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High order regularity for subelliptic
operators on Lie groups
of polynomial growth

Nick Dungey

Abstract

Let G be a Lie group of polynomial volume growth, with Lie alge-
bra g. Consider a second-order, right-invariant, subelliptic differential
operator H on G, and the associated semigroup St = e−tH . We iden-
tify an ideal n′ of g such that H satisfies global regularity estimates
for spatial derivatives of all orders, when the derivatives are taken in
the direction of n′. The regularity is expressed as L2 estimates for
derivatives of the semigroup, and as Gaussian bounds for derivatives
of the heat kernel. We obtain the boundedness in Lp, 1 < p < ∞, of
some associated Riesz transform operators. Finally, we show that n′

is the largest ideal of g for which the regularity results hold.
Various algebraic characterizations of n′ are given. In particular,

n′ = s⊕n where n is the nilradical of g and s is the largest semisimple
ideal of g.

Additional features of this article include an exposition of the
structure theory for G in Section 2, and a concept of twisted mul-
tiplications on Lie groups which includes semidirect products in the
Appendix.

1. Introduction

The heat kernel and its regularity properties play an important role in har-
monic analysis on a Lie group G, and have been intensively studied (for
comprehensive introductions see [30, 35]). Let us mention some relevant re-
sults in the case that G is a Lie group of polynomial volume growth, and H
is a sublaplacian on G.
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mates.
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A basic result due to Varopoulos is that the heat kernel corresponding
to H satisfies global Gaussian estimates for all times t > 0 (see [34, 35, 30]).
Saloff-Coste [31] proved that first derivatives of the kernel, in the subelliptic
directions, satisfy similar estimates with an additional factor of t−1/2. One
might expect that m-th order derivatives of the kernel in the subelliptic
directions can be bounded with an additional factor of t−m/2; this is true
when G is nilpotent (see [33, 22]), but not always, by a counterexample
of [1], when G is solvable. Finally, it was proved in [23] that the m-th order
estimates for some m ≥ 2 are all valid if and only if G is a “nilcompact” Lie
group, that is, G equals the local direct product of a compact Lie group and
a nilpotent Lie group. (We allow the compact group to be trivial, so that
every nilpotent Lie group is nilcompact.) It is worth noting that the failure
of the m-th order estimates for m ≥ 2 can only occur for large times t, since
one has Gaussian estimates for all m when 0 < t ≤ 1 (see for example [20]).

In this paper we reconsider the question of higher order regularity for the
heat kernel on a Lie group of polynomial growth, and obtain positive results
for higher derivatives in certain directions. Specifically, we identify a large
ideal n′ of the Lie algebra of G such that heat kernel derivatives of any order,
in the direction of n′, satisfy the expected estimates for t ≥ 1. In case G
is nilpotent, or more generally, nilcompact, then n′ is the whole Lie algebra
and our estimates essentially reduce to known results described above.

Our results provide a new connection between analysis on G and the
algebraic structure of G. In addition, they are technically useful in applica-
tions involving the behaviour of H “at infinity”. For example, closely related
estimates (for derivatives of order at most 2) were used in the proof of Alex-
opoulos that the first order Riesz tranforms are bounded in Lp (1 < p <∞)
on a group of polynomial growth: see [1, Theorem 7.7]. The estimates are
also an ingredient in the large-time asymptotic expansion of the heat kernel
of a complex second-order operator given in [15]. In the current paper we
apply the estimates to obtain the boundedness of certain Riesz transforms
“at infinity” in the direction of n′.

Our basic estimates (see Theorems 1.1 and 1.2 below) are semigroup
bounds in L2 and, roughly speaking, rely on two main assumptions for the
operator H: (i) group-invariance, and (ii) a suitable G̊arding inequality
in L2. To emphasize this generality, we give results for a general class of
second-order complex-coefficient operators H satisfying (i),(ii) (and not just
for a sublaplacian).

To state our results we fix some notation (adapted from [30, 22, 23]).
Let G be a connected, simply connected Lie group of polynomial growth
with Lie algebra g. The polynomial growth assumption is equivalent to
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the statement that g is type R, that is, the adjoint representation of g has
only purely imaginary eigenvalues ([26]). The group is unimodular and we
consider the spaces Lp = Lp(G; dg) of complex-valued measurable functions
where dg is Haar measure forG; the norm of a bounded operator T : Lp → Lq
is denoted ‖T‖p→q. The left regular representation LG acts in Lp and we
denote by Lp;∞ = Lp;∞(G) ⊆ Lp the subspace of infinitely differentiable
elements with respect to this representation (see [30], Section I.1). It follows
from Sobolev embedding theorems (e.g., Appendix B of [30]) that functions
in Lp;∞ are smooth in the classical sense.

Usually we consider p = 2 and for x ∈ g we have the skew-adjoint op-
erator dLG(x) acting in L2. It is often convenient to regard dLG(x) as a
right-invariant vector field, since its restriction to L2;∞ acts as such. Let
R(G) denote the algebra of all complex, right-invariant differential opera-
tors on G, acting in L2;∞. Then R(G) is linearly spanned by the identity
operator I together with all products dLG(x1) · · · dLG(xm) acting in L2;∞,
where m ≥ 1, x1, . . . , xm ∈ g. In general c, c′, b, b′, etc., denote positive
constants whose value we allow to change from line to line.

Fix a list a1, . . . , ad′ ∈ g of elements which generate the Lie algebra g.
We consider a right-invariant operator

(1.1) H = −
d′∑

k,l=1

AkcklAl = −
d′∑

k,l=1

cklAkAl ,

where Ak = dLG(ak) and (ckl) is a d′×d′ matrix of constant complex numbers
satisfying the ellipticity condition

Re
d′∑

k,l=1

cklξkξl ≥ µH

d′∑
k=1

|ξk|2

for some µH > 0 and all ξ ∈ C
d′. Consider the Sobolev space

L2;1 = {ϕ ∈ L2 : Akϕ ∈ L2, k = 1, . . . , d′}
of L2 functions once-differentiable with respect to the Ak. Then H is pre-
cisely defined as the maximal accretive operator in L2 associated with the
quadratic form qH, where

qH(ϕ) =
d′∑

k,l=1

(cklAlϕ,Akϕ)

for ϕ ∈ L2;1; thus qH(ϕ) = (Hϕ,ϕ) for ϕ in the domain of H.
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The ellipticity condition gives the G̊arding inequality

(1.2) Re qH(ϕ) ≥ µH

d′∑
k=1

‖Akϕ‖2
2

for ϕ ∈ L2;1, which ensures that the quadratic form is sectorial with vertex
at the origin. By a well-known result (see [28]) H generates a contractive,
holomorphic semigroup Sz = e−zH in L2, for all z in a sector Λ(Ω) = {z ∈
C − {0} : | arg z| < Ω} where Ω ∈ 〈0, π/2].

Let g 
→ |g|a denote the modulus on G associated with the vector fields
A1, . . . , Ad′ (cf. [35, 30]). Let Va(t) be the Haar measure of the ball {g ∈
G : |g|a < t}, for t > 0. There are integers Da ≥ 1 and D ≥ 0 such that

c−1 tDa ≤ Va(t) ≤ c tDa

for 0 < t ≤ 1 and
c−1 tD ≤ Va(t) ≤ c tD

for t ≥ 1; while the local dimension Da is determined by the choice of
a1, . . . , ad′ , the dimension at infinity D is an invariant of G.

Local regularity results for group-invariant operators satisfying a G̊arding
inequality akin to (1.2) are given in [20]. In particular, the semigroup acts
by convolution with a smooth kernel Kt, Stϕ = Kt ∗ ϕ for ϕ ∈ L2, and
the following “local” Gaussian bounds are accurate for small times t. Given
k ∈ N0 = {0, 1, 2, . . .} and i1, . . . , ik ∈ {1, . . . , d′}, there exist b, c > 0 and
ω > 0 such that

(1.3) |(Ai1 . . . AikKt)(g)| ≤ c t−k/2 t−Da/2 eωt e−b|g|
2
a/t

for all t > 0 and g ∈ G. Therefore, in our main results we need only consider
times t ≥ 1.

We introduce various subspaces of g. Let q denote the radical, and n ⊆ q

the nilradical, of g: they are respectively the largest solvable and nilpotent
ideals of g. Let us say that a type R Lie algebra h is nilcompact if h =
hs ⊕ hn with hs, hn respectively semisimple and nilpotent ideals of h (hence
[hs, hn] = {0}). The nilcompact algebras are precisely the Lie algebras of
the nilcompact groups. Now n′ may be defined as the largest nilcompact
ideal of g; it is also given by n′ = s ⊕ n, where s is the largest semisimple
ideal of g (the proof is given in the Appendix). Note that s ∩ q = {0}.
Finally, the nilshadow qN is a nilpotent Lie algebra such that qN = q as
vector spaces (the definition is given in [1, 2] and in Section 2 below). Let
qN ;j, j ∈ N, denote the lower central series of qN , that is, qN ;1 = qN and
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qN ;j+1 = [qN , qN ;j ]N where [·, ·]N is the bracket of qN . The subspaces q, n,
s, n′, qN ;j are invariants of g, and characteristic ideals of g (that is, they are
fixed by any automorphism of g). For the qN ;j this remark is not obvious
and is proved in the Appendix.

Our first theorem gives regularity for derivatives in the direction of n,
plus one derivative in the subelliptic directions. The degree of regularity
depends on the position in the filtration qN ;1 ⊇ qN ;2 ⊇ qN ;3 ⊇ . . . of qN .

Theorem 1.1 Let m ∈ N0 and y1, . . . , ym ∈ n and set Yi = dLG(yi). Choose
j1, . . . , jm ∈ N = {1, 2, 3, . . .} such that yi ∈ qN ;ji for all i ∈ {1, . . . ,m}, and
put w = j1 + · · · + jm. Then there exists c > 0 such that

‖Y1 · · · YmSt‖2→2 + t1/2‖Y1 · · · YmAkSt‖2→2 ≤ c t−w/2 ≤ c t−m/2

for all t ≥ 1 and k ∈ {1, . . . , d′}.
Note that for any y1, . . . , ym ∈ n we can always choose j1 = · · · = jm = 1

and w = m in the above theorem, because n ⊆ q = qN ;1 as subspaces. When
w > m the theorem gives a more precise bound.

Observe that if G is solvable, that is, g = q, then s = {0} because s is
semisimple. Thus n = n′ in this case. It is quite possible to have s = {0}
even when G is not solvable. Nevertheless, the following estimate giving an
exponential decrease for s-derivatives is of interest.

Theorem 1.2 Let y ∈ s, set Y = dLG(y), and let P,Q ∈ R(G). Then
there exist positive constants c, σ, b such that

‖PY QSt‖2→2 ≤ c e−σt

and
|(PY QKt)(g)| ≤ c e−σte−b|g|

2
a/t

for all t ≥ 1 and g ∈ G.

We remark that the crucial feature of s, used to prove Theorem 1.2, is
that the corresponding Lie subgroup Gs is compact and normal in G.

Combining the above theorems we obtain

Corollary 1.3 Let m ∈ N0, y1, . . . , ym ∈ n′ and set Yi = dLG(yi). Choose
j1, . . . , jm ∈ N such that yi ∈ s ⊕ qN ;ji for all i ∈ {1, . . . ,m}, and put
w = j1 + · · · + jm. Then there is c > 0 such that

‖Y1 · · · YmSt‖2→2 + t1/2‖Y1 · · · YmAkSt‖2→2 ≤ c t−w/2 ≤ c t−m/2

for all t ≥ 1 and k ∈ {1, . . . , d′}.
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Indeed, if y1, . . . , ym are as in the statement of the corollary then we
can write yi = wi + zi where wi ∈ n ∩ qN ;ji and zi ∈ s. Then Y1 · · · Ym
equals W1 · · ·Wm modulo terms of the form PZiQ where Wi = dLG(wi),
Zi = dLG(zi) and P,Q ∈ R(G). Thus Corollary 1.3 follows by adding the
estimates of Theorems 1.1 and 1.2.

Next we consider kernel bounds. Let us say that Kt satisfies global
Gaussian bounds if for some b, c > 0 one has

(1.4) |Kt(g)| ≤ c Va(t)
−1/2 e−b|g|

2
a/t

for all t > 0 and g ∈ G.

Theorem 1.4 Suppose that the kernel Kt of St satisfies global Gaussian
bounds (1.4), and let m, y1, . . . , ym ∈ n′, w be as in the statement of Corol-
lary 1.3. Then there exist c, b > 0 such that

|(Y1 · · · YmKt)(g)| + t1/2|(Y1 · · · YmAkKt)(g)| ≤ c t−w/2t−D/2e−b|g|
2
a/t

for all t ≥ 1, k ∈ {1, . . . , d′} and g ∈ G.

As an interesting application of the above results, we consider certain
Riesz transforms “at infinity.” These operators possess kernels which are lo-
cally integrable (and even bounded) but are not in general integrable at infin-
ity. Our definition follows Alexopoulos (see [1], Section 8, and [2], Section 1).
If n ∈ N we note the formal identity H−n/2 = Γ(n/2)−1

∫ ∞
0
dt t(n/2)−1St, and

define an operator

H−n/2,∞ =
1

Γ(n/2)

∫ ∞

1

dt t(n/2)−1St .

Theorem 1.5 Assume the hypotheses and notation of Theorem 1.4, with
m ≥ 1. Then the transforms Y1 · · ·YmH−w/2,∞ and H−w/2,∞Y1 · · ·Ym are
bounded in Lp for 1 < p <∞, and from L1 to weak-L1.

In case G is nilpotent, Theorem 1.5 can be derived from the fact that
the Riesz transforms Ai1 · · ·AikH−k/2 and H−k/2Ai1 · · ·Aik are bounded for
all k ∈ N (for the latter fact see [29, 22]). On a general group of polynomial
growth, these transforms are bounded when k = 1 but not necessarily for
k ≥ 2 (for precise results see [1, 23]).

Our final result shows that the estimates of Corollary 1.3 and Theo-
rem 1.4 fail outside n′. For x ∈ g, let gx denote the smallest ideal of g which
contains x. We denote the difference of two sets A−B = {x ∈ A : x /∈ B}.
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Theorem 1.6 Suppose that the kernel Kt of St satisfies Gaussian bounds
(1.4), and suppose x ∈ g−n′. Then there exists y ∈ gx∩n with the following
property. For each j ∈ N there is c(j) > 0 such that

‖XjY St‖2→2 ≥ c(j) t−1/2

for all t ≥ 1, where X = dLG(x), Y = dLG(y).

Theorem 1.6 implies the following maximality result for n′. If h is an
ideal of g such that for all y1, y2 ∈ h there is c = c(y1, y2) > 0 such that

(1.5) ‖Y1Y2St‖2→2 ≤ c t−1

for all t ≥ 1 (where Yi = dLG(yi)), then h ⊆ n′. In particular, one obtains a
variation of a result of [23]: if (1.5) holds for all y1, y2 ∈ g, then g = n′, in
other words, the group G is nilcompact. These remarks are also true if one
replaces (1.5) by the weaker condition

lim inf
t→∞

t1/2 ‖Y1Y2St‖2→2 = 0 .

Let us make some further remarks about Theorems 1.1 - 1.6.

(a) The bounds (1.4) hold in the case of a sublaplacian H = −∑d′
k=1A

2
k.

They actually hold for all second-order, complex coefficient H of the
type considered, as proved in [21, 15] using techniques of homogeniza-
tion theory. To demonstrate the independence of Theorems 1.1, 1.2
and Corollary 1.3 from this result, we chose to state (1.4) as a separate
assumption.

Note that, unlike the papers [1, 2, 15] dealing with analysis on Lie
groups of polynomial growth, the current paper does not rely on ideas
from homogenization theory. Our approach is instead based on com-
mutator arguments and a careful exploitation of the algebraic struc-
ture.

(b) We assume that G is simply connected to avoid some algebraic com-
plications. Nevertheless, the above theorems extend to non-simply
connected groups: see Section 9.

(c) Theorem 1.1 extends to a class of second-order, subelliptic systems:
see Section 9.

The higher-order regularity in the directions of n′ should extend to a
large class of hypoelliptic, group-invariant operators over G, but we
do not attempt such generalizations here.
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(d) The following remark will be amplified at the end of Subsection 4.1.
Suppose that G is a stratified nilpotent group and that H is homo-
geneous of order 2 on G (cf. [25]). Then g = n and the proof of
Theorem 1.1 yields L2 regularity estimates for derivatives of arbitary
order, in arbitary directions. Together with standard Sobolev embed-
ding, scaling and perturbation techniques, we can deduce that Kt and
all its derivatives satisfy global Gaussian bounds.

While this result is not new, the above proof differs from related
proofs in [3, 16, 18] because it is independent of the results of Helffer-
Nourrigat [27].

(e) The estimates of Theorem 1.1, Corollary 1.3 and Theorem 1.4 remain
valid if the subelliptic derivative Ak is replaced by X = dLG(x) for
an arbitary x ∈ g. In the solvable case g = q, this can be deduced as
follows: since a1, . . . , ad′ generate g we have that g is linearly spanned
by a1, . . . , ad′ together with the subspace [g, g]. But [g, g] ⊆ n by

solvability, so we can write x =
∑d′

i=1 ciai + n for some ci ∈ R and
n ∈ n. The results follow.

In the general case, a more sophisticated argument is required: see [15],
or for alternative arguments in the case m = 0 and H is a sublapla-
cian, the references [1, 2]. Actually, it is shown more generally in [15]
that the estimates remain valid with Ak replaced by any monomial
X1 · · ·Xs, where s ∈ N, Xi = dLG(xi), xi ∈ g.

The paper is organized as follows. In Section 1.1 we outline the proof
of Theorem 1.1. Section 2 is an exposition of the algebraic structure of G,
including the construction of the nilshadow and the “shadow”. We also in-
troduce the concept of groups with stratified nilshadow (to be used in the
proof of Theorem 1.1). In Section 3 we obtain preliminary L2-estimates
for rescaled versions Hε of H, under the assumption that G has stratified
nilshadow. In Section 4, using commutator arguments and an inductive
process, we complete the proof of Theorem 1.1 in the case that G has strat-
ified nilshadow. Then by transference arguments we obtain the theorem for
general G. Sections 5, 6, 7 and 8 are devoted to the respective proofs of
Theorems 1.2, 1.4, 1.5 and 1.6. In Section 9 we conclude with some remarks
and extensions of the results. Finally, Section 10 is an Appendix containing
Lie-algebraic results: invariance properties of qN ;j , the ideals s and n′, the
construction of twisted multiplications on Lie groups, and the construction
of Lie algebras with stratified nilshadow. These results are needed in the
main text and are, we hope, of some independent interest.
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An original feature of this paper is the introduction of the class of Lie
groups (of polynomial growth) with a stratified nilshadow. We show (see the
Appendix) that every Lie group of polynomial growth is isomorphic to a
quotient of such a group. The groups with stratified nilshadow have a simpler
form of scaling at infinity than a general polynomial growth Lie group, and
so may be useful in future applications (indeed, they are used in [15]).

1.1. Outline of Theorem 1.1

Theorem 1.1 is basic for the results of this article. Since the proof of this
theorem is rather long, for the convenience of the reader we outline here the
main ideas.

(i) By use of transference arguments (Section 4.2), we reduce the proof
of Theorem 1.1 to the special case that G has a stratified nilshadow. In this
case the nilshadow qN is a stratified Lie algebra in the sense of [25], and the
scaling on G takes a simpler form. The large t estimates of the theorem are
equivalent to regularity estimates for rescaled versions Hε, ε ∈ 〈0, 1], of H.

(ii) Following Alexopoulos [1], we introduce a nilcompact group GN , the
shadow of G, such that G = GN as manifolds (essentially, GN = M × QN

where M is a Levi subgroup of G and QN is the nilpotent group with Lie
algebra qN).

One can write G-invariant vector fields as linear combinations of GN -
invariant fields and conversely, where the coefficients are functions that are
constant in the direction of n (or n′).

(iii) Initial estimates: in Section 3 we give initial regularity estimates
for Hε, in terms of a fractional GN -invariant derivative.

(iv) Iteration argument: the core of the proof occurs in Section 4.1, where
we iterate the initial estimates to obtain higher regularity in the direction
of n.

This argument is no doubt related to standard elliptic regularity proofs.
A crucial step is to calculate the commutator [Ak, P ] (or a rescaled version
[Ak,ε, P ]), where P is a GN -invariant derivative in the direction of n. Now
Ak is a combination of GN -invariant fields with coefficients constant in the
direction of n (see (ii) above), so P does not act on these coefficients. In this
way, the calculation reduces to a calculation of commutators in the nilpotent
Lie algebra qN .

This reduction to a nilpotent algebra allows us to estimate [Ak, P ] in
terms of derivatives P ′ of “lower order” than P , with respect to a certain
dictionary order. This is the key to the basic regularity estimate of Propo-
sition 4.1 for Hε.
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2. Algebraic Preliminaries

This section contains results on the algebraic structure ofG which are needed
in the sequel. While a number of the results have appeared in [1], we take
a slightly different approach using elementary representation theory which
avoids the use of exponential coordinates and leads to several novelties.
For example, applying Lemma 10.6 of the Appendix we obtain a global
formula (2.5) relating the group products of G and its shadow, and simple
formulae (see Lemma 2.12) relating vector fields on the two groups. The
space E1 of coefficients is defined as the space of matrix elements for a certain
finite-dimensional representation.

Let us fix basic notation and results. If V is a real or complex vector
space we denote by L(V ) the set of linear transformations of V , and write
[A,B] = AB−BA for A,B ∈ L(V ). If ρ : h → L(V ) is a representation of a
Lie algebra h in V , a subspace W ⊆ V is said to be ρ-invariant if ρ(x)(W ) ⊆
W for all x ∈ h. The representation ρ is said to be completely reducible
if for each ρ-invariant subspace W of V there is a ρ-invariant subspace W ′

with V = W ⊕W ′. One has the following criterion (Theorem 3.16.5 of [32]):
ρ is completely reducible if and only if ρ(x) is a semisimple transformation
for every x in the radical q(h) of h. In particular, ρ is completely reducible
if h is a semisimple Lie algebra.

Let G be a connected, simply connected Lie group with polynomial
growth. Let (g, [·, ·]) be the Lie algebra of G and ad the adjoint repre-
sentation, (adx)y = [x, y] for x, y ∈ g. The polynomial growth property
is equivalent to g being type R [26]: we will also use this equivalence for
various groups associated with G. When convenient we use the standard
identification of g with the tangent space TeG at the identity.

For x ∈ g, let adx = S(x) + K(x) denote the Jordan decomposition of
adx ∈ L(g) into its semisimple part S(x) and nilpotent part K(x). Then
[S(x),K(x)] = 0, there exist real polynomials s, k with zero constant part
such that S(x) = s(adx) and K(x) = k(adx), and S(x) and K(x) are
derivations of g. If h is a subspace of g with (adx)(h) ⊆ h, then S(x)(h) ⊆ h,
K(x)(h) ⊆ h, and we denote the restrictions to h by adhx, Sh(x), Kh(x).

Note that if h is an ideal of g then the restrictions are defined for all x ∈ g.

The radical q and nilradical n of g satisfy (cf. [32], Chapter 3)

(2.1) n ⊆ q , [g, q] ⊆ n .

If x ∈ q then adx is nilpotent if and only if x ∈ n; thus n = {x ∈ q : adx =
K(x)} = {x ∈ q : S(x) = 0}. Recall that a Levi subalgebra of g is a
semisimple subalgebra m such that g = m ⊕ q.
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Finally, from Lemma 10.4 of the Appendix we have the ideals s and
n′ = s ⊕ n with the properties described there.

2.1. The nilshadow and shadow

The construction of the nilshadow is based on the following lemma. We
will apply some standard properties of Cartan subalgebras of Lie algebras
(see [5, 36]).

Lemma 2.1 There exists a subspace v of q with the properties
(I) q = v ⊕ n,

(II) The subalgebra w of q generated by v is nilpotent.

If m is a Levi subalgebra of g one can choose v with the additional property

(III) [m, v] = {0}.
Proof. Let m be a Levi subalgebra and define a subalgebra q0 of q by

q0 = {x ∈ q : [m, x] = {0}} .

Let h be a Cartan subalgebra of q0, that is, h ⊆ q0 is nilpotent and equals
its own normalizer N(h) = {x ∈ q0 : [x, h] ⊆ h} in q0. We claim that

(2.2) q = h + n

where + denotes a vector space sum which is not necessarily direct. Then the
lemma follows by choosing v ⊆ h such that q = v⊕n; note that [m, v] = {0}
because v ⊆ q0.

It remains to justify (2.2). Since m is semisimple, the representation
ρ : m → L(g) given by ρ(x) = adx, x ∈ m, is completely reducible. Since q

and n are ρ-invariant there exists a ρ-invariant subspace V with q = V ⊕ n.
Then ρ(V ) = [m, V ] = {0} because [m, q] ⊆ n. Thus V ⊆ q0 so that
q = q0 + n. Therefore π′(q0) = q/n, where π′ : q → q/n is the quotient
homomorphism. It follows that π′(h) is a Cartan subalgebra of q/n, since
images of Cartan subalgebras under surjective homomorphisms are Cartan
subalgebras. But q/n is abelian because [q, q] ⊆ n, and hence π′(h) = q/n.
This implies (2.2). �

Lemma 2.2 Let v be a subspace of g such that the Lie subalgebra w of g

generated by v is nilpotent. Then

S(a)b = 0 , [S(a), S(b)] = 0 = [S(a),K(b)]

for all a, b ∈ v, and the maps v → L(g) given by a 
→ S(a), a 
→ K(a),
a ∈ v, are linear.
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Proof. If x ∈ w then adwx ∈ L(w) has Jordan decomposition

adwx = Sw(x) +Kw(x) .

Since w is nilpotent, one has adwx = Kw(x) so that Sw(x) = 0. In
particular S(a)b = 0 for all a, b ∈ v.

Next, consider the complexified Lie algebras wC = w ⊗ C, gC = g ⊗ C

with wC ⊆ gC, and define a representation ρ : wC → L(gC) by ρ(x)y = [x, y],
x ∈ wC, y ∈ gC. For λ in g∗

C
define Vλ to be the subspace of all u ∈ gC for

which there exists m ∈ N with

(ρ(x) − λ(x))m u = 0

for all x ∈ wC. Then Vλ is ρ-invariant. Since wC is a complex nilpotent
algebra, Theorem 3.5.8 of [32] gives a direct sum decomposition

gC =
⊕
λ∈Λ

Vλ

for a finite subset Λ ⊆ g∗
C
. But ρ(x) has Jordan decomposition ρ(x) =

S(x)C +K(x)C for x ∈ wC where superscript C denotes complexification of
a linear transformation. From the uniqueness of Jordan decomposition in
L(Vλ) it follows that

S(x)Cu = λ(x)u , K(x)Cu = (ρ(x) − λ(x))u

whenever λ ∈ Λ, u ∈ Vλ and x ∈ wC. Therefore S(x)C commutes with S(y)C

and with K(y)C for all x, y ∈ wC, and x 
→ S(x)C, x 
→ K(x)C are linear
maps on wC. The statements of the lemma follow by restriction to v. �

Suppose v satisfies properties (I) and (II) of Lemma 2.1. Then, as in
Section 2 of [1], there is a Lie bracket [·, ·]N on q satisfying

(2.3)

[v1, n1]N = K(v1)n1 = [v1, n1] − S(v1)n1,

[v1, v2]N = [v1, v2],

[n1, n2]N = [n1, n2],

for all v1, v2 ∈ v and n1, n2 ∈ n. (The verification of the Jacobi identity
for [·, ·]N is a special case of Lemma 10.5 of the Appendix, as noted there.)
The Lie algebra qN = (q, [·, ·]N ) is nilpotent and is called the nilshadow of q;
we also call it the nilshadow of g.

Let qN ;j , j ∈ N, denote the lower central series of qN , that is, the ideals
of qN defined by qN ;1 = qN and qN ;j+1 = [q, qN ;j]N . Let r ∈ N denote the
nilpotent step of qN , so that qN ;r �= {0} and qN ;s = {0} for all s ≥ r + 1.
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Although the bracket [·, ·]N may depend on the choice of v, the subspaces
qN ;j are independent of the choice of v and hence are invariants of g. More-
over the qN ;j are characteristic ideals of g. Proofs of these facts are given in
Subsection 10.1 of the Appendix. Elementary properties of qN ;j are given in

Proposition 2.3 Let qN be defined by (2.3) relative to a subspace v which
satisfies conditions (I), (II) of Lemma 2.1. Then

q ⊇ n ⊇ [q, q] ⊇ qN ;2 ⊇ . . . ⊇ qN ;r ⊇ qN ;r+1 = {0}

and
[qN ;j, qN ;k]N ⊆ qN ;j+k

for all j, k ∈ N. One has that Sq(v) ∈ L(q) is a derivation of qN for all
v ∈ v. If v satisfies (III) of Lemma 2.1 then adq(m) is a derivation of qN
for all m ∈ m.

If U ⊆ qN is a subspace such that qN = U + qN ;2 then U generates the
Lie algebra qN .

Proof. It follows from (2.3) that qN ;2 ⊆ [q, q], because K(v1) is a polyno-
mial in adv1 with zero constant part. The remaining inclusions are from (2.1)
or are obvious. The statements about derivations are straightforward to ver-
ify from Lemmas 2.1 and 2.2.

Let a⊇U denote the subalgebra of qN generated by U, where U+qN ;2 =qN .
If x1, . . . , xk ∈ qN we write xi = yi + zi, yi ∈ U , zi ∈ qN ;2, and observe that

[x1, [x2, · · · [xk−1, xk]N · · · ]N ]N − [y1, [y2, · · · [yk−1, yk]N · · · ]N ]N ∈ qN ;k+1 .

Since qN ;r+1 = {0} it follows by backwards induction on k that qN ;k ⊆ a for
all k ∈ {1, . . . , r}. In particular a = qN and U generates qN . �

Henceforth we fix a Levi subalgebra m of g and fix v satisfying all prop-
erties of Lemma 2.1, and consider the nilshadow qN defined by (2.3). We
extend the bracket [·, ·]N to g by setting

[x1 + q1, x2 + q2]N = [x1, x2] + [q1, q2]N

for x1, x2 ∈ m, q1, q2 ∈ qN . The Lie algebra gN = (g, [·, ·]N ) will be called
the shadow of g. Note that gN = m ⊕ qN with m, qN ideals of gN and
[m, qN ]N = {0}. Thus the shadow is a nilcompact algebra.

Let GN be the connected, simply connected Lie group with Lie algebra
gN ; we call GN the shadow of G. We write ∗N for the group operation
of GN and g−1N for the GN -inverse of g. Let QN , M denote the analytic
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subgroups of GN with Lie algebras qN , m respectively. They are closed,
simply connected normal subgroups of GN , with GN = M ∗N QN and M ∩
QN = {e}. Thus GN is the internal direct product of M and QN . Note that
QN is nilpotent and M is semisimple and compact (because m is a type R
semisimple algebra the Killing form a ∈ m → Tr((ada)2) is negative-definite,
and the compactness follows by Theorem 4.11.7 of [32]).

2.2. Comparison of Lie group and algebra structures

In this subsection we compare the Lie structures of G and GN and show
how to identify G = GN as manifolds.

For y = m+ v + n ∈ g with m ∈ m, v ∈ v, n ∈ n we define

τ0(y) = adq(m) + Sq(v) ∈ L(qN) ;

by Proposition 2.3 this is a derivation of qN . From (2.1) and Lemmas 2.1
and 2.2 one verifies that τ0 : gN → L(qN) is a representation of gN , and
of g, in qN . Extend τ0(y) trivially to a derivation τ(y) of gN by setting
τ(y)(m+ q) = τ0(y)q, m ∈ m, q ∈ q. Thus we obtain a representation

τ : gN → L(gN )

of gN , and of g, in gN by derivations of gN . A straightforward calculation
shows that τ relates the Lie algebras g and gN in the sense of Lemma 10.5
of the Appendix, that is,

(2.4) [x, y] = [x, y]N + τ(x)y − τ(y)x

for all x, y ∈ g. Moreover τ verifies the condition τ(τ(x)y) = 0 of that
lemma, since τ(x)y ∈ n and τ(n) = 0 for all n ∈ n. Also observe that
τ(x)y = 0 for all x ∈ g and y ∈ m ⊕ v.

We will apply Lemma 10.6 of the Appendix to obtain a Lie group ana-
logue of (2.4). Let Aut(gN), Aut(GN ) denote the groups of automorphisms
of gN and GN respectively. Since GN is simply connected τ determines
a homomorphism T : GN → Aut(gN) such that T (expGN

x)y = eτ(x)y for
all x, y ∈ gN . Again by simple connectedness, Aut(gN) is isomorphic to
Aut(GN) and T determines a homomorphism T : GN → Aut(GN) such that
T (g)(expGN

y) = expGN
(T (g)(y)) for all g ∈ GN and y ∈ gN . For any

x, y, z ∈ g we calculate

T (T (expGN
x) expGN

y)(expGN
z) = expGN

(eτ(e
τ(x)y)z)

= expGN
(eτ(y)z)

= T (expGN
y)(expGN

z)

where in the second line we have used that τ(τ(x)w) = 0 for all x,w ∈ g.
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Therefore T verifies the hypothesis T (T (g)h) = T (h), g, h ∈ GN , of
Lemma 10.6 of the Appendix. Applying that lemma with A = GN we
obtain a Lie group G′ = (GN , ∗) with underlying manifold GN and group
multiplication ∗ given by

(2.5) g ∗ h = T (h−1N )g ∗N h
for all g, h ∈ GN ; the identity element of G′ is the identity e of GN , and
the Lie algebra g′ of G′ is related to gN by (2.4) (after the identification
g′ = TeGN = gN as vector spaces).

Therefore G′ is Lie isomorphic to G, because G,G′ are simply connected
Lie groups with isomorphic Lie algebras. In the sequel we identify G = G′.
Thus G = GN as manifolds, with multiplications related by (2.5) and Lie
brackets by (2.4). Often we abbreviate g ∗ h = gh, g, h ∈ G.

It follows from Lemma 10.6(IV) that T and T are also homomorphisms
of G. For example

T (gh) = T (g)T (h) = T (g ∗N h)
for all g, h ∈ G.

For the next lemma we note that τ(g) is a subalgebra of the Lie algebra
L(g) of linear transformations. The kernel of τ is the largest nilcompact
ideal n′ of g:

Lemma 2.4 One has τ(g) = τ(m) ⊕ τ(v) with τ(m), τ(v) mutually com-
muting ideals of τ(g). Moreover

n′ = {x ∈ g : τ(x) = 0} .

Proof. Since g = m ⊕ v ⊕ n and τ(n) = {0} we have τ(g) = τ(m) + τ(v).
Since [m, v] = {0} it follows that τ(m), τ(v) are mutually commuting ideals
in the Lie algebra τ(g). Moreover τ(m) is semisimple since m is semisimple,
while τ(v) = {S(v) : v ∈ v} is abelian by Lemma 2.2. Therefore τ(m) ∩
τ(v) = {0} and τ(g) = τ(m) ⊕ τ(v). From this direct sum decomposition
and τ(n) = {0} we get

ker(τ) = (ker(τ) ∩ m) ⊕ (ker(τ) ∩ v) ⊕ n

= {x ∈ m : [x, q] = {0}} ⊕ {v ∈ v : S(v) = 0} ⊕ n

= s ⊕ (v ∩ n) ⊕ n = s ⊕ n = n′ ,

where s = {x ∈ m : [x, q] = {0}} by Lemma 10.4 of the Appendix. �
By this lemma, n′ is an ideal of both g and gN . From τ(n′) = {0}

and (2.4) we also see that [x, y] = [x, y]N for all x, y ∈ n′.
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Let N ′ = expGN
(n′) denote the normal analytic subgroup of GN with Lie

algebra n′. It easily follows from Lemma 2.4 that

(2.6) T (n)x = x , T (n)g = g

for all n ∈ N ′, x ∈ g and g ∈ G. Therefore (see Lemma 10.6 of the
Appendix)

n1 ∗ n−1
2 = T (n2)(n1 ∗N n−1N

2 ) = n1 ∗N n−1N
2

for all n1, n2 ∈ N ′, so that the group operations of G and GN coincide on
N ′. Thus N ′ is also a subgroup of G. Since its Lie algebra is the ideal n′ of
g, it is a normal subgroup of G.

2.3. Decomposition of the Lie algebra

We produce a useful decomposition of g into τ -invariant subspaces, following
Proposition 2.3 of [1]. The representation τ is completely reducible by the
criterion at the beginning of Section 2, since τ(y) is a semisimple transfor-
mation for all y in the radical qN of gN .

Lemma 2.5 There exist τ -invariant subspaces hj, j ∈ N, of q such that
h1 = v ⊕ (h1 ∩ n) and qN ;j = hj ⊕ qN ;j+1 for all j ∈ N.

Proof. Since the subspaces qN ;j and n are τ -invariant, complete reducibility
implies the existence of τ -invariant subspaces k1, hj, j ≥ 2, with n = k1⊕qN ;2

and qN ;j = hj ⊕ qN ;j+1, j ≥ 2. Setting h1 = v ⊕ k1, we have k1 = h1 ∩ n and
q = qN ;1 = h1 ⊕ qN ;2. �

If subspaces hj are chosen as in the lemma, then h1 generates the Lie
algebra qN by Proposition 2.3, and setting k1 = h1 ∩ n we obtain decompo-
sitions

q = h1 ⊕ h2 ⊕ · · · ⊕ hr , n = k1 ⊕ qN ;2 = k1 ⊕ h2 ⊕ · · · ⊕ hr

and

(2.7) g = m ⊕ v ⊕ k1 ⊕ h2 ⊕ · · · ⊕ hr

into τ -invariant subspaces.
Note that τ is determined by the pair (m, v) satisfying the properties of

Lemma 2.1. Significant simplifications in analysis onG occur in the following
case:
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Definition 2.6 We say that g has stratified nilshadow with respect to (m, v)
if there exist subspaces hj satisfying all properties of Lemma 2.5 and in
addition

(2.8) [hj, hk]N ⊆ hj+k

for all j, k ∈ N. In this case we say that G has stratified nilshadow.

If Definition 2.6 is satisfied, then the nilshadow qN is a stratified nilpotent
Lie algebra with stratification {hj}j∈N, in the usual sense (see [25]). Note our
definition requires that the stratification {hj} be appropriately compatible
with (m, v).

In the sequel we fix hj satisfying all properties of Lemma 2.5.

For the next result the type R property of g is essential.

Lemma 2.7 There exists a positive-definite inner product (·, ·) on g such
that all subspaces in the decomposition (2.7) are mutually orthogonal, and

(τ(x)a, b) = −(a, τ(x)b) , (T (g)a, T (g)b) = (a, b) ,

for all a, b, x ∈ g, g ∈ G.

Proof. It suffices to prove that any τ -invariant subspace U of g has an
inner product (·, ·)U such that (τ(x)a, b)U = −(a, τ(x)b)U for all x ∈ g,
a, b ∈ U ; then apply this result to each subspace in (2.7) and let (·, ·) be the
orthogonal direct sum of the subspace inner products.

Thus let U ⊆ g be τ -invariant. The complexifications τ(v)C = S(v)C,
v ∈ v, are mutually commuting, semisimple transformations of UC with only
purely imaginary eigenvalues. Hence there is a basis u1, . . . , us of UC and
linear maps λ1, . . . , λs : v → R such that

τ(v)Cuj = iλj(v)uj

for all v ∈ v, j ∈ {1, . . . , s}. If (·, ·)1 is the inner product on UC such that
the basis u1, . . . , us is orthonormal, then (τ(v)a, b)1 = −(a, τ(v)b)1, a, b ∈ U ,
v ∈ v. For a, b ∈ U define

(a, b)U =

∫
M

dm (T (m)a, T (m)b)1

where dm is normalized Haar measure on the compact groupM . Then (·, ·)U
is an inner product such that (τ(x)a, b)U = −(a, τ(x)b)U for all x ∈ m. One
has (τ(v)a, b)U = −(a, τ(v)b)U for v ∈ v, because [m, v] = {0} implies that
τ(v) commutes with T (m), m ∈M . Since τ(g) = τ(m)+τ(v) by Lemma 2.4,
the lemma is proved. �

Henceforth we fix the inner product (·, ·) as in Lemma 2.7.
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Corollary 2.8 Let dg denote Haar measure for the group GN . The trans-
formations T (g), g ∈ GN , preserve dg in the sense that dg(T (g)A) = dg(A)
for Borel measurable A ⊆ GN , and dg is Haar measure for G.

Proof. One has dg = dm × dq where dm, dq are Haar measures for M ,
QN respectively. By Lemma 2.7 the restriction T (g)|qN

is an orthogonal
transformation of qN with respect to (·, ·), hence it preserves Lebesgue mea-
sure on qN . Since QN is simply connected nilpotent, expQN

: qN → QN is a
diffeomorphism mapping Lebesgue measure to dq. Therefore the restriction
T (g)|QN

preserves dq, and since T (g)m = m, m ∈ M , it follows that T (g)
preserves dg.

If ϕ ∈ Cc(G) then applying (2.5) gives∫
dg ϕ(gh) =

∫
dg ϕ(T (h−1N )g ∗N h)

=

∫
dg ϕ(T (h−1N )g) =

∫
dg ϕ(g)

for all h ∈ GN . Therefore dg is Haar measure for G. �

In the sequel we fix the measure dg and consider the spaces Lp =
Lp(GN ; dg) = Lp(G; dg), 1 ≤ p ≤ ∞.

Finally, from the tools of this subsection we derive another characteriza-
tion of n′ which is needed for the proof of Theorem 1.6.

Lemma 2.9 Let x ∈ g. Then x ∈ n′ if and only if the transformation
adqx ∈ L(q) is nilpotent. If x /∈ n′, there exists n ∈ n such that (adx)jn /∈
qN ;2 for all j ∈ N.

Remark Since n, qN ;2 are ideals of g, it is clear that n /∈ qN ;2 and (adx)jn ∈
n for all j ∈ N.

Proof. If x ∈ n′ then x = m + y, m ∈ s, y ∈ n, and since [s, q] = {0} we
have adqx = adqy = Kq(y). Hence adqx is nilpotent.

Suppose that x /∈ n′. We claim that τ(x)(k1) �= {0}. Otherwise, if
τ(x)(k1) = {0} then τ(x)(h1) = {0}, because h1 = v ⊕ k1 and τ(y)(v) = {0}
for all y ∈ g. Since h1 generates qN and τ(x) is a derivation of qN it follows
that τ(x)(qN) = {0}. But τ(y)(m) = {0} for all y ∈ g. Thus τ(x) = 0,
which contradicts Lemma 2.4 and proves the claim.

Therefore we choose n ∈ k1 ⊆ n with τ(x)n �= 0. By Lemma 2.7, τ(x) is a
skew-symmetric, hence a semisimple transformation. Therefore τ(x)jn �= 0
for all j ∈ N. Since k1 is τ -invariant and k1 ∩ qN ;2 = {0}, it follows that

τ(x)jn /∈ qN ;2

for all j ∈ N.
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From (2.4) and τ(n) = {0} we have [x, n] = [x, n]N+τ(x)n. But [x, n]N ∈
[gN , n]N ⊆ qN ;2 so that

(adx)n− τ(x)n ∈ qN ;2 .

Repetition of this argument (using the τ -invariance and ad-invariance of n

and qN ;2) yields

(adx)jn− τ(x)jn ∈ qN ;2

for all j ∈ N. Therefore (adx)jn /∈ qN ;2 for all j ∈ N. In particular adqx is
not nilpotent, and the proof of the lemma is complete. �

2.4. Derivatives and distances

In this subsection we compare derivatives and distances on the groups G
and GN .

First we define a space of coefficient functions. For a, b ∈ g define
Λa,b : G→ R by

Λa,b(g) = (T (g)a, b) = (b, T (g)a)

for g ∈ G, and let E1 denote the complex vector space spanned by all Λa,b,
a, b ∈ g.

Lemma 2.10 E1 is a finite-dimensional vector space of smooth bounded
functions on G which contains the constant functions.

E1 is invariant under the left or right regular representations of GN or
G acting in L∞, that is, LGN

, LG, RGN
, RG map E1 into itself.

If σ ∈ E1 then dLG(x)(σ) = dLGN
(x)(σ) ∈ E1, and σ̌ ∈ E1 where σ̌(g) =

σ(g−1) = σ(g−1N ), g ∈ G.

Proof. Since T (g) is orthogonal with respect to the inner product (·, ·),
one has Λa,b ∈ L∞. The statements about invariance under the regular rep-
resentations are standard consequences of the fact that T is a representation
of G, and GN , by orthogonal transformations (cf. [24, 6]). For example,
noting that

(T (h−1g)a, b) = (T (g)a, T (h)b) = (T (h−1Ng)a, b)

establishes that

LG(h) Λa,b = LGN
(h) Λa,b = Λa,T (h)b ∈ E1 .

If x ∈ g, choose a curve γ : [−1, 1] → G with γ̇(0) = x. Setting h = γ(t)
in the above relation and differentiating at t = 0 yields dLG(x)(Λa,b) =
dLGN

(x)(Λa,b) = Λa,τ(x)b.
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Similarly one sees that Λa,b(g
−1) = Λa,b(g

−1N ) = Λb,a(g), g ∈ G.

If dim(m⊕v) > 0 pick a nonzero a ∈ m⊕v, otherwise g = n and we pick
any nonzero a ∈ g. Then τ(x)a = 0 for all x ∈ g, hence T (g)a = a for all
g ∈ G, and therefore Λa,a is a nonzero constant function on G. The lemma
is proved. �

Remark Elements of E1 are automatically almost-periodic functions on G,
because they are matrix elements of the bounded, finite-dimensional rep-
resentation T (see for example [10, Chapter 7]). The almost-periodicity is
important for homogenization theory on G (cf. [1, 2]) but is not used in this
paper.

Lemma 2.11 Functions in E1 are constant along cosets of N ′ in the sense
that

σ(g ∗ n) = σ(n ∗ g) = σ(g ∗N n) = σ(n ∗N g) = σ(g)

for all σ ∈ E1, g ∈ G and n ∈ N ′.

Proof. Since T is a representation of both G and GN this is immediate
from (2.6). �

To compare derivatives on G and GN it is useful to introduce a basis. Let
p = dim(m) − 1 ∈ {−1, 0, 1, 2, . . .}, d = dim(q), d0 = dim(q/n) = dim(v),
and d1 = dim(q/qN ;2) = dim(h1). Fix an orthonormal basis

b−p, . . . , b0, b1, . . . , bd

for g which respects the orthogonal decomposition (2.7). In particular
b−p, . . . , b0 is a basis of m, b1, . . . , bd0 is a basis of v, b1, . . . , bd1 is a basis
of h1, and bd0+1, . . . , bd is a basis of n.

We assign weights w(j) ∈ {0, 1, . . . , r} to the bj such that w(j) = 0 for
j ∈ {−p, . . . , 0} and bj ∈ hw(j) for j ∈ {1, . . . , d}. Then

hs = span{bj : w(j) = s} , qN ;s = span{bj : w(j) ≥ s} ,

for all s ∈ {1, . . . , r}. For j ∈ {−p, . . . , d} we set Bj = dLG(bj) and B
(N)
j =

dLGN
(bj).

For derivatives we use multi-index notations as follows. If h, k are integers
with h ≤ k set

J(h, k) =
∞⋃
n=0

{h, h+ 1, . . . , k}n

and when k ≥ 1 let J(k) = J(1, k). If α = (i1, . . . , in) ∈ J(h, k) then the
length of α is defined by |α| = n (then |α| = 0 if α is the empty multi-index).
If α = (i1, . . . , in) ∈ J(d′) set Aα = Ai1 . . . Ain where Ai = dLG(ai), and set
a[α] = [ai1 , [ai2 , · · · [ain−1 , ain ] · · · ]].
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Similarly if α = (i1, . . . , in) ∈ J(−p, d) we set

Bα = Bi1 . . . Bin , B(N)α = B
(N)
i1

. . . B
(N)
in

,

and define the weighted length

‖α‖ = w(i1) + · · · + w(in) ∈ N0 .

We write J(n) = J(d0 + 1, d). Then for α ∈ J(n) the derivatives Bα, B(N)α

are in the direction of n.

Lemma 2.12 If a ∈ g, ϕ ∈ L2;∞ then

(dLG(a)ϕ)(g) =
(
dLGN

(T (g−1N )a)ϕ
)
(g)

for all g ∈ G and

dLG(a)ϕ =
d∑

j=−p
σj B

(N)
j ϕ

where σj = Λbj ,a ∈ E1. The σj are constants for j ∈ {−p, . . . , d0}. Moreover

dLGN
(a)ϕ =

d∑
j=−p

σ̌j Bjϕ

with σ̌j = Λa,bj ∈ E1.

Proof. The first equation is a consequence of Lemma 10.6 applied to the
groups A = GN , A′ = G. Observing that

T (g−1N )a =
d∑

j=−p
(T (g−1N )a , bj) bj =

d∑
j=−p

Λbj ,a(g) bj

gives the second equation. Since T (g)y = y for all y ∈ m ⊕ v it follows that
Λbj ,a = (bj, a) is constant when j ≤ d0.

Writing a = T (g−1N )T (g)a, we deduce from the first equation of the
lemma that (dLGN

(a)ϕ)(g) = (dLG(T (g)a)ϕ)(g). Since

T (g)a =
∑
j

Λa,bj (g) bj,

we get the desired expression for dLGN
(a). �

Let E denote the subalgebra of L∞ generated by E1; it is spanned by all
products σ1 · · · σk, k ∈ N, σ1, . . . , σk ∈ E1.

Let R(G), R(GN ) denote the algebras of complex right-invariant differ-
ential operators onG andGN respectively. Then R(G) (respectively R(GN))
is spanned by {Bα, α ∈ J(−p, d)} (respectively {B(N)α, α ∈ J(−p, d)}). By
combining the last three lemmas we obtain
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Corollary 2.13 The subalgebra E ⊆ L∞ is invariant under the left and
right regular representations of G and GN , and dLG(x)σ = dLGN

(x)σ ∈ E
whenever σ ∈ E, x ∈ g. Each σ ∈ E is constant along cosets of N ′ in the
sense of Lemma 2.11.

Moreover R(G) (respectively R(GN)) is contained in the span of all
differential operators of the form σP , σ ∈ E, P ∈ R(GN) (respectively
P ∈ R(G)).

Therefore L2;∞ = L2;∞(GN ), that is, the C∞ subspaces of L2 for the
representations LG, LGN

coincide.

Next we compare various distances. Recall that g 
→ |g|a denotes the
modulus on G associated with a1, . . . , ad′ . Thus

|g|a = inf
γ

∫ 1

0

dt

( d′∑
k=1

ξk(t)
2

)1/2

with the infimum over all absolutely continuous paths γ : [0, 1] → G with

γ(0) = e, γ(1) = g and γ̇(t) =
d′∑
k=1

ξk(t)Ak|γ(t)

(cf. [30], [35]). Similarly, let g 
→ |g| denote the modulus on G associated
with b−p, . . . , bd1, g 
→ |g|N the modulus on GN associated with b−p, . . . , bd1,
m 
→ |m|M the modulus on M associated with b−p, . . . , b0, and q 
→ |q|QN

the modulus on QN associated with b1, . . . , bd1.

Lemma 2.14 (I) For each compact neighborhood U of e there exists c =
c(U) > 0 with

c−1 |g| ≤ |g|a ≤ c |g|
for all g ∈ G with g /∈ U .

(II) |g|2 = |g|2N = |m|2M + |q|2QN
for all g = m ∗N q ∈ G with m ∈ M ,

q ∈ QN .

(III) The volume function Va(t) = dg {g ∈ G : |g|a < t} satisfies

c−1 tD ≤ Va(t) ≤ c tD

for all t ≥ 1, where

D =
r∑

k=1

k dim(qN ;k/qN ;k+1) =
d∑
j=1

w(j) .

(IV) |T (h)g| = |g| and |g ∗ h−1| = |g ∗N h−1N | for all g, h ∈ G.
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Proof. For (I), see [35, Proposition III.4.2]. For (II), note from Lemma 2.12
that

B
(N)
i |g =

d1∑
j=−p

Ti,j(g)Bj |g

for all g ∈ G and i ∈ {−p, . . . , d1}, where Ti,j = Λbi,bj . The matrix (Ti,j(g))
is orthogonal. Hence if γ is a path with

γ̇(t) =

d1∑
i=−p

ξi(t)B
(N)
i |γ(t) ,

then γ̇(t) =
∑d1

i=−p ηi(t)Bi|γ(t) where
∑

i ξi(t)
2 =

∑
i ηi(t)

2. Therefore |g| ≤
|g|N , and the reverse inequality is proved similarly. The straightforward
proof that |g|2N = |m|2M + |q|2QN

is left to the reader.

Since QN is simply connected nilpotent, from [35, Section IV.5] we have

c−1 tD ≤ dq {q ∈ QN : |q|QN
< t} ≤ c tD

for t ≥ 1. Then (III) follows easily from (I), (II) and the compactness of M .

If γ is a path as above, then the path γh = T (h) ◦ γ satisfies

γ̇h(t) =
d1∑

j=−p
ρj(t)B

(N)
j |γh(t) ,

where ρj(t) =
∑d1

i=−p Ti,j(h) ξi(t). Then
∑

i ρi(t)
2 =

∑
i ξi(t)

2 and we obtain

|T (h)g| ≤ |g|. But |g| = |T (h−1N )T (h)g| ≤ |T (h)g| so |T (h)g| = |g|.
Finally, from Lemma 10.6 we have g ∗ h−1 = T (h)(g ∗N h−1N ) and the

last statement in (IV) follows. �

2.5. Stratified nilshadows and scaling

In this subsection, we study scaling on G under the assumption that g has
stratified nilshadow. That is, we assume that (2.8) holds.

Then the dilations γε ∈ L(qN ) defined by γε(xj) = εjxj for ε > 0, xj ∈ hj,
j ∈ {1, . . . , r}, are automorphisms of qN . They extend to automorphisms
of gN by setting γε(x+ y) = x+ γε(y) for x ∈ m, y ∈ qN .

Since GN is simply connected there exist automorphisms Γε of GN with
Γε(expGN

x) = expGN
(γεx) for all x ∈ g. Then Γε ◦ Γδ = Γεδ for ε, δ > 0,

Γε(QN) ⊆ QN , and QN is a stratified nilpotent group with the dilations
Γε|QN

(see [25]). Note that Γε(m) = m for all m ∈M .

Define Vε : L2 → L2 by Vεϕ = εD/2(ϕ ◦ Γε).
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Lemma 2.15 (I) Vε : L2 → L2 is a unitary map, and Vε (L2;∞) ⊆ L2;∞ for
all ε > 0.

(II) For j ∈ {−p, . . . , d}, B(N)
j is homogeneous of order w(j) in the sense

that
V −1
ε B

(N)
j Vε = εw(j)B

(N)
j

for all ε > 0.

(III) |Γεq| = ε|q| for all q ∈ QN and ε > 0.

Proof. That Vε is unitary is equivalent to the statement that dg(Γε(A)) =
εD dg(A) for Borel measurable A ⊆ GN . Since the restriction γε|qN

has
determinant εD, this follows by repeating the argument of Corollary 2.8.

Next, since Γε is an automorphism of GN , one easily sees that ϕ ◦ Γε ∈
L2;∞(GN) whenever ϕ ∈ L2;∞(GN). But L2;∞(GN ) = L2;∞ by Corol-
lary 2.13, and part (I) follows.

(II) and (III) are straightforward consequences of the definitions and the
automorphism property of Γε; details are left to the reader. �

Define Gε (ε > 0) to be the Lie group with underlying manifold G = GN

and multiplication law

g ∗ε h = Γε((Γ
−1
ε g) ∗ (Γ−1

ε h))

for g, h ∈ G. Note that G1 = G and that Γε : G→ Gε is a Lie isomorphism.
For the Lie algebra gε of Gε one has gε = TeG = g as vector spaces and the
Lie bracket is

[x, y]ε = γε([γ
−1
ε x, γ−1

ε y])

for all x, y ∈ g. Since the subspaces hj are τ -invariant, one has γε ◦ τ(x) =
τ(x) ◦ γε for x ∈ g and hence Γε ◦ T (g) = T (g) ◦ Γε for all g ∈ G and ε > 0.
The group multiplications of Gε and GN are related by

g ∗ε h = Γε
{
(T (Γ−1

ε (h−1N ))(Γ−1
ε g)) ∗N (Γ−1

ε h)
}

= (Γε ◦ T (Γ−1
ε (h−1N )) ◦ Γ−1

ε )(g) ∗N h = T (ε)(h−1N )g ∗N h ,(2.9)

where T (ε) = T ◦ Γ−1
ε : GN → Aut(GN). Observe that the argument of

Corollary 2.8 shows that dg is a Haar measure for Gε.

Finally, we define rescaled versions of the operator H. Set Ak,ε =
dLGε(ε

−1γεak) for k ∈ {1, . . . , d′} and let

Hε = −
d′∑

k,l=1

cklAk,εAl,ε .
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Then Ak,ε, Hε are right-invariant operators on Gε, and Ak,1 = Ak, H1 = H.
Because Γε : G→ Gε and γε : g → gε are Lie isomorphisms we have

dLGε(γεak)ϕ = (dLG(ak)(ϕ ◦ Γε)) ◦ Γ−1
ε = V −1

ε dLG(ak)Vεϕ

for ϕ in the domain of Ak,ε. This yields the scaling relations

(2.10) Ak,ε = ε−1V −1
ε AkVε , Hε = ε−2V −1

ε HVε

for all ε > 0. By Lemma 2.12 we can express

Ak =
d∑

j=−p
σk,j B

(N)
j

(with equality in the sense of differential operators acting in L2;∞) where
σk,j ∈ E1, and σk,j constant for j ∈ {−p, . . . , d0}.

It follows using Lemma 2.15(II) that

(2.11) Ak,ε =
d∑

j=−p
ε−1+w(j)σ

(ε)
k,j B

(N)
j ,

where σ
(ε)
k,j = σk,j ◦ Γ−1

ε are bounded functions.

Also, since Γε(N
′) ⊆ N ′ and from Lemma 2.11 we have

(2.12) σ
(ε)
k,j(n ∗N g) = σ

(ε)
k,j(g ∗N n) = σ

(ε)
k,j(g)

for all n ∈ N ′ and g ∈ G.

Remark If g does not have stratified nilshadow, it is still possible to define
dilation maps γε, Γε and the groups Gε. But in general, the B

(N)
j are not

homogeneous in the sense of Lemma 2.15, and equations (2.9), (2.11) are
not valid.

One can express B
(N)
j or Ak,ε in terms of homogeneous vector fields on

a group GS = M × QS, where QS is a stratified limit group corresponding
to the nilpotent group QN (cf. [1, 29]). But when QS �= QN the coefficients
in this expression involve polynomials and hence may be unbounded. Thus
the assumption of stratified nilshadow leads to a simplification in the form
of Ak,ε which will be convenient later.
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3. Preliminary estimates

In this section we record some initial regularity estimates for the operator H
in L2, which serve as the basis for the proof of Theorem 1.1. We begin with
results which follow by standard functional analysis from the definition ofH,
and then give more subtle estimates in terms of fractional, GN -invariant
derivatives.

Assume that G has stratified nilshadow and continue all notations of
previous sections.

Lemma 3.1 The operator Hε generates a bounded holomorphic semigroup
Sεz = e−zHε in L2, for z in a complex sector Λ(Ω) = {z ∈ C−{0} : | arg z| <
Ω}, where Ω ∈ 〈0, π/2] is independent of ε > 0. Moreover ‖Sεz‖2→2 ≤ 1 for
all z ∈ Λ(Ω).

For each j ∈ N and k ∈ {1, . . . , d′} one has estimates

‖Hj
εS

ε
t ‖2→2 ≤ cj t

−j , ‖Ak,εSεt ‖2→2 ≤ c t−1/2

for all t > 0, ε > 0. One has resolvent estimates

‖(λI +Hε)
−1‖2→2 ≤ c λ−1

‖Ak,ε(λI +Hε)
−1‖2→2 + ‖(λI +Hε)

−1Ak,ε‖2→2 ≤ c λ−1/2

‖Ak,ε(λI +Hε)
−1Al,ε‖2→2 ≤ c

for all λ > 0, ε > 0, k, l ∈ {1, . . . , d′}.

Proof. First consider the case ε = 1. That H = H1 generates a contrac-
tive holomorphic semigroup in L2 was given in Section 1. The estimates
‖HjSt‖2→2 ≤ cj t

−j, ‖AkSt‖2→2 ≤ c t−1/2 and the resolvent estimates are
straightforward consequences of the fact that H generates a bounded holo-
morphic semigroup and/or the G̊arding inequality (1.2).

For general ε > 0, since Vε is a unitary transformation of L2 it fol-
lows from (2.10) that Hε generates a holomorphic semigroup Sεz , z ∈ Λ(Ω).
Moreover

(3.1) Sεz = V −1
ε Sε−2zVε , (λI +Hε)

−1 = ε2 V −1
ε (ε2λI +H)−1Vε ,

for all z ∈ Λ(Ω), λ > 0.

Once more applying (2.10) one easily obtains the estimates for Hε from
the estimates for H, with constants c independent of ε. �
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Corollary 3.2 Given P ∈ R(G), there exists ρ ≥ 0 such that

‖PSt‖2→2 ≤ c (1 + t−ρ) for all t > 0.

Proof. Since P is a linear combination ofAα, α∈J(d′), from the bounds (1.3)
we obtain the existence of ρ ≥ 0 such that ‖PSt‖2→2 ≤ c t−ρ for all 0 < t ≤ 1.
For t > 1 we have

‖PSt‖2→2 ≤ ‖PS1‖2→2‖St−1‖2→2 ≤ ‖PS1‖2→2 ,

and the corollary follows. �
Let r′ denote the rank of the generating list a1, . . . , ad′ , that is, r′ is

the smallest positive integer s such that g is the linear span of all a[α] with
α ∈ J(d′) and 1 ≤ |α| ≤ s. The following is the main result of this section.

Proposition 3.3 Given µ ∈ 〈0, 1/r′〉, there exists c = c(µ) > 0 such that

|q|−µ‖(I − LGN
(q))χ‖2 ≤ c ‖χ‖2 + c

d′∑
k=1

‖Ak,εχ‖2

for all χ ∈ L2;∞, ε ∈ 〈0, 1] and q ∈ QN with q �= e.

Remark The value 1/r′ in the proposition is sufficient for our purposes,
but is not sharp. For example, let g = qN be a stratified Lie algebra with
nilpotent rank r ≥ 2, and choose the generating list ak = bk, k ∈ {1, . . . , d1},
of g. Then r′ = r ≥ 2, but the estimate of the proposition holds with µ = 1,
by (3.3) below.

Proof. The proof is based on a global derivative estimate for sublaplacians
obtained in [1] (one can give another proof based only on local regularity
estimates from [17], but then the details are more complicated).

We will need the following elementary inequality. Let U be a unitary
representation of G in a Hilbert space H, let dU(ak) denote the generator of
the unitary group t ∈ R 
→ U(exp(−tak)), k ∈ {1, . . . , d′}, and let H∞ ⊆ H
denote the C∞ subspace consisting of u ∈ H for which the vector-valued
mapping g 
→ U(g)u is smooth. Then

(3.2) ‖(I − U(g))u‖H ≤ |g|a
( d′∑

k=1

‖dU(ak)u‖2
H

)1/2

for all g ∈ G and u ∈ H∞. The proof of (3.2) is straightforward from the
definition of |g|a and the observation that if γ : [0, 1] → G is a path from e
to g−1 with γ̇(t) =

∑
k ξk(t)Ak|γ(t), then

(I−U(g))u =−
∫ 1

0

ds
d

ds
U(γ(s)−1)u =−

∫ 1

0

ds
d′∑
k=1

ξk(s)U(γ(s)−1) dU(ak)u .
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Let ∆ = −∑d′
k=1A

2
k be the sublaplacian on G determined by a1, . . . , ad′ ,

and ∆ε = −∑d′
k=1A

2
k,ε, ε > 0, the rescaled versions of ∆. It is well

known [35, 30] that the kernel pt of e−t∆ satisfies Gaussian estimates of
the form (1.4). Let x ∈ g be arbitary and put X = dLG(x). From the
Harnack inequalities of Theorem 7.7 of [1] we get an estimate

|(Xpt)(g)| ≤ c t−1/2 Va(t)
−1/2 e−b|g|

2
a/t

for all t ≥ 1. Also, since x is a linear combination of a[α] with 1 ≤ |α| ≤ r′,
it follows from (1.3) that

|(Xpt)(g)| ≤ c′ t−r
′/2 Va(t)

−1/2 e−b
′|g|2a/t

for 0 < t < 1. By integration ‖Xe−t∆‖2→2 ≤ c (t−1/2 + t−r
′/2), t > 0, which

by Lemma 2.12 yields

‖B(N)
j e−t∆‖2→2 ≤ c (t−1/2 + t−r

′/2)

for all t > 0 and j ∈ {1, . . . , d1}. Using Lemma 2.15 we rescale to get

‖B(N)
j e−t∆ε‖2→2 = ‖(ε−1V −1

ε B
(N)
j Vε)(V

−1
ε e−tε

−2∆Vε)‖2→2

= ε−1‖B(N)
j e−tε

−2∆‖2→2

≤ c ε−1
(
(tε−2)−1/2 + (tε−2)−r

′/2
)
≤ c (t−1/2 + t−r

′/2)

for all t > 0, ε ∈ 〈0, 1] and j ∈ {1, . . . , d1}. Let us apply (3.2) to the
representation U(q) = LGN

(q), q ∈ QN , of QN in L2, with respect to the
generating basis b1, . . . , bd1 of qN . Since q 
→ |q|QN

= |q| is the associated
modulus (Lemma 2.14) we obtain

(3.3) |q|−1‖(I − LGN
(q))χ‖2 ≤

( d1∑
j=1

‖B(N)
j χ‖2

2

)1/2

for all q ∈ QN , q �= e, and χ ∈ L2;∞. Therefore

|q|−1‖(I − LGN
(q)) e−t∆ε‖2→2 ≤ c (t−1/2 + t−r

′/2)

for all t > 0, ε ∈ 〈0, 1] and q ∈ QN , q �= e. Now fix µ ∈ 〈0, 1/r′〉. Since

|q|−µ‖(I − LGN
(q))χ‖2 =

(|q|−1‖(I − LGN
(q))χ‖2

)µ
(‖(I − LGN

(q))χ‖2)
1−µ

≤ (|q|−1‖(I − LGN
(q))χ‖2

)µ
(2‖χ‖2)

1−µ
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and e−t∆ε is a contraction semigroup on L2, we deduce that

|q|−µ‖(I − LGN
(q)) e−t∆ε‖2→2 ≤ c (t−µ/2 + t−r

′µ/2)

for all t > 0 and ε ∈ 〈0, 1]. The Laplace transform formula

(I + ∆ε)
−1/2 = c

∫ ∞

0

dt t−1/2e−t e−t∆ε

then yields, because r′µ < 1,

|q|−µ‖(I − LGN
(q)) (I + ∆ε)

−1/2‖2→2 ≤ c

uniformly for all ε ∈ 〈0, 1]. Thus

|q|−µ‖(I − LGN
(q))χ‖2 ≤ c ‖(I + ∆ε)

1/2χ‖2

for all ε ∈ 〈0, 1], χ ∈ L2;∞, q ∈ QN , q �= e. Since

‖(I + ∆ε)
1/2χ‖2

2 = ((I + ∆ε)χ, χ) = ‖χ‖2
2 +

d′∑
k=1

‖Ak,εχ‖2
2 ,

Proposition 3.3 follows. �

We can combine Proposition 3.3 and Lemma 3.1 to get the following
resolvent estimates. Introduce the operators

Li(t) = LGN
(expGN

(tbi)) , L′
i(t) = I − Li(t)

acting in L2, for all t ∈ R and i ∈ {1, . . . , d}. Note that Li(t) = etB
(N)
i is the

one-parameter unitary group in L2 generated by −B(N)
i .

Corollary 3.4 There exist c > 0 and µ ∈ 〈0, 1〉 such that

‖L′
i(t)(I +Hε)

−1‖2→2 + ‖L′
i(t)(I +Hε)

−1Ak,ε‖2→2 ≤ c |t|µ

‖(I +Hε)
−1L′

i(t)‖2→2 + ‖Ak,ε(I +Hε)
−1L′

i(t)‖2→2 ≤ c |t|µ

for all i ∈ {1, . . . , d}, k ∈ {1, . . . , d′}, t ∈ [−1, 1] and ε ∈ 〈0, 1].

Proof. The second estimate of the corollary follows by duality from the first
estimate applied to the adjoint H∗

ε . To prove the first estimate, let ϕ ∈ L2;∞
and in Proposition 3.3 set χ = (I + Hε)

−1ϕ, or χ = (I + Hε)
−1Ak,εϕ, and

q = expGN
(tbi). Then the first estimate follows from Lemma 3.1, after

noting that

| expGN
(tbi)| = | expGN

(|t|bi)| = |t|1/w(i)| expGN
(bi)|

for all t ∈ R by scaling (see Lemma 2.15(III)). �
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4. Proof of Theorem 1.1

4.1. The case of stratified nilshadow

In this subsection we prove Theorem 1.1, assuming that G has stratified
nilshadow (Definition 2.6). The main effort of the proof is to establish the
estimate of Proposition 4.1 below. This is a regularity estimate for Hε, be-
cause it essentially states that a certain derivative of a function ϕ is estimated
in L2 by derivatives, of “lower order”, of Hεϕ and ϕ. This interpretation of
the proposition is made precise in (4.5) below. The proof of Theorem 1.1 is
then completed using an inductive argument on the “order”.

For the proposition we need spaces of fractional derivatives in the direc-
tion of B

(N)
i , i ∈ {1, . . . , d}. Our spaces are special cases of the Lipschitz

spaces for semigroups studied in [7], Chapter 3. Fix i ∈ {1, . . . , d} and for
ν ∈ 〈0, 2〉 define a seminorm [·]2;ν,i by

[ϕ]2;ν,i =

(∫ 1

0

dt t−1 (t−ν‖L′
i(t)

2ϕ‖2)
2

)1/2

.

The Lipschitz space is L2;ν,i = {ϕ ∈ L2 : [ϕ]2;ν,i <∞}, with norm

‖ϕ‖2;ν,i = ‖ϕ‖2 + [ϕ]2;ν,i .

Then L2;ν,i is a Banach space and when ν < 1 the norm ‖ ·‖2;ν,i is equivalent
to the norm

ϕ 
→ ‖ϕ‖2 +

(∫ 1

0

dt t−1 (t−ν‖L′
i(t)ϕ‖2)

2

)1/2

.

When ν = 1 the norm ‖ · ‖2;1,i is equivalent to ϕ 
→ ‖ϕ‖2 + ‖B(N)
i ϕ‖2. These

equivalences follow by simple calculations from the spectral theorem for the
skew-adjoint operator B

(N)
i (compare, for example, Lemma 7.1 of [17]). It

is also convenient to define L2;0,i = L2 with norm ‖ · ‖2,0,i = ‖ · ‖2.

Finally, we need an ordering on the multi-indices in J(d). If α =
(i1, . . . , in) ∈ J(d) define [α]j as the number of k ∈ {1, . . . , n} such that
w(ik) = j and set [α] = ([α]1, . . . , [α]r) ∈ Nr

0. Thus

|α| =
r∑
j=1

[α]j and ‖α‖ =
r∑
j=1

j[α]j.

Let ≺ be the dictionary order on the set {[α] : α ∈ J(d)}, so that [α] ≺ [β]
if and only if there exists an l such that [α]l < [β]l and [α]j = [β]j for all
j < l. Notice that [α] indicates the number of derivatives in B(N)α in the
direction of hj for each j ∈ {1, . . . , r}.
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Proposition 4.1 Let µ ∈ 〈0, 1〉 be as in Corollary 3.4. Suppose α ∈ J(n),
i ∈ {d0 + 1, . . . , d}, ν ∈ 〈0, 1], and ν ′ ∈ [0, ν〉 such that ν − ν ′ ≤ µ. If
ν = 1 let δ ∈ 〈0, 1〉 be arbitrary, or if ν < 1 set δ = 0. Then there exists
c = c(α, i, ν, ν ′, δ) > 0 such that

‖B(N)α ϕ‖2;ν,i +
∑
k

‖B(N)αAk,εϕ‖2;ν,i ≤

≤ c ‖B(N)αHεϕ‖2;ν′,i + c ‖B(N)αϕ‖2;ν′,i + c ‖B(N)αϕ‖2

+ c
∑
l

‖B(N)αAl,εϕ‖2 + c
∑
β

(
‖B(N)βϕ‖2;ν,i +

∑
l

‖B(N)βAl,εϕ‖2;ν,i

)

+ c
∑
j

(
‖B(N)

j B(N)αϕ‖2;δ,i +
∑
l

‖B(N)
j B(N)αAl,εϕ‖2;δ,i

)

for all ε ∈ 〈0, 1] and ϕ ∈ L2;∞, with the sums over k, l ∈ {1, . . . , d′}, β ∈
J(n) with |β| = |α|, [β] ≺ [α], and j ∈ {d0 + 1, . . . , d} with w(j) > w(i).

The proof is based on the following formal identity. For an operator P ,
a function ϕ and

Hε = −
∑
k,l

cklAk,εAl,ε,

we have

Pϕ = (I +Hε)
−1P (I +Hε)ϕ+ (I +Hε)

−1[Hε, P ]ϕ

= (I +Hε)
−1P (I +Hε)ϕ−

∑
k,l

ckl(I +Hε)
−1[Ak,ε, P ]Al,εϕ

−
∑
k,l

ckl(I +Hε)
−1Ak,ε[Al,ε, P ]ϕ .(4.1)

To calculate [Ak,ε, P ] we require two lemmas on commutator identities, which
exploit the nilpotency of qN . Let adN denote the adjoint representation
of gN . The basic observation is that

(adNbi)(gN) ⊆ qN ;w(i)+1 ⊆ n

for all i = 1, . . . , d. Indeed, the first inclusion follows because bi ∈ qN ;w(i),
[qN ;w(i), qN ]N ⊆ qN ;w(i)+1 and [qN ;w(i),m]N ⊆ [qN ,m]N = {0}. The second
inclusion follows because w(i) ≥ 1 so that qN ;w(i)+1 ⊆ qN ;2 ⊆ n.
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Lemma 4.2 If X(N) = dLGN
(x), x ∈ gN , and α ∈ J(d), then there are real

constants cβ such that

(4.2) [X(N), B(N)α] =
∑
β

cβ B
(N)β ,

with the sum over β ∈ J(d) satisfying |β| = |α|, ‖β‖ ≥ ‖α‖+1 and [β] ≺ [α].
Moreover, if α ∈ J(n) then β ∈ J(n) in the sum.

Proof. If α = (i1, . . . , in) then

[X(N), B(N)α] =
n∑
q=1

B
(N)
i1

. . . B
(N)
iq−1

[X(N), B
(N)
iq

]B
(N)
iq+1

. . . B
(N)
in

.

From the observation preceding the lemma, there are cq,j ∈ R with

[x, biq ]N =
∑
j

cq,j bj

with the sum over j ∈ {d0 + 1, . . . , d} such that w(j) > w(iq). Hence

[X(N), B
(N)
iq

] =
∑
j

cq,j B
(N)
j ,

and the lemma follows. �
Lemma 4.3 If X(N) = dLGN

(x), x ∈ gN , and i ∈ {1, . . . , d}, then there
exist real constants cq,j such that

[X(N), Li(t)] = Li(t)

r−1∑
q=1

∑
j

cq,j t
q B

(N)
j

for all t ∈ R, with the sum over j ∈ {d0 + 1, . . . , d} satisfying w(j) > w(i).

Proof. One has

[X(N), Li(t)] = Li(t)
(
Li(−t)X(N)Li(t) −X(N)

)
and

Li(−t)X(N)Li(t) = dLGN
(AdN (expGN

(−tbi))x) = dLGN
(e−t adN bix)

where AdN denotes the adjoint representation of GN in gN . Since qN has
nilpotent rank r and from the observations preceding Lemma 4.2, we have

e−t adN bix = x+
r−1∑
q=1

(q!)−1(−1)q tq (adNbi)
qx = x+

r−1∑
q=1

∑
j

cq,j t
q bj

with the sum over j ∈ {d0 + 1, . . . , d} satisfying w(j) > w(i). The lemma
follows. �
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Proof of Proposition 4.1. Let us fix µ, α, i, ν, ν ′, δ as in the hypothesis.
By

∑
j we will understand a sum over all j ∈ {d0 + 1, . . . , d} satisfying

w(j) > w(i), and by
∑

β a sum over all β ∈ J(n) with |β| = |α| and [β] ≺ [α].

For t ∈ R we write L(t) = Li(t), L
′(t) = L′

i(t), and consider the operator
Dt = L′(t)2B(N)α. We put P = Dt in the identity (4.1) and apply Lemma 3.1
and Corollary 3.4 to obtain

‖Dtϕ‖2 ≤ ‖(I +Hε)
−1L′(t)‖2→2 ‖L′(t)B(N)α(I +Hε)ϕ‖2

+ c
∑
k,l

‖(I +Hε)
−1‖2→2 ‖[Ak,ε, Dt]Al,εϕ‖2

+ c
∑
k,l

‖(I +Hε)
−1Ak,ε‖2→2 ‖[Al,ε, Dt]ϕ‖2

≤ c tµ ‖L′(t)B(N)α(I +Hε)ϕ‖2

+ c
∑
k,l

‖[Ak,ε, Dt]Al,εϕ‖2 + c
∑
k

‖[Ak,ε, Dt]ϕ‖2(4.3)

for all t ∈ [0, 1], ϕ ∈ L2;∞ and ε ∈ 〈0, 1]. Next we derive an estimate for the
commutator [Ak,ε, Dt]. From (2.11) we get

[Ak,ε, Dt] =
d∑

u=−p
ε−1+w(u) [σ

(ε)
k,uB

(N)
u , Dt] =

d∑
u=1

ε−1+w(u) σ
(ε)
k,u [B(N)

u , Dt] ,

because (2.12) implies that Dt commutes with multiplication by the func-

tions σ
(ε)
k,u, and because [m, n]N = {0} implies that [B

(N)
u , Dt] = 0 when

u ∈ {−p, . . . , 0}. We have

[B(N)
u , Dt] = L′(t)2 [B(N)

u , B(N)α] + [B(N)
u , L′(t)2]B(N)α

where the term [B
(N)
u , B(N)α] may be expanded using Lemma 4.2. Also

[B(N)
u , L′(t)2] = 2L′(t) [B(N)

u , L′(t)] + [[B(N)
u , L′(t)], L′(t)]

= 2L′(t) [B(N)
u , L(t)] + [[B(N)

u , L(t)], L(t)] ,

and applications of Lemma 4.3 yield that

‖[B(N)
u , L′(t)2]χ‖2 ≤ c t

∑
j

‖L′(t)B(N)
j χ‖2 + c t2

∑
j

‖B(N)
j χ‖2

for all t ∈ [0, 1] and χ ∈ L2;∞.
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Combining these observations gives the estimate

‖[Ak,ε, Dt]χ‖2 ≤ c′
d∑

u=1

‖[B(N)
u , Dt]χ‖2

≤ c
∑
β

‖L′(t)2B(N)βχ‖2

+ c t
∑
j

‖L′(t)B(N)
j B(N)αχ‖2 + c t2

∑
j

‖B(N)
j B(N)αχ‖2(4.4)

for all t ∈ [0, 1], χ ∈ L2;∞, k ∈ {1, . . . , d′}, and ε ∈ 〈0, 1].

Substitute (4.4) with χ = ϕ and χ = Al,εϕ into (4.3), and observe that
t−ν tµ ≤ t−ν

′
to get

t−ν ‖Dtϕ‖2 ≤ c t−ν
′ ‖L′(t)B(N)α(I +Hε)ϕ‖2

+ c t−ν
∑
β

(
‖L′(t)2B(N)βϕ‖2 +

∑
l

‖L′(t)2B(N)βAl,εϕ‖2

)

+ c t1−ν
∑
j

(
‖L′(t)B(N)

j B(N)αϕ‖2 +
∑
l

‖L′(t)B(N)
j B(N)αAl,εϕ‖2

)

+ c t2−ν
∑
j

(
‖B(N)

j B(N)αϕ‖2 +
∑
l

‖B(N)
j B(N)αAl,εϕ‖2

)

for all t ∈ 〈0, 1] and ε ∈ 〈0, 1]. Take norms in L2(〈0, 1〉; t−1dt) on both sides
of this inequality. Note that if ν < 1 then t 
→ t1−ν is in L2(〈0, 1〉; t−1dt),
while if ν = 1 then t1−ν ≤ t−δ. In either case one concludes that

[B(N)αϕ]2;ν,i ≤ c ‖B(N)α(I +Hε)ϕ‖2;ν′,i

+ c
∑
β

(
‖B(N)βϕ‖2;ν,i +

∑
l

‖B(N)βAl,εϕ‖2;ν,i

)

+ c
∑
j

(
‖B(N)

j B(N)αϕ‖2;δ,i +
∑
l

‖B(N)
j B(N)αAl,εϕ‖2;δ,i

)

for all ε ∈ 〈0, 1] and ϕ ∈ L2;∞. Therefore

‖B(N)αϕ‖2;ν,i ≤ (∗)

where (∗) denotes the right side in the estimate of Proposition 4.1.
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To complete the proof of the proposition it suffices to show that

[B(N)αAh,εϕ]2;ν,i ≤ (∗)

for all h ∈ {1, . . . , d′} and ε ∈ 〈0, 1]. This is achieved by a small variation
of the above arguments. Note that

‖DtAh,εϕ‖2 ≤ ‖Ah,εDtϕ‖2 + ‖[Ah,ε, Dt]ϕ‖2

where the second term on the right side is estimated by (4.4). To bound the
first term we premultiply (4.1) by Ah,ε and get

‖Ah,εDtϕ‖2 ≤ ‖Ah,ε(I +Hε)
−1L′(t)‖2→2 ‖L′(t)B(N)α(I +Hε)ϕ‖2

+ c
∑
k,l

‖Ah,ε(I +Hε)
−1‖2→2 ‖[Ak,ε, Dt]Al,εϕ‖2

+ c
∑
k,l

‖Ah,ε(I +Hε)
−1Ak,ε‖2→2 ‖[Al,ε, Dt]ϕ‖2 .

In this inequality all terms on the right side can be estimated thanks to
Lemma 3.1, Corollary 3.4 and (4.4). Reasoning as before, we get an estimate
for t−ν‖DtAh,εϕ‖2, t ∈ 〈0, 1], which yields [B(N)αAh,εϕ]2;ν,i ≤ (∗) after taking
norms in L2(〈0, 1〉; t−1dt). This finishes the proof of Proposition 4.1. �

We now complete the proof of Theorem 1.1 in the case that G has strat-
ified nilshadow. Let µ ∈ 〈0, 1〉 be as in Corollary 3.4. Choose q ∈ N with
qµ > 1 and fix µ0, µ1, . . . , µq satisfying

0 = µ0 < µ1 < . . . < µq = 1

and µj − µj−1 < µ for j ∈ {1, . . . , q}. Let J denote the set of all triples
A = (α, ν, i) where α ∈ J(n), ν ∈ {0, µ1, . . . , µq−1} and i ∈ {d0 + 1, . . . , d}.
We write |A| = |α| and set

|ϕ|A = ‖B(N)α ϕ‖2;ν,i

for all ϕ ∈ L2;∞. Define an r-tuple [A] = (ρ1, . . . , ρr), the “order” of A, by

[A] = [α] + ν ew(i) ∈ R
r

where ej denotes the j-th standard basis vector in R
r. Then O={[A] : A∈J }

is a countable subset of Rr. Moreover O is a well-ordered set under the dic-
tionary order ≺, where (ρ1, . . . , ρr) ≺ (ρ′1, . . . , ρ

′
r) means that there is an l

with ρl < ρ′l and ρj = ρ′j for all j < l.
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With this notation, Proposition 4.1 yields the following inequality. For
each A ∈ J with [A] �= 0, there exists c = c(A) > 0 such that

(4.5) |ϕ|A +
∑
k

|Ak,εϕ|A ≤ c
∑

[B]≺[A]
|B|≤|A|+1

(
|Hεϕ|B + |ϕ|B +

∑
k

|Ak,εϕ|B
)

for all ϕ ∈ L2;∞ and ε ∈ 〈0, 1]. Note that the sum on the right side is
over a finite number of B ∈ J , and sums over k are understood to be over
k ∈ {1, . . . , d′}. Remark that in case A = (α, 0, i), we derive (4.5) from the
ν = 1 case of Proposition 4.1 and the fact that for each j ∈ {d0 + 1, . . . , d}
the norm ‖ · ‖2;1,j is equivalent to ϕ 
→ ‖ϕ‖2 + ‖B(N)

j ϕ‖2.

Next we claim that for each A ∈ J , there exists c = c(A) > 0 and
j = j(A) ∈ N such that

(4.6) |ϕ|A +
∑
k

|Ak,εϕ|A ≤ c

(
‖ϕ‖2 +

j∑
l=1

‖H l
εϕ‖2

)

for all ϕ ∈ L2;∞ and ε ∈ 〈0, 1]. Indeed, when [A] = 0 then | · |A = ‖ · ‖2,
and the claim (with j = 1) is a consequence of the resolvent estimates of
Lemma 3.1. Suppose [A] �= 0. By induction on the well-ordered set O, we
may assume the claim is true for all B ∈ J with [B] ≺ [A]. But apply-
ing (4.5) and then the induction hypothesis, we see that the claim is true
for A. This proves (4.6) for all A.

In (4.6), choose A of the form A = (α, 0, i) and set ϕ = Sε1ψ, ψ ∈ L2.
(Note that St maps L2 into L2;∞ for t > 0 as a consequence of local esti-
mates (1.3), and that Vε(L2;∞) ⊆ L2;∞ by Lemma 2.15(I). Hence ϕ ∈ L2;∞ by
scaling.) From Lemma 3.1 we have for each l ∈ N an estimate ‖H lSε1ψ‖2 ≤
cl ‖ψ‖2. We conclude that for each α ∈ J(n), there is c(α) > 0 such that

‖B(N)αSε1‖2→2 +
∑
k

‖B(N)αAk,εS
ε
1‖2→2 ≤ c(α)

for all ε ∈ 〈0, 1]. Now rescale using Lemma 2.15 and the identities (2.10), (3.1)
to get

(4.7) ‖B(N)αSt‖2→2 + t1/2
∑
k

‖B(N)αAkSt‖2→2 ≤ c(α) t−‖α‖/2

for all t ≥ 1. Let y1, . . . , ym be as in the statement of Theorem 1.1. Then
yi ∈ n ∩ qN ;ji and it follows by Lemma 2.12 that

Yi =
∑
l

σi,lB
(N)
l ,

where σi,l ∈ E and the sum is over l ∈ {d0 + 1, . . . , d} with w(l) ≥ ji.
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By Corollary 2.13, the B
(N)
l for l > d0 commute with multiplication by

elements of E . Thus we may express

(4.8) Y1 . . . Ym =
∑
α

σαB
(N)α ,

where σα ∈ E and the sum is over α ∈ J(n) with |α| = m and ‖α‖ ≥
w = j1 + · · ·+ jm. Therefore the bounds of Theorem 1.1 follow immediately
from (4.7). �

Remarks

(a) We have assumed that ϕ ∈ L2;∞ in Proposition 4.1, but the proof
shows that the estimate of the proposition is valid whenever ϕ ∈ L2 and
the right side of the estimate is finite. Then (4.5) holds whenever ϕ ∈ L2

and the right side of (4.5) is finite, and we deduce that (4.6) holds for all
ϕ ∈ L2 in the domain of Hj

ε . Thus we see that the local regularity result
St(L2) ⊆ L2;∞ (t > 0) is not essential for the proof of (4.7).

(b) Let us justify Remark (d) in Section 1. Suppose that G is stratified
nilpotent, with {hj} a stratification of the nilpotent Lie algebra g = qN = n,
and that a1, . . . , ad′ is a basis of the “first slice” h1 (thus d′ = d1, and we
may assume that ak = bk for k ∈ {1, . . . , d′}). Then G = Gε = GN = QN

as Lie groups, Ak,ε = Ak, Hε = H, for all ε > 0, and B(N)α = Bα for all
α ∈ J(d) = J(n). Proposition 3.3 holds with µ = 1: indeed, this is just
the elementary estimate (3.3). The estimate (4.6), Remark (a) above, and
interpolation between powers of H, yield that

(4.9) ‖Bαϕ‖2 ≤ c
(‖ϕ‖2 + ‖Hjϕ‖2

)
for all ϕ ∈ L2 in the domain of Hj. This estimate is a special case of results
of [27] for homogeneous hypoelliptic operators, but is here derived indepen-
dently. The estimates (4.9), together with the fact that H is homogeneous
of order 2, are sufficient to apply Sobolev-embedding, scaling and pertur-
bation arguments, as in [3], Section 2, or [14],Section 2. The conclusion, as
in these references, is that St has a kernel Kt which, together with all its
Bα-derivatives, satisfies global Gaussian bounds.

4.2. The general case

We now prove Theorem 1.1 for general G without an assumption of stratified
nilshadow. Our method is to realize G as a quotient of a group G̃ with
stratified nilshadow, and transfer the estimates of the theorem from G̃ to G
with a standard transference result (see [9]). The details are as follows.
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If g is the Lie algebra of G, Proposition 10.7 gives the existence of a
type R Lie algebra g̃, with stratified nilshadow in the sense of Definition 2.6,
and a surjective homomorphism π : g̃ → g. Let G̃ be the connected, simply
connected group of polynomial growth with Lie algebra g̃. Since G̃ is simply
connected, there is a surjective homomorphism Λ: G̃→ G such that dΛ = π.

As usual we write Ak = dLG(ak), k ∈ {1, . . . , d′} and consider

H = −
d′∑

k,l=1

cklAkAl

acting in L2(G; dg), with Kt the convolution kernel of St = e−tH . Choose
elements ãk ∈ g̃ with π(ãk) = ak, k ∈ {1, . . . , d′}. Let ãd′+1, . . . , ãd′′ be a
vector space basis for the kernel e = π−1{0} of π, where d′′ = d′ + dim(e).
If h denotes the Lie subalgebra of g̃ generated by ã1, . . . , ãd′′ , then π(h) = g

and hence
g̃ = π−1(g) = π−1(π(h)) = h + e = h .

Therefore ã1, . . . , ãd′′ generate g̃. Write Ãk = dL
�G(ãk) and consider the

subelliptic operator

H̃ = −
d′∑

k,l=1

ckl ÃkÃl −
d′′∑

k=d′+1

Ã2
k

acting in L2(G̃; dg̃), where dg̃ is Haar measure for G̃. Let K̃t denote the

convolution kernel of the semigroup S̃t = e−t �H , t > 0. Since G̃ has stratified
nilshadow, the estimates of Theorem 1.1 are valid for S̃t.

For ϕ ∈ C∞(G) one has

Ãk(ϕ ◦ Λ) = (Akϕ) ◦ Λ

for k ∈ {1, . . . , d′} , and Ãk(ϕ ◦ Λ) = 0 for k ∈ {d′ + 1, . . . , d′′}. Hence

(4.10) H̃(ϕ ◦ Λ) = (Hϕ) ◦ Λ

for ϕ ∈ C∞(G). For 1 ≤ q < ∞, let U be the isometric representation

of G̃ in Lq(G) given by U(g̃) = LG(Λg̃), g̃ ∈ G̃. For ψ ∈ L1(G̃) define the
operator U(ψ) acting in Lq(G) by

U(ψ) =

∫
�G

dg̃ ψ(g̃)U(g̃) .

It follows from (4.10) and standard group-theoretic considerations, as in [22],
that

St = U(K̃t)
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as operators in Lq(G), and more generally

X1 · · ·XmSt = U(X̃1 · · · X̃mK̃t) ,

where Xj = dLG(π(x̃j)) = dU(x̃j) and X̃j = dL
�G(x̃j) for arbitrary elements

x̃1, . . . , x̃m of g̃. Note that X̃1 · · · X̃mK̃t is the convolution kernel of the oper-
ator X̃1 · · · X̃mS̃t, and is an element of L1(G̃) (as follows from the Gaussian

estimates (1.3) applied to K̃t). Therefore we can apply a transference theo-
rem, Theorem 2.4 of [9], to get

(4.11) ‖X1 · · ·XmSt‖q→q ≤ ‖X̃1 · · · X̃mS̃t‖q→q

(with the operator norm in Lq(G) on the left side, and in Lq(G̃) on the right
side). From Proposition 10.7 we have π(q̃N ;j) = qN ;j for all j ∈ N, and
π−1(n) = ñ. Therefore if x1, . . . , xm ∈ n with xi ∈ qN ;ji , then there exist
x̃i ∈ ñ ∩ q̃N ;ji such that xi = π(x̃i) for all i ∈ {1, . . . ,m}. Then applying

Theorem 1.1 to H̃, we deduce from (4.11) that

‖X1 · · ·XmSt‖2→2 ≤ c t−w/2

for t ≥ 1, with w = j1 + · · · + jm. Similarly, we can get the second estimate
of Theorem 1.1 by putting Xm = Ak, X̃m = Ãk in (4.11). This ends the
proof of Theorem 1.1. �

5. Proof of Theorem 1.2

Let Gs be the analytic subgroup of G with Lie algebra s. The key to proving
Theorem 1.2 is the remark that Gs is compact and normal, because s is a
type R semisimple ideal of g.

To avoid triviality, we assume that dim(s) ≥ 1. Let Y = dLG(y) where
y ∈ s, and let P,Q ∈ R(G). Our first goal is to obtain the L2-estimate

(5.1) ‖PY QSt‖2→2 ≤ c e−σt

for some c, σ > 0 and all t ≥ 1.

Let P : L2 → L2 denote the orthogonal projection onto the subspace
of L2 consisting of functions which are constant along the cosets gGs = Gsg
for all g ∈ G. If ϕ ∈ L2 is continuous and compactly supported, it is easy
to see that

(Pϕ)(g) =

∫
Gs

dsϕ(gs) =

∫
Gs

dsϕ(sg)

for all g∈G, where ds is Haar measure for Gs normalized so that ds(Gs) = 1.
The main step to prove (5.1) is the following lemma, which extends argu-
ments of [23, Section 4].
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Lemma 5.1 The projection P : L2 → L2 commutes with X = dLG(x)
for any x ∈ g, and hence commutes with H and St. There exist c, ω > 0
such that

‖St(I −P)‖2→2 ≤ c e−ωt

for all t > 0.

Proof. The first formula for Pϕ easily implies that LG(g)P = PLG(g) for
all g ∈ G. Therefore P commutes with dLG(x), with H and with St = e−tH .

Let e1, . . . , eq be a vector space basis for s and set Ej = dLG(ej), Fj =
dLGs(ej). Since Gs is compact and connected, the operator

Hs = −
q∑
j=1

F 2
j

acting in L2(Gs; ds) has a compact resolvent. Moreover, there exists λ > 0
such that Hs ≥ λI on the orthogonal complement in L2(Gs) of the constant
functions (see [30], Section IV.3).

Let ϕ ∈ (I −P)(C∞
c (G)) ⊆ C∞

c (G) and define ϕg ∈ C∞(Gs) by ϕg(s) =
ϕ(sg) for all g ∈ G, s ∈ Gs. Observe that Fj(ϕg) = (Ejϕ)g, and that ϕg is
orthogonal to constants because 0 = (Pϕ)(g) =

∫
Gs
dsϕg(s). For ψ ∈ Cc(G)

we have the integration formula∫
G

dg ψ(g) =

∫
G/Gs

dġ

∫
Gs

dsψ(sg) ,

where ġ = gGs = Gsg and dġ is Haar measure for the group G/Gs (see for
example [24]). Combining these remarks we obtain

q∑
j=1

‖Ejϕ‖2
2 =

q∑
j=1

∫
G/Gs

dġ

∫
Gs

ds |(Ejϕ)(sg)|2

=

q∑
j=1

∫
G/Gs

dġ

∫
Gs

ds |(Fj ϕg)(s)|2

≥ λ

∫
G/Gs

dġ

∫
Gs

ds |(ϕg)(s)|2 = λ ‖ϕ‖2
2

for all ϕ ∈ (I−P)C∞
c . Next, the argument of Lemma 4.2 of [23] shows that

for each α ∈ J(d′) with |α| ≥ 1, there is l = l(α) ∈ N such that

‖Aαϕ‖2 ≤ ε ‖ϕ‖2 + cε ‖H lϕ‖2

for all ϕ ∈ C∞
c and ε > 0, where cε > 0 depends on ε.
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Since each Ej is expressible as a linear combination of Aα with |α| ≥ 1,
it easily follows that there is an l ∈ N such that

q∑
j=1

‖Ejϕ‖2
2 ≤ ε ‖ϕ‖2

2 + cε ‖H lϕ‖2
2

for all ϕ ∈ C∞
c and ε > 0, with cε > 0 depending on ε. Fixing ε < λ we

obtain the existence of λ′ > 0 such that

(5.2) ‖H lϕ‖2 ≥ λ′ ‖ϕ‖2

for all ϕ ∈ (I − P)C∞
c . Note that S ′

t = St(I − P) is the holomorphic
semigroup generated by the operator H(I − P) in L2. Then the estimate
‖S ′

t‖2→2 ≤ c e−ωt is a consequence of (5.2) and a spectral lemma for holo-
morphic semigroups, Lemma 4.2 of [14]. �

Remark The lemma and its proof remain valid with Gs replaced by any
compact, connected normal subgroup K of G, with P the projection corre-
sponding to K.

Continuing with the proof of (5.1), since y ∈ s we have Y P = 0. Hence

PY QStP = P (Y P)QSt = 0 ,

because P commutes with Q and with St. From Corollary 3.2 we have for
some ρ > 0 an estimate ‖PY QSt‖2→2 ≤ c (1 + t−ρ) for all t > 0. Then if
δ ∈ 〈0, 1〉 we see that

‖PY QSt‖2→2 ≤ ‖PY QSδt‖2→2 ‖S(1−δ)t (I −P)‖2→2

≤ c′ (1 + (δt)−ρ) e−ω(1−δ)t

for all t > 0, where ω is as in Lemma 5.1. After fixing δ this implies (5.1)
with σ = (1 − δ)ω (in particular, we see that σ can be chosen arbitrarily
close to but less than ω).

Finally, we obtain the kernel bounds of Theorem 1.2 by interpolat-
ing (5.1) with the local bounds (1.3). Write P ′ = PY Q ∈ R(G). Integration
of (1.3) yields for some ω > 0 that

‖Kt‖2 ≤ c t−Da/4 eωt

for all t > 0. Let δ ∈ 〈0, 1/4〉 to be chosen. By convolution and apply-
ing (5.1) we get

‖P ′Kt‖∞ ≤ ‖P ′K(1−δ)t‖2 ‖Kδt‖2

≤ ‖P ′S(1−2δ)t‖2→2 ‖Kδt‖2
2 ≤ c e−σ1t

for some σ1 > 0 and all t ≥ 2, provided δ is chosen sufficiently small.
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From (1.3) we get the existence of ρ, ω, b > 0 such that

|(P ′Kt)(g)| ≤ c t−ρ eωte−b|g|
2
a/t

for all t > 0 and g ∈ G. Let δ ∈ 〈0, 1〉 to be chosen, and observe that

|(P ′Kt)(g)| ≤ (‖P ′Kt‖∞)
1−δ |(P ′Kt)(g)|δ

≤ c e−(1−δ)σ1t (δt)−ρ eδωte−δb|g|
2
a/t

for all t ≥ 2 and g ∈ G. Fixing δ small enough so that

σ2 := (1 − δ)σ1 − δω > 0,

we finish the proof of Theorem 1.2. �

6. Proof of Theorem 1.4

It is not difficult to obtain the correct decrease in t for the L∞ norm of the
kernels in Theorem 1.4. Indeed, for any right-invariant differential opera-
tor P , one can use the convolution identity PKt = PKt/2 ∗Kt/2 to estimate

‖PKt‖∞ ≤ ‖PKt/2‖2‖Kt/2‖2 ≤ ‖PSt/4‖2→2‖Kt/4‖2‖Kt/2‖2 .

Thus, when Kt satisfies Gaussian bounds (1.4), and y1, . . . , ym are as in the
statement of the theorem, one can deduce that ‖Y1 . . . YmKt‖∞ ≤ ct−w/2t−D/2

for t ≥ 1. But to derive Gaussian bounds, we will need more elaborate ar-
guments.

First, the following lemma gives the case m = 0 of Theorem 1.4. Since
the proof follows the method of Saloff-Coste explained in [31, 35, 30], we do
not repeat the details.

Lemma 6.1 Suppose that the global Gaussian bounds (1.4) are satisfied.
Then there exist c, b > 0 such that

|(AkKt)(g)| ≤ c t−1/2 Va(t)
−1/2 e−b|g|

2
a/t

for all k ∈ {1, . . . , d′}, t > 0 and g ∈ G.

Note that in the statement of Theorem 1.4, the modulus | · |a can equiv-
alently be replaced by the modulus | · |, because t ≥ 1 and the moduli are
equivalent at infinity (Lemma 2.14(I)). In this rest of this section we prefer
to work with | · |.

For r > 0 let B(r) = {g ∈ GN : |g| < r}. The next lemma, which is a
slight elaboration of results of [23], shows that the modulus can be approx-
imated by “cutoff” functions whose GN -derivatives satisfy nice estimates.
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Lemma 6.2 There exist τ1 > τ2 > 0 and a family {ηR}R≥1 of C∞ functions
on GN satisfying 0 ≤ ηR ≤ 1, the support of ηR is contained in B(τ1R), and
ηR(g) = 1 if g ∈ B(τ2R), for all R ≥ 1. For each α ∈ J(−p, d) there exists
cα ≥ 0 such that

‖B(N)α ηR‖∞ ≤ cαR
−‖α‖

for all R ≥ 1, with cα = 0 if α /∈ J(d).

Proof. Consider the subgroup QN of GN , the derivatives B̃j = dLQN
(bj),

j ∈ {1, . . . , d1}, and the corresponding modulus q 
→ |q|QN
defined in Sub-

section 2.4. Let B′(t) = {q ∈ QN : |q|QN
< t} for t > 0. Since QN is

nilpotent, by results of [23] there exist τ ′1 > τ ′2 > 0 and a family {η′R}R≥1

of C∞ functions on QN with 0 ≤ η′R ≤ 1, the support of η′R is contained
in B′(τ ′1R), and η′R(g) = 1 for g ∈ B′(τ ′2R). For each α ∈ J(d1) there
is c′α > 0 with

(6.1) ‖B̃α η′R‖∞ ≤ c′αR
−|α| for R ≥ 1.

Define ηR ∈ C∞(GN) by setting ηR(m∗N q) = η′R(q) for m ∈M , q ∈ QN .
It easily follows from the compactness of M and Lemma 2.14 that ηR have
the desired support properties, for some τ1 > τ2 > 0. Since the ηR are
constant in the direction of M , one has B

(N)
i ηR = 0 for i ∈ {−p, . . . , 0}.

But B
(N)
i commutes with B

(N)
j when i ≤ 0 and j ≥ 1, so that B(N)α ηR = 0

whenever α ∈ J(−p, d) − J(d).
The proof of Proposition 2.3 shows that for each j ∈ N, qN ;j is spanned

by all commutators [bi1, [· · · , [bis−1 , bis ]N · · · ]N ]N with s ≥ j and i1, . . . , is ∈
{1, . . . , d1}. It easily follows that for each β ∈ J(d) one can write

B(N)β =
∑
α

rαB
(N)α ,

with rα ∈ R and the sum over a finite number of α ∈ J(d1) with |α| ≥
‖β‖. But (6.1) implies that ‖B(N)α ηR‖∞ ≤ c′αR

−|α| for R ≥ 1, α ∈ J(d1).
Therefore ‖B(N)β ηR‖∞ ≤ cβ R

−‖β‖. �

Let us note a consequence of Lemma 6.2 for G-invariant derivatives. If
x ∈ g, X = dLG(x) and j ∈ N such that x ∈ m⊕ qN ;j, then by Lemma 2.12
we can express

X =
0∑

i=−p
riB

(N)
i +

∑
l

σlB
(N)
l

where ri ∈ R, σl ∈ E and the sum is over l ∈ {1, . . . , d} with w(l) ≥ j. Then
Lemma 6.2 yields an estimate

(6.2) ‖XηR‖∞ ≤ cR−j

for all R ≥ 1.
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Define ψR = R(1 − ηR) and let Uρ denote the operator of multiplication
by eρψR , for any R ≥ 1 and ρ ≥ R−1. Unless otherwise stated, subsequent
estimates involving Uρ are understood to hold for all R ≥ 1 and ρ > 0 such
that ρ ≥ R−1, though for brevity we have omitted R from the notation.
Next, we show that Gaussian estimates are equivalent to Uρ-weighted L2

estimates.

Lemma 6.3 Let δ ≥ 0 and let P ∈ R(G) be a right-invariant differential
operator on G. The following conditions are equivalent:
(I) There exist c, b > 0 such that

|Kt(g)| + tδ |(PKt)(g)| ≤ c t−D/2 e−b|g|
2/t

for all t ≥ 1 and g ∈ G;
(II) There exists c, ω > 0 such that

‖UρKt‖2 + tδ ‖UρPKt‖2 ≤ c t−D/4 eωρ
2t

for all t ≥ 1, ρ > 0, R ≥ 1 with ρ ≥ R−1.

Proof. “(I)⇒(II)” With τ2 > 0 as in Lemma 6.2 we have

ψR(g) ≤ τ−1
2 |g|

for all g ∈ G, R ≥ 1, by considering the two cases |g| < τ2R, |g| ≥ τ2R. Let
b be as in Condition (I), fix b′ ∈ 〈0, b〉 and choose an ω > 0 large enough so
that

−(b− b′) s2/t ≤ ωρ2t− τ−1
2 ρs

for all s ≥ 0, t > 0, ρ > 0. Setting s = |g|, we obtain from (I) that

|(UρKt)(g)| ≤ c t−D/2e−b|g|
2/t eτ

−1
2 ρ|g| ≤ c t−D/2e−b

′|g|2/t eωρ
2t

for all t ≥ 1 and ρ > 0. Integration of these bounds yields ‖UρKt‖2 ≤
c′ t−D/4 eωρ

2t for t ≥ 1, ρ > 0. Similarly we obtain the desired estimate for
‖UρPKt‖2.
“(II)⇒(I)”. From the convolution identity PKt = PKt/2 ∗Kt/2 and (II) we
have

‖PKt‖∞ ≤ ‖PKt/2‖2 ‖Kt/2‖2

≤ ‖UρPKt/2‖2 ‖UρKt/2‖2 ≤ c t−δ t−D/2 eωρ
2t

for all t ≥ 2 and ρ ∈ 〈0, 1〉. Letting ρ→ 0 gives

(6.3) ‖PKt‖∞ ≤ c t−δ t−D/2

for t ≥ 2.
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Next, let τ1 be as in Lemma 6.2, let g ∈ G with |g| ≥ 3τ1 and set
R = (3τ1)

−1 |g|. Then |g|/2 > τ1R. For any h ∈ G we have |g| ≤ |h|+|h−1g|;
considering the two cases |h| ≥ |g|/2, |h−1g| ≥ |g|/2, we deduce from the
properties of ηR that

|g| = 3τ1R = 3τ1 max{ψR(h), ψR(h−1g)} ≤ 3τ1 (ψR(h) + ψR(h−1g))

for all h ∈ G. Therefore

eρ|g| |(PKt)(g)| ≤
∫
dh e3τ1ρψR(h) |(PKt/2)(h)| e3τ1ρψR(h−1g) |(Kt/2(h

−1g)|

≤ ‖U3τ1ρ PKt/2‖2 ‖U3τ1ρKt/2‖2

≤ c t−δ t−D/2 eωρ
2t

for all t ≥ 2, |g| ≥ 3τ1, and ρ > 0 satisfying 3τ1ρ ≥ R−1 = 3τ1|g|−1. Fixing
σ > 0 sufficiently small and setting ρ = σ|g|/t, we obtain an estimate

|(PKt)(g)| ≤ c t−δ t−D/2 e−b|g|
2/t

for all t ≥ 2 and g ∈ G such that σ|g|2/t ≥ 1. If t ≥ 2 and σ|g|2/t ≤ 1
then an estimate of the same form follows from (6.3). Repeating the above
reasoning with P = I, δ = 0, we complete the proof of (I). �

To prove Theorem 1.4, suppose that Kt satisfies global Gaussian bounds
(1.4) and let m ∈ N, y1, . . . , ym ∈ n′, j1, . . . , jm, w = j1 + · · · + jm be as in
the statement of the theorem. We prove the desired Gaussian estimate for
the kernel Y1 · · · YmAkKt; the similar estimate for Y1 · · · YmKt is left to the
reader. Note that Lemma 6.3 (with P = 0) yields an estimate

‖UρKt‖2 ≤ c t−D/4 eωρ
2t

for all t ≥ 1, ρ ≥ R−1.

For X = dLG(x), x ∈ g, and a smooth function ϕ on G, we define
Xρ ϕ = UρXU

−1
ρ ϕ; then

Xρ ϕ = Xϕ− ρ(XψR)ϕ .

Write P = Y2 · · · YmAk ∈ R(G), let t > 0, R ≥ 1, ρ ≥ R−1, and observe that

‖UρY1Y2 · · · YmAkKt‖2
2 =

= (Y1PKt, U2ρY1PKt)

= (Y1PKt, (Y1)2ρ U2ρPKt)

= −(Y 2
1 PKt, U2ρPKt) − 2ρ (Y1PKt, (Y1ψR)U2ρPKt)

≤ ‖Y 2
1 PKt‖2 ‖U2ρPKt‖2 + 2ρ ‖Y1ψR‖∞‖Y1PKt‖2 ‖U2ρPKt‖2 .(6.4)
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By induction onm, and Lemma 6.1, we may assume that the correct Gaussian
estimate holds for PKt. Thus Lemma 6.3 gives for some ω′ > 0 an estimate

‖U2ρPKt‖2 ≤ c t−1/2 t−(w−j1)/2 t−D/4 eω
′ρ2t

for t ≥ 1, ρ ≥ R−1. Next, application of Corollary 1.3 and the assumption
that Kt satisfies global Gaussian bounds yields

‖Y1PKt‖2 ≤ ‖Y1PSt/2‖2→2 ‖Kt/2‖2 ≤ c t−1/2 t−w/2 t−D/4

‖Y 2
1 PKt‖2 ≤ ‖Y 2

1 PSt/2‖2→2 ‖Kt/2‖2 ≤ c t−1/2 t−(w+j1)/2 t−D/4

for all t ≥ 1. Since y1 ∈ s⊕ qN ;j1 ⊆ m⊕ qN ;j1 , we obtain from (6.2) a bound

‖Y1ψR‖∞ ≤ cR−j1+1 ≤ c ρj1−1

for ρ ≥ R−1. Inserting the above estimates in (6.4) gives for some ω′′ > 0 that

‖UρY1 · · ·YmAkKt‖2 ≤ c t−1/2 t−w/2 t−D/4 eω
′′ρ2t

for all t ≥ 1. Applying Lemma 6.3, we finish the proof of Theorem 1.4. �

7. Proof of Theorem 1.5

Let us prove the theorem for the operators Y1 · · ·YmH−w/2,∞; the arguments
for the operators H−w/2,∞Y1 · · ·Ym are quite similar.

The difficulty with applying standard singular integration theory to
Y1 · · ·YmH−w/2,∞ is that its two-variable integral kernel may not satisfy stan-
dard Hölder continuity estimates with respect to the first variable (for a re-
lated discussion, see [1, Section 1]). We will avoid this problem by treating
the operators B(N)αH−‖α‖/2,∞, α ∈ J(n), whose kernels turn out to satisfy
Lipschitz estimates with respect to either variable.

Assume that Kt satisfies Gaussian bounds (1.4). Of course the kernel
K∗
t (g) = Kt(g−1) of the adjoint H∗ = −∑

k,l clkAkAl then satisfies the same
bounds, so that Theorem 1.4 can be applied to both H and H∗.

Proposition 7.1 For each α ∈ J(n) with |α| ≥ 1, the transform Rα =
B(N)αH−‖α‖/2,∞ is bounded in Lq, 1 < q <∞, and from L1 to weak-L1.

Proof. Fix α ∈ J(n) with |α| ≥ 1. Let K ′
t denote the two-variable integral

kernel of St, so that K ′
t(g;h) = Kt(gh

−1) for g, h ∈ G. Let da be the stan-
dard right-invariant distance on G given by da(g;h) = |gh−1|a for g, h ∈ G.
Consider the kernel B(N)αK ′

t(g;h) = B(N)α(g)K ′
t(g;h), where we use super-

script (g) or (h) to denote differentiation with respect to the variables g, h
respectively.



High order regularity for subelliptic operators on Lie groups 975

We first prove estimates

|B(N)αK ′
t(g;h)| ≤ c t−‖α‖/2t−D/2e−bda(g;h)2/t(7.1)

|B(N)αK ′
t(g;h) −B(N)αK ′

t(g; l)| ≤ c da(h; l) t
−(‖α‖+1)/2t−D/2e−bda(g;h)2/t(7.2)

|B(N)αK ′
t(h; g) −B(N)αK ′

t(l; g)| ≤ c da(h; l) t
−(‖α‖+1)/2t−D/2e−bda(g;h)2/t(7.3)

for all t ≥ 1 and g, h, l ∈ G such that da(h; l) ≤ (1/2)da(g;h) + t1/2. In-
deed, using the results of Subsection 2.4 one obtains for each γ ∈ J(n) an
expression

B(N)γ =
∑
δ

σγ,δ B
δ

where σγ,δ ∈ E and with summation over δ ∈ J(n) satisfying |δ| = |γ| and
‖δ‖ = ‖γ‖. Setting γ = α, we obtain (7.1) as a consequence of Theorem 1.4.

Next, for k ∈ {1, . . . , d′} observe that A
(h)
k B(N)αK ′

t(g;h) is the kernel of the
operator

(−1)B(N)αStAk = B(N)αSt/2 (AkS
∗
t/2)

∗ .

By Theorem 1.4 applied to H∗, the kernel of AkS
∗
t/2 satisfies global Gaussian

bounds (with an extra t−1/2 factor). Combining with (7.1) we deduce an
estimate

|A(h)
k B(N)αK ′

t(g;h)| ≤ c t−(‖α‖+1)/2t−D/2e−bda(g;h)2/t

for all t ≥ 1, g, h ∈ G, and (7.2) follows in a straightforward way.

Reasoning as in the proof of Proposition 4.1, we can write

AkB
(N)α = B(N)αAk + [Ak, B

(N)α] = B(N)αAk +
∑
β

σ′
k,β B

(N)β ,

where σ′
k,β ∈ E and the sum is over β ∈ J(n) with |β| = |α| and ‖β‖ ≥

‖α‖ + 1. Then applying Theorem 1.4 gives that

|A(g)
k B(N)αK ′

t(g;h)| ≤ c t−(‖α‖+1)/2t−D/2e−bda(g;h)2/t

for all t ≥ 1, g, h ∈ G, and (7.3) follows.

The kernel K(α) of Rα is given by

K(α)(g;h) =
1

Γ(‖α‖/2)

∫ ∞

1

dt t(‖α‖/2)−1B(N)αK ′
t(g;h) .

It is routine to verify from (7.1)-(7.3) that K(α) satisfies standard Calderón-
Zygmund estimates with respect to the distance da, with a singularity only
at infinity.
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More precisely

|K(α)(g;h)| ≤ c (1 + da(g;h))
−D

and

|K(α)(g;h)−K(α)(g; l)|+|K(α)(h; g)−K(α)(l; g)| ≤ c da(h; l) (1+da(g;h))
−(D+1)

for all g, h, l ∈ G such that da(h; l) ≤ (1/2)da(g;h). Then by standard
singular integration theory (see for example [8]), to prove Proposition 7.1
it is enough to prove that Rα is bounded in L2. This we achieve by an
almost-orthogonal decomposition, whose form follows [2, Section 25].

We write Rα =
∑∞

j=1Rj, where Rj has kernel K(j) defined by

K(j)(g;h) =
1

Γ(‖α‖/2)

∫ 2j

2j−1

dt t(‖α‖/2)−1B(N)αK ′
t(g;h) .

It is easy to see that

(7.4)

∫
dg K(j)(g;h) =

∫
dg K(j)(h; g) = 0 ,

and from (7.1)-(7.3) one derives the estimates∫
dg |K(j)(g;h)| +

∫
dg |K(j)(h; g)| ≤ c(7.5) ∫

dg |K(j)(g;h) −K(j)(g; l)| +
∫
dg |K(j)(h; g)−K(j)(l; g)|(7.6)

≤ c 2−j/2 da(h; l)∫
dg |K(j)(g;h)| da(g;h) +

∫
dg |K(j)(h; g)| da(g;h) ≤ c 2j/2(7.7)

for all j ∈ N and h, l ∈ G. Let Kj,k be the kernel of the operator R∗
jRk. In

case j ≤ k we argue in a standard way using (7.4)-(7.7) to get the estimate∫
dh |Kj,k(g;h)| ≤

∫
dl |K(j)(l; g)|

{∫
dh |K(k)(l;h) −K(k)(g;h)|

}
≤ c′ 2−(k−j)/2

(for a similar argument, see [12, Section III]). It follows that ‖R∗
jRk‖∞→∞ ≤

c′ 2−(k−j)/2. On the other hand, (7.5) implies that

‖R∗
jRk‖1→1 ≤ ‖R∗

j‖1→1‖Rk‖1→1 ≤ c2.
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By interpolation we obtain ‖R∗
jRk‖2→2 ≤ c′′ 2−(k−j)/4 for j ≤ k. Because

R∗
kRj = (R∗

jRk)
∗ it follows that

‖R∗
jRk‖2→2 ≤ c′′ 2−|j−k|/4

for all j, k ∈ N. A repetition of these arguments yields

‖RjR
∗
k‖2→2 ≤ c′′ 2−|j−k|/4.

Applying the Cotlar-Stein lemma and routine arguments, we deduce that
Rα =

∑
j Rj is bounded in L2. This concludes the proof of the proposition. �

Let Y1, . . . , Ym and w = j1 + · · · + jm be as in the statement of The-
orem 1.5. As remarked after Corollary 1.3, there are wi ∈ n ∩ qN ;ji such
that Y1 · · ·Ym equals W1 · · ·Wm modulo terms of form PZQ, where Wi =
dLG(wi), P,Q ∈ R(G), Z = dLG(z) for some z ∈ s. Using an expres-
sion (4.8) for W1 · · ·Wm we have

Y1 · · ·Ym =
∑
α

σαB
(N)α +

∑
PZQ ,

with σα ∈ E and summation over α ∈ J(n) such that |α| = m, ‖α‖ ≥ w.
It easily follows from Theorem 1.2 that the operators PZQH−w/2,∞ are
bounded in L1 and in L∞, hence in Lq for all q ∈ [1,∞]. Similarly, if
‖α‖ > w it follows from (7.1) that B(N)αH−w/2,∞ is bounded in Lq for all
q ∈ [1,∞]. If ‖α‖ = w we apply Proposition 7.1. Thus Y1 · · · YmH−w/2,∞ is
bounded in Lq, 1 < q <∞, and from L1 to weak-L1. �

8. Proof of Theorem 1.6

In this section we assume that the kernel Kt satisfies global Gaussian bounds
(1.4). To prove Theorem 1.6 we exploit a non-nilpotency property, given in
Lemma 2.9 above, of elements of g − n′. The details are as follows.

Fix x ∈ g−n′. By Lemma 2.9 there exists n ∈ n such that (adx)jn /∈ qN ;2

for all j ∈ N. Set yj = (adx)j+1n for all j ∈ N0. Note that yj /∈ qN ;2 and
yj ∈ gx ∩ n (where gx is the smallest ideal of g containing x).

Set X = dLG(x), Yj = dLG(yj) and write (adX)Z = [X,Z] for Z ∈
R(G). To establish Theorem 1.6, it suffices to obtain for each j ∈ N an
estimate

(8.1) ‖XjY0St‖2→2 ≥ c(j) t−1/2

for all t ≥ 1, where c(j) > 0.
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The key is the commutator identity

XjY0 = (adX)jY0 +

j−1∑
m=0

cjm ((adX)mY0)X
j−m

= Yj +

j−1∑
m=0

cjm YmX
j−m ,(8.2)

where cjm are universal constants; this identity is easily derived by induction
on j ∈ N. To establish (8.1) we show that, for large t, ‖YjSt‖2→2 ≥ ct−1/2

while ‖YmXj−mSt‖ ≤ c′t−3/4.
We need the following estimate: for each j ∈ N0 there is c′j > 0 such that

(8.3) | exp(syj)|a ≥ c′j s

for all s ≥ 1, with exp the exponential map of G. This is a consequence of
the fact that yj ∈ n − qN ;2, and can be justified as follows. Since yj ∈ n
we have τ(yj) = 0, and then it follows from part (V) of Lemma 10.6 that
exp(syj) = expGN

(syj) = expQN
(syj) for all s ∈ R. Moreover by Lemma 2.14

we may replace the modulus | · |a in (8.3) with the QN -modulus | · |QN
. Thus

we are reduced to proving | expQN
(syj)|QN

≥ c′′j s, s ≥ 1; since yj ∈ qN−qN ;2,
this is a consequence of well-known estimates for the modulus on the simply
connected nilpotent group QN (see Section IV.5 of [35]). Thus (8.3) holds.

Therefore we can apply the following result with y = yj.

Proposition 8.1 Suppose the kernel Kt corresponding to H satisfies Gaus-
sian bounds (1.4). Let y ∈ g and set Y = dLG(y).

(I) There exist κ, c > 0 such that

‖Y St‖2→2 ≥ c s−1

for all t, s > 0 such that | exp(sy)|2a ≥ κt.

(II) If there exists c1 > 0 such that | exp(sy)|a ≥ c1 s for all s ≥ 1, then
there exists c2 > 0 such that

‖Y St‖2→2 ≥ c2 t
−1/2

for all t ≥ 1.

Proof. Let K∗
t (g) = Kt(g−1) denote the kernel of the adjoint semigroup S∗

t ,
and define a positive-definite function Wt as the convolution Wt = Kt ∗K∗

t

for all t > 0. The arguments of [13, Section 2] or [19] show that there is
c1 > 0 such that

(8.4) Wt(e) ≥ c1 Va(t)
−1/2



High order regularity for subelliptic operators on Lie groups 979

for all t > 0. Moreover, it is easy to argue that Wt satisfies global Gaussian
bounds

|Wt(g)| ≤ c′ Va(t)−1/2e−b
′|g|2a/t

for all t > 0, g ∈ G. Hence one can choose κ > 0 such that

|Wt(g)| ≤ 2−1c1 Va(t)
−1/2

for all t > 0, g ∈ G satisfying the condition |g|2a ≥ κt, where c1 is as in (8.4).
Combining with (8.4) we deduce that

|Wt(e) −Wt(g)| ≥ 2−1c1 Va(t)
−1/2

whenever |g|2a ≥ κt. Now set g = exp(sy) and note that d
du
Wt(expuy) =

−(YWt)(expuy) to obtain

2−1c1 Va(t)
−1/2 ≤ |Wt(e)−Wt(exp sy)| ≤

∫ s

0

du |(YWt)(expuy)| ≤ s ‖YWt‖∞

for all t, s > 0 satisfying | exp(sy)|2a ≥ κt. Observing that YWt = (Y Kt) ∗
K∗
t = (Y St/2Kt/2) ∗K∗

t , we have

‖YWt‖∞ ≤ ‖Y St/2‖2→2‖Kt/2‖2 ‖K∗
t ‖2 ≤ c Va(t)

−1/2 ‖Y St/2‖2→2

for all t > 0 (the estimate ‖K∗
t ‖2 = ‖Kt‖2 ≤ c Va(t)

−1/4 is a consequence
of (1.4)). Part (I) of the proposition follows immediately from the previous
two displayed inequalities.

It suffices to prove the estimate of part (II) for all t ≥ T for some T > 0,
since

‖Y St2‖2→2 ≤ ‖Y St1‖2→2‖St2−t1‖2→2 ≤ ‖Y St1‖2→2

whenever t2 > t1 > 0. Let κ be as in the statement of part (I) and set

t(s) = κ−1| exp(sy)|2a.
Then part (I) and the assumption of part (II) give

‖Y St(s)‖2→2 ≥ c s−1 ≥ c′ t(s)−1/2

for all s ≥ 1. Since {t(s) : s ≥ 1} contains an interval [T,∞〉 for some T > 0,
the proposition follows. �

From (8.3) and Proposition 8.1, for each j ∈ N0 there is cj > 0 such that

(8.5) ‖YjSt‖2→2 ≥ cj t
−1/2

for all t ≥ 1. The next proposition yields an estimate for the terms YmX
j−mSt

coming from (8.2). Let R+(G) denote the subspace of R(G) spanned by all
dLG(x1) · · · dLG(xm), m ∈ N, x1, . . . , xm ∈ g; it is an ideal of codimen-
sion one in R(G). Note that R+(G) is spanned by all Aα with α ∈ J(d′)
and |α| ≥ 1.
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Proposition 8.2 If N = dLG(n), n ∈ n, and P ∈ R+(G), then there is
c > 0 such that

‖NPSt‖2→2 ≤ c t−3/4 for all t ≥ 1.

Remark The factor t−3/4 can be improved to t−1 (this is a special case of
Remark (e) in Section 1), but this is not necessary for our current purposes.

The proof of Proposition 8.2 requires a preliminary lemma (whose state-
ment remains valid if n is replaced by an arbitrary ideal of g).

Lemma 8.3 If N = dLG(n), n ∈ n, and P ∈ R(G), then NP ∈ R(G) can
be written as a finite sum

NP =
∑
i

PiNi

where Pi ∈ R(G) and Ni = dLG(ni), ni ∈ n.

Proof. It suffices to prove it in the case P = X1 · · ·Xm where m ∈ N,
Xj = dLG(xj), xj ∈ g. Since n is an ideal of g we have n′′ = [x1, n] ∈ n.
Setting N ′′ = dLG(n′′) we note that

NX1 · · ·Xm = −N ′′X2 · · ·Xm +X1NX2 · · ·Xm ,

and the lemma is easily derived by induction on m. �
Continuing with the proof of Proposition 8.2, it suffices to prove the

estimate with P = QAk for some Q ∈ R(G), k ∈ {1, . . . , d′}. Then for
ϕ ∈ L2;∞ we have

‖NPϕ‖2
2 = −(Pϕ,N2QAkϕ) ,

and Lemma 8.3 yields that

N2Q = N(
∑
i

QiNi) =
∑
i,j

QijMjNi

for some Qi, Qij ∈ R(G) and Ni = dLG(ni), Mj = dLG(mj), ni,mj ∈ n.
Thus

‖NPϕ‖2
2 ≤

∑
i,j

‖Q∗
ijPϕ‖2 ‖MjNiAkϕ‖2 ,

where Q∗
ij denotes the formal adjoint of Qij in R(G). Set ϕ = Stψ where

ψ ∈ L2, and note from Corollary 3.2 that ‖Q∗
ijPSt‖2→2 ≤ c for all t ≥ 1.

Therefore applying Theorem 1.1 we get

‖NPStψ‖2
2 ≤ ct−3/2 ‖ψ‖2

2

for all t ≥ 1, ψ ∈ L2, and the proposition follows. �
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Proposition 8.2 yields for each m ∈ N0 and q ∈ N an estimate

(8.6) ‖YmXqSt‖2→2 ≤ c(m, q) t−3/4

for all t ≥ 1. Combining (8.2), (8.5), and (8.6) we see that an estimate (8.1)
holds for all sufficiently large t. Since the function t 
→ ‖XjY0St‖2→2 is
nonincreasing (cf. the proof of Proposition 8.1(II)), this suffices to give
an estimate of the form (8.1) for all t ≥ 1. The proof of Theorem 1.6 is
complete. �

9. Extensions

We briefly describe two extensions of our results: to subelliptic systems, and
to non-simply connected groups.

9.1. Subelliptic systems

It is of interest that Theorem 1.1 extends to certain s×s subelliptic systems,
where s ∈ N.

Observe that Ak extends naturally to an operator in the space L2(G; Cs)

of Cs-valued L2 functions. Consider an operator H = −∑d′
k,l=1AkcklAl,

with each ckl an s× s matrix of complex constants: ckl acts on elements of
L2(G; Cs) (regarded as row vectors) by matrix multiplication. As before, H
is precisely defined as the maximal accretive operator in L2(G; Cs) associ-
ated with the quadratic form qH(ϕ) =

∑
k,l(cklAlϕ,Akϕ), assuming that qH

satisfies a G̊arding inequality (1.2).
Then the estimates of Theorem 1.1 are valid for H, at least when G has

stratified nilshadow. One needs the following minor change in the proof of
Proposition 4.1. The identity (4.1) (with P = Dt = L′(t)2B(N)α) is no longer
valid, but can be replaced by

Dtϕ = (I +Hε)
−1Dt(I +Hε)ϕ

−
∑
k,l

(I +Hε)
−1[Ak,ε, Dt]cklAl,εϕ−

∑
k,l

(I +Hε)
−1Ak,εckl[Al,ε, Dt]ϕ

after noting that Dt commutes with ckl. Note also that we do not need local
regularity estimates for H for the proof of Theorem 1.1: see Remark (a) in
Subsection 4.1.

Finally, let us note that if G is stratified nilpotent and a1, . . . , ad′ is a
basis for h1 then Remark (b) in Subsection 4.1 applies also to systems. In
particular, one has an estimate of the form (4.9) for each α ∈ J(d), and
one can argue that the semigroup e−tH has a smooth kernel satisying global
Gaussian bounds. Details are left to the reader.
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9.2. Non-simply connected groups

Theorems 1.1 to 1.6 are actually valid for any connected Lie group G of
polynomial growth, without the assumption of simple connectedness. For
completeness, we outline here the extension of our arguments to the non-
simply connected case.

For Theorems 1.1 to 1.3 and Theorem 1.5, no changes in the proofs
are required. In particular, remark that in the transference argument of
Subsection 4.2 we used simple connectedness of G̃, but not of G, to obtain
the homomorphism Λ: G̃→ G.

Some changes are required, however, in the proofs of Theorems 1.4
and 1.6. Before outlining these, we briefly sketch the structure theory of G:
our exposition relies on the detailed results obtained in [1, Section 3], and
we refer to that paper for further details.

We may assume that G = G′/Γ where G′ is the simply connected univer-
sal covering group of G and Γ is a discrete central subgroup of G′: the Lie
algebras of G, G′ are identified (= g, say). Let G′

N denote the shadow of the
simply connected group G′, with Lie algebra gN , and with G′ = G′

N identi-
fied as manifolds (we often use primes to indicate objects associated with the

group G′). Let τ : gN → L(gN ), T
′
: G′

N → Aut(gN ), T ′ : G′
N → Aut(G′

N)
denote the corresponding homomorphisms, as defined in Section 2.

From the properties of the group Γ given in Section 3.2 of [1], it is
straightforward to deduce that

(9.1) T
′
(γ)x = x , T ′(γ)g′ = g′ , T ′(g′)γ = γ

for all γ ∈ Γ, g′ ∈ G′ and x ∈ g. It follows from (9.1) and the multiplication
law (2.5) (with T replaced by T ′), that

γ ∗N g′ = γg′ = g′γ = g′ ∗N γ
for all γ ∈ Γ, g′ ∈ G′. Hence Γ is a central subgroup of G′

N , and the quotient
GN = G′

N/Γ is a Lie group with Lie algebra gN . Observe that GN is identical
as a manifold withG = G′/Γ, and that the natural homomorphismsG′ → G,
G′
N → GN are identical as set maps: let us call this map Λ. It follows

from (9.1) that T ′ induces a homomorphism T : GN → Aut(GN) such that

T (Λg′)(Λh′) = Λ(T ′(g′)h′)

for all g′, h′ ∈ G′. Then T (T (g)h) = T (h) for g, h ∈ G, and the multiplica-
tions in G and GN are related by the formula (2.5).

Again from (9.1) it follows that T
′
induces a homomorphism T : GN →

Aut(gN) such that T (Λg′) = T
′
(g′) for all g′ ∈ G′. Then the vector fields on

G and GN are related by the formulae of Lemma 2.12.
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As in the simply connected case, let M , QN denote the analytic sub-
groups of GN with respective Lie algebras m, qN . Then M,QN are closed
normal subgroups of GN such that M commutes with QN , and GN =
M ∗N QN , but the intersection Γ2 := M ∩ QN is a possibly nontrivial,
finite central subgroup of GN .

Proof of Theorem 1.4. The only change required is in the definition of
ηR in the proof of Lemma 6.2, and is due to the fact that Γ2 = M ∩QN may
be nontrivial. We now set

η′′R(m ∗N q) =
1

|Γ2|
∑
y∈Γ2

η′R(y ∗N q)

for all m ∈M , q ∈ QN , where |Γ2| <∞ is the cardinality of Γ2. It is easily
verified that η′′R is a well-defined function on GN and that it satisfies the
properties of Lemma 6.2 for all sufficiently large R, say for R ≥ R0. (The
restriction to large R is necessary, since it might happen that η′′R(e) < 1 for
R close to 1.) We complete the proof of Lemma 6.2 by defining ηR = η′′R for
R ≥ R0 and ηR = η′′R0

for 1 ≤ R ≤ R0. �

Proof of Theorem 1.6. Let the elements x and yj = (adx)j+1n, j ∈ N0,
be as in the proof of this theorem. The only change required is to justify
the estimate (8.3) for non-simply connected G. Again it reduces to showing
that | expQN

(syj)|QN
≥ c s, s ≥ 1, where | · |QN

is the modulus on QN

corresponding to b1, . . . , bd1 .
Define a subalgebra of qN by q0 = {u ∈ q : τ(y)u = 0 for all y ∈ g}.

As in the proof of Lemma 2.9 we have (adx)yj − τ(x)yj ∈ qN ;2, and since
(adx)yj /∈ qN ;2 it follows that τ(x)yj /∈ qN ;2. Since τ(x)(q0 + qN ;2) ⊆ qN ;2,
we deduce that yj /∈ q0 + qN ;2.

Let Qt be the unique maximal torus in the nilpotent group QN , and t be
its Lie algebra. Then Qt is contained in the centre of QN , and the quotient
group QN = QN/Qt is simply connected and nilpotent (see IV.1.5 in [35]).
Moreover, it easily follows from results of Sections 3.2, 3.3 of [1] that t ⊆ q0.

Combining the above remarks, we obtain (8.3) as a consequence of the
following lemma for the nilpotent group QN .

Lemma 9.1 If y ∈ qN , y /∈ t + qN ;2 then there is c > 0 with

| expQN
(sy)|QN

≥ c s for all s ≥ 1.

Proof. Consider the quotient QN = QN/Qt. Note that if π : qN → qN =
qN/t denotes the corresponding Lie algebra homomorphism, and qN ;2 is the
commutator ideal of qN , then πy /∈ qN ;2.



984 N. Dungey

If | · | is a modulus on QN then modulus estimates for a simply con-
nected nilpotent group ([35, Section IV.5]) yield | expQN

(sπy)| ≥ c s for all
s ≥ 1. But it is elementary (e.g., Lemma 3.1 of [23]) that | expQN

(sy)|QN
≥

c | expQN
(sπy)| for s ≥ 1. This completes the proof of the lemma, and the

proof of Theorem 1.6 for non-simply connected groups. �

10. Appendix

In this Appendix, we prove a number of algebraic results which are used in
the main text.

10.1. Invariance of the qN ;j

We show in this subsection that the nilshadow qN is uniquely defined up
to isomorphism, and that the subspaces qN ;j in the lower central series are
invariants, and characteristic ideals, of g.

First we reformulate the definition of the nilshadow in terms of Cartan
subalgebras of q. Let v satisfy properties (I) and (II) of Lemma 2.1, and
consider the associated nilshadow qN = (q, [·, ·]N ) defined by (2.3).

Lemma 10.1 Given v as above, there is a unique Cartan subalgebra h =
h(v) of q with v ⊆ h. Then q = h + n and the bracket [·, ·]N is given by

(10.1) [w1 + n1, w2 + n2]N = [w1 + n1, w2 + n2] − S(w1)n2 + S(w2)n1

for all w1, w2 ∈ h, n1, n2 ∈ n.

Proof. Define

h = {x ∈ q : S(v)x = 0 for all v ∈ v} ;

since the S(v) are derivations this is a subalgebra of q. It follows from the
properties of v and Lemma 2.2 that v ⊆ h and h = v ⊕ (h ∩ n). From
the latter splitting and (2.3) it is easy to verify that [x, y]N = [x, y] for all
x, y ∈ h. Therefore h is nilpotent.

Suppose y ∈ q satisfies [y, h] ⊆ h. Then S(v)y ∈ h for all v ∈ v, because
v ⊆ h and S(v) is a polynomial in adv. Therefore S(v)2y = 0 and the
semisimplicity of S(v) implies that S(v)y = 0. Thus y ∈ h, and we have
verified that h is a Cartan subalgebra of q.

If h′ is any Cartan subalgebra of q with v ⊆ h′ then nilpotency of h′

implies that S(x)y = 0 for all x, y ∈ h′ (Lemma 2.2). Taking x ∈ v we
obtain h′ ⊆ h, hence h′ = h since all Cartan subalgebras have the same
dimension.
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Finally, (10.1) follows straightforwardly from (2.3), the splitting h =
v⊕(h∩n), and the following observation: if w = v+n, v ∈ v, n ∈ h∩n, then
S(w) = S(v). Indeed the mapping y 
→ S(y) is linear on h by Lemma 2.2,
whence S(w) = S(v) + S(n) = S(v). �

Let v(1), v(2) be subspaces of q which satisfy properties (I) and (II) of

Lemma 2.1. Consider the associated nilshadows q
(i)
N = (q, [·, ·](i)N ), and the

corresponding lower central series q
(i)
N ;j , j ∈ N, i = 1, 2.

If Φ is an arbitrary automorphism of g then it is straightforward to
see that

(10.2) Φ(S(x)y) = S(Φx)(Φy) , Φ(K(x)y) = K(Φx)(Φy) ,

for all x, y ∈ g.

Lemma 10.2 There exists n ∈ n such that Φ = (eadn)|q ∈ GL(q) is a Lie

isomorphism of q
(1)
N onto q

(2)
N . One has equality of subspaces q

(1)
N ;j = q

(2)
N ;j for

all j ∈ N.

Proof. Applying Lemma 10.1, let h(i), i = 1, 2, be the Cartan subalgebras
of q with v(i) ⊆ h(i). A standard conjugacy result for Cartan subalgebras of
solvable algebras ([4, 36]) gives the existence of n ∈ n such that Φ(h(1)) = h(2)

with Φ = (eadn)|q. From (10.1) and (10.2) we then obtain Φ([x, y]
(1)
N ) =

[Φx,Φy]
(2)
N for all x, y ∈ q, proving the first statement.

Since q
(1)
N ;1 = q = q

(2)
N ;1 it suffices to prove the second statement when

j ≥ 2. Then q
(1)
N ;j ⊆ n by Proposition 2.3. Since q

(1)
N ;j is an ideal of q

(1)
N

and [x, y]
(1)
N = [x, y] for all x, y ∈ n, it follows that q

(1)
N ;j is an ideal of n.

Therefore Φ(q
(1)
N ;j) = eadn(q

(1)
N ;j) = q

(1)
N ;j. But Φ(q

(1)
N ;j) = q

(2)
N ;j because Φ maps

q
(1)
N isomorphically to q

(2)
N , and the lemma follows. �

Therefore the subspaces qN ;j are invariants of g. Finally we have

Corollary 10.3 The subspaces qN ;j are characteristic ideals of g.

Proof. Let qN be the nilshadow associated with the subspace v, and let
Φ be an arbitrary automorphism of g. Then Φ(q) = q, Φ(n) = n, and
the subspace v′ = Φ(v) satisfies properties (I), (II) of Lemma 2.1. If q′N
denotes the nilshadow associated with v′ then it is easy to see from (2.3)
or (10.1), applying (10.2), that Φ maps qN isomorphically onto q′N . Therefore
Φ(qN ;j) = q′N ;j = qN ;j with the second equality by Lemma 10.2. �
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10.2. The ideals s and n′

Let g be a Lie algebra of type R, with radical q and nilradical n.

Lemma 10.4 There exists a semisimple ideal s of g which contains every
semisimple ideal of g, and a nilcompact ideal n′ of g which contains every
nilcompact ideal of g. Moreover, s, n′ are characteristic ideals of g, and
n′ = s ⊕ n, s ∩ q = {0}.

For any Levi subalgebra m of g one has s ⊆ m and

(10.3) s = {x ∈ m : [x, q] = {0}} .

Proof. Fix a Levi subalgebra m and define s by (10.3). One easily checks
that s is an ideal of m, and hence s is semisimple because m is semisimple.
Then s is an ideal of g, because g = m ⊕ q and [s, q] = {0}. Because s is
semisimple, the intersection s ∩ q is trivial.

Suppose that a is a semisimple ideal of g; we show a ⊆ s. Let Int(n)
denote the group of automorphisms of g generated by the eada for a ∈ n.
Since a is a semisimple subalgebra of g, by Corollary 3.14.3 of [32] there
exists Φ ∈ Int(n) such that Φ(a) ⊆ m. Since a is an ideal, Φ(a) = a so that
a ⊆ m. Because a and q are ideals we get

[a, q] ⊆ a ∩ q ⊆ m ∩ q = {0} ,

and therefore a ⊆ s, as desired.
Thus s contains every semisimple ideal; it easily follows that s is inde-

pendent of the choice of Levi subalgebra m used to define it, and that s is a
characteristic ideal of g.

Defining n′ = s ⊕ n, it is clear that n′ is a nilcompact ideal and a char-
acteristic ideal of g. Let us show a ⊆ n′ for any nilcompact ideal a. Write
a = as⊕ an, where as, an are respectively semisimple and nilpotent ideals of
a. It is easy to see that an is the radical (or nilradical) of a, and as contains
every semisimple ideal of a. Therefore as, an are characteristic ideals of a,
and hence as, an are ideals of g. Since s, n are respectively the largest semi-
simple and nilpotent ideals of g, we get as ⊆ s and an ⊆ n. Then a ⊆ n′ as
desired. �

10.3. Twisted multiplications on Lie groups

First we consider a twisting construction for Lie algebras.

Lemma 10.5 Let a be a Lie algebra with Lie bracket [·, ·], and let τ : a →
L(a) be a representation of a in itself by derivations. If

(10.4) τ(τ(x)y) = 0
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for all x, y ∈ a, then

[x, y]′ = [x, y] + τ(x)y − τ(y)x

defines a Lie bracket [·, ·]′ on the vector space a.

Proof. To check the Jacobi identity for [·, ·]′ is a straightforward computa-
tion using (10.4) and the representation and derivation properties. �

The following two examples illustrate the generality of this lemma.

(1) Let a1, a2 be Lie algebras and τ0 : a1 → L(a2) a representation of
a1 in a2 by derivations. Consider the direct sum algebra a = a1 × a2 and
τ : a → L(a) defined by

τ(x1, x2)(y1, y2) = (0, τ0(x1)y2) ,

for xi, yi ∈ ai, i = 1, 2. Then τ satisfies the hypotheses of Lemma 10.5 and
the algebra a′ = (a, [·, ·]′) is (isomorphic to) the semidirect product a1×τ0 a2.

(2) Let a = q be solvable with nilradical n and let the subspace v ⊆ q

satisfy properties (I), (II) of Lemma 2.1. Define τ : q → L(q) by τ(v+n)y =
−S(v)y for v ∈ v, n ∈ n, and y ∈ q. By Lemma 2.2, τ is a linear map and
the τ(x), x ∈ q, are mutually commuting derivations of q. Since [q, q] ⊆ n

and τ(n) = 0 for n ∈ n, it follows that τ is a representation. Moreover
(10.4) holds because S(v)y ∈ [q, q] ⊆ n and τ(n) = 0 for n ∈ n. The algebra
a′ = (a, [·, ·]′) equals the nilshadow qN defined by relations (2.3).

We study the Lie group analogue of Lemma 10.5. Let A be a Lie group
with product ∗, Lie algebra a and exponential map exp, and suppose T : A→
Aut(A) is a homomorphism into the group Aut(A) of smooth automorphisms
of A. (We assume that T is smooth in the sense that the map (g, h) 
→ T (g)h
is smooth from A × A into A.) Thus T (h) ∈ Aut(A) for each h ∈ A, with
T (e) the identity automorphism, and T (h1)T (h2) = T (h1 ∗ h2). If Aut(a) is
the group of automorphisms of a then a homomorphism T : A → Aut(a) is
defined by

T (g)x =
d

dt

∣∣∣
t=0
T (g)(exp tx)

for g ∈ A, x ∈ a. Then a Lie algebra representation τ : a → L(a) of a in
itself by derivations is given by

τ(y)x =
d

dt

∣∣∣
t=0
T (exp ty)x

for x, y ∈ a.
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Let us make a note on identifications. The Lie algebra a is the space
of (real) left invariant vector fields on A, equipped with the commutator
bracket; when convenient we identify a = TeA, the tangent space of A at the
identity, by identifying x ∈ TeA with its unique extension to a left invariant
vector field. With this convention, the differential operator dLA(x), x ∈ a,
is the right-invariant vector field whose value at e is −x.

Lemma 10.6 let T : A→ Aut(A) be a smooth homomorphism and define T
and τ as above. Suppose

(10.5) T (T (g)h) = T (h)

for all g, h ∈ A. Then

(I) The operation ∗′ defined by

(10.6) g ∗′ h = (T (h−1)g) ∗ h

is a Lie group multiplication on the manifold A. For the Lie group A′ =
(A, ∗′) the identity element is e′ = e and the inverse of h is given by h−1′ =
T (h)(h−1). Moreover g ∗′ h−1′ = T (h)(g ∗ h−1) for all g, h ∈ A.

(II) Let a, a′ be the Lie algebras of A and A′ respectively. Identifying
a = TeA = a′ as vector spaces, the Lie brackets [·, ·] of a and [·, ·]′ of a′ are
related by

(10.7) [x, y]′ = [x, y] + τ(x)y − τ(y)x ,

and τ(τ(x)y) = 0 for all x, y ∈ a.

(III) The left regular representations of A and A′ are related by

(10.8) ((dLA′(x))ϕ)(g) = ((dLA(T (g−1)x))ϕ)(g)

for all ϕ ∈ C∞
c (A), x ∈ a, g ∈ A.

(IV) The maps T , T are homomorphisms of A′, thus

T (g ∗′ h) = T (g)T (h) = T (g ∗ h) , T (g ∗′ h) = T (g)T (h) = T (g ∗ h)

for all g, h ∈ A.

(V) If x ∈ a satisfies τ(x)x = 0 then exp(x) = exp′(x), where exp, exp′

are the exponential maps of A,A′ respectively.
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Proof. The proof of (I) is by straightforward computations using (10.5).
Here we just check the associative law: one has

g1 ∗′ (g2 ∗′ g3) = g1 ∗′ (T (g−1
3 )g2 ∗ g3)

= T (g−1
3 )T (T (g−1

3 )g−1
2 )g1 ∗ (T (g−1

3 )g2 ∗ g3)

= T (g−1
3 )T (g−1

2 )g1 ∗ T (g−1
3 )g2 ∗ g3

= T (g−1
3 )(T (g−1

2 )g1 ∗ g2) ∗ g3

= (g1 ∗′ g2) ∗′ g3

for all g1, g2, g3 ∈ A.

For (III), if g ∈ A let Rg : A→ A be the right translation map h 
→ h∗g,
and letR′

g be the right translation map h 
→ h∗′g relative to A′. Let dRg, dR
′
g

be the differentials of these maps. Regarding dLA′(x) as a right-invariant
vector field (see the remarks preceding the lemma), we have

dLA′(x)|g = (dR′
g)(−x)

for all g ∈ A, x ∈ a = TeA, and a similar result for dLA(x) with Rg

replacing R′
g. But R′

g = Rg ◦ (T (g−1)), hence by differentiation

dR′
g = (dRg) ◦ (T (g−1)) : TeA→ TgA ,

and we get

dLA′(x)|g = (dR′
g)(−x) = (dRg)(−T (g−1)x) = dLA(T (g−1)x)|g ,

which is equivalent to (III).

For (II), let x, y ∈ a = TeA, let ϕ ∈ C∞
c (A), and set X = dLA(x),

X ′ = dLA′(x), Y = dLA(y), Y ′ = dLA′(y). Then X ′|e = X|e = −x so that

(X ′Y ′ϕ)(e) = (XY ′ϕ)(e)

=
d

dt

∣∣∣
t=0

(Y ′ϕ)(exp(−tx))

=
d

dt

∣∣∣
t=0

(
dLA(T (exp tx)y)ϕ

)
(exp(−tx))

by part (III), where exp is the exponential map of A. Setting

F (s, t) =
(
dLA(T (exp sx)y)ϕ

)
(exp(−tx)) ,

we have

(∂sF )(0, 0) =
d

ds

∣∣∣
s=0

(
dLA(T (exp sx)y)ϕ

)
(e) = (dLA(τ(x)y)ϕ)(e) ,

(∂tF )(0, 0) = (XY ϕ)(e) .
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It follows that

(X ′Y ′ϕ)(e) = (XY ϕ)(e) + (dLA(τ(x)y)ϕ)(e) .

Combining this with a similar expression for (Y ′X ′ϕ)(e) we get

(dLA([x, y] + τ(x)y − τ(y)x)ϕ)(e) =

= ((XY − Y X)ϕ)(e) + (dLA(τ(x)y)ϕ)(e) − (dLA(τ(y)x)ϕ)(e)

= ((X ′Y ′ − Y ′X ′)ϕ)(e)

= (dLA′([x, y]′)ϕ)(e) = (dLA([x, y]′)ϕ)(e) ,

and comparing the left and right sides of this equation yields (10.7). We leave
the reader to verify that τ(τ(x)y) = 0 for all x and y, and then part (II)
is proved.

For (IV) we note that

T (g ∗′ h) = T (T (h−1)g ∗ h) = T (T (h−1)g)T (h) = T (g)T (h) ,

and the corresponding property for T follows by differentiation.
For (V), suppose τ(x)x = 0. To prove that exp(tx) = exp′(tx) for all

t ∈ R, it suffices to show that t 
→ exp(tx) is a one-parameter subgroup of
A′. Noting for s, t ∈ R that

T (exp(−tx)) exp sx = exp(T (exp(−tx))sx) = exp(e−tτ(x)sx) = exp sx ,

it follows from the multiplication law (10.6) that

exp(sx) ∗′ exp(tx) = exp(sx) ∗ exp(tx) = exp((s+ t)x) .

This ends the proof of the lemma. �

10.4. Lie algebras with stratified nilshadow

The following proposition shows that any (type R) Lie algebra is a quotient
of a Lie algebra with stratified nilshadow (see Definition 2.6 for the defini-
tion of stratified nilshadow). This generalizes the well-known fact that any
nilpotent algebra is a quotient of a stratified Lie algebra.

Proposition 10.7 Let g be a Lie algebra of type R with radical q and nilrad-
ical n. There exists a Lie algebra g̃ of type R which has stratified nilshadow
q̃N with respect to a pair (m̃, ṽ), and a surjective homomorphism π : g̃ → g.
Moreover π restricts to a homomorphism of q̃N onto the nilshadow qN of g,
and π(q̃N ;j) = qN ;j for all j ∈ N.
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If q̃, ñ denote respectively the radical and nilradical of g̃, then

π−1(q) = q̃ , π−1(n) = ñ .

(Therefore if g is respectively solvable or nilpotent, then g̃ possesses the same
property.)

Proof. We divide the proof into three steps. In the first step we consider
a stratified, “free nilpotent” Lie algebra r such that qN is a quotient of r,
and define certain semisimple derivations R(v) of r. Second, from these
derivations and Lemma 10.5 we construct a solvable Lie algebra q̃ such that
q̃ = r as vector spaces, and show that r is the nilshadow of q̃. Finally, we
define g̃ as a semidirect product of q̃ with a Levi subalgebra of g.

Step 1. Fix a Levi subalgebra m and a subspace v of g satisfying all
properties of Lemma 2.1. Then the nilshadow qN , the shadow gN and the
representation τ : gN → L(gN ) are defined as in Section 2. We choose τ -
invariant subspaces hj , j ∈ N, and k1 = h1 ∩ n as in Lemma 2.5. Fix a basis
b1, . . . , bd1 of h1 = v⊕ k1 such that b1, . . . , bd0 is a basis of v and bd0+1, . . . , bd1
is a basis of k1. By Proposition 2.3, b1, . . . , bd1 generate the Lie algebra qN .

Suppose qN is step r nilpotent. Let r be the nilpotent Lie algebra with d1

generators b̃1, . . . , b̃d1 which is free of step r, with Lie bracket [·, ·]r (cf. [29],
and Example 1.1.5 of [11]). More precisely, r may be defined as the quotient
F/I, where F is the free Lie algebra generated by b̃1, . . . , b̃d1 and I is the
ideal of F spanned by all commutators [b̃i1 , [· · · , [b̃is−1 , b̃is ] · · · ]] with s > r.

There is a surjective homomorphism π : r → qN such that π(b̃i) = bi for
i ∈ {1, . . . , d1}.

The algebra r decomposes as

r =
∞⊕
j=1

h̃j =
r⊕
j=1

h̃j ,

where h̃j is spanned by all commutators [b̃i1 , [· · · , [b̃ij−1
, b̃ij ]r · · · ]r]r of length j.

This decomposition is a stratification of r in the sense of [25], that is, h̃1 gen-
erates r and [h̃j, h̃k]r ⊆ h̃j+k for all j, k ∈ N.

Let us set ṽ = span{b̃1, . . . , b̃d0}, k̃1 = span{b̃d0+1, . . . , b̃d1}, and ñ =
k̃1 ⊕ [r, r]r. Then h̃1 = ṽ ⊕ k̃1 and

r = h̃1 ⊕ [r, r]r = ṽ ⊕ k̃1 ⊕ [r, r]r = ṽ ⊕ ñ .

Observe that π restricts to a linear bijection π1 : h̃1 → h1, and that π−1(n) = ñ.

Define linear transformations R̂(v) ∈ L(h̃1) by

R̂(v) = π−1
1 ◦ S(π1v) ◦ π1

for v ∈ ṽ.
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It follows using Lemma 2.2 that the R̂(v), v ∈ ṽ, are mutually commut-

ing, semisimple transformations such that R̂(v)w = 0 for all v, w ∈ ṽ, and

the mapping v 
→ R̂(v) is linear on ṽ. Since g is type R, the S(π1v) and

hence R̂(v) have only purely imaginary eigenvalues.
Consider a fixed v ∈ ṽ. Because r is free nilpotent on b̃1, . . . , b̃d1, the

transformations et
�R(v) ∈ L(h̃1), t ∈ R, extend uniquely to automorphisms

A(t) of r such that A(s)A(t) = A(s+ t) for all s, t ∈ R. Then

R(v) = lim
t→0

t−1(A(t) − I)

defines a derivation R(v) of r whose restriction to h̃1 equals R̂(v). Com-
bining the derivation property and the fact that b̃1, . . . , b̃d1 generate r, one
verifies the following properties. The R(v), v ∈ ṽ, are mutually commut-
ing, semisimple derivations of r with only purely imaginary eigenvalues,
R(v)(ṽ) = {0}, R(v)(k̃1) ⊆ k̃1, R(v)(h̃j) ⊆ h̃j for all j ∈ N, and the mapping
v 
→ R(v) is linear. (To verify the semisimplicity and the eigenvalue prop-
erty, one may extend R(v) to a derivation R(v)C of the complexification rC

of r.) Moreover

(10.9) π ◦R(v) = S(πv) ◦ π
for all v ∈ ṽ.

Step 2. Define τ̃ : r → L(r) by setting

τ̃(v + n) = R(v)

for all v ∈ ṽ, n ∈ ñ. It follows from the properties of R(v) derived in Step 1
that τ̃ is a representation of r in itself by derivations. Since τ̃(x)y ∈ ñ for
all x, y ∈ r, and τ̃(n) = 0 for all n ∈ ñ, we have τ̃(τ̃(x)y) = 0. According to
Lemma 10.5, there is a Lie bracket [·, ·] on the vector space r with

[x, y] = [x, y]r + τ̃(x)y − τ̃(y)x

for x, y ∈ r; we denote by q̃ the Lie algebra (r, [·, ·]). Note that

(10.10) [v1, v2] = [v1, v2]r , [v1, n1] = [v1, n1]r +R(v1)n1 , [n1, n2] = [n1, n2]r

for all v1, v2 ∈ ṽ and n1, n2 ∈ ñ. Recall that π is a homomorphism of r

onto qN . Then comparing (10.10) with (2.3), it follows from (10.9) and
π(ṽ) = v, π(ñ) = n, that π is a homomorphism of q̃ onto q.

Note that [x, y] ∈ ñ for all x, y ∈ q̃ and that the brackets [·, ·] and
[·, ·]r agree on ñ. Therefore ñ contains [q̃, q̃] and is a nilpotent ideal of q̃.
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In particular [q̃, q̃] is nilpotent, so that q̃ is solvable. Let n(q̃) denote the
nilradical of q̃. Since π(n(q̃)) is a nilpotent ideal of q we have π(n(q̃)) ⊆ n,
that is, n(q̃) ⊆ π−1(n). Because π−1(n) = ñ and ñ is a nilpotent ideal of q̃,
we conclude that n(q̃) = ñ.

Let adq̃ and adr respectively denote the adjoint representations of q̃ and r,
and let adq̃x = K(x) + S(x) denote the Jordan decomposition of adq̃x
for x ∈ q̃.

Lemma 10.8 For v ∈ ṽ one has K(v) = adrv, S(v) = R(v).

Proof. It follows from (10.10) and the fact thatR(v1)v2 = 0 for all v1, v2 ∈ ṽ

that adq̃v = adrv + R(v) for v ∈ ṽ. Moreover adrv, R(v) are respectively
nilpotent and semisimple transformations. Since R(v)v = 0 and R(v) is a
derivation of r we have

R(v) ([v, x]r) = [v,R(v)x]r

for all x ∈ r. Thus R(v) commutes with adrv, and the lemma follows from
the uniqueness of the Jordan decomposition. �

Let w̃ denote the subalgebra of q̃ generated by the subspace ṽ; we claim
that w̃ is nilpotent. Since R(v) = S(v) is a derivation of q̃, and R(v)(ṽ) =
{0}, it follows that R(v)(w̃) = {0}. Then it easily follows from (10.10) that
[w1, w2] = [w1, w2]r for all w1, w2 ∈ w̃. Thus w̃ is nilpotent.

Since q̃ = ṽ ⊕ ñ and ñ is the nilradical of q̃, at this stage we have es-
tablished that ṽ satisfies properties (I), (II) of Lemma 2.1 relative to q̃.
Hence the nilshadow q̃N of q̃ is well-defined, with Lie bracket given by rela-
tions (2.3) relative to ṽ and q̃. From Lemma 10.8 and (10.10) we see that
q̃N = r as Lie algebras. Note that h̃1 = ṽ⊕ (h̃1∩ ñ), and the transformations
S(v) = R(v) = τ̃(v + n) map h̃j into itself for all j ∈ N and v ∈ ṽ, n ∈ ñ.

Thus the conditions of Definition 2.6 are satisfied by q̃ and the subspaces h̃j.
In summary, we have a solvable Lie algebra q̃, with stratified nilshadow q̃N

with respect to ṽ, and a surjective homomorphism π : q̃ → q. Moreover q̃

has nilradical ñ = π−1(n). We leave the reader to verify that q̃ is of type R,
using that S(v) = R(v) has only purely imaginary eigenvalues for v ∈ ṽ.
Recalling that π is a homomorphism of r = q̃N onto qN , it follows that
π(q̃N ;j) = qN ;j for all j ∈ N.

Step 3. The arguments of this step are similar to those of Steps 1 and 2,
and we leave some verifications to the reader. Define a representation σ of
m in h̃1 by

σ(x)y = π−1
1 ([x, π1y])

for x ∈ m, y ∈ h̃1.
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Each σ(x) extends uniquely to a derivation of r which we continue to
denote σ(x), and σ(x)(h̃j) ⊆ h̃j for all j ∈ N. Using [m, v] = {0} one verifies
that σ(x)v = 0 and [σ(x), S(v)] = 0 for all v ∈ ṽ. Then it is easy to check
that σ(x) is a derivation of q̃. Also σ : x 
→ σ(x) is a representation of m

in q̃ by derivations, such that

(10.11) π(σ(x)y) = [x, πy]

for all x ∈ m, y ∈ q̃.
Let g̃ be the semidirect product g̃ = m ×σ q̃, and identify g̃ = m ⊕ q̃ as

vector spaces. Then the Lie bracket on g̃ is given by [x1 + q1, x2 + q2] =
[x1, x2] + [q1, q2] + σ(x1)q2 − σ(x2)q1 for x1, x2 ∈ m, q1, q2 ∈ q̃. One checks
that g̃ is type R. Extend π : q̃ → q to a map π : g̃ → g by setting π(x +
q) = x + π(q) for x ∈ m, q ∈ q̃. Using (10.11) one obtains that π is a
homomorphism of g̃ onto g.

Note that q̃ and m are respectively the radical and a Levi subalgebra
of g̃, and that [m, ṽ] = {0}. It is now easy to see that g̃ has stratified
nilshadow q̃N with respect to (m, ṽ) (with the stratification given by {h̃j}).

The properties π−1(q) = q̃, π−1(n) = ñ are easy consequences of the
construction, and the proposition is proved. �
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poelliptiques homogènes invariants à gauche sur un groupe de Lie nilpotent
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