gn and gn,t

...

...

...

...

...

...

...

...

...

...

...

..

xn

Figure 6: The functions gn and gn,t.

Observe that the definition of gn,t is exactly the same what we would
have obtained in Case I if we had xn+1 = t and yn+1 = gn(t). So, as in
Case I, one could see that gn,t(x) ≥ gn(x) for all x ∈ R. (See Figure 6.)

Furthermore, taking t, t′ ∈ (xn, u1), t < t′ and thinking of t as being the
next point of the trajectory, xn+1, and t′ as xn+2, yn+1 = gn(t), yn+2 = gn(t′)
one could see like in Case I that gn,t′(x) ≥ gn,t(x).

Set gn,u−
1
(x) = limt→u−

1
gn,t(x). Then g′

n,u−
1

(x) = limt→u−
1

g′
n,t(x). Set

n1 = a(n, kn − 2), then u1 = xn1 and next we show that g′
n,u−

1

(x) = g′
n1

(x)

which shows that after the cancellation at u1 we are “dropping down” to a
function which is a vertically shifted copy of gn1 . Indeed, for x �∈ (w1, u1)
we have g′

n,u−
1

(x) = g′
n(x) = g′

n1
(x). For x ∈ (w1, u1) we have

g′
n,u−

1
(x) = g′

n(u1) − (x − u1)
3 = g′

n1
(u1) − (x − u1)

3.

It is also clear that gn,u−
1
(x) ≥ gn(x).

Again we want to reduce our argument to Case I. Here is the idea of what
we are planning to do: Due to cancellation we can forget the trajectory xn

for n > n1 and when studying gn,t for t ∈ [u1, u2) we can use the argument
from Case I with yn1 = gn,u−

1
(xn1), xn1+1 = t and yn1+1 = gn,u−

1
(t).
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Furthermore, like in the earlier case, we can also obtain the monotonicity
property

(2.1) gn,t′(x) ≥ gn,t(x) for all t, t′ ∈ [u1, u2), t < t′ and x ∈ R.

So assume t ∈ [u1, u2) and set gn,t(t) = gn,u−
1
(t) = gn(t).

For x ≥ t, or for x ≤ w2 set

g′
n,t(x) = g′

n,u−
1
(x) = g′

n(x) = g′
n1

(x).

This again implies gn,t(x) = gn(x) for x ≥ t. For w2 < x < t set

g′
n,t(x) = g′

n,t(t) − (x − t)3 = g′
n1

(t) − (x − t)3.

Now, as earlier, by using an argument similar to Case I (now applied
for gn1(t)) one could see that gn,t(x) − gn,t(t) − (gn1(x) − gn1(t)) ≥ 0 for
w2 < x < t and hence gn,t(x) ≥ gn,u−

1
(x) for all x ∈ R. The monotonicity

property (2.1) can be established as well. Then one can define gn,u−
2
(x) and

continue the argument on [u2, u3). By induction we can prove (2.1) for all
intervals [ul−1, ul) for l = 2, . . . , j0 and setting nl = a(n, kn − 2l) we have
gn,u−

l
(x) = g′

nl
(x) on R.

Hence we can define gn,u−
j0

(x) and

g′
n,u−

j0

(x) = g′
n(uj0) − (x − uj0)

3 = g′
nj0

(uj0) − (x − uj0)
3

on (wj0 , uj0) while g′
n,u−

j0

(x) = g′
nj0

(x) = g′
n(x) for x �∈ (wj0, uj0).

Set wj0+1 = xa(n,kn−2j0−1) if kn − 2j0 − 1 ≥ 1.
If kn − 2j0 − 1 < 1 then xa(n,1) = x0 = 0 ∈ (xn, xn+1] and at step n + 1

we reset the trajectory. In this case uj0 = 0 and we put wj0+1 = 0. We also
have g′

n,u−
j0

(x) = g′
0(x) = −x3 and gn,u−

j0

(0) = gn,uj0
(uj0) = gn(0).

Now we return to the proof of this lemma and no longer assume uj0 =0.
For t ∈ [uj0 , xn+1] we define gn,t(t) = gn(t) and g′

n,t(x) = g′
nj0

(x) = g′
n(x)

when x �∈ (wj0+1, t). When x ∈ (wj0+1, t) set g′
n,t(x) = g′

n,t(t)− (x− t)3. The
monotonicity property (2.1) can be established as before. Hence

gn,xn+1(x) ≥ gn,t(x) ≥ gn,u−
j0

(x) ≥ · · · ≥ gn(x) for all x ∈ R.

Now, gn+1(xn+1) > gn(xn+1) = gn,xn+1(xn+1) and g′
n+1 = g′

n,xn+1
implies

gn+1 ≥ gn.
In the proof of Lemma 4 we need the following estimate for the case

when uj0 = 0, that is, when we reset the trajectory:

(2.2) gn+1(x) ≥ gn,u−
j0

(x) = gn,u−
j0

(0) +

∫ x

0

−t3dt = gn(0) − x4

4

(we remark that this inequality holds in Case IIIb as well, provided that
uj0 = 0).
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Case IIIb. Now we assume that at step n+1 the trajectory is changing
direction. The other cases being similar we assume xn < xa(n,1), xn < xn+1,
xn < xn−1. Set u1 = xa(n,kn−1). Now xn−1 ∈ (xn, u1] and due to cancellation
uj = xa(n,kn−2j+1) ∈ (xn, xn+1] for j = 1, . . . , j0 with some j0 ≥ 1, see
Figure 7. Set wj = xa(n,kn−2j+2), j = 1, . . . , j0 +1. When kn − 2j0 < 1 which
corresponds to the case when uj0 = 0, that is, we reset the trajectory, we
put wj0+1 = x0 = 0. Observe that w1 = xn.

u1 u2 uj0w1 = xn xn+1

�

w2wj0wj0+1

�
�

�
�

�
�
.................................................................................

xn−1

�

Figure 7: Case IIIb.

For t ∈ [xn, u1) we define gn,t exactly as it was defined in Case IIIa.
To verify gn,t ≥ gn now we need to use an argument similar to Case II
instead of Case I. To show the monotonicity property (2.1) for t, t′ ∈ (xn, u1)
for the first point t < t′ an argument similar to Case II, and then for t′

the argument of Case IIIa, referring to Case I can be used. Now we have
g′

n,u−
1

(x) = g′
n1

(x) with n1 = a(n, kn−1) and we “drop down” to level n1. On

the intervals [ul−1, ul), l = 2, . . . , j0 and on [uj0, xn+1) we can argue exactly
like in Case IIIa, that is, Case I can be used. �
Lemma 3. If xn ∈ [−1, 1] and xn → x∗ then there exists y∗ ∈ R ∪ {+∞}
such that yn → y∗.

Proof. Set gn(x∗) = y∗
n. By Lemma 2, y∗

n is monotone increasing and
hence there exists y∗ ∈ R ∪ +∞ such that y∗

n → y∗. Since |g′
n| ≤ 1 we also

have |y∗
n − yn| = |gn(x∗) − gn(xn)| ≤ |x∗ − xn|. This implies |y∗ − yn| ≤

|y∗ − y∗
n| + |x∗ − xn| → 0 as n → ∞. �

Lemma 4. If xn ∈ [−1, 1], lim inf xn = x∗ < lim sup xn = x∗ and c =
(x∗ + x∗)/2 then gn(c) → ∞. This, by the uniform Lipschitz property of gn,
implies yn → ∞ as well.

Proof. First we assume x∗ < x∗ < 0. By definition of x∗ and x∗ we have
infinitely many “zig-zags” between x∗ and x∗. Using the cancellation law of
active points we can choose infinitely many n0 < n1 < n2 such that setting
u = xn0, v = xn1, and w = xn2 we have u, v, w < 0, v = xn1 ≤ xn < u = xn0

and xn < w = xn2 for all n0 < n < n2, furthermore, |u−x∗| < 0.01|x∗−x∗|4,
|v − x∗| < 0.01|x∗ − x∗|4, |w − x∗| < 0.01|x∗ − x∗|4, and n0 ∈ An1.
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Then, as xn moves between u and v all points xn′ with n0 <n′<n1

are deactivated by the time gn1 is defined. Hence a(n1, kn1) = n1 and
a(n1, kn1 − 1)=n0. Now

g′
n1

(x) = g′
n1

(v) − (x − v)3

for all x ∈ (u, v], therefore

gn1(c) = gn1(v) +

∫ c

v

g′
n1

(t)dt = gn1(v) + g′
n1

(v)(c − v) − (c − v)4

4
,

similarly

gn1(u) = gn1(v) + g′
n1

(v)(u − v) − (u − v)4

4
,

by the Lipschitz property of gn1 , we also have

gn1(w) ≥ gn1(u) − |u − w| ≥ gn1(u) − 0.01|x∗ − x∗|4.

As xn moves between v and w all points xn′ with n1 < n′ < n2 are
deactivated by the time gn2 is defined. Hence

a(n2, kn2) = n2 and a(n2, kn2 − 1) ≤ n1.

First we suppose that the active point u = xn0 is not deactivated at
step n2, that is, a(n2, kn2 − 1) = n1 and w = xn2 < u = xn0. Therefore,

g′
n2

(w) = g′
n2

(v) − (w − v)3 = g′
n1

(v) − (w − v)3

and
g′

n2
(x) = g′

n2
(w) − (x − w)3

for all x ∈ (v, w], hence

gn2(c) = gn2(w) +

∫ c

w

g′
n2

(t)dt = gn2(w) + g′
n2

(w)(c − w) − (c − w)4

4

≥ gn1(w) + g′
n2

(w)(c − w) − (c − w)4

4

≥ gn1(u) − 0.01|x∗ − x∗|4 + g′
n2

(w)(c − w) − (c − w)4

4

= gn1(v) + g′
n1

(v)(u − v) − (u − v)4

4
− 0.01|x∗ − x∗|4

+ (g′
n1

(v) − (w − v)3)(c − w) − (c − w)4

4
.



Solution to the gradient problem of C.E. Weil 901

Now,

gn2 (c) − gn1(c) ≥
≥ g′

n1
(v)(u − v) − (u − v)4

4
− 0.01|x∗ − x∗|4+

+ (g′
n1

(v) − (w − v)3)(c − w) − (c − w)4

4
− g′

n1
(v)(c − v) +

(c − v)4

4

= g′
n1

(v)(u − w) − (u − v)4

4
− 0.01|x∗ − x∗|4

− (w − v)3(c − w) − (c − w)4

4
+

(c − v)4

4

= (w − c)(w − v)3 + g′
n1

(v)(u − w) − 0.01|x∗ − x∗|4 − (u − v)4

4

− (c − w)4

4
+

(c − v)4

4
≥ 0.49|x∗ − x∗| · 0.98|x∗ − x∗|3

− 0.02|x∗ − x∗|4 − 0.01|x∗ − x∗|4 − 1.024|x∗ − x∗|4
4

− 0.514|x∗ − x∗|4
4

> 0.1|x∗ − x∗|4.
Using that gn(c) is monotone increasing as n → ∞ and it increases infinitely
often by 0.1|x∗ − x∗|4 we obtain gn(c) → ∞.

Suppose now that the active point u = xn0 is deactivated at step n2.
This implies a(n2, kn2 − 1) < n0 < n1, that is, u = xn0 ≤ w = xn2. From
xn2−1 < u < 0 it follows that u = xn0 ∈ An2−1. Now, using the notation of
Case III in Lemma 2 one can show that

g′
n2−1,u(u) = g′

n2−1,u(v) − (u − v)3 = g′
n1

(v) − (u − v)3

and g′
n2−1,u(x) = g′

n2−1,u(u)− (x−u)3 for all x ∈ (v, u). The above argument
used now with gn2 replaced by gn2−1,u and w replaced by u shows that
gn2−1,u(c) > gn1(c) + 0.1|x∗ − x∗|4. Since

gn2(c) ≥ gn2−1,u(c) > gn1(c) + 0.1|x∗ − x∗|4
this completes the proof of the case x∗ < x∗ < 0.

The case 0 < x∗ < x∗ is similar to the previous one.

So assume x∗ ≤ 0 ≤ x∗.
Without limiting generality we can suppose x∗ < 0. If there are only

finitely many times when the trajectory is being reset then x∗ should equal 0
and xn < 0 for all n ≥ N for some N . In this case the argument used for
the case x∗ < x∗ < 0 works. So finally we assume that the trajectory
is being reset infinitely many times. Then we can choose infinitely many
n0 < n1 < n2 such that xn0, xn2 > 0, xn1 < 0, |xn1 − x∗| < 0.001|x∗|4,
xn1 ≤ xn < 0 for n0 < n < n2.
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This means that the trajectory is being reset at steps n0+1 and n2 but is
not being reset for steps n0 + 1 < n < n2. From xn1 ≤ xn for n = n0, . . . , n2

it also follows that xn1 ∈ An2−1 and due to cancellation An1 = {0, n1}.
Now (2.2) implies

gn1(xn1) ≥ gn0+1(xn1) ≥ gn0(xn1) = gn0(0) − x4
n1

4
.

By our construction we also have g′
n1

(xn1) = −x3
n1

and

gn1(0) = gn1(xn1) +

∫ 0

xn1

g′
n1

(x)dx = gn1(xn1) +

∫ 0

xn1

(g′
n1

(xn1) − (x − xn1)
3)dx

= gn1(xn1) + (−xn1)(−x3
n1

) − x4
n1

4

≥ gn0(0) +
x4

n1

2
≥ gn0(0) + 0.4|x∗|4.

Hence
gn2(0) ≥ gn1(0) ≥ gn0(0) + 0.4|x∗|4.

Since gn(0) is monotone increasing as n → ∞ and increases infinitely often
by 0.4|x∗|4 we obtain gn(0) → ∞. By the Lipschitz property of gn we have
gn(c) → ∞ as well. �

2.2. Construction of the example

We start with a function h−1(x, y) = y. At step n, (n = 0, 1, . . . ) we are
choosing some disjoint open squares Bn,k, called perturbation blocks. For
each perturbation block we choose a perturbation function φBn,k

such that
this function is zero outside Bn,k. This way the sum

hn(x, y) =
∑

k

φBn,k
(x, y)

converges everywhere.
Our function f will be defined as

f(x, y)
def
=

∞∑
n=−1

hn(x, y).

For the partial sums we use the notation

fn(x, y) =
n∑

k=−1

hk(x, y).

Assume n = 0, 1, . . . , is fixed. We will fix a constant cn > 0 so that
cn → 0 as n → ∞.
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Next we define our perturbation blocks, B and functions φB. Assume
that the open square B is centered at oB and its sides are parallel to the
perpendicular unit vectors vB and wB, see Figure 8.

�

�

vB

wB B

Bmain

p1 p2

p3

p4

oB

�

�
lB

Figure 8: The perturbation block B.

The first vector vB is called the direction vector of the block and the angle
between this vector and and (0, 1) will be in [−π/4, π/4] and we choose wB so
that its first component is positive. We assume that B = {oB +αvB +βwB

for |α|, |β| < lB}.
The differentiable perturbation function φB used at level n will have the

following properties:
It will be continuously differentiable on B. For p ∈ B we have

(2.3) |φB(p)| ≤ (dist(p, ∂B))2

2n+1
,

and φB = 0 outside B (in the displayed equation, ∂B denotes the boundary
of B). We assume |∇φB| ≤ 2cn everywhere. The main region of B is
defined as

Bmain = {oB + αvB + βwB for |α| < (1 − 2−n−2)lB, |β| < lB}
and Btrans = B \ Bmain is called the transitional region. If p ∈ Bmain we
choose φB so that ∇φB(p) is parallel to wB (this gradient can be zero). In
fact, the cross section of φB in the direction of wB will consist of piecewise
linear parts with some sanded corners, see Figure 9.

p1 p2

p3 p4

wB section

vB section φB

φB

Figure 9: The wB and vB sections of φB.
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All these wB cross sections are the same in Bmain and by choosing a
sufficiently large number of zig-zags one can ensure that (2.3) holds. We
choose φB so that the linear parts dominate. This means that there exists
a set Bgood ⊂ Bmain such that

λ2(Bgood) ≥ (1 − 2−n)λ2(B) and |∂wB
φB(p)| = ||∇φB(p)|| = cn

if p ∈ Bgood, that is, Bgood consists of those points where the cross section
of φ in the direction of wB is linear and of slope ±cn, these points are marked
by a solid line on the segment [p1,p2] of Figure 9. Denote by Bzero the set of
those p ∈ B for which ∇φB(p) = (0, 0). We also assume that λ2(Bzero) = 0,
in fact, one can choose φB so that Bzero is the union of finitely many line
segments pointing in the direction vB.

If p ∈ Btrans we assume that

(2.4) |∂vB
φB(p)| <

0.001

2n+1
.

What we want to use is the wB component of ∇f , the small transitional
component ∂vB

φB(p) estimated by (2.4) just gives a small error in the end.
Restriction (2.4) is again a restriction on the heights of the amplitudes of
the wB sections, but this just means that we might need more zig-zags.

It is not difficult to see that given a perturbation block the function φB

satisfying the above assumptions can be chosen.

Since the perturbation blocks are nonoverlapping at level n any point
p ∈ G can belong to at most one perturbation block, which will be de-
noted by Bn(p) and the corresponding perturbation function will be φBn(p).
In case p is not belonging to a perturbation block at level n then we set
Bn(p) = ∅ and φBn(p) will be the identically zero function. This will also
imply by the rules we follow in our construction that for any k > n the
point p will not belong to any (nonempty) Bk(p) and we will have φBk(p) = 0
everywhere. Now

hn(p)
def
=φBn(p)(p)

and we will show that

(2.5) ∇f(p) = (0, 1) +
∞∑

n=0

∇φBn(p)(p) =
∞∑

n=−1

∇hn(p).

It is clear that

∇fn(p) = (0, 1) +
n∑

k=0

∇φBk(p)(p).
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In order to do our estimates later we will have to introduce “reduced sums”.
This means that we are not considering the “error term” coming from the
transitional components, that is, we consider

∇rfn(p) = (0, 1) +
n∑

k=0

∂wBk(p)
φBk(p)(p)wBk(p),

and

∇rf(p) = (0, 1) +
∞∑

n=0

∂wBn(p)
φBn(p)(p)wBn(p).

In Section 2.1 we were talking about trajectories in the gradient space.
To generate these trajectories assume that Bn(p) �= ∅. This implies that
Bk(p) �= ∅ for k < n and hence the center oBk

(p) is given. We define the
“reduced centered sum” at level n as:

∇rc,nf(p) = (0, 1) +
n−1∑
k=0

∂wBk(p)
φBk(p)(oBk+1(p))wBk(p).

Now set x0(p) = 0 and xn(p) = πx(∇rc,nf(p)), (by πx we denote the pro-
jection onto the x-axis). Our construction will imply that y0(p) = 1 and
yn(p) = πy(∇rc,nf(p)). In case Bn(p) �= ∅ for all n ∈ N then we can define
the infinite reduced centered sum

∇rcf(p) = (0, 1) +
∞∑

n=0

∂wBn(p)
φBn(p)(oBn+1(p))wBn(p).

Finally, during the definition of the perturbation blocks by induction we will
need a “modified reduced centered sum” at level n + 1 which is

∇mrc,n+1f(p) = ∇rc,nf(p) + ∂wBn(p)
φBn(p)(p)wBn(p).

Observe that if p = oBn+1(p) then ∇mrc,n+1f(p) = ∇rc,n+1f(p), actually
the modified reduced centered sums are used to define the centers of the
perturbation blocks at level n + 1.

Next we show by mathematical induction how the perturbation blocks
at level n are defined.

We set c0 = 0.004. We will use four perturbation blocks at level 0, these
are: B0,1 = (0, 1) × (0, 1), B0,2 = (−1, 0) × (0, 1), B0,3 = (−1, 0) × (−1, 0),
and B0,4 = (0, 1)×(−1, 0). We have vB0,k

= (0, 1) and wB0,k
= (1, 0) for k =

1, . . . , 4. We choose the functions φB0,k
, k = 1, . . . , 4. By our assumptions

about the functions φB0,k
the set Z0 = ∪kBzero,0,k is of measure zero and is

relatively closed in ∪kB0,k so setting G0 = ∪kB0,k \Z0 we define an open set
and G \ G0 is of measure zero. For p ∈ G0 set x0(p) = 0 = πx(∇rc,0f(p)),

and g0,p(x) = 1 − x4

4
. Clearly, ∇f0 is continuous on G0.
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Assume n ≥ 0, the constant cn and the open set Gn are given and
for all p ∈ Gn the trajectory {x0(p), . . . , xn(p)} ⊂ [−1, 1], the perturba-
tion blocks B0(p), . . . , Bn(p) and the functions gn,p are defined, furthermore
|g′

n,p(x)| ≤ 1 for all x ∈ [−1, 1] and ∇fn is continuous on Gn.

Set
G∗

n = {p ∈ Gn : ∇fn(p) ∈ Ω0}.
We use Vitali’s covering theorem to select the centers of the perturbation
blocks. (The version of Vitali’s covering theorem we need is Theorem 2.8.17
in [9]. This theorem is applicable if we take fine coverings of sets by squares
which are of sides not necessarily parallel to the coordinate axes and the
measure we use is λ2.) So we need to define a Vitali cover first.

For p ∈ G∗
n we define vp,n+1 as the “upward” normal vector of gn,p

at the point with x coordinate x∗
n+1(p) = πx(∇mrc,n+1f(p)). The vector

wp,n+1 will be the unit vector which has positive x-coordinate and which is
perpendicular to vp,n+1. The assumption that |g′

n,p| ≤ 1 on [−1, 1] implies
that the angle between (0, 1) and vp,n+1 is in [−π/4, π/4]. Similarly the
angle between (1, 0) and wp,n+1 is in [−π/4, π/4]. We choose δ0,n+1,p > 0
such that for any δ ∈ (0, δ0,n+1,p) the square

Qδ,n+1(p) = {p + αvp,n+1 + βwp,n+1 : |α|, |β| < δ}

is a subset of Gn ∩ Bn(p), furthermore for any q ∈ Qδ,n+1(p) we have

(2.6) ||∇φBn(p)(p) −∇φBn(p)(q)|| <
0.001

2n+1
,

and

(2.7) ||∇fn(p) −∇fn(q)|| <
0.001

2n+1
.

The squares Qδ,n+1(p) form a Vitali covering of G∗
n and hence by Vitali’s

covering theorem we can choose a disjoint system of these squares denoted
by Bn+1,k = Qδk,n+1(pk,n+1) such that setting Gn+0.5 = ∪kBn+1,k almost
every point of G∗

n belongs to Gn+0.5. Clearly, oBn+1,k
= pk,n+1.

We choose the perturbation functions φBn+1,k
on the perturbation blocks

Bn+1,k. Now Zn+1 = ∪kBzero,n+1,k is of measure zero and is relatively closed
in Gn+0.5. Hence if we put Gn+1 = Gn+0.5 \ Zn+1 we obtain an open set.

Furthermore Gn \ Gn+1 = Fn+1 ∪ En+1, where Fn+1 is of measure zero
and ∇fn(p) �∈ Ω0 for p ∈ En+1.

It is also clear that ∇fn+1 is continuous on Gn+1 and from (2.7) it follows
that ∇fn+1(p) ∈ Ω2 for all p ∈ Gn+1.
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Set cn+1 = 0.001λ2(Gn+1). Now for p ∈ Gn+1 we denote by Bn+1(p) the
unique block of the form Bn+1,k which contains p. We set

xn+1(p) = πx(∇rc,n+1f(p))

and define gn+1,p by using the trajectory {x0(p), . . . , xn+1(p)} and the func-
tions g0,p, . . . , gn,p as it was explained in Section 2.1. Observe that by our
definition of ∇rc,n+1f and by the definition of the functions gk,p we have

yn+1(p) = gn+1,p(xn+1(p)) = πy(∇rc,n+1f(p)).

Now Lemmas 2-4 can be used.

Next we show that λ2(Gn) → 0 as n → ∞.

Proceeding towards a contradiction assume λ2(Gn) > γ > 0 for all n ∈ N.

Then Gn,good = ∪kBgood,n,k satisfies

λ2(Gn,good) ≥ (1 − 2−n)λ2(Gn).

Hence λ(∩∞
n=1Gn,good) > γ/2 and there exists p ∈ ∩∞

n=1Gn,good. This implies
∇fn(p) ∈ Ω2 and πx(∇fn(p)) ∈ [−0.51, 0.51]. Since cn �→ 0 one can see that
the x coordinates of the vectors

±cnwp,n = ∂wBn(p)
φBn(p)(p)wBn(p) = ∇hn(p)

are bounded away from zero and hence by (2.6), xn(p) diverges. This implies
by Lemma 4 that yn(p) → ∞. By using the estimate (2.6) with p := oBn+1(p)

and q := p this would imply πy(∇fn(p)) → ∞ which contradicts that
∇fn(p) ∈ Ω2 for all n.

Now we show that f is differentiable on G.

If p �∈ ∩∞
n=0Gn then let n0(p) = min{k : p �∈ Gk} − 1. This means

f(p) = fn0(p)(p). Since p �∈ Gn for all n > n0, for any q, by using (2.3) we
obtain |hn(q) − hn(p)| ≤ ||q − p||2/2n, which implies ∇f(p) = ∇fn0(p)(p).
Especially, we have ∇f((0, 0)) = (0, 1). Since λ2(∩∞

n=0Gn) = 0 almost every
p ∈ G belongs to ∪∞

n=0En and for these p we have

∇f(p) = ∇fn0(p)(p) �∈ Ω0 ⊃ Ω1.

Now assume p ∈ ∩∞
n=0Gn. This implies that ∇fn(p) and hence xn(p),

yn(p) are bounded. Then there exists x∗ such that xn(p) → x∗. Otherwise
by Lemma 4, yn(p) → ∞ which is impossible. By Lemma 3 there exists y∗

such that yn(p) → y∗ and

∇rc,nf(p) → (x∗, y∗) = ∇rcf(p).
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If oBn+1(p) ∈ Bmain,n(p) then

∂wBn(p)φBn(p)(oBn+1(p))wBn(p) = ∇φBn(p)(oBn+1(p)).

If oBn+1(p) ∈ Btrans,n(p) then ∇φBn(p)(oBn+1(p)) has a small component
pointing in the direction of vBn(p) and we can estimate this by using (2.4).

So,

(2.8) ||∂wBn(p)φBn(p)(oBn+1(p))wBn(p) −∇φBn(p)(oBn+1(p))|| ≤ 0.001

2n+1
.

Next by the choice of Bn+1(p) and (2.6) we have

(2.9) ||∇φBn(p)(p) −∇φBn(p)(oBn+1(p))|| <
0.001

2n+1
.

From (2.8) and (2.9) it follows that

(2.10) ||∇fn(p) −∇rc,n+1f(p)|| <
n∑

k=0

0.002

2k+1
< 0.002,

furthermore, one can also see that ∇fn(p) forms a Cauchy sequence and
hence converges to ∇f(p) defined in (2.5). Next we verify that ∇f(p) is
indeed the gradient of f at p. From (2.8) and (2.9) we can also deduce that
for all p ∈ Gn

(2.11) ||(∇f(p) −∇fn(p)) − (∇rcf(p) −∇rc,n+1f(p))|| <
0.001

2n
.

Given ε > 0 choose N such that for all n ≥ N we have

||∇rcf(p) −∇rc,n+1f(p)|| <
ε

3
and

0.001

2n
<

ε

3
.

Then

(2.12) ||∇f(p) −∇fn(p)|| <
2ε

3
for all n ≥ N.

To show that f is differentiable at p we need to estimate

f(q) − f(p) −∇f(p) · (q − p).

Assume n ≥ N, p ∈ Gn, p,q ∈ Bk(p) for k ≤ n, and q �∈ Bn+1(p). Then
by (2.3) used for all k ≥ n + 1 and added together

||f(q) − f(p) − (fn(q) − fn(p))|| ≤ 2
0.001

2n+1
||q − p||2.
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By (2.12),

||∇f(p) −∇fn(p)|| · ||q − p|| <
2ε

3
||q − p||.

Using ||∇hn|| ≤ 2cn and the Mean Value Theorem

||hn(q) − hn(p) −∇hn(p) · (q − p)|| ≤ 4cn||q − p||.

By (2.7) used with n − 1 and by the Mean Value Theorem

||fn−1(q) − fn−1(p) −∇fn−1(p) · (q − p)|| ≤ 0.001

2n
||q − p||.

Hence,

||fn(q) − fn(p) −∇fn(p) · (q − p)|| ≤ (4cn +
0.001

2n
)||q − p||

and

||f(q)−f(p)−∇f(p)·(q−p)|| < (4cn+
0.001

2n
+

2ε

3
)||q−p||+2

0.001

2n+1
||q−p||2.

Since cn → 0 as n → ∞ this implies that f is differentiable at p. This
concludes the proof of Theorem 1.
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