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High order regularity for subelliptic
operators on Lie groups

of polynomial growth

Nick Dungey

Abstract

Let G be a Lie group of polynomial volume growth, with Lie alge-
bra g. Consider a second-order, right-invariant, subelliptic differential
operator H on G, and the associated semigroup S; = e~ 1. We iden-
tify an ideal n’ of g such that H satisfies global regularity estimates
for spatial derivatives of all orders, when the derivatives are taken in
the direction of n’. The regularity is expressed as Lo estimates for
derivatives of the semigroup, and as Gaussian bounds for derivatives
of the heat kernel. We obtain the boundedness in L,, 1 < p < oo, of
some associated Riesz transform operators. Finally, we show that n’
is the largest ideal of g for which the regularity results hold.

Various algebraic characterizations of n’ are given. In particular,
n’ = s@n where n is the nilradical of g and s is the largest semisimple
ideal of g.

Additional features of this article include an exposition of the
structure theory for G in Section 2, and a concept of twisted mul-
tiplications on Lie groups which includes semidirect products in the
Appendix.

1. Introduction

The heat kernel and its regularity properties play an important role in har-
monic analysis on a Lie group G, and have been intensively studied (for
comprehensive introductions see [30, 35]). Let us mention some relevant re-
sults in the case that G is a Lie group of polynomial volume growth, and H
is a sublaplacian on G.
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A basic result due to Varopoulos is that the heat kernel corresponding
to H satisfies global Gaussian estimates for all times ¢ > 0 (see [34, 35, 30]).
Saloff-Coste [31] proved that first derivatives of the kernel, in the subelliptic
directions, satisfy similar estimates with an additional factor of t~%/2. One
might expect that m-th order derivatives of the kernel in the subelliptic
directions can be bounded with an additional factor of ¢~"/2; this is true
when G is nilpotent (see [33, 22]), but not always, by a counterexample
of [1], when G is solvable. Finally, it was proved in [23] that the m-th order
estimates for some m > 2 are all valid if and only if G is a “nilcompact” Lie
group, that is, G' equals the local direct product of a compact Lie group and
a nilpotent Lie group. (We allow the compact group to be trivial, so that
every nilpotent Lie group is nilcompact.) It is worth noting that the failure
of the m-th order estimates for m > 2 can only occur for large times ¢, since
one has Gaussian estimates for all m when 0 < ¢ <1 (see for example [20]).

In this paper we reconsider the question of higher order regularity for the
heat kernel on a Lie group of polynomial growth, and obtain positive results
for higher derivatives in certain directions. Specifically, we identify a large
ideal n’ of the Lie algebra of GG such that heat kernel derivatives of any order,
in the direction of n’, satisfy the expected estimates for ¢t > 1. In case G
is nilpotent, or more generally, nilcompact, then n’ is the whole Lie algebra
and our estimates essentially reduce to known results described above.

Our results provide a new connection between analysis on G and the
algebraic structure of G. In addition, they are technically useful in applica-
tions involving the behaviour of H “at infinity”. For example, closely related
estimates (for derivatives of order at most 2) were used in the proof of Alex-
opoulos that the first order Riesz tranforms are bounded in L, (1 < p < 00)
on a group of polynomial growth: see [1, Theorem 7.7]. The estimates are
also an ingredient in the large-time asymptotic expansion of the heat kernel
of a complex second-order operator given in [15]. In the current paper we
apply the estimates to obtain the boundedness of certain Riesz transforms
“at infinity” in the direction of n’.

Our basic estimates (see Theorems 1.1 and 1.2 below) are semigroup
bounds in Ly and, roughly speaking, rely on two main assumptions for the
operator H: (i) group-invariance, and (ii) a suitable Garding inequality
in Ly. To emphasize this generality, we give results for a general class of
second-order complex-coefficient operators H satisfying (i),(ii) (and not just
for a sublaplacian).

To state our results we fix some notation (adapted from [30, 22, 23]).
Let G be a connected, simply connected Lie group of polynomial growth
with Lie algebra g. The polynomial growth assumption is equivalent to
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the statement that g is type R, that is, the adjoint representation of g has
only purely imaginary eigenvalues ([26]). The group is unimodular and we
consider the spaces L, = L,(G;dg) of complex-valued measurable functions
where dg is Haar measure for GG; the norm of a bounded operator T': L, — L,
is denoted ||T||,—4. The left regular representation L acts in L, and we
denote by Lpo = Lpoo(G) C L, the subspace of infinitely differentiable
elements with respect to this representation (see [30], Section I.1). It follows
from Sobolev embedding theorems (e.g., Appendix B of [30]) that functions
in L, are smooth in the classical sense.

Usually we consider p = 2 and for x € g we have the skew-adjoint op-
erator dL¢g(x) acting in L,. It is often convenient to regard dLg(z) as a
right-invariant vector field, since its restriction to Lo, acts as such. Let
R(G) denote the algebra of all complex, right-invariant differential opera-
tors on G, acting in Ly.. Then R(G) is linearly spanned by the identity
operator I together with all products dLg(z1) - - - dLg(xy,) acting in L.,
where m > 1, x1,...,x, € g. In general ¢, ¢, b, V', etc., denote positive
constants whose value we allow to change from line to line.

Fix a list a1,...,as € g of elements which generate the Lie algebra g.
We consider a right-invariant operator

d’ d’
(11) H = — Z AkcklAl = — Z CklAkAl s
k,l=1 k,l=1

where Ay = dL¢(ax) and (cy) is a d’ x d’ matrix of constant complex numbers
satisfying the ellipticity condition

d’ &
Re Z Cklékg > M Z ’£k|2
k=1

k=1
for some p1,; > 0 and all € € C¥. Consider the Sobolev space
Lg;l = {()OE Lo: Ak(p € Lo, k= 1,...,d/}

of L, functions once-differentiable with respect to the A;. Then H is pre-
cisely defined as the maximal accretive operator in Lo associated with the
quadratic form g, where

d/

0u(9) = D (cudip, Arp)

k=1

for ¢ € La.; thus g4 () = (He, @) for ¢ in the domain of H.
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The ellipticity condition gives the Garding inequality

d/
(1.2) Requ(e) > i Y | Avell3
k=1

for ¢ € Lo, which ensures that the quadratic form is sectorial with vertex
at the origin. By a well-known result (see [28]) H generates a contractive,
holomorphic semigroup S, = e *# in Ly, for all z in a sector A(Q) = {2z €
C —{0}: |arg z| < Q} where Q € (0,7/2].

Let g — |g|, denote the modulus on G associated with the vector fields
Ay, .. Ay (cf. [35, 30]). Let V,(t) be the Haar measure of the ball {g €
G: |gla < t}, for t > 0. There are integers D, > 1 and D > 0 such that

T P <V (t) < ctPe

for 0 < ¢ <1 and
P <V, (t) < ct?

for t > 1; while the local dimension D, is determined by the choice of
ai,...,aq, the dimension at infinity D is an invariant of G.

Local regularity results for group-invariant operators satisfying a Garding
inequality akin to (1.2) are given in [20]. In particular, the semigroup acts
by convolution with a smooth kernel K;, S;p = K; x ¢ for ¢ € L, and
the following “local” Gaussian bounds are accurate for small times t. Given
ke Ny=1{0,1,2,...} and 4y,...,i € {1,...,d'}, there exist b,c > 0 and
w > 0 such that

(13) [(Asy - Ay K)(g)] < et /2 7 Pel2 gt o=Vl

for all t > 0 and g € GG. Therefore, in our main results we need only consider
times t > 1.

We introduce various subspaces of g. Let q denote the radical, and n C g
the nilradical, of g: they are respectively the largest solvable and nilpotent
ideals of g. Let us say that a type R Lie algebra h is nilcompact if h =
h, @b, with b, b, respectively semisimple and nilpotent ideals of h (hence
[bs,b,] = {0}). The nilcompact algebras are precisely the Lie algebras of
the nilcompact groups. Now n’ may be defined as the largest nilcompact
ideal of g; it is also given by ' = s @ n, where s is the largest semisimple
ideal of g (the proof is given in the Appendix). Note that s N q = {0}.
Finally, the nilshadow q, is a nilpotent Lie algebra such that qy = g as
vector spaces (the definition is given in [1, 2] and in Section 2 below). Let
dy.;> J € N, denote the lower central series of qy, that is, qy; = qy and
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dn.j+1 = [9n dn.jln Where [, -]y is the bracket of qy. The subspaces g, n,
s, 0, qy.; are invariants of g, and characteristic ideals of g (that is, they are
fixed by any automorphism of g). For the qy.; this remark is not obvious
and is proved in the Appendix.

Our first theorem gives regularity for derivatives in the direction of n,
plus one derivative in the subelliptic directions. The degree of regularity
depends on the position in the filtration qy.; 2 qy.o 2 dng 2 --- of qy.

Theorem 1.1 Letm € Ny and yy, ..., Yy, € nand set Y; = dLg(y;). Choose
Jir-- o dm € N={1,2,3,...} such that y; € qy;, for alli € {1,...,m}, and
put w = j1 + -+ Jm. Then there exists ¢ > 0 such that

HYVI o 'YmStH2—>2 + t1/2HY1 e YmAkStH2—>2 S Ct_w/z S Ct_m/2
orallt>1and ke {l,...,d}.
f

Note that for any y1, ...,y € n we can always choose j; =---=j,, =1
and w = m in the above theorem, because n C q = qy,; as subspaces. When
w > m the theorem gives a more precise bound.

Observe that if G is solvable, that is, g = g, then s = {0} because s is
semisimple. Thus n = n in this case. It is quite possible to have s = {0}
even when G is not solvable. Nevertheless, the following estimate giving an
exponential decrease for s-derivatives is of interest.

Theorem 1.2 Let y € s, set Y = dLg(y), and let P,Q € R(G). Then
there exist positive constants c,o,b such that

|PYQSi]|a—e < ce™

and
(PYQK:)(g)| < ce e Molast

forallt>1 and g € G.

We remark that the crucial feature of s, used to prove Theorem 1.2, is
that the corresponding Lie subgroup G5 is compact and normal in G.

Combining the above theorems we obtain

Corollary 1.3 Let m € Ny, y1,...,ym € W and set Y; = dLg(y;). Choose

Jir--->Jm € N such that y; € s © qy.;, for all i € {1,...,m}, and put
w=71+- -+ Jm- Then there is ¢ > 0 such that

1Y1 - Y Stlla—a + t1/2HY1 Y Ak Stlla—e < etV < et/

forallt > 1 and k € {1,...,d'}.
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Indeed, if yq,...,y,, are as in the statement of the corollary then we
can write y; = w; + z; where w; € nNqy,;, and 2; € 5. Then Y;---Y,,
equals Wy .-+ W, modulo terms of the form PZ;QQ where W; = dLg(w;),
Z; = dLg(z) and P,Q € R(G). Thus Corollary 1.3 follows by adding the
estimates of Theorems 1.1 and 1.2.

Next we consider kernel bounds. Let us say that K, satisfies global
Gaussian bounds if for some b, ¢ > 0 one has

(1.4) [Ki(g)] < eVa(t) /2 e teles!
forallt >0 and g € G.

Theorem 1.4 Suppose that the kernel K; of S; satisfies global Gaussian
bounds (1.4), and let m, y1,...,ym € W, w be as in the statement of Corol-
lary 1.3. Then there exist ¢c,b > 0 such that

i YK ()| + 1Y Yo AR )(g)] < et/ P2 b
forallt>1, ke{l,...,d'} and g € G.

As an interesting application of the above results, we consider certain
Riesz transforms “at infinity.” These operators possess kernels which are lo-
cally integrable (and even bounded) but are not in general integrable at infin-
ity. Our definition follows Alexopoulos (see [1], Section 8, and [2], Section 1).
If n € N we note the formal identity /2 =T(n/2)~" [[* dtt"/?~15,, and
define an operator

—n/2,00 _ Oodtt(n/Q)fIS
[(n/2) /1 t

Theorem 1.5 Assume the hypotheses and notation of Theorem 1.4, with
m > 1. Then the transforms Y -- Yo, H W2 gnd H%/22Y, ... Y, are
bounded in L, for 1 <p < oo, and from Ly to weak-L;.

In case G is nilpotent, Theorem 1.5 can be derived from the fact that
the Riesz transforms A4;, - - - Aikl-]_"“/2 and H*/24, - - A;, are bounded for
all k € N (for the latter fact see [29, 22]). On a general group of polynomial
growth, these transforms are bounded when & = 1 but not necessarily for
k > 2 (for precise results see [1, 23]).

Our final result shows that the estimates of Corollary 1.3 and Theo-
rem 1.4 fail outside n’. For x € g, let g, denote the smallest ideal of g which
contains . We denote the difference of two sets A — B ={z € A: x ¢ B}.
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Theorem 1.6 Suppose that the kernel K; of Sy satisfies Gaussian bounds
(1.4), and suppose x € g—n'. Then there exists y € g, \n with the following
property. For each j € N there is ¢(j) > 0 such that

1X7Y S, ll22 > ¢(j) 2
forallt > 1, where X = dLg(x), Y = dLg(y).

Theorem 1.6 implies the following maximality result for n’. If b is an
ideal of g such that for all y;,ys € b there is ¢ = ¢(y1,y2) > 0 such that

(1.5) Y125 20 < ct™

for all t > 1 (where Y; = dL¢(y;)), then b C w'. In particular, one obtains a
variation of a result of [23]: if (1.5) holds for all y;,y, € g, then g =, in
other words, the group G is nilcompact. These remarks are also true if one
replaces (1.5) by the weaker condition

hl{l’l inf tl/Q |’Y1}/2St“24,2 =0

Let us make some further remarks about Theorems 1.1 - 1.6.

(a) The bounds (1.4) hold in the case of a sublaplacian H = — zlzl A2
They actually hold for all second-order, complex coefficient H of the
type considered, as proved in [21, 15] using techniques of homogeniza-
tion theory. To demonstrate the independence of Theorems 1.1, 1.2
and Corollary 1.3 from this result, we chose to state (1.4) as a separate
assumption.

Note that, unlike the papers [1, 2, 15] dealing with analysis on Lie
groups of polynomial growth, the current paper does not rely on ideas
from homogenization theory. Our approach is instead based on com-
mutator arguments and a careful exploitation of the algebraic struc-
ture.

(b) We assume that G is simply connected to avoid some algebraic com-
plications. Nevertheless, the above theorems extend to non-simply
connected groups: see Section 9.

(c) Theorem 1.1 extends to a class of second-order, subelliptic systems:
see Section 9.

The higher-order regularity in the directions of n’ should extend to a
large class of hypoelliptic, group-invariant operators over GG, but we
do not attempt such generalizations here.
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(d) The following remark will be amplified at the end of Subsection 4.1.
Suppose that G is a stratified nilpotent group and that H is homo-
geneous of order 2 on G (cf. [25]). Then g = n and the proof of
Theorem 1.1 yields Lo regularity estimates for derivatives of arbitary
order, in arbitary directions. Together with standard Sobolev embed-
ding, scaling and perturbation techniques, we can deduce that K; and
all its derivatives satisfy global Gaussian bounds.

While this result is not new, the above proof differs from related
proofs in [3, 16, 18] because it is independent of the results of Helffer-
Nourrigat [27].

(e) The estimates of Theorem 1.1, Corollary 1.3 and Theorem 1.4 remain
valid if the subelliptic derivative Ay is replaced by X = dLg(zx) for
an arbitary x € g. In the solvable case g = ¢, this can be deduced as
follows: since ay, ..., aqy generate g we have that g is linearly spanned
by ai,...,aqs together with the subspace [g,g]. But [g,g] € n by
solvability, so we can write x = Z?/Zl c;a; + n for some ¢; € R and
n € n. The results follow.

In the general case, a more sophisticated argument is required: see [15],
or for alternative arguments in the case m = 0 and H is a sublapla-
cian, the references [1, 2]. Actually, it is shown more generally in [15]
that the estimates remain valid with Aj replaced by any monomial
X X, where s € N, X; = dLg(z;), x; € g.

The paper is organized as follows. In Section 1.1 we outline the proof
of Theorem 1.1. Section 2 is an exposition of the algebraic structure of G,
including the construction of the nilshadow and the “shadow”. We also in-
troduce the concept of groups with stratified nilshadow (to be used in the
proof of Theorem 1.1). In Section 3 we obtain preliminary Lo-estimates
for rescaled versions H. of H, under the assumption that G has stratified
nilshadow. In Section 4, using commutator arguments and an inductive
process, we complete the proof of Theorem 1.1 in the case that G has strat-
ified nilshadow. Then by transference arguments we obtain the theorem for
general G. Sections 5, 6, 7 and 8 are devoted to the respective proofs of
Theorems 1.2, 1.4, 1.5 and 1.6. In Section 9 we conclude with some remarks
and extensions of the results. Finally, Section 10 is an Appendix containing
Lie-algebraic results: invariance properties of qy.;, the ideals s and n’, the
construction of twisted multiplications on Lie groups, and the construction
of Lie algebras with stratified nilshadow. These results are needed in the
main text and are, we hope, of some independent interest.
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An original feature of this paper is the introduction of the class of Lie
groups (of polynomial growth) with a stratified nilshadow. We show (see the
Appendix) that every Lie group of polynomial growth is isomorphic to a
quotient of such a group. The groups with stratified nilshadow have a simpler
form of scaling at infinity than a general polynomial growth Lie group, and
so may be useful in future applications (indeed, they are used in [15]).

1.1. Outline of Theorem 1.1

Theorem 1.1 is basic for the results of this article. Since the proof of this
theorem is rather long, for the convenience of the reader we outline here the
main ideas.

(i) By use of transference arguments (Section 4.2), we reduce the proof
of Theorem 1.1 to the special case that GG has a stratified nilshadow. In this
case the nilshadow gy is a stratified Lie algebra in the sense of [25], and the
scaling on G takes a simpler form. The large ¢ estimates of the theorem are
equivalent to regularity estimates for rescaled versions H., € € (0, 1], of H.

(ii) Following Alexopoulos [1], we introduce a nilcompact group Gy, the
shadow of G, such that G = G as manifolds (essentially, Gy = M X Qy
where M is a Levi subgroup of G and )y is the nilpotent group with Lie
algebra qy ).

One can write G-invariant vector fields as linear combinations of G-
invariant fields and conversely, where the coefficients are functions that are
constant in the direction of n (or n’).

(iii) Initial estimates: in Section 3 we give initial regularity estimates
for H., in terms of a fractional GGy-invariant derivative.

(iv) Iteration argument: the core of the proof occurs in Section 4.1, where
we iterate the initial estimates to obtain higher regularity in the direction
of n.

This argument is no doubt related to standard elliptic regularity proofs.
A crucial step is to calculate the commutator [Ay, P] (or a rescaled version
[Ag e, P]), where P is a Gy-invariant derivative in the direction of n. Now
Ay is a combination of GG y-invariant fields with coefficients constant in the
direction of n (see (ii) above), so P does not act on these coefficients. In this
way, the calculation reduces to a calculation of commutators in the nilpotent
Lie algebra q.

This reduction to a nilpotent algebra allows us to estimate [Ag, P] in
terms of derivatives P’ of “lower order” than P, with respect to a certain
dictionary order. This is the key to the basic regularity estimate of Propo-
sition 4.1 for H..
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2. Algebraic Preliminaries

This section contains results on the algebraic structure of G which are needed
in the sequel. While a number of the results have appeared in [1], we take
a slightly different approach using elementary representation theory which
avoids the use of exponential coordinates and leads to several novelties.
For example, applying Lemma 10.6 of the Appendix we obtain a global
formula (2.5) relating the group products of G' and its shadow, and simple
formulae (see Lemma 2.12) relating vector fields on the two groups. The
space &1 of coeflicients is defined as the space of matrix elements for a certain
finite-dimensional representation.

Let us fix basic notation and results. If V' is a real or complex vector
space we denote by L(V') the set of linear transformations of V', and write
[A,B] = AB—BAfor A,B e L(V). If p: h — L(V) is a representation of a
Lie algebra b in V', a subspace W C V' is said to be p-invariant if p(z)(W) C
W for all x € h. The representation p is said to be completely reducible
if for each p-invariant subspace W of V' there is a p-invariant subspace W'
with V- =W @ W’. One has the following criterion (Theorem 3.16.5 of [32]):
p is completely reducible if and only if p(z) is a semisimple transformation
for every x in the radical q(h) of h. In particular, p is completely reducible
if b is a semisimple Lie algebra.

Let G be a connected, simply connected Lie group with polynomial
growth. Let (g,[-,:]) be the Lie algebra of G and ad the adjoint repre-
sentation, (adx)y = [z,y] for z,y € g. The polynomial growth property
is equivalent to g being type R [26]: we will also use this equivalence for
various groups associated with G. When convenient we use the standard
identification of g with the tangent space T.G at the identity.

For z € g, let adz = S(z) + K(x) denote the Jordan decomposition of
adz € L(g) into its semisimple part S(x) and nilpotent part K(z). Then
[S(z), K(x)] = 0, there exist real polynomials s,k with zero constant part
such that S(z) = s(adz) and K(z) = k(adz), and S(z) and K(z) are
derivations of g. If b is a subspace of g with (adz)(h) C b, then S(z)(h) C b,
K(x)(h) C b, and we denote the restrictions to b by adhx, Sh (x), Ky ().
Note that if § is an ideal of g then the restrictions are defined for all = € g.

The radical q and nilradical n of g satisfy (cf. [32], Chapter 3)

(2.1) nCq , [ggCn

If x € q then adz is nilpotent if and only if € n; thus n = {x € q: adx =
K(z)} = {x € q: S(z) = 0}. Recall that a Levi subalgebra of g is a
semisimple subalgebra m such that g =m & q.
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Finally, from Lemma 10.4 of the Appendix we have the ideals s and
n = s @ n with the properties described there.

2.1. The nilshadow and shadow

The construction of the nilshadow is based on the following lemma. We
will apply some standard properties of Cartan subalgebras of Lie algebras
(see [5, 36]).

Lemma 2.1 There exists a subspace v of q with the properties

(I) g=0vDn,

(IT) The subalgebra vo of q generated by v is nilpotent.

If m is a Levi subalgebra of g one can choose v with the additional property
(III) [m,v] = {0}.

Proof. Let m be a Levi subalgebra and define a subalgebra g of q by

Qo = {z €q: [m,z] = {0}} .

Let b be a Cartan subalgebra of q,, that is, h C q, is nilpotent and equals
its own normalizer N(h) = {z € q: [z,h] C b} in q,. We claim that

(2.2) gq=bh+n

where + denotes a vector space sum which is not necessarily direct. Then the
lemma follows by choosing v C h such that ¢ = v @ n; note that [m,v] = {0}
because v C q.

It remains to justify (2.2). Since m is semisimple, the representation
p: m — L(g) given by p(x) = adz, € m, is completely reducible. Since q
and n are p-invariant there exists a p-invariant subspace V with ¢ =V @& n.
Then p(V) = [m,V] = {0} because [m,q] € n. Thus V C g, so that
q = qo + n. Therefore 7'(q,) = q/n, where 7': ¢ — q/n is the quotient
homomorphism. It follows that 7’(f) is a Cartan subalgebra of q/n, since
images of Cartan subalgebras under surjective homomorphisms are Cartan
subalgebras. But g/n is abelian because [q,q] C n, and hence 7’'(h) = q/n.
This implies (2.2). |

Lemma 2.2 Let v be a subspace of g such that the Lie subalgebra vo of g
generated by v is nilpotent. Then

S(@b=0 , [S(a),5(b)] = 0=[5(a), K(0)]

for all a,b € v, and the maps v — L(g) given by a — S(a), a — K(a),
a € v, are linear.
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Proof. If z € w then adypx € L(w) has Jordan decomposition
adpr = Sy (z) + Ky (2)

Since tv is nilpotent, one has adpzr = Kyp(z) so that Sp(z) = 0. In
particular S(a)b =0 for all a,b € v.

Next, consider the complexified Lie algebras tog =10 @ C, g = g® C
with toc C g¢, and define a representation p: toc — L(g¢) by p(z)y = [z, y],
T € 1og, y € ge. For A in g¢ define V) to be the subspace of all u € g for
which there exists m € N with

(pl) = A(x))"u = 0

for all z € toc. Then V), is p-invariant. Since tuc is a complex nilpotent
algebra, Theorem 3.5.8 of [32] gives a direct sum decomposition

QC:@VA

A€A

for a finite subset A C g¢. But p(z) has Jordan decomposition p(x) =
S(z)€ + K(x)® for x € we where superscript C denotes complexification of
a linear transformation. From the uniqueness of Jordan decomposition in
L(Vy) it follows that

whenever A € A, u € V) and x € toc. Therefore S(z)® commutes with S(y)©
and with K (y)® for all z,y € ¢, and z — S(z)%, z — K(x)C are linear
maps on toc. The statements of the lemma follow by restriction to v. |

Suppose v satisfies properties (I) and (II) of Lemma 2.1. Then, as in

Section 2 of [1], there is a Lie bracket [-, -]y on q satisfying
v,y = K(vi)n = [vr, ] = S(v1)na,
(23) [Ula U2]N = [Ula U?]7
[m, n2]N = [711,”2],

for all v1,v9 € v and ny,ny € n. (The verification of the Jacobi identity
for [-,-]n is a special case of Lemma 10.5 of the Appendix, as noted there.)
The Lie algebra q5 = (q, [, -] ) is nilpotent and is called the nilshadow of g;
we also call it the nilshadow of g.

Let qy.;, j € N, denote the lower central series of qy, that is, the ideals
of qy defined by qy, = qy and qy ., = [9,qy, ]n. Let 7 € N denote the
nilpotent step of gy, so that qy.,. # {0} and qy., = {0} for all s > r + 1.
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Although the bracket |-, -] y may depend on the choice of v, the subspaces
dy.; are independent of the choice of b and hence are invariants of g. More-
over the qy.; are characteristic ideals of g. Proofs of these facts are given in
Subsection 10.1 of the Appendix. Elementary properties of qy.; are given in

Proposition 2.3 Let qy be defined by (2.3) relative to a subspace v which
satisfies conditions (1), (II) of Lemma 2.1. Then

202 [q,9] 2qne 2 - 2 qny 2 Angyr = 10}

and
[d. 40 AN, k] C Ntk

for all j,k € N. One has that Sq(v) € L(q) is a derivation of qy for all
v € v. If v satisfies (III) of Lemma 2.1 then adq(m) is a derivation of qy
for all m € m.

If U C qy 1s a subspace such that qy = U + qu.o then U generates the
Lie algebra qy-.

Proof. It follows from (2.3) that qy., C [q,q], because K (v1) is a polyno-
mial in adv; with zero constant part. The remaining inclusions are from (2.1)
or are obvious. The statements about derivations are straightforward to ver-
ify from Lemmas 2.1 and 2.2.

Let a2 U denote the subalgebra of q 5 generated by U, where U +q ., =q -
If z1,..., 2, € qy we write x; = y; + 25, ¥; € U, z; € qy, and observe that

(21, [T, [Tr—1, T - vy — [yn, (Y2, - k-1, kv - vy € ANkt1

Since qy.,,; = {0} it follows by backwards induction on k that g, C a for
all k € {1,...,r}. In particular a = q5 and U generates qy. [

Henceforth we fix a Levi subalgebra m of g and fix v satisfying all prop-
erties of Lemma 2.1, and consider the nilshadow qy defined by (2.3). We
extend the bracket [-, -]y to g by setting

(21 + q1, 22 + @] n = [21, 22] + [q1, 2] v

for xy,29 € m, q1,¢2 € qn. The Lie algebra gy = (g, [, |n) will be called
the shadow of g. Note that gy = m & qy with m, q5 ideals of gy and
[m, qy]n = {0}. Thus the shadow is a nilcompact algebra.

Let Gy be the connected, simply connected Lie group with Lie algebra
gy; we call Gy the shadow of G. We write xy for the group operation
of Gy and g~V for the Gy-inverse of g. Let Qn, M denote the analytic
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subgroups of G with Lie algebras q,, m respectively. They are closed,
simply connected normal subgroups of Gy, with Gy = M xy Qn and M N
Qn = {e}. Thus Gy is the internal direct product of M and Qx. Note that
@y is nilpotent and M is semisimple and compact (because m is a type R
semisimple algebra the Killing form a € m — Tr((ada)?) is negative-definite,
and the compactness follows by Theorem 4.11.7 of [32]).

2.2. Comparison of Lie group and algebra structures

In this subsection we compare the Lie structures of G and Gy and show
how to identify G = Gy as manifolds.
Fory=m+v+n € gwithmem, v ev nen we define

To(y) = adq(m) + Sq(v) € L(qy) ;

by Proposition 2.3 this is a derivation of qy. From (2.1) and Lemmas 2.1
and 2.2 one verifies that 79: gy — L(qy) is a representation of g, and
of g, in qy. Extend 79(y) trivially to a derivation 7(y) of gy by setting
7(y)(m +q) = 10(y)q, m € m, g € q. Thus we obtain a representation

TIgN — ‘C(QN)

of gy, and of g, in gy by derivations of gy. A straightforward calculation
shows that 7 relates the Lie algebras g and gy in the sense of Lemma 10.5
of the Appendix, that is,

(2.4) [z, y] = [z, yln + 7(x)y — T(y)z

for all z,y € g. Moreover 7 verifies the condition 7(7(z)y) = 0 of that
lemma, since 7(x)y € n and 7(n) = 0 for all n € n. Also observe that
T(z)y=0foral z € gand y € md v.

We will apply Lemma 10.6 of the Appendix to obtain a Lie group ana-
logue of (2.4). Let Aut(gy), Aut(Gx) denote the groups of automorphisms
of gy and Gy respectively. Since Gy is simply connected 7 determines
a homomorphism T: Gy — Aut(gy) such that T(expg, z)y = e”@y for
all x,y € gy. Again by simple connectedness, Aut(gy) is isomorphic to
Aut(Gy) and T determines a homomorphism T': Gy — Aut(Gy) such that

T(g)(expgy y) = expe, (T(g)(y)) for all g € Gy and y € gy. For any
x,y,2 € g we calculate

T(e™ (@)
T(T(expg, ©) expg, Y)(expg, 2) = expg, (e ¥z)
= eXPGN<€T(y)Z)

= T(expg, y)(expg, 2)

where in the second line we have used that 7(7(x)w) = 0 for all z,w € g.
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Therefore T' verifies the hypothesis T(T'(g)h) = T(h), g,h € Gy, of
Lemma 10.6 of the Appendix. Applying that lemma with A = Gy we
obtain a Lie group G’ = (G, *) with underlying manifold Gy and group
multiplication x given by

(2.5) gxh=T(h'"")g*yh

for all g,h € Gy; the identity element of G’ is the identity e of Gy, and
the Lie algebra g’ of G’ is related to gy by (2.4) (after the identification
g =T.Gn = gy as vector spaces).

Therefore G’ is Lie isomorphic to G, because GG, G" are simply connected
Lie groups with isomorphic Lie algebras. In the sequel we identify G = G'.
Thus G = Gy as manifolds, with multiplications related by (2.5) and Lie
brackets by (2.4). Often we abbreviate g x h = gh, g, h € G.

It follows from Lemma 10.6(IV) that T and T are also homomorphisms
of G. For example

T(gh) =T(9)T(h) = T(g*n h)

for all g, h € G.

For the next lemma we note that 7(g) is a subalgebra of the Lie algebra
L(g) of linear transformations. The kernel of 7 is the largest nilcompact
ideal n’ of g:

Lemma 2.4 One has 7(g) = 7(m) & 7(v) with 7(m), 7(v) mutually com-
muting ideals of T(g). Moreover

n ={xreg:7(z)=0}

Proof. Since g=m® v @ n and 7(n) = {0} we have 7(g) = 7(m) + 7(v).
Since [m,v] = {0} it follows that 7(m), 7(v) are mutually commuting ideals
in the Lie algebra 7(g). Moreover 7(m) is semisimple since m is semisimple,
while 7(v) = {S(v): v € v} is abelian by Lemma 2.2. Therefore 7(m) N
7(v) = {0} and 7(g) = 7(m) & 7(v). From this direct sum decomposition
and 7(n) = {0} we get

ker(r) = (ker(r)Nm)® (ker(r)Nv) @ n
= {zem:[z,q9={0}}®{vev: S(v)=0}@n
= sP(Nn)dn=sBn=n" |
where 5 = {z € m: [z,q] = {0}} by Lemma 10.4 of the Appendix. n

By this lemma, n’ is an ideal of both g and gy. From 7(n') = {0}
and (2.4) we also see that [z,y] = [z, y]n for all z,y € n’.
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Let N' = expg, (n') denote the normal analytic subgroup of Gy with Lie
algebra n’. It easily follows from Lemma 2.4 that

(2.6) Tn)r=x , Tn)g=g

for aln € N', x € g and g € G. Therefore (see Lemma 10.6 of the
Appendix)

nyxny = T(ng)(ny *yny ) =ny xyny N
for all ny,ny € N’, so that the group operations of G and Gy coincide on
N'. Thus N’ is also a subgroup of GG. Since its Lie algebra is the ideal n’ of
g, it is a normal subgroup of G.

2.3. Decomposition of the Lie algebra

We produce a useful decomposition of g into 7-invariant subspaces, following
Proposition 2.3 of [1]. The representation 7 is completely reducible by the
criterion at the beginning of Section 2, since 7(y) is a semisimple transfor-
mation for all y in the radical qy of gy-.

Lemma 2.5 There exist T-invariant subspaces b;, j € N, of q such that
by =0 (hyNn) and qy,; =b; S qn, 1 for all j € N.

Proof. Since the subspaces q.; and n are 7-invariant, complete reducibility
implies the existence of T-invariant subspaces &1, h;, j > 2, withn = €, ®qy.,
and qy.; = b; ® qyy1, J > 2. Setting b, = v © €, we have £, = h; Nn and
d=4dy1 =01 S ano- u

If subspaces h; are chosen as in the lemma, then f; generates the Lie
algebra q, by Proposition 2.3, and setting £; = §; N n we obtain decompo-
sitions

I=h&h® - &h, , n=H By =6 Db, - Db,
and
(2.7) g=moo Bl OO0,

into 7-invariant subspaces.

Note that 7 is determined by the pair (m,v) satisfying the properties of
Lemma 2.1. Significant simplifications in analysis on GG occur in the following
case:
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Definition 2.6 We say that g has stratified nilshadow with respect to (m, v)
if there erist subspaces by; satisfying all properties of Lemma 2.5 and in
addition

(2.8) [0, b1lv S by
for all 3,k € N. In this case we say that G has stratified nilshadow.

If Definition 2.6 is satisfied, then the nilshadow q is a stratified nilpotent
Lie algebra with stratification {h,} jen, in the usual sense (see [25]). Note our
definition requires that the stratification {h;} be appropriately compatible
with (m,v).

In the sequel we fix b, satisfying all properties of Lemma 2.5.

For the next result the type R property of g is essential.

Lemma 2.7 There exists a positive-definite inner product (-,-) on g such
that all subspaces in the decomposition (2.7) are mutually orthogonal, and

((x)a,b) = =(a,7(x)b) , (T(g)a,T(9)b) = (a,b) ,
forall a,b,xz € g, g € G.

Proof. It suffices to prove that any 7-invariant subspace U of g has an
inner product (-,-)y such that (7(x)a,b)y = —(a,7(x)b)y for all x € g,
a,b € U; then apply this result to each subspace in (2.7) and let (-, -) be the
orthogonal direct sum of the subspace inner products.

Thus let U C g be 7-invariant. The complexifications 7(v)¢ = S(v)C,
v € v, are mutually commuting, semisimple transformations of Uz with only
purely imaginary eigenvalues. Hence there is a basis uq,...,us of Uc and
linear maps Ay, ..., As: 0 — R such that

7(0)%u; = iAj(v)u,

for all v € v, j € {1,...,s}. If (+,-); is the inner product on Uc such that
the basis uy, ..., us is orthonormal, then (7(v)a,b); = —(a, 7(v)b)1, a,b € U,
v €v. For a,b € U define

(a,b)yr = /M dm (T(m)a, T(m)b),

where dm is normalized Haar measure on the compact group M. Then (-, )y
is an inner product such that (7(x)a,b)y = —(a, 7(z)b)y for all z € m. One
has (7(v)a,b)y = —(a,7(v)b)y for v € v, because [m,v] = {0} implies that
7(v) commutes with T'(m), m € M. Since 7(g) = 7(m)-+7(v) by Lemma 2.4,
the lemma is proved. [ |

Henceforth we fix the inner product (-,-) as in Lemma 2.7.
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Corollary 2.8 Let dg denote Haar measure for the group Gy. The trans-
formations T'(g), g € Gy, preserve dg in the sense that dg(T(g)A) = dg(A)
for Borel measurable A C Gy, and dg is Haar measure for G.

Proof. One has dg = dm x dq where dm, dq are Haar measures for M,
QN respectively. By Lemma 2.7 the restriction T(g)|qN is an orthogonal
transformation of ¢, with respect to (-, ), hence it preserves Lebesgue mea-
sure on qy. Since @y is simply connected nilpotent, expg, : qy — Qn is a
diffeomorphism mapping Lebesgue measure to dq. Therefore the restriction
T(g)|gy preserves dq, and since T'(g)m = m, m € M, it follows that T'(g)
preserves dg.
If ¢ € C.(G) then applying (2.5) gives

[dzeton) = [dgo@n)g e
= /dgw(T(h‘lN)g) Z/dw(g)

for all h € Gy. Therefore dg is Haar measure for G. [ |

In the sequel we fix the measure dg and consider the spaces L, =
Ly(Gn;dg) = Ly(G;dg), 1 < p < oo.

Finally, from the tools of this subsection we derive another characteriza-
tion of n’ which is needed for the proof of Theorem 1.6.

Lemma 2.9 Let x € g. Then x € v if and only if the transformation
adqz € L(q) is nilpotent. If x ¢ v, there exists n € n such that (adz)n ¢
dn. for all j € N.

Remark Since n, qy., are ideals of g, it is clear that n ¢ qy., and (adz)’n €
n for all j € N.

Proof. If z € ' then x = m +y, m € s, y € n, and since [s,q] = {0} we
have adgz = adgqy = Kq(y). Hence adgz is nilpotent.

Suppose that = ¢ n'. We claim that 7(z)(¢) # {0}. Otherwise, if
7(z) (1) = {0} then 7(x)(h,) = {0}, because h; = v & ¢ and 7(y)(v) = {0}
for all y € g. Since h; generates qy and 7(x) is a derivation of q, it follows
that 7(z)(qy) = {0}. But 7(y)(m) = {0} for all y € g. Thus 7(z) = 0,
which contradicts Lemma 2.4 and proves the claim.

Therefore we choose n € ¢; C n with 7(z)n # 0. By Lemma 2.7, 7(x) is a
skew-symmetric, hence a semisimple transformation. Therefore 7(x)n # 0
for all j € N. Since & is 7-invariant and & N qy., = {0}, it follows that

T(x)j” ¢ dn;2

for all j € N.
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From (2.4) and 7(n) = {0} we have [z, n] = [z, n]xy+7(z)n. But [z,n|y €
[gN7 n]N C qN;Q so that

(adz)n — 7(2)n € qu.

Repetition of this argument (using the 7-invariance and ad-invariance of n
and qy.,) yields

(adz)’n — 7(z)'n € qu.,
for all j € N. Therefore (adz)’n ¢ qy., for all j € N. In particular adgz is
not nilpotent, and the proof of the lemma is complete. [ |

2.4. Derivatives and distances

In this subsection we compare derivatives and distances on the groups G
and G N-
First we define a space of coefficient functions. For a,b € g define
Agp: G — R by
Aap(9) = (T'(g)a,b) = (b, T(g)a)

for g € G, and let &£ denote the complex vector space spanned by all A,
a,b e g.

Lemma 2.10 & is a finite-dimensional vector space of smooth bounded
functions on G which contains the constant functions.

&1 is invariant under the left or right regular representations of G or
G acting in L, that is, La,, Lo, Ray, Ra map & into itself.

If o € & then dLg(x)(0) = dLg,(x)(0) € &1, and & € & where 5(g) =
o(g7) =alg™'¥), g €C.
Proof. Since T(g) is orthogonal with respect to the inner product (-, -),
one has A, € L. The statements about invariance under the regular rep-
resentations are standard consequences of the fact that T is a representation

of G, and Gy, by orthogonal transformations (cf. [24, 6]). For example,
noting that

(T(h"g)a,b) = (T(g)a, T(h)b) = (T(h~""g)a,b)
establishes that
Lg<h) Aa,b = LGN<h) Aa,b = Aa,T(h)b € &

If z € g, choose a curve y: [=1,1] — G with §(0) = z. Setting h = ~(t)
in the above relation and differentiating at ¢ = 0 yields dLg(x)(Aap) =
ALy (2)(Nap) = Nar(ayp:
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Similarly one sees that Ap(g7!) = Aup(g7) = Ayu(g), g € G.

If dim(m@v) > 0 pick a nonzero a € m@ v, otherwise g = n and we pick
any nonzero a € g. Then 7(z)a = 0 for all x € g, hence T(g)a = a for all
g € G, and therefore A, , is a nonzero constant function on G. The lemma
is proved. [

Remark Elements of £ are automatically almost-periodic functions on G,
because they are matrix elements of the bounded, finite-dimensional rep-
resentation T (see for example [10, Chapter 7]). The almost-periodicity is
important for homogenization theory on G (cf. [1, 2]) but is not used in this

paper.
Lemma 2.11 Functions in & are constant along cosets of N' in the sense
that

o(g*n) =o(nxg)=o(g+yn)=0c(nxyg)=o(g)
forallo € &, g€ G andn e N'.

Proof. Since T is a representation of both G and Gy this is immediate
from (2.6). |

To compare derivatives on GG and G it is useful to introduce a basis. Let
p=dim(m) -1 € {-1,0,1,2,...}, d = dim(q), dy = dim(q/n) = dim(v),
and d; = dim(q/qy.) = dim(h,). Fix an orthonormal basis

b_p,...,bo,b1,. .., by
for g which respects the orthogonal decomposition (2.7). In particular
b_p,...,by is a basis of m, by,...,bg, is a basis of v, by,...,bs is a basis
of b, and bgy41, ..., by is a basis of n.

We assign weights w(j) € {0,1,...,r} to the b; such that w(j) = 0 for

j€{-p,...,0} and b; € b,,; for j € {1,...,d}. Then

bs = Span{bj: U)(j) = 8} ) qN;S = Span{bj: 'U)(_]) Z S} )
forall s € {1,...,r}. For j € {—p,...,d} we set B; = dLq(b;) and B;N) =
dLGN (bj)

For derivatives we use multi-index notations as follows. If h, k are integers
with h < k set

J(h k) = [ J{nh+1,.. . k"
n=0

and when k > 1 let J(k) = J(1,k). If o = (i1,...,1,) € J(h, k) then the
length of « is defined by || = n (then |a| = 0 if «v is the empty multi-index).
If @ = (iy,...,i,) € J(d') set A* = A;, ... A;, where A; = dL(a;), and set

a[o] = [ai,, (@i, as, ,,ai,] -]
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Similarly if o = (iy,...,i,) € J(—p,d) we set
B*=B,...B;, , BMe=pM M
and define the weighted length
ol = w(i) + - +w(in) € Ny
We write .J(n) = J(dy + 1,d). Then for a € J(n) the derivatives B*, B
are in the direction of n.

Lemma 2.12 Ifa € g, ¢ € Lo then

(dLa(a)p)(g) = (dLay (T(g7™)a)p) (9)
for all g € G and

d
N
dLg(a)p =Y ;B¢
Jj=-p
where 0 = Ny, o € E1. The o are constants for j € {—p,...,do}. Moreover

d
dLay(a)p =Y ;B
Jj=-p

with 5’j = Aa,bj S 51.
Proof. The first equation is a consequence of Lemma 10.6 applied to the
groups A = Gy, A’ = G. Observing that

d d
T(g"™)a= Y (T(g7™)a, b)bj =Y Ny al9)b;

Jj=-p Jj=-p

gives the second equation. Since T'(g)y = y for all y € m @ v it follows that
Ay, o = (bj,a) is constant when j < do.

Writing a = T(g7'%)T(g)a, we deduce from the first equation of the

lemma that (dLg, (a)¢)(g) = (dLa(T(g)a)p)(g). Since
T(g)a =3 _ Aas,(9) by

we get the desired expression for dLg, (a). [

Let &€ denote the subalgebra of L., generated by &;; it is spanned by all
products o1 ---0k, k € N, 01,...,01 € &;.

Let R(G), R(Gn) denote the algebras of complex right-invariant differ-
ential operators on G and Gy respectively. Then R(G) (respectively R(Gy))
is spanned by {B® a € J(—p,d)} (respectively {B™M o € J(—p,d)}). By
combining the last three lemmas we obtain



950 N. DUNGEY

Corollary 2.13 The subalgebra € C Lo, is invariant under the left and
right reqular representations of G and Gy, and dLg(v)o = dLg,(x)o € €
whenever o € £, x € g. Fach o € £ is constant along cosets of N’ in the
sense of Lemma 2.11.

Moreover R(G) (respectively R(Gy)) is contained in the span of all
differential operators of the form oP, o € £, P € R(Gy) (respectively
P e R(G)).

Therefore Lo = Lo.no(Gn), that is, the C™ subspaces of Lo for the
representations Lq, Lg, coincide.

Next we compare various distances. Recall that g — |g|, denotes the
modulus on G associated with ay,...,aqy. Thus

1 d’ 1/2
L =inf [ dt t2)
910 = in /0 (;&()

with the infimum over all absolutely continuous paths v: [0,1] — G with

¥(0)=e, y(1) =g and F(t) =D &) Al

(cf. [30], [35]). Similarly, let g — |g| denote the modulus on G associated

with b_,, ..., b4, g — |g|y the modulus on Gy associated with b_,, ..., b,
m +— |m|y the modulus on M associated with b_,, ..., by, and ¢ — |q|gy
the modulus on @)y associated with by, ..., bg,.

Lemma 2.14 (I) For each compact neighborhood U of e there exists ¢ =
c(U) > 0 with

c gl < lgla < clgl
for all g € G with g ¢ U.
() 9P = gy = mf3 + lalby for all g = mox g € G with m € M,
q € Qn-
(III) The volume function V,(t) = dg{g € G: |g|l. <t} satisfies

P <V (t) < et?

for allt > 1, where

D = deim(qN;k/qN;k—i-l) = Zw(j) .

k=1 j=1

(IV) |T'(h)g| = |g| and |g* h™| = |g xxy KN for all g,h € G.
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Proof. For (I), see [35, Proposition I11.4.2]. For (II), note from Lemma 2.12
that

dy
Bi(N)|g = Z Ti(9) Bjlg
j=-p
forall g € G and i € {—p,...,d1}, where T} ; = Ay, p,. The matrix (7} ;(g))
is orthogonal. Hence if v is a path with

dy
¥(t) =D &) BV e

i=—p

then 4(t) = S22, mi(1) Bily) where 30, &(1)? = 32, mi(1)2. Therefore |g| <
lg|v, and the reverse inequality is proved similarly. The straightforward
proof that [g|% = [m|3; + |¢l3, is left to the reader.

Since @y is simply connected nilpotent, from [35, Section IV.5] we have
P <dg{q € Qn: lglgy <t} < ctP

for t > 1. Then (III) follows easily from (I), (II) and the compactness of M.
If v is a path as above, then the path 7, = T'(h) o 7y satisfies

dy
. N
() =Y o) B L

Jj=-p

where p;(t) = Z?;_p T;;(h) &(t). Then Y-, pi(6)* = >, &(t)? and we obtain

[T(h)g| < |gl- But |g| = [T(h=¥)T(h)g| < [T(h)g| so [T (h)g| = lgl-
Finally, from Lemma 10.6 we have g * h™! = T'(h)(g *x h~'¥) and the

last statement in (IV) follows. |

2.5. Stratified nilshadows and scaling

In this subsection, we study scaling on G under the assumption that g has
stratified nilshadow. That is, we assume that (2.8) holds.

Then the dilations 7. € £(qy) defined by v.(z;) = &/z; fore > 0, z; € by,
j € {1,...,r}, are automorphisms of q,. They extend to automorphisms
of gy by setting v.(z +y) =z +7:(y) for z € m, y € qu.

Since G is simply connected there exist automorphisms I'. of Gy with
['.(expg, ¥) = expg, (7ex) for all x € g. Then I'. oI's = I';5 for £,5 > 0,
I.(Qn) € Qn, and Qy is a stratified nilpotent group with the dilations
[.|oy (see [25]). Note that I'.(m) = m for all m € M.

Define V.: Ly — Ly by Vop = eP/2(poTy).

£
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Lemma 2.15 (I) V.: Ly — Lo is a unitary map, and V. (La.o) C Lo for
all e > 0.
(II) For j € {—p,...,d}, BJ(.N) is homogeneous of order w(j) in the sense
that

VBV, = v g
for all e > 0.
(III) |T'zq| = €lq| for all ¢ € Qn and e > 0.

Proof. That V. is unitary is equivalent to the statement that dg(I'-(A4)) =
eP dg(A) for Borel measurable A C Gy. Since the restriction 7.|g, has
determinant e, this follows by repeating the argument of Corollary 2.8.

Next, since I'; is an automorphism of G, one easily sees that p o I'. €
Ly (Gn) whenever ¢ € Loo(Gn). But Lgoo(Gn) = Lo by Corol-
lary 2.13, and part (I) follows.

(IT) and (III) are straightforward consequences of the definitions and the
automorphism property of I'.; details are left to the reader. [ |

Define G, (¢ > 0) to be the Lie group with underlying manifold G = Gy
and multiplication law

gxeh =TT 'g) = (T7'h))

for g,h € G. Note that G; = GG and that I'.: G — G. is a Lie isomorphism.
For the Lie algebra g, of G one has g. = T.G = g as vector spaces and the
Lie bracket is

[z, yle = 7 ([ 2,72 M y)
for all x,y € g. Since the subspaces h; are 7-invariant, one has . o 7(z) =

7(z) 07y, for x € g and hence I'; 0 T(g) =T(g) o[ for all g € G and ¢ > 0.
The group multiplications of G, and Gy are related by

grch = T (T (™)) *x (D))
(2.9) — (LLoT(T; <h-1N>>org1><g> iy h=TO () gy b,

where T®) = T oT'Z!: Gy — Aut(Gy). Observe that the argument of
Corollary 2.8 shows that dg is a Haar measure for G..

Finally, we define rescaled versions of the operator H. Set A;. =
dLg, (e 'year,) for k€ {1,...,d'} and let
d/

H, = — Z Cszk,sAz,a

k=1
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Then Ay ., H. are right-invariant operators on G., and A, = Ay, H, = H.
Because I'.: G — G and ~.: g — g, are Lie isomorphisms we have

dLc, (Y:ar)p = (dLo(ar)(poTe)) o I =V dLg(ax) Veyp

for ¢ in the domain of Ay .. This yields the scaling relations
(2.10) Ape = 'VIAV. , H.=e*V.'HV,

for all € > 0. By Lemma 2.12 we can express

d
Ak = Z Ok,j B;N)

Jj=-p

(with equality in the sense of differential operators acting in Ls.) where
ok € &1, and oy, ; constant for j € {—p,...,do}.

It follows using Lemma 2.15(II) that

d
tw(i N
(2.11) Ape =Y eHilg®) B
Jj=-p

where a,(fj). = 0y; 0 7! are bounded functions.

Also, since I'.(N’) C N’ and from Lemma 2.11 we have

(2.12) a,(j} (n*yg) = 0;(3 (%5 1) = 0,)(9)

forall n € N and g € G.

Remark If g does not have stratified nilshadow, it is still possible to define
dilation maps 7., I'. and the groups G.. But in general, the BJ(-N) are not
homogeneous in the sense of Lemma 2.15, and equations (2.9), (2.11) are
not valid.

One can express B](-N) or Ai. in terms of homogeneous vector fields on
a group Gg = M x Qg, where Qg is a stratified limit group corresponding
to the nilpotent group Qn (cf. [1, 29]). But when Qg # Qn the coefficients
in this expression involve polynomials and hence may be unbounded. Thus
the assumption of stratified nilshadow leads to a simplification in the form
of Ay . which will be convenient later.
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3. Preliminary estimates

In this section we record some initial regularity estimates for the operator H
in L2, which serve as the basis for the proof of Theorem 1.1. We begin with
results which follow by standard functional analysis from the definition of H,
and then give more subtle estimates in terms of fractional, G y-invariant
derivatives.

Assume that G has stratified nilshadow and continue all notations of
previous sections.

Lemma 3.1 The operator H. generates a bounded holomorphic semigroup
S¢ = e*He jn Ly, for z in a complex sector A(Q) = {z € C—{0}: |argz| <
0}, where Q € (0,7/2] is independent of € > 0. Moreover ||S5||a—2 < 1 for
all z € A(Q).

For each j € N and k € {1,...,d'} one has estimates

IHLSF o2 < et | AReSillone < ct™'/?
for allt >0, e > 0. One has resolvent estimates

|+ H.) Yo et
| Ap e + H) Moo + |M + H) Y Apcllomy < e XTY2
HAk,E(A[ + Hs)ilAl,z-:H2H2 S c

IA

A

forallA>0,e>0, k,le{l,...,d}.

Proof. First consider the case ¢ = 1. That H = H; generates a contrac-
tive holomorphic semigroup in L, was given in Section 1. The estimates
| HSi|la—a < ¢t ||ApSilla—a < ct™Y/2 and the resolvent estimates are
straightforward consequences of the fact that H generates a bounded holo-
morphic semigroup and/or the Garding inequality (1.2).

For general ¢ > 0, since V. is a unitary transformation of L, it fol-
lows from (2.10) that H. generates a holomorphic semigroup S%, z € A(2).
Moreover
(3.1)  S=V'Se Vo, (MA+H) ' =SV (EN+H)TV,

z

for all z € A(2), A > 0.

Once more applying (2.10) one easily obtains the estimates for H. from
the estimates for H, with constants ¢ independent of ¢. [
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Corollary 3.2 Given P € R(G), there exists p > 0 such that
| PSt|2—2 < c(14+t77) for all t > 0.

Proof. Since P is a linear combination of A%, a€ J(d'), from the bounds (1.3)
we obtain the existence of p > 0 such that || PS;||s—2 < ct P forall0 <t < 1.
For ¢ > 1 we have

[PStll2—2 < [[PSi]la—2[[St-1ll2—2 < [[PSi]l2—2
and the corollary follows. [ |

Let 7’ denote the rank of the generating list aq,...,aq, that is, r’ is
the smallest positive integer s such that g is the linear span of all aj with
a € J(d) and 1 < |a| < s. The following is the main result of this section.

Proposition 3.3 Given p € (0,1/7"), there exists ¢ = c(u) > 0 such that
dl
gl ™(1(I = Ley (@)xll2 < cllxllz + ¢ ) 1 Arexll
k=1
for all x € Lo.oo, € € (0,1] and q € Qn with q # e.

Remark The value 1/r" in the proposition is sufficient for our purposes,
but is not sharp. For example, let g = q, be a stratified Lie algebra with
nilpotent rank r > 2, and choose the generating list ar, = by, k € {1,...,d;},
of g. Then ' = r > 2, but the estimate of the proposition holds with u = 1,
by (3.3) below.

Proof. The proof is based on a global derivative estimate for sublaplacians
obtained in [1] (one can give another proof based only on local regularity
estimates from [17], but then the details are more complicated).

We will need the following elementary inequality. Let U be a unitary
representation of G in a Hilbert space H, let dU (ay) denote the generator of
the unitary group ¢t € R +— U(exp(—tag)), k € {1,...,d'}, and let Ho, CH
denote the C'*™° subspace consisting of u € H for which the vector-valued
mapping g — U(g)u is smooth. Then

d 1/2
(3.2) (I = U(g)) ully < \gla(z HdU(ak)UHQ)

k=1
for all g € G and u € Ho,. The proof of (3.2) is straightforward from the
definition of |g|, and the observation that if v: [0,1] — G is a path from e

to g~ ! with 4(t) = >, & (t) Akly(s), then

(1=Utg) == [ ds S0 == [ ds 36 Ul (s) ) U,
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Let A = Zkl | A2 be the sublaplacian on G determined by ay, ..., ag,

and A, = Zk L Af ., € > 0, the rescaled versions of A. It is well
known [35, 30] that the kernel p; of e™'2 satisfies Gaussian estimates of
the form (1.4). Let z € g be arbitary and put X = dLg(z). From the
Harnack inequalities of Theorem 7.7 of [1] we get an estimate

[(Xp)(g)] < et V2V, ()12 e tlsli/t

for all t > 1. Also, since x is a linear combination of ap with 1 < |a| <77,
it follows from (1.3) that

(Xpo)(g)| < 712V, (1) 1/2 e Vola/t

for 0 <t < 1. By integration || Xe *|lamo < c(t7/2 4¢77/2), t > 0, which
by Lemma 2.12 yields

HB](‘N)6715A||2_>2 < c(t*1/2 _i_tfr//Q)
forallt >0and j € {1,...,d;}. Using Lemma 2.15 we rescale to get

HB](‘N)eitAEH2—>2 _ ”(g—l‘éle](‘N)VE)(VE—le—ts—zAVE)H2H2

— ! HBJ('N)e—ta*?A ||2_>2

< ce! <(tg*2)*1/2 + (te*Q)*”/Q) <c(tV24m?

for all t > 0, ¢ € (0,1 and j € {1,...,d;}. Let us apply (3.2) to the
representation U(q) = Lay(q), ¢ € Qn, of Qn in Lo, with respect to the
generating basis by,...,bs of qy. Since ¢ — |q|gy = |¢| is the associated
modulus (Lemma 2.14) we obtain

(3.3) a7 10T = Ly (@)l < (ZHB x||2)

for all ¢ € Qn, ¢ # e, and x € Lo. Therefore
a7 (I = Lay (@) €24 lamn < c (0712 4 47772)
forallt > 0,e € (0,1] and ¢ € Qn, q # e. Now fix p € (0,1/r'). Since

g ™1(1 = Ley @)Xl = (lal (I = Lay (@)x112)" (1(I = Ly (@)xl2)" "
< (lg] "I = Lay (@)x12)" 2llx)l2) "
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tA

and e~ *2¢ is a contraction semigroup on Ly, we deduce that

gl I = Lay (@) €7 oz S c(t712 4 £7772)
for all ¢ > 0 and € € (0, 1]. The Laplace transform formula
(I+A)V2= c/ dtt71/2et e7tAe
0

then yields, because ' < 1,
lal 11 = Ly (a) (1 + D)7 lme < €

uniformly for all € € (0, 1]. Thus

a1~ Loy (@)xllz < ell(T+ A2yl
for all £ € (0,1], X € Ly, 4 € Qn, g # €. Since

d/
1T+ A)2X05 = (T + Ad)x, x) = Ixll3 + D 1 AeexI3

k=1

Proposition 3.3 follows. [

We can combine Proposition 3.3 and Lemma 3.1 to get the following
resolvent estimates. Introduce the operators

Li(t) = Lay (expg, (), Li(t) =1 — Li(t)

N

acting in Lo, for allt € R and i € {1,...,d}. Note that L;(t) = B is the

(™)

one-parameter unitary group in Lo generated by —B;

Corollary 3.4 There exist ¢ > 0 and p € (0,1) such that
LI + He)Hlomz + LU + He) ™ Apellama < cft]
(T + He) T Li(t) 22 + | Ape (T + He) T Li(t) -2 < cft]

forallie{l,...,d}, ke {l,...,d}, t€[-1,1] and £ € (0,1].

Proof. The second estimate of the corollary follows by duality from the first
estimate applied to the adjoint H?. To prove the first estimate, let ¢ € L.
and in Proposition 3.3 set x = (I + H.) 'y, or x = (I + H.) ' Ay, and
q = expg, (th;). Then the first estimate follows from Lemma 3.1, after
noting that

| expay (t0:)] = | expg, ([t]b)] = [t/ | expg,, (b)]
for all t € R by scaling (see Lemma 2.15(11I)). [
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4. Proof of Theorem 1.1

4.1. The case of stratified nilshadow

In this subsection we prove Theorem 1.1, assuming that G has stratified
nilshadow (Definition 2.6). The main effort of the proof is to establish the
estimate of Proposition 4.1 below. This is a regularity estimate for H., be-
cause it essentially states that a certain derivative of a function ¢ is estimated
in Ly by derivatives, of “lower order”, of H.¢ and (. This interpretation of
the proposition is made precise in (4.5) below. The proof of Theorem 1.1 is
then completed using an inductive argument on the “order”.

For the proposition we need spaces of fractional derivatives in the direc-
tion of BfN , 1 € {1,...,d}. Our spaces are special cases of the Lipschitz
spaces for semigroups studied in [7], Chapter 3. Fix i € {1,...,d} and for
v € (0,2) define a seminorm []5,,; by

1/2

1
laws = ( [ et (v Io2el?)

0
The Lipschitz space is Lo, ; = {¢ € La: [¢]2,; < 00}, with norm

ez = lloll2 + [Pl2w.i

Then Ly,,; is a Banach space and when v < 1 the norm || - [|2,,; is equivalent
to the norm
1/2

p = el + (/01 dtt (t_”IILQ(t)wlla)z)

When v = 1 the norm || - ||2,1; is equivalent to ¢ — |||z + ||Bi(N)<p||2. These
equivalences follow by simple calculations from the spectral theorem for the
skew-adjoint operator BZ.(N) (compare, for example, Lemma 7.1 of [17]). It
is also convenient to define Log,; = Ly with norm || - [[20: = || - [|2-

Finally, we need an ordering on the multi-indices in J(d). If o =
(i1,...,1,) € J(d) define [a]; as the number of k& € {1,...,n} such that
w(ix) = j and set [a] = ([a]1,...,[a],) € N§. Thus

r

jal =) la]; and o) = Zj[a]j-

=1

Let < be the dictionary order on the set {[a]: a € J(d)}, so that [o] < [F]
if and only if there exists an [ such that [o], < [f]; and [o]; = [§]; for all
j < I. Notice that [a] indicates the number of derivatives in B™® in the
direction of b; for each j € {1,...,r}.
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Proposition 4.1 Let p € (0,1) be as in Corollary 3.4. Suppose o € J(n),
i€ {dy+1,...,d}, v € {0,1], and v' € [0,v) such that v — V' < p. If
v=1I1Ietd e (0,1) be arbitrary, or if v < 1 set 6 = 0. Then there exists
¢ =cla,i, v,V 0) >0 such that

1BY llawi + D I1BY A el <
k

< c||BMH.p||p0r; + | BN@|l20 i + || BN

+e Y BN Acplla+¢) (HB(N)%Hzm’ +> HB(N)ﬁAl,ESOHQ;u,i)
l B l

ey (HB}N)B(N%Hz;a,i +y HB§N’B<NWAZ,E¢||2;M)
J 1

for all e € (0,1] and ¢ € Lo, with the sums over k,l € {1,...,d'}, B €
J(n) with |B] = |af, [6] <[], and j € {do + 1,...,d} with w(j) > w(i).

The proof is based on the following formal identity. For an operator P,
a function ¢ and

H, = — E CklAk,aAl,a>
k.l
we have

Pp=(I+H.)""P(I+ H.)p+ (I +H.)"'[H, Ply
= (I +H.)"'"P(I+ Ho)p — Y en(I + Ho) '[Ape, PlAicgp
k,l

(4.1) - Z Ckl(l + Hs)ilAk,a[Al,& P]QO
k,l

To calculate [Ay ., P] we require two lemmas on commutator identities, which
exploit the nilpotency of q,. Let ady denote the adjoint representation
of gn. The basic observation is that

(adnbi)(gn) C ANpw(iyr1 &0

for all ¢ = 1,...,d. Indeed, the first inclusion follows because b; € qp,,(z),

[qN;w(i)7qN]N C qN;w(i)+l and [qN;w(i)7m]N C [qN?m]N = {O} The second
inclusion follows because w(i) > 1 so that qy,,)+1 € dne S0
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Lemma 4.2 If X") =dLg, (1), x € gy, and o € J(d), then there are real
constants cg such that

(4.2) (XM BN =3 "y BVP
B

with the sum over 3 € J(d) satisfying |B| = |al, [|B8] > ||a||4+1 and [5] < [«a].
Moreover, if « € J(n) then 8 € J(n) in the sum.

Proof. If a = (iy,...,i,) then

(X BW)e] = ZB N x™ g BN B

tq+1 in

From the observation precedmg the lemma, there are ¢, ; € R with
[z, bi, v = Z Cq,5 0

J

with the sum over j € {dy + 1,...,d} such that w(j) > w(i,). Hence
N N
[X(N)7Bz‘(q )] _ ZCW, B; ) 7

J

and the lemma follows. [

Lemma 4.3 If XN) = dLq, (2), x € gy, and i € {1,...,d}, then there
exist real constants cqj such that

r—1

(XM Li(t)] = Li(t) Z Z Cast? BJ(N)

g=1
for all t € R, with the sum over j € {do+ 1,...,d} satisfying w(j) > w(i).
Proof. One has

and
Li(—t) XN L;(t) = dLg, (Ady(expg,, (—th))z) = dLg, (e "*NPiz)

where Ady denotes the adjoint representation of G in gy. Since qy has
nilpotent rank r and from the observations preceding Lemma 4.2, we have

_tadNbx—fL‘-i-Z —1)7¢9 (adyb;) ql‘—ﬂﬂ‘f'zzcw

with the sum over j € {dy + 1, ..., d} satisfying w(j) > w(z). The lemma
follows. |
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Proof of Proposition 4.1. Let us fix u, a, i, v, v/, § as in the hypothesis.
By >, we will understand a sum over all j € {dy + 1,...,d} satisfying
w(j) > w(i), and by » 5 asum over all 8 € J(n) with |3 = |a| and [5] < [a].

For t € R we write L(t) = L;(t), L'(t) = L.(t), and consider the operator
D, = L'(t)2 BMe, We put P = D, in the identity (4.1) and apply Lemma 3.1
and Corollary 3.4 to obtain

1Depllz < 1L+ He) " L' (#) a2 1L (6) B (I + He) o 2

+ CZ ||<] + Hs)_1||2—>2 ||[Ak,€7 Dt]Al,ESOHQ
k,l

+ CZ (I + He) " Agella—2 [|[[Aie, Dol
kel

< et ||L (BN + Ho)ollz

(4.3) + > [ Ake DJAiglla + ¢ > [Ake, Dol
k.l k

for all t € [0,1], p € Lo and ¢ € (0, 1]. Next we derive an estimate for the
commutator [Ay., Di]. From (2.11) we get

d
Aks7 Dt Z €_l+w u) B -Dt] — Zg—l-‘rw(u) U](ji [Bz(LN)7 Dt] :

u=-—p u=1

because (2.12) implies that D; commutes with multiplication by the func-
tions a,(:,i, and because [m,n)y = {0} implies that [B{"),D,] = 0 when
u € {-=p,...,0}. We have

(BN, Dy = L'(t)* [BN), BM] + BV, L' (1)%] B
where the term [B&N), BM™)a] may be expanded using Lemma 4.2. Also

(BN, L)) = 2L'(t) [BYY, L'(0)] + [[BY, L'(D)], L'(2)]

= 20'(t) [BYY, L] + [[BYY, L)) L(#)]
and applications of Lemma 4.3 yield that
1B, Z'@%xlle < et D IE(0) B xlla + et Y118 xllz
J J

for all t € [0,1] and x € Lo.o.
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Combining these observations gives the estimate
I[Ake, Dilxll2 < Z 1BX, Dilxll2

Z 12" () B3

N 0% (6%
(4.4) +thHL’ BNyl + e Y B B™ey

J

IN

for all t € [0,1], x € Lo, k € {1,...,d'}, and € € (0, 1].
Substitute (4.4) with x = ¢ and x = A;.¢ into (4.3), and observe that
vt <tV to get

|| Diglls < et | L'() BT + Ho )l

+etv Z (||L/(t)2B(N)/BQO||2 + Z ||L/(t)2B(N)ﬁAl,€(p||2)
l

B

rett=r 3 (0B B e+ 31O BB A

J

rerr 3 (180 B el S IBY B Al )

J !
for all t € (0,1] and ¢ € (0, 1]. Take norms in Ly({0,1);¢ 'dt) on both sides
of this inequality. Note that if v < 1 then t — 7" is in Lo({0,1); ¢ dt),

while if v = 1 then t!=% < t9. In either case one concludes that

BYlai < el BN + H)glaur,

rey (HBW%HM £y r|B<N>ﬂAl,ssou2;y,z-)
163 1

+cZ(HB Bl + 3155 >aAl,s¢u2;a,i)
J

for all € € (0,1] and ¢ € Lo. Therefore

|1 BM%p|la,5 < ()

where (%) denotes the right side in the estimate of Proposition 4.1.
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To complete the proof of the proposition it suffices to show that
[B(N)aAh,EQO]Q;V,i < (*)

for all h € {1,...,d'} and ¢ € (0,1]. This is achieved by a small variation
of the above arguments. Note that

| DiAnepllz < [[AneDeoll2 + [|[[Ane, Dileoll2

where the second term on the right side is estimated by (4.4). To bound the
first term we premultiply (4.1) by A . and get

1AneDeplls < (| Ane( + Ho) ™ L ()l [ L'()B™N(I + He)l2

+ CZ ||Ah,e(] + He)_1||2—>2 H[Ak,a; Dt]Al,EngQ

k.l

+ CZ ||Ah,e(] + He)_lAk,5||2—>2 H[Al,ea Dt]‘PHQ

k.l

In this inequality all terms on the right side can be estimated thanks to
Lemma 3.1, Corollary 3.4 and (4.4). Reasoning as before, we get an estimate
for t7V|| Dy Apc¢ll2, t € (0, 1], which yields [B™M* Ay, .0l < (%) after taking
norms in Ly((0,1);¢7'dt). This finishes the proof of Proposition 4.1. [

We now complete the proof of Theorem 1.1 in the case that G has strat-
ified nilshadow. Let u € (0,1) be as in Corollary 3.4. Choose ¢ € N with
qp > 1 and fix po, ft1, - . ., it satisfying

O:M0<M1<...</Lq:1

and p1; — pj—1 < p for j € {1,...,¢q}. Let J denote the set of all triples
A = (a,v,1) where o € J(n), v € {0, 1, ..., pg—1} and i € {do + 1,...,d}.
We write |A] = |a| and set

ola = BN @]l
for all ¢ € Ly, Define an r-tuple [A] = (p1,...,p), the “order” of A, by
[A] = [a] +reyu € R"

where e; denotes the j-th standard basis vector in R". Then O={[A]: Ae J}
is a countable subset of R". Moreover O is a well-ordered set under the dic-
tionary order <, where (p1,...,p,) < (p},...,p)) means that there is an !
with p; < p; and p; = pf; for all j < [.
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With this notation, Proposition 4.1 yields the following inequality. For
each A € J with [A] # 0, there exists ¢ = ¢(A) > 0 such that

15) et Slerlase S (IHols+ olo+ 2 1Arcvlo)
k (B]<[A] k
IBI<|Al+1

for all ¢ € Lo and € € (0,1]. Note that the sum on the right side is
over a finite number of B € J, and sums over k are understood to be over
ke {1,...,d'}. Remark that in case A = («,0,17), we derive (4.5) from the
v =1 case of Proposition 4.1 and the fact that for each j € {dy + 1,...,d}
the norm || - [|2;1,; is equivalent to ¢ — |||z + ]\B§N)<p|]2.

Next we claim that for each A € J, there exists ¢ = ¢(A) > 0 and
j = Jj(A) € N such that

J
(4.6) olat 3 [desla < C<||90||2 0y ||H§90||2)
k =1

for all ¢ € Lo and € € (0,1]. Indeed, when [A] = 0 then |- |4 = | - [|2,
and the claim (with j = 1) is a consequence of the resolvent estimates of
Lemma 3.1. Suppose [A] # 0. By induction on the well-ordered set O, we
may assume the claim is true for all B € J with [B] < [A]. But apply-
ing (4.5) and then the induction hypothesis, we see that the claim is true

for A. This proves (4.6) for all A.

In (4.6), choose A of the form A = («,0,7) and set ¢ = S, ¥ € Ls.
(Note that S; maps Ly into Lo, for ¢ > 0 as a consequence of local esti-
mates (1.3), and that V.(La.s) € Lo« by Lemma 2.15(I). Hence ¢ € Lo by
scaling.) From Lemma 3.1 we have for each [ € N an estimate ||H S5, <
¢ ||¥]|2. We conclude that for each av € J(n), there is ¢(a) > 0 such that

HB(N)O[SiH?—’? + Z ||B(N)OCA]§7ES§H2—>2 S C(CY)
k

forall e € (0,1]. Now rescale using Lemma 2.15 and the identities (2.10), (3.1)
to get

(4.7) | BMN2S,||on + ¢17/2 Z IBMALS, 15 < c(a) ¢ 1o1/2
p

for all t > 1. Let yq,...,%n be as in the statement of Theorem 1.1. Then
yi €nNqy,;, and it follows by Lemma 2.12 that

Y;l - Zai,l B[(N) )
l

where 0;; € £ and the sum is over [ € {dy + 1,...,d} with w(l) > j,.
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By Corollary 2.13, the BZ(N) for [ > dy commute with multiplication by
elements of £. Thus we may express

(4.8) Vi Y=Y 0,8

where 0, € € and the sum is over a € J(n) with |a| = m and ||af >
w = J1+ -+ Jm. Therefore the bounds of Theorem 1.1 follow immediately
from (4.7). [
Remarks

(a) We have assumed that ¢ € Ly in Proposition 4.1, but the proof
shows that the estimate of the proposition is valid whenever ¢ € Ly and
the right side of the estimate is finite. Then (4.5) holds whenever ¢ € Lo
and the right side of (4.5) is finite, and we deduce that (4.6) holds for all
¢ € Ly in the domain of H?. Thus we see that the local regularity result
St(La) € Lo (t > 0) is not essential for the proof of (4.7).

(b) Let us justify Remark (d) in Section 1. Suppose that G is stratified
nilpotent, with {h;} a stratification of the nilpotent Lie algebra g = q, = n,
and that ay,...,aq is a basis of the “first slice” h; (thus d' = d;, and we
may assume that ap = b, for k € {1,...,d'}). Then G = G. = Gy = Qu
as Lie groups, Ay. = Ay, H. = H, for all € > 0, and B™N* = B for all
a € J(d) = J(n). Proposition 3.3 holds with x4 = 1: indeed, this is just
the elementary estimate (3.3). The estimate (4.6), Remark (a) above, and
interpolation between powers of H, yield that

(4.9) 1B%ell2 < e (lell2 + 1 ¢ll2)

for all ¢ € Ly in the domain of H’. This estimate is a special case of results
of [27] for homogeneous hypoelliptic operators, but is here derived indepen-
dently. The estimates (4.9), together with the fact that H is homogeneous
of order 2, are sufficient to apply Sobolev-embedding, scaling and pertur-
bation arguments, as in [3], Section 2, or [14],Section 2. The conclusion, as
in these references, is that S; has a kernel K; which, together with all its
B“-derivatives, satisfies global Gaussian bounds.

4.2. The general case

We now prove Theorem 1.1 for general G without an assumption of stratified
nilshadow. Our method is to realize G' as a quotient of a group G with
stratified nilshadow, and transfer the estimates of the theorem from G to G
with a standard transference result (see [9]). The details are as follows.
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If g is the Lie algebra of GG, Proposition 10.7 gives the existence of a
type R Lie algebra g, with stratified nilshadow in the sense of Definition 2.6,
and a surjective homomorphism 7: g — g. Let G be the connected, simply
connected group of polynomial growth with Lie algebra g. Since G is simply
connected, there is a surjective homomorphism A: G — G such that dA = 7.

As usual we write Ay, = dLg(ay), k € {1,...,d'} and consider

d/
H=— Z CLl AkAl

k=1

acting in Lo(G;dg), with K; the convolution kernel of S; = e~*. Choose
elements a;, € g with w(ax) = ag, k € {1,...,d'}. Let agy1,...,aq be a
vector space basis for the kernel ¢ = 771{0} of 7, where d’ = d’' + dim(e).
If h denotes the Lie subalgebra of g generated by ay, ..., a4, then 7(h) = g
and hence

g=7'(g) =7 '(n(h)) =h+e=bh

Therefore aq,...,aq generate g. Write /le = dLg(ax) and consider the
subelliptic operator

dl dll
H=- E Crl AkAl - E Az
k=1 k=d'+1

acting in LQ((N;';dg), where dj is Haar measure for G. Let K; denote the

convolution kernel of the semigroup S, = et , t>0. Since G has stratified
nilshadow, the estimates of Theorem 1.1 are valid for .S;.

For ¢ € C*°(G) one has

Ar(po ) = (Agp) o A
for ke {l,....d} ,and Ay(poA)=0for ke {d +1,...,d"}. Hence
(4.10) j:j((pOA) = (Hp)oA

forNgo € C*(G). For 1 < g < oo, let U be the isometric representation
of G in L,(G) given by U(g) = La(Ag), g € G. For ¢ € L(G) define the
operator U(¢) acting in L,(G) by

vt = [ div@UE
It follows from (4.10) and standard group-theoretic considerations, as in [22],
that _

St — U(Kt)
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as operators in L,(G), and more generally
Xl...XmSt:U(jZl"'j\(/mRit) 9

where X; = dLg(7(Z;)) = dU(Z;) and )?j = dLg(;) for arbitrary elements
Z1,...,Z, of g. Note that )?1 . )?m[?t is the convolution kernel of the oper-
ator X, - -- )?mgt, and is an element of Ll(é) (as follows from the Gaussian
estimates (1.3) applied to l?t) Therefore we can apply a transference theo-

rem, Theorem 2.4 of [9], to get
(4.11) 1X1 - XonSellgmg < 1K1+~ XinStllg—g

(with the operator norm in L,(G) on the left side, and in L,(G) on the right
side). From Proposition 10.7 we have 7(qy,;) = dy,; for all j € N, and
7' (n) = n. Therefore if z1,...,2, € n with z; € qy,, then there exist
T; € nNqy,, such that z; = 7(;) for all 4 € {1,...,m}. Then applying
Theorem 1.1 to H, we deduce from (4.11) that

|X7 -+ X Stl|a—2 < ct™vw/?

for t > 1, with w = j; + -+ + j,. Similarly, we can get the second estimate
of Theorem 1.1 by putting X,,, = Ag, X,, = Ay in (4.11). This ends the
proof of Theorem 1.1. [ |

5. Proof of Theorem 1.2

Let G5 be the analytic subgroup of G with Lie algebra s. The key to proving
Theorem 1.2 is the remark that (G5 is compact and normal, because s is a
type R semisimple ideal of g.

To avoid triviality, we assume that dim(s) > 1. Let Y = dLg(y) where
y € 5, and let P, € R(G). Our first goal is to obtain the Lo-estimate

(5.1) |PYQSi]|a—e < ce™

for some ¢,0 > 0 and all ¢t > 1.

Let P: Ly — Lo denote the orthogonal projection onto the subspace
of Ly consisting of functions which are constant along the cosets ¢Gs = Gsg
for all g € G. If ¢ € Ly is continuous and compactly supported, it is easy
to see that

(Pe)(g) = /G ] ds p(gs) = /G ] ds p(sg)

for all g€ G, where ds is Haar measure for G, normalized so that ds(Gs) = 1.
The main step to prove (5.1) is the following lemma, which extends argu-
ments of [23, Section 4].
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Lemma 5.1 The projection P: Ly — Lo commutes with X = dLg(x)
for any x € g, and hence commutes with H and S;. There exist c,w > 0
such that

1Se(I = P)ll2—2 < ce™

for allt > 0.
Proof. The first formula for Py easily implies that Lg(g)P = PLg(g) for
all g € G. Therefore P commutes with dLg(z), with H and with S; = e,

Let eq,...,e, be a vector space basis for s and set E; = dLg(e;), Fj =
dL¢,(ej). Since G is compact and connected, the operator

_ Zq: F]-Q
j=1

acting in Ls(Gs;ds) has a compact resolvent. Moreover, there exists A > 0
such that Hs > AI on the orthogonal complement in Ly(G5) of the constant
functions (see [30], Section IV.3).
Let p € (I = P)(C>(G)) C CX(G) and define ¢, € C®(Gs) by p,(s) =
©o(sg) for all g € G, s € Gs. Observe that F i(pg) = (Ejp),, and that ¢, is
orthogonal to constants because 0 = (Py)(g st ds pgy(s). For ¢ € C.(G)
we have the integration formula

/dw / dg/ ds(sg)
G/Gs Gs

where ¢ = gGs = Gsg and dg is Haar measure for the group G/G; (see for
example [24]). Combining these remarks we obtain

éH@s@H% = é/G/Gs dg /Gs ds |(E;¢)(sg)I?
- Z/G/Gﬁdg [ sl

> ) / d / ds () () = A [l
G/Gs Gs

for all p € (I —P)C. Next, the argument of Lemma 4.2 of [23] shows that
for each o € J(d') with |o| > 1, there is | = [(a) € N such that

1A%¢llz < e lloll2 + cc [ H o]l

for all ¢ € C2° and € > 0, where ¢. > 0 depends on ¢.
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Since each E; is expressible as a linear combination of A% with |a| > 1,
it easily follows that there is an [ € N such that

q
S IEl3 <ellells + c 1 H oll3
j=1
for all ¢ € C° and ¢ > 0, with ¢. > 0 depending on ¢. Fixing ¢ < \ we
obtain the existence of A’ > 0 such that

(5.2) 1 ell2 > X il

for all ¢ € (I — P)C®. Note that S; = S;(I — P) is the holomorphic
semigroup generated by the operator H(I — P) in Ls. Then the estimate
157]]2—2 < ce @t is a consequence of (5.2) and a spectral lemma for holo-
morphic semigroups, Lemma 4.2 of [14]. [ |

Remark The lemma and its proof remain valid with G, replaced by any
compact, connected normal subgroup K of GG, with P the projection corre-
sponding to K.

Continuing with the proof of (5.1), since y € § we have YP = 0. Hence

because P commutes with () and with S;. From Corollary 3.2 we have for
some p > 0 an estimate ||[PYQS|la—2 < ¢(1+¢77) for all ¢ > 0. Then if
d € (0,1) we see that

[PYQSil2—2 < [[PYQSslla—2 [[Sa-sye (I —P)l2—2

< (14 (6t)7P) e -0

for all ¢ > 0, where w is as in Lemma 5.1. After fixing § this implies (5.1)
with ¢ = (1 — §)w (in particular, we see that o can be chosen arbitrarily
close to but less than w).

Finally, we obtain the kernel bounds of Theorem 1.2 by interpolat-
ing (5.1) with the local bounds (1.3). Write P’ = PY @ € R(G). Integration
of (1.3) yields for some w > 0 that

||Kt||2 S Ct_D“/4 €wt

for all £ > 0. Let § € (0,1/4) to be chosen. By convolution and apply-
ing (5.1) we get
[P Kille < 1P Kq-stllz [ Katll2

< ||P'Sa—asytll2—2 | Ksel|3 < ce™

for some o1 > 0 and all t > 2, provided ¢ is chosen sufficiently small.
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From (1.3) we get the existence of p,w,b > 0 such that
(P (g)] < et P elertolart
for all £ > 0 and g € G. Let ¢ € (0,1) to be chosen, and observe that

(PE)(9] < (IP'Kille) " |(P'E)(9))°

< Ce—(l—&)olt (5t)—p eEwt€—§b|g\3/t
for all t > 2 and g € GG. Fixing ¢ small enough so that
09 = (1 — (5)0'1 —dw > 0,

we finish the proof of Theorem 1.2. [ |

6. Proof of Theorem 1.4

It is not difficult to obtain the correct decrease in ¢ for the L., norm of the
kernels in Theorem 1.4. Indeed, for any right-invariant differential opera-
tor P, one can use the convolution identity PK; = PK,/; * K;/5 to estimate

|PKilloo < [PKyallol| Kol < | PStyallaall Keyall2l| Kep2ll2

Thus, when K, satisfies Gaussian bounds (1.4), and y,. .., y,, are as in the
statement of the theorem, one can deduce that ||Y; ... Y, Kil|oo < ct™%/2t=P/2
for ¢ > 1. But to derive Gaussian bounds, we will need more elaborate ar-
guments.

First, the following lemma gives the case m = 0 of Theorem 1.4. Since
the proof follows the method of Saloff-Coste explained in [31, 35, 30|, we do
not repeat the details.

Lemma 6.1 Suppose that the global Gaussian bounds (1.4) are satisfied.
Then there exist c,b > 0 such that

[(Ax K (9)] < et 2V (1)1 e tlolart
forallke{l,....,d'},t>0and g € G.

Note that in the statement of Theorem 1.4, the modulus |- |, can equiv-
alently be replaced by the modulus | - |, because ¢ > 1 and the moduli are
equivalent at infinity (Lemma 2.14(I)). In this rest of this section we prefer
to work with |- |.

For r > 0 let B(r) = {g € Gn: |g| < r}. The next lemma, which is a
slight elaboration of results of [23], shows that the modulus can be approx-
imated by “cutoft” functions whose G n-derivatives satisfy nice estimates.
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Lemma 6.2 There exist 1y > 175 > 0 and a family {nr}r>1 of C* functions
on Gy satisfying 0 < ng < 1, the support of nr is contained in B(m R), and
nr(g) =1 if g € B(R), for all R > 1. For each o € J(—p,d) there exists
Co > 0 such that

HB(N)a Nelleo < co RNl

for all R > 1, with ¢, =0 if a ¢ J(d).

Proof. Consider the subgroup Qx of Gy, the derivatives éj = dLg, (b)),
j €{1,...,d;}, and the corresponding modulus g — |¢|g, defined in Sub-
section 2.4. Let B'(t) = {¢ € Qn: |¢lgy < t} for t > 0. Since Qy is
nilpotent, by results of [23] there exist 77 > 75 > 0 and a family {n,}r>1
of C* functions on @y with 0 < 5%, < 1, the support of 7% is contained
in B'(1{R), and ni(g) = 1 for g € B'(13R). For each a € J(d;) there
is ¢/, > 0 with

(6.1) 1B 1 |loe < ¢ R71?1 for R > 1.

Define nr € C*(Gy) by setting nr(m*yq) = nix(q) for m € M, g € Q.
It easily follows from the compactness of M and Lemma 2.14 that ng have
the desired support properties, for some 77 > 7 > 0. Since the ng are
constant in the direction of M, one has BZ-(N) ng = 0 for i € {—p,...,0}.
But Bl-(N) commutes with B](-N) when 7 < 0 and 5 > 1, so that BWM)e ng =0
whenever a € J(—p,d) — J(d).

The proof of Proposition 2.3 shows that for each j € N, qy.; is spanned
by all commutators [b;, [ -, [bi._,, bi.]n -+ |v]v with s > j and 44,... i €
{1,...,d;}. Tt easily follows that for each 3 € J(d) one can write

BB — ZTC“ BWa

«

with 7, € R and the sum over a finite number of a € J(d;) with |a| >
|3]]. But (6.1) implies that || B™M*nglle < ¢, R71% for R > 1, a € J(dy).
Therefore | BMP ng|o0 < cg R7IAIL |

Let us note a consequence of Lemma 6.2 for G-invariant derivatives. If
v €g, X =dLg(z) and j € N such that x € m @ qy,;, then by Lemma 2.12

we cal express
0
X=>"rnBM+Y oB®
l

i=—p
where 7; € R, 0; € £ and the sum is over [ € {1,...,d} with w(l) > j. Then
Lemma 6.2 yields an estimate

(6.2) XN/l < cRT
for all R > 1.
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Define g = R(1 — ng) and let U, denote the operator of multiplication
by ef¥®, for any R > 1 and p > R~!. Unless otherwise stated, subsequent
estimates involving U, are understood to hold for all R > 1 and p > 0 such
that p > R™!, though for brevity we have omitted R from the notation.
Next, we show that Gaussian estimates are equivalent to U,-weighted Lo
estimates.

Lemma 6.3 Let § > 0 and let P € R(G) be a right-invariant differential
operator on G. The following conditions are equivalent:
(I) There exist ¢,b > 0 such that

K (g)| + £ |(PK,)(g)] < et P/ e Mol

forallt>1 and g € G,
(II) There exists c,w > 0 such that

U Kel2 + t° Uy PE |2 < ct P eertt
forallt>1, p>0, R>1 with p> R~L.
Proof. “(I)=-(II)” With 7 > 0 as in Lemma 6.2 we have

Vr(g) <75 gl

for all g € G, R > 1, by considering the two cases |g| < 2R, |g| > 2 R. Let
b be as in Condition (I), fix " € (0,b) and choose an w > 0 large enough so
that

—(b—V)s*/t <wp’t — 75 ps

forall s > 0,t >0, p > 0. Setting s = |g|, we obtain from (I) that
(U, K,)(g)| < ct=P/2e b/t ez Plal < 4= D/2p=V g/t gt

for all ¢ > 1 and p > 0. Integration of these bounds yields |U,K;ll2 <
¢ t7P/4ewr* for t > 1, p > 0. Similarly we obtain the desired estimate for
U, PEl

“(I)=(I)”. From the convolution identity PKt = PK,; * K;/5 and (II) we
have

[PKilloc < [[PKypall2 [ Kyl
< NUPKjolla U K yalla < ct70 t7 P72 e
for all t > 2 and p € (0,1). Letting p — 0 gives
(6.3) |PK||oo < ct™ 0t~ P72

for ¢t > 2.
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Next, let 71 be as in Lemma 6.2, let ¢ € G with |g] > 37 and set
R = (311)"!|g|. Then |g|/2 > T R. For any h € G we have |g| < |h|+|h"1g];
considering the two cases |h] > |g|/2, |h"g| > |g|/2, we deduce from the
properties of ng that

9| = 31 R = 31 max{vr(h),Yr(h~"g)} <37 (Yr(h) + ¢Yr(h "))
for all h € G. Therefore

ANPEN ) < [ dhem O [(PE ) ()] D | (Kopa ()

< NUsrp PKipall2 [ Usrip Kiy2l2
< et 04 D/2 gurlt

for all t > 2, |g| > 37, and p > 0 satisfying 37p > R™! = 37|g|™!. Fixing
o > 0 sufficiently small and setting p = o|g|/t, we obtain an estimate

(PE,)(g)] < ct™0¢P/2 eblal/t

for all t > 2 and g € G such that o|g|?/t > 1. If t > 2 and o|g|*/t < 1
then an estimate of the same form follows from (6.3). Repeating the above
reasoning with P = I, § = 0, we complete the proof of (I). [

To prove Theorem 1.4, suppose that K; satisfies global Gaussian bounds
(1.4) and let m € N, y1,...,Ym €W, j1,. .+, Jm, W = j1 + -+ + jm be as in
the statement of the theorem. We prove the desired Gaussian estimate for
the kernel Y] - --Y,, A, K;; the similar estimate for Y; ---Y,, K; is left to the
reader. Note that Lemma 6.3 (with P = 0) yields an estimate

N0 Killa < et/ v

forallt>1, p> R

For X = dLg(x), = € g, and a smooth function ¢ on G, we define
X,p= UpXUljlgo; then

Xop =X — p(Xtr)p
Write P =Yy -+ Y,, Ay € R(G),let t >0, R>1, p > R™!, and observe that
IUY1 Y2 Yo A I [5 =
= (Y"PK, Uy, Y1PK;)
= M PKy, (Y1)2, Uz PKY)
= —(YfPKt, U, PK,) —2p (Y1PKy, Yivgr) Uy, PKy)
(6.4) < YPPE 2 |Usp PElla + 2p [Yitbg| oo [Yi P K2 [|Usp P -
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By induction on m, and Lemma 6.1, we may assume that the correct Gaussian
estimate holds for PK;. Thus Lemma 6.3 gives for some w’ > 0 an estimate

|UgpPEy|]2 < et V2 (w=1)/24=D/4 W'p%t

for t > 1, p > R~!. Next, application of Corollary 1.3 and the assumption
that K, satisfies global Gaussian bounds yields

ViPElls < IViPSyallae [Kipalls < o727/ 4004

IYEPE s < |[Y2PSysllos [ Kipalls < ct™ 12wz g/

for all £ > 1. Since y; € s @ qy.;, € M@ qy,;,, We obtain from (6.2) a bound
YVigglleo < ¢RI < cph ™!
for p > R™!. Inserting the above estimates in (6.4) gives for some w” > 0 that
[UY: - Y Ap Ky ||lo < ct™ V24 w/2 =PI gt

for all t > 1. Applying Lemma 6.3, we finish the proof of Theorem 1.4. W

7. Proof of Theorem 1.5

Let us prove the theorem for the operators Y; - - - Y,,, H~%/%%: the arguments
for the operators H—"/2Y] -..Y,, are quite similar.

The difficulty with applying standard singular integration theory to
Y - - Y, H%/2* is that its two-variable integral kernel may not satisfy stan-
dard Holder continuity estimates with respect to the first variable (for a re-
lated discussion, see [1, Section 1]). We will avoid this problem by treating
the operators BMaf~llell/2e o ¢ J(n), whose kernels turn out to satisfy
Lipschitz estimates with respect to either variable.

Assume that K satisfies Gaussian bounds (1.4). Of course the kernel
Ki(g9) = Ki(g7") of the adjoint H* = — 3, € AxA; then satisfies the same
bounds, so that Theorem 1.4 can be applied to both H and H*.

Proposition 7.1 For each o« € J(n) with |a] > 1, the transform R, =
BWapr=llell/2o0 s pounded in L,, 1 <q<oo, and from L to weak-L,.

Proof. Fix a € J(n) with |o| > 1. Let K denote the two-variable integral
kernel of S;, so that K(g;h) = Ki(gh™!) for g,h € G. Let d, be the stan-
dard right-invariant distance on G given by d,(g; h) = |gh™!|, for g,h € G.
Consider the kernel BM*K/(g; h) = BN K!(g: h), where we use super-
script (g) or (h) to denote differentiation with respect to the variables g, h
respectively.
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We first prove estimates
(7.1) BN (g: h)| < et 1e1/24=D/2g=bdalg:)? /2
(7.2) (BN K(g: h) — BV K(gs )] < cdy(h; ) £ 10124 D 2 belany’ s
(73) |B(N)O[K£(h; g) _ B(N)oth/U; g)| < Cda(h; l) t—(||0¢H+1)/2t—D/26—bda(g;h)2/t

for all + > 1 and g,h,l € G such that d,(h;1) < (1/2)d.(g; h) + /2. In-
deed, using the results of Subsection 2.4 one obtains for each v € J(n) an

expression

5
where 0,5 € £ and with summation over 0 € J(n) satisfying |§| = || and
19] = II7]l. Setting v = «, we obtain (7.1) as a consequence of Theorem 1.4.

Next, for k € {1,...,d'} observe that A(h (MeaK!(g: h) is the kernel of the
operator

(—1) B(N)aStAk - St/Q (Ak t/2)
By Theorem 1.4 applied to H*, the kernel of AkSZ‘/Q satisfies global Gaussian

bounds (with an extra t=%/2 factor). Combining with (7.1) we deduce an
estimate

|A(h Na gt (g h)| < ct~Nellt1)/24=D/2=bda(gih)*/1

forallt > 1, g,h € G, and (7.2) follows in a straightforward way.
Reasoning as in the proof of Proposition 4.1, we can write

AkB(N)a — B(N)aAk + [Ak,B(N)a] — B(N)aAk + Zal/f,ﬁ B(N)ﬁ ’
B
where 0}, 5 € £ and the sum is over 3 € J(n) with [3] = |a| and [|B]| >
||| + 1. Then applying Theorem 1.4 gives that
|A Wl (i h)| < et~ lelF1)/24=D/2 g=bda(g; h)?/t

forallt > 1, g,h € G, and (7.3) follows.
The kernel K of R, is given by

1 (o.9]
K© (g h) = _/ gt 1191/2=1 gOVa (0. )
Lllall/2) Jy :
It is routine to verify from (7.1)-(7.3) that K@ satisfies standard Calderén-

Zygmund estimates with respect to the distance d,, with a singularity only
at infinity.
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More precisely
| K@ (g;h)| < (1 +da(g; b)) "
and
[K ) (g; )= K (g; )|+ K (h; 9) =K' (I; 9)| < ¢da(h; 1) (14da(g; b)) =P

for all g,h,l € G such that d,(h;l) < (1/2)d.(g;h). Then by standard
singular integration theory (see for example [8]), to prove Proposition 7.1
it is enough to prove that R, is bounded in L,. This we achieve by an
almost-orthogonal decomposition, whose form follows [2, Section 25].

We write R, = > 72| R;, where R; has kernel K(;) defined by

1 4
Ki(g;h) = ———— dt tlel/2=1 pWe et (-
09 F(||04||/2)/2 g:h)

j—1

It is easy to see that

(7.4) /dgKm(g; h) = /dgKm(h; 9)=0,

and from (7.1)-(7.3) one derives the estimates

(7.5) /dgle(g; h)l +/dg|K<j>(h;g)| <c

16) [ dglKoy(gih) — K@Dl + [ dg|Kohig)- K iso)
<2792 d, (h;1)

(7.7) /dg!K@)(g; )| da(g; h)+/dg|K(j>(h;g)|da(g; h) < c2?

for all j € N and h,l € G. Let Kj be the kernel of the operator R} Rj. In
case j < k we argue in a standard way using (7.4)-(7.7) to get the estimate

Janisutain < [ ol{ [ o - Ko}
< o2

(for a similar argument, see [12, Section ITI]). It follows that || 12} R |00 <
¢ 2=(+=3)/2_ On the other hand, (7.5) implies that

HR;Rk“l—ﬂ < ||R;||1—>1||Rk||1—>1 <
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By interpolation we obtain [|R}Rg|la—s < ¢’ 2-* =/ for j < k. Because
RjRj = (R;Ry,)" it follows that

HR;RK‘H2~>2 < omliThA
for all 7,k € N. A repetition of these arguments yields
[R; Ry [lap < " 27H7HA,

Applying the Cotlar-Stein lemma and routine arguments, we deduce that
R, =>" ; R;jis bounded in L. This concludes the proof of the proposition. B

Let Y7,...,Y,, and w = j; + -+ + j,, be as in the statement of The-
orem 1.5. As remarked after Corollary 1.3, there are w; € n M qy,;, such
that Yy ---Y,, equals Wi ---W,, modulo terms of form PZ(Q), where W; =
dLg(w;), P,Q € R(G), Z = dLg(z) for some z € s. Using an expres-
sion (4.8) for W --- W, we have

Yl"'YmZZUQB(N)a-FZPZQ 7

with o, € £ and summation over o € J(n) such that |o| = m, ||o| > w.
It easily follows from Theorem 1.2 that the operators PZQH /> are
bounded in L; and in L., hence in L, for all ¢ € [1,00]. Similarly, if
||| > w it follows from (7.1) that BW)*H=%/2% is bounded in L, for all
q € [1,00]. If ||| = w we apply Proposition 7.1. Thus Y; - - - Y, H™"/%> is
bounded in L,, 1 < ¢ < 0o, and from L; to weak-L;. [ |

8. Proof of Theorem 1.6

In this section we assume that the kernel K; satisfies global Gaussian bounds
(1.4). To prove Theorem 1.6 we exploit a non-nilpotency property, given in
Lemma 2.9 above, of elements of g — n’. The details are as follows.

Fix z € g—n’. By Lemma 2.9 there exists n € n such that (adz)'n ¢ qy.
for all j € N. Set y; = (adz)’™'n for all j € Ny. Note that y; ¢ qy, and
yj € g, Nn (where g, is the smallest ideal of g containing ).

Set X = dL¢(x), Y; = dL¢(y;) and write (adX)Z = [X, Z] for Z €
R(G). To establish Theorem 1.6, it suffices to obtain for each 7 € N an
estimate

(8.1) 1 X7Y0 Sy Ja—s > c(j) t1/?

for all ¢ > 1, where ¢(j) > 0.
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The key is the commutator identity
j—1
XYy = (adX )Yy + D ¢jom ((adX)™Yo) X7
m=0
j—1
(8.2) =Y+ ) Cm Y X0

m=0

where c;,,, are universal constants; this identity is easily derived by induction
on j € N. To establish (8.1) we show that, for large ¢, ||Y;S;||a_o > ct™/?
while ||V, X7~™S,|| < dt73/4.

We need the following estimate: for each j € Ny there is ¢} > 0 such that

(8.3) | exp(sy;)la > ¢} s

for all s > 1, with exp the exponential map of G. This is a consequence of
the fact that y; € n — gy, and can be justified as follows. Since y; € n
we have 7(y;) = 0, and then it follows from part (V) of Lemma 10.6 that
exp(sy;) = expg, (sY;) = expg, (sy;) for all s € R. Moreover by Lemma 2.14
we may replace the modulus |- |, in (8.3) with the @ y-modulus |- |, . Thus
we are reduced to proving | expg . (sy;)|oy = €} s, s > 15 since y; € gy —dqp.0;
this is a consequence of well-known estimates for the modulus on the simply
connected nilpotent group Qx (see Section IV.5 of [35]). Thus (8.3) holds.

Therefore we can apply the following result with y = y;.

Proposition 8.1 Suppose the kernel K; corresponding to H satisfies Gaus-
sian bounds (1.4). Lety € g and set Y = dLg(y).

(I) There exist k,c > 0 such that
1Y Silla—e > s

for allt,s > 0 such that |exp(sy)|* > xt.

(IT) If there exists ¢y > 0 such that |exp(sy)|s > c1s for all s > 1, then
there exists co > 0 such that

I St||2—2 > co =12

forallt > 1.

Proof. Let K;(g) = K:(g~"') denote the kernel of the adjoint semigroup S},
and define a positive-definite function W; as the convolution W; = K; * K}
for all ¢ > 0. The arguments of [13, Section 2] or [19] show that there is
¢; > 0 such that

(8.4) Wi(e) > ¢1 V, (1)~ 1/2
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for all £ > 0. Moreover, it is easy to argue that W, satisfies global Gaussian
bounds

(Wi(g)| < ¢ V()= 2e Vloli/t
for all ¢ > 0, g € G. Hence one can choose x > 0 such that
Wi(g)| < 270y Vi (£)~2/2

for all t > 0, g € G satisfying the condition |g|> > kt, where ¢; is as in (8.4).
Combining with (8.4) we deduce that

(Wi(e) — Wilg)| > 27 ey V(1) ~1/?

whenever [g|2 > kt. Now set g = exp(sy) and note that LW, (expuy) =
—(YW;)(exp uy) to obtain

2716 V()2 < [Wile)-Wilexpsy)| < [ dul(YWoexpug)| < s[[Y Wi
0

for all t,s > 0 satisfying |exp(sy)|? > kt. Observing that YW, = (Y K;) *
Ky = (Y S;)2Ky)2) * K, we have
Y Willoo < NIY Sjalla—all Kepollz 157 ll2 < e Va(t) 2 Y Syyallo—o

for all + > 0 (the estimate ||K} |y = ||K¢ll2 < ¢V, (t)""/* is a consequence
of (1.4)). Part (I) of the proposition follows immediately from the previous
two displayed inequalities.

It suffices to prove the estimate of part (II) for all ¢ > T for some T > 0,
since

1Y Sty lla—2 < 1Y St 22l Sta—t: |22 < [[YS0 [[2-2
whenever t5 > t; > 0. Let k be as in the statement of part (I) and set
t(s) = v~ exp(sy) ;.
Then part (I) and the assumption of part (II) give
1Y Sigs)lloa > cs™ > ' t(s)"?

for all s > 1. Since {t(s): s > 1} contains an interval [T, co) for some 7" > 0,
the proposition follows. [

From (8.3) and Proposition 8.1, for each j € Ny there is ¢; > 0 such that

(8.5) 1Y;Sll2—2 > c; 712

for allt > 1. The next proposition yields an estimate for the terms Y,, X?~™S,
coming from (8.2). Let R*(G) denote the subspace of R(G) spanned by all
dLg(z1) -+ dLg(xp), m € N, xq,..., 2, € g; it is an ideal of codimen-
sion one in R(G). Note that RT(G) is spanned by all A* with o € J(d')
and |a| > 1.
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Proposition 8.2 If N = dLg(n), n € n, and P € R*(G), then there is
c > 0 such that

|NPS,||gp < ct™/4 forallt>1.
Remark The factor t=3/* can be improved to ¢~ (this is a special case of
Remark (e) in Section 1), but this is not necessary for our current purposes.

The proof of Proposition 8.2 requires a preliminary lemma (whose state-
ment remains valid if n is replaced by an arbitrary ideal of g).

Lemma 8.3 If N =dLg(n), n € n, and P € R(G), then NP € R(G) can
be written as a finite sum

NP = ZPZ-NZ-

where P; € R(G) and N; = dLg(n;), n; € n.

Proof. It suffices to prove it in the case P = X;---X,, where m € N,
X; = dL¢(zj), x; € g. Since n is an ideal of g we have n” = [z1,n] € n.
Setting N” = dLg(n") we note that

NX; - X, =—-N'Xy-- - X, + X\ NXy--- X,,, ,
and the lemma is easily derived by induction on m. [

Continuing with the proof of Proposition 8.2, it suffices to prove the
estimate with P = QA for some @ € R(G), k € {1,...,d'}. Then for
¢ € Lo we have

and Lemma 8.3 yields that

NQQ = N(Z QiNi) = ZQiijNi

for some Q;,Qi; € R(G) and N; = dLg(n;), M; = dLg(m;), ni,m; € n.
Thus
INPo|3 <Y 1Q5Poll2 1M NiAwellz
2%
where Q}; denotes the formal adjoint of Q;; in R(G). Set p = Siip where
Y € Ly, and note from Corollary 3.2 that [|Q};PS|a—2 < ¢ for all ¢ > 1.
Therefore applying Theorem 1.1 we get

INPSll3 < ct= |[913
for all t > 1, ¢ € Lo, and the proposition follows. [ |
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Proposition 8.2 yields for each m € Ny and ¢ € N an estimate
(8.6) |V XS, ||lama < c(m,q) t=3/

for all ¢ > 1. Combining (8.2), (8.5), and (8.6) we see that an estimate (8.1)
holds for all sufficiently large ¢. Since the function t +— || X7Y(S|[o—s is
nonincreasing (cf. the proof of Proposition 8.1(II)), this suffices to give
an estimate of the form (8.1) for all ¢ > 1. The proof of Theorem 1.6 is
complete. [ |

9. Extensions

We briefly describe two extensions of our results: to subelliptic systems, and
to non-simply connected groups.

9.1. Subelliptic systems

It is of interest that Theorem 1.1 extends to certain s x s subelliptic systems,
where s € N.

Observe that Ay extends naturally to an operator in the space Ly(G; C?)
of C*-valued L, functions. Consider an operator H = — 2211:1 Arcri Ay,
with each ¢ an s X s matrix of complex constants: ¢y acts on elements of
Ly(G; C*) (regarded as row vectors) by matrix multiplication. As before, H
is precisely defined as the maximal accretive operator in Ls(G; C®) associ-
ated with the quadratic form ¢4 (p) = Zk,z<cklAl% Arp), assuming that g
satisfies a Garding inequality (1.2).

Then the estimates of Theorem 1.1 are valid for H, at least when G has
stratified nilshadow. One needs the following minor change in the proof of
Proposition 4.1. The identity (4.1) (with P = D, = L'(t)?B™)) is no longer
valid, but can be replaced by

Dyp = (I+H.)'DJ(I+H)yp

- Z(I + HE)_l[Ak,8> Dy]cuAiep — Z([ + Ha)_lAk,ackl (A ., D
k,l

k.l

after noting that D; commutes with ¢;;. Note also that we do not need local
regularity estimates for H for the proof of Theorem 1.1: see Remark (a) in
Subsection 4.1.

Finally, let us note that if G is stratified nilpotent and aq,...,as is a
basis for h; then Remark (b) in Subsection 4.1 applies also to systems. In
particular, one has an estimate of the form (4.9) for each o € J(d), and
one can argue that the semigroup e~ has a smooth kernel satisying global
Gaussian bounds. Details are left to the reader.
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9.2. Non-simply connected groups

Theorems 1.1 to 1.6 are actually valid for any connected Lie group G of
polynomial growth, without the assumption of simple connectedness. For
completeness, we outline here the extension of our arguments to the non-
simply connected case.

For Theorems 1.1 to 1.3 and Theorem 1.5, no changes in the proofs
are required. In particular, remark that in the transference argument of
Subsection 4.2 we used simple connectedness of G, but not of G, to obtain
the homomorphism A: G — G.

Some changes are required, however, in the proofs of Theorems 1.4
and 1.6. Before outlining these, we briefly sketch the structure theory of G:
our exposition relies on the detailed results obtained in [1, Section 3|, and
we refer to that paper for further details.

We may assume that G = G’/T" where G’ is the simply connected univer-
sal covering group of G and I is a discrete central subgroup of G’: the Lie
algebras of G, G’ are identified (= g, say). Let G’y denote the shadow of the
simply connected group G’, with Lie algebra gy, and with G’ = Gy, identi-
fied as manifolds (we often use primes to indicate objects associated with the
group ). Let 7: gy — L(gy), T : G’y — Aut(gy), T": G’y — Aut(Gly)
denote the corresponding homomorphisms, as defined in Section 2.

From the properties of the group I' given in Section 3.2 of [1], it is
straightforward to deduce that

(9.1) Tyz=z , T'Wd =4 , T()y=r

forally €T, ¢ € G' and = € g. It follows from (9.1) and the multiplication
law (2.5) (with T replaced by 7”), that

Yeng =79 =97 =9 *n7

forally € T', ¢ € G'. Hence I is a central subgroup of Gy, and the quotient
Gy = G\ /T is a Lie group with Lie algebra g,. Observe that Gy is identical
as a manifold with G = G'/T", and that the natural homomorphisms G’ — G,
Gy — Gy are identical as set maps: let us call this map A. It follows
from (9.1) that 7" induces a homomorphism 7': Gy — Aut(Gy) such that

T(Ag)(AR) = M(T"(g)H)

for all ¢, h’ € G'. Then T(T(g)h) = T'(h) for g,h € G, and the multiplica-
tions in G and G are related by the formula (2.5).
Again from (9.1) it follows that T induces a homomorphism T: Gy —

Aut(gy) such that T(Ag') =T (¢') for all ¢ € G’. Then the vector fields on
G and Gy are related by the formulae of Lemma 2.12.
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As in the simply connected case, let M, ()5 denote the analytic sub-
groups of G with respective Lie algebras m, q,. Then M, Qy are closed
normal subgroups of G such that M commutes with @y, and Gy =
M x5 Qn, but the intersection I's := M N @y is a possibly nontrivial,
finite central subgroup of Gy.

Proof of Theorem 1.4. The only change required is in the definition of
Ng in the proof of Lemma 6.2, and is due to the fact that ['y = M NQx may
be nontrivial. We now set

Nep(m *n q)

|F|Z773y )

y€el's

for all m € M, q € Qn, where |T's| < 0o is the cardinality of T's. Tt is easily
verified that nf is a well-defined function on Gy and that it satisfies the
properties of Lemma 6.2 for all sufficiently large R, say for R > Ry. (The
restriction to large R is necessary, since it might happen that n%(e) < 1 for
R close to 1.) We complete the proof of Lemma 6.2 by defining nr = n, for
R > Ry and ng = np, for 1 < R < Ry. [ |

Proof of Theorem 1.6. Let the elements x and y; = (adz)’™'n, j € Ny,
be as in the proof of this theorem. The only change required is to justify
the estimate (8.3) for non-simply connected G. Again it reduces to showing
that |expg, (sy;)loy > cs, s > 1, where |- |g, is the modulus on Qy
corresponding to by, ..., by, .

Define a subalgebra of qy by q, = {u € q: 7(y)u = 0 for ally € g}.
As in the proof of Lemma 2.9 we have (adz)y; — 7(z)y; € qy.o, and since
(adx)y; ¢ dy,o it follows that 7(z)y; & qy,. Since 7(z)(do + dn2) € Ao
we deduce that y; & qo + qy.o-

Let Q¢ be the unique maximal torus in the nilpotent group @)y, and t be
its Lie algebra. Then ()¢ is contained in the centre of )y, and the quotient
group Qy = Qn/Qy is simply connected and nilpotent (see IV.1.5 in [35]).
Moreover, it easily follows from results of Sections 3.2, 3.3 of [1] that t C q,.

Combining the above remarks, we obtain (8.3) as a consequence of the
following lemma for the nilpotent group Q.

Lemma 9.1 Ify € qy, y & t+ qy. then there is ¢ > 0 with

lexpgo, (sY)loy = ¢cs  foralls > 1.

Proof. Consider the quotient Qy = Qn/Qy. Note that if 7: qy — qn =
qy/t denotes the corresponding Lie algebra homomorphism, and qy., is the
commutator ideal of gy, then 7y & Gy ..
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If | - | is a modulus on Q then modulus estimates for a simply con-
nected nilpotent group ([35, Section IV.5]) yield |expg (smy)| > cs for all
s > 1. But it is elementary (e.g., Lemma 3.1 of [23]) that |exp, (sy)|oy >
c| eXpQN(swy)] for s > 1. This completes the proof of the lemma, and the
proof of Theorem 1.6 for non-simply connected groups. [

10. Appendix

In this Appendix, we prove a number of algebraic results which are used in
the main text.

10.1. Invariance of the qy.;

We show in this subsection that the nilshadow q, is uniquely defined up
to isomorphism, and that the subspaces qy.; in the lower central series are
invariants, and characteristic ideals, of g.

First we reformulate the definition of the nilshadow in terms of Cartan
subalgebras of q. Let v satisfy properties (I) and (II) of Lemma 2.1, and
consider the associated nilshadow qy = (q, [, -]v) defined by (2.3).

Lemma 10.1 Given v as above, there is a unique Cartan subalgebra b =
h(v) of q with v Ch. Then q = b +n and the bracket |-, |n is given by

(10.1)  [wy + ny, we + noly = [wy + ny, wy + no] — S(wy)ng + S(wq)ny
for all wi,wy € h, ny,ny € n.
Proof. Define

h={xe€q: S(v)r=0forallv € v} ;

since the S(v) are derivations this is a subalgebra of q. It follows from the
properties of v and Lemma 2.2 that v C h and h = v @ (h N n). From
the latter splitting and (2.3) it is easy to verify that [z,y]y = [z,y] for all
x,y € h. Therefore b is nilpotent.

Suppose y € q satisfies [y, h] C h. Then S(v)y € b for all v € v, because
b C b and S(v) is a polynomial in adv. Therefore S(v)*’y = 0 and the
semisimplicity of S(v) implies that S(v)y = 0. Thus y € bh, and we have
verified that h is a Cartan subalgebra of q.

If §" is any Cartan subalgebra of q¢ with v C b’ then nilpotency of b’
implies that S(z)y = 0 for all x,y € ' (Lemma 2.2). Taking x € v we
obtain b’ C b, hence ' = b since all Cartan subalgebras have the same
dimension.
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Finally, (10.1) follows straightforwardly from (2.3), the splitting h =
@ (hNn), and the following observation: if w = v+n, v € v, n € hNn, then
S(w) = S(v). Indeed the mapping y — S(y) is linear on h by Lemma 2.2,
whence S(w) = S(v) + S(n) = S(v). |

Let o™, v be subspaces of q which satisfy properties (I) and (II) of
Lemma 2.1. Consider the associated nilshadows qg\l,) = (q, [ -]%)), and the
corresponding lower central series q%’ HJEN =12

If ® is an arbitrary automorphism of g then it is straightforward to
see that

(10.2) O(S(x)y) = S(Px)(Py) , P(K(x)y) = K(Px)(Dy)
for all z,y € g.

Lemma 10.2 There exists n € n such that ® = (¢*'")|q € GL(q) is a Lie

tsomorphism of qg\}) onto q%). One has equality of subspaces qg\};)j = qﬁL for

all j € N.

Proof. Applying Lemma 10.1, let l‘)(i), i = 1,2, be the Cartan subalgebras
of q with v® C H@. A standard conjugacy result for Cartan subalgebras of
solvable algebras ([4, 36]) gives the existence of n € n such that @(b(l)) —p®@
with ® = (e*")]q. From (10.1) and (10.2) we then obtain @([x,y]g\})) =

[P, @y]g\z,) for all z,y € q, proving the first statement.

Since q%;)l =q = q§331 it suffices to prove the second statement when
j > 2. Then qg\l,;)j C n by Proposition 2.3. Since qg\?j

and [:v,y]%) = [z,y] for all z,y € n, it follows that qg\l,;)j is an ideal of n.

is an ideal of qg\l,)

Therefore @(qg\l,;)j) = ead”(qg\}?j) = qg\%. But @(qg\%) = qg\?j because ® maps

qg\l,) isomorphically to qg\Q,), and the lemma follows. |

Therefore the subspaces q.; are invariants of g. Finally we have
Corollary 10.3 The subspaces qy.; are characteristic ideals of g.

Proof. Let qy be the nilshadow associated with the subspace v, and let
® be an arbitrary automorphism of g. Then ®(q) = g, &(n) = n, and
the subspace v’ = ®(v) satisfies properties (I), (II) of Lemma 2.1. If ¢y
denotes the nilshadow associated with v’ then it is easy to see from (2.3)
or (10.1), applying (10.2), that ® maps q isomorphically onto q’y. Therefore
®(dy.;) = q,; = dun,; with the second equality by Lemma 10.2. [
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10.2. The ideals s and n’
Let g be a Lie algebra of type R, with radical ¢ and nilradical n.

Lemma 10.4 There exists a semisimple ideal s of g which contains every
semisimple ideal of g, and a nilcompact ideal W of g which contains every
nilcompact ideal of g. Moreover, s, W are characteristic ideals of g, and
nW=s5@n, sNq={0}.

For any Levi subalgebra m of g one has s C m and

(10.3) s={rem: [z,q ={0}} .

Proof. Fix a Levi subalgebra m and define s by (10.3). One easily checks
that s is an ideal of m, and hence s is semisimple because m is semisimple.
Then s is an ideal of g, because g = m @ q and [s,q] = {0}. Because s is
semisimple, the intersection s N q is trivial.

Suppose that a is a semisimple ideal of g; we show a C 5. Let Int(n)
denote the group of automorphisms of g generated by the €*® for a € n.
Since a is a semisimple subalgebra of g, by Corollary 3.14.3 of [32] there
exists ® € Int(n) such that ®(a) C m. Since a is an ideal, ®(a) = a so that
a C m. Because a and q are ideals we get

@,/ CangCmng={0} ,

and therefore a C s, as desired.

Thus s contains every semisimple ideal; it easily follows that s is inde-
pendent of the choice of Levi subalgebra m used to define it, and that s is a
characteristic ideal of g.

Defining n’ = s & n, it is clear that n’ is a nilcompact ideal and a char-
acteristic ideal of g. Let us show a C n’ for any nilcompact ideal a. Write
a = a; P a,, where a,, a,, are respectively semisimple and nilpotent ideals of
a. It is easy to see that a,, is the radical (or nilradical) of a, and a, contains
every semisimple ideal of a. Therefore a,, a, are characteristic ideals of a,
and hence ay, a, are ideals of g. Since s, n are respectively the largest semi-
simple and nilpotent ideals of g, we get a; C s and a, C n. Then a C n’ as
desired. [

10.3. Twisted multiplications on Lie groups

First we consider a twisting construction for Lie algebras.

Lemma 10.5 Let a be a Lie algebra with Lie bracket [-,-], and let 7: a —
L(a) be a representation of a in itself by derivations. If

(10.4) T(r(x)y) =0
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for all x,y € a, then

[z, y) = [yl + 7(2)y — 7(y)x
defines a Lie bracket [-,-]" on the vector space a.

Proof. To check the Jacobi identity for [-,-]" is a straightforward computa-
tion using (10.4) and the representation and derivation properties. [ |

The following two examples illustrate the generality of this lemma.

(1) Let a;, ay be Lie algebras and 75: a; — L(a2) a representation of

a; in as by derivations. Consider the direct sum algebra a = a; X ay and
7:a — L(a) defined by

T(21,22) (Y1, 42) = (0, 70(21)y2)

for x;,y; € a;, 1 = 1,2. Then 7 satisfies the hypotheses of Lemma 10.5 and
the algebra o’ = (a, [, +]") is (isomorphic to) the semidirect product a; X, as.

(2) Let a = q be solvable with nilradical n and let the subspace v C q
satisfy properties (I), (IT) of Lemma 2.1. Define 7: ¢ — L(q) by 7(v+n)y =
—S(v)y for v € b, n € n, and y € q. By Lemma 2.2, 7 is a linear map and
the 7(x), z € q, are mutually commuting derivations of q. Since [q,q] C n
and 7(n) = 0 for n € n, it follows that 7 is a representation. Moreover
(10.4) holds because S(v)y € [q,q] € nand 7(n) = 0 for n € n. The algebra
a = (a,[,-]') equals the nilshadow q defined by relations (2.3).

We study the Lie group analogue of Lemma 10.5. Let A be a Lie group
with product *, Lie algebra a and exponential map exp, and suppose T: A —
Aut(A) is a homomorphism into the group Aut(A) of smooth automorphisms
of A. (We assume that T is smooth in the sense that the map (g, h) — T'(g)h
is smooth from A x A into A.) Thus T'(h) € Aut(A) for each h € A, with
T'(e) the identity automorphism, and T'(hy)T (he) = T'(hy * hy). If Aut(a) is
the group of automorphisms of a then a homomorphism T: A — Aut(a) is
defined by

T(g)r = %L:DT (9)(exptx)

for g € A, x € a. Then a Lie algebra representation 7: a — L(a) of a in
itself by derivations is given by

a4

T(y)r = o

T(expty)x
0

t=

for z,y € a.
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Let us make a note on identifications. The Lie algebra a is the space
of (real) left invariant vector fields on A, equipped with the commutator
bracket; when convenient we identify a = T, A, the tangent space of A at the
identity, by identifying = € T, A with its unique extension to a left invariant
vector field. With this convention, the differential operator dL4(z), x € a,
is the right-invariant vector field whose value at e is —z.

Lemma 10.6 let T: A — Aut(A) be a smooth homomorphism and define T
and T as above. Suppose

(10.5) T(T(g)h) = T(h)

for all g,h € A. Then
(I) The operation %" defined by

(10.6) g+ h=(T(h™)g)*h

is a Lie group multiplication on the manifold A. For the Lie group A’ =
(A, «) the identity element is € = e and the inverse of h is given by Y =
T(h)(h™"). Moreover g h=" = T(h)(g* h™") for all g,h € A.

(IT) Let a,a’ be the Lie algebras of A and A’ respectively. Identifying

a=T.A=da as vector spaces, the Lie brackets [-,-] of a and [-,-]" of a’ are
related by
(107) [LC, y]/ = [iC, y] + T(:C)y - T(y).’L' )

and 7(7(x)y) =0 for all x,y € a.
(IIT) The left reqular representations of A and A" are related by

(10.8) (AL (2)))(9) = ((dLa(T(g7")))p)(g)

forallp € C*(A), x€a,ge A.
(IV) The maps T, T are homomorphisms of A, thus

T(g+ h) =T(g)T(h)=T(g*h) , T(g*"h)=T(g)T(h)=T(g*h)

for all g, h € A.

(V) If x € a satisfies 7(z)x = 0 then exp(z) = exp’(x), where exp, exp’
are the exponential maps of A, A’ respectively.
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Proof. The proof of (I) is by straightforward computations using (10.5).
Here we just check the associative law: one has

g% (92% 93) = 1% (T(95")92 * gs)
= T(g5")T(T(g5")95 )91 * (T(95") g2 * 3)
= T(g5 )T
= T(g95)(T(g2" )91 * go) * g3
= (g1 ¥ g2) ¥ g3

NT(g5 ") g1+ T(g5") g2 * g3

for all g1, 92,93 € A.

For (III), if g € Alet R;: A — A be the right translation map h +— hxg,
and let R} be the right translation map h +— h#'g relative to A". Let dR,, d R,
be the differentials of these maps. Regarding dL 4 (z) as a right-invariant
vector field (see the remarks preceding the lemma), we have

ALy (x)ly = (dRg)(—7)

for all ¢ € A, v € a = T.A, and a similar result for dL4(z) with R,
replacing R}. But R = Ry o (T'(g")), hence by differentiation

dR, = (dRy) o (T(g7")): T.A — T,A ,
and we get

dLa(z)lg = (dRY)(—x) = (dRy)(=T(g ")x) = dLa(T (g )x)ly

which is equivalent to (III).
For (II), let z,y € a = T, A, let ¢ € C*(A), and set X = dLa(x),
X' '=dLa(z),Y =dLa(y), Y =dLa(y). Then X'|, = X|. = —z so that

(XY'¢)(e) = (XY'p)(e)

_ 4 (V@) (exp(—t))
= % » (dLA(T (exp ta)y)e) (exp(—tx))

by part (III), where exp is the exponential map of A. Setting
F(s,t) = (dLa(T(exp sz)y)y) (exp(—tz))

we have

d

0.F)0,0) = | (dLaTlexps)y)¢) () = ([@La(r@)o)le)

(0.£)(0,0) = (XYp)(e)
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It follows that

(XY'p)(e) = (XY)(e) + (dLa(r(x)y)p)(e)

Combining this with a similar expression for (Y'X'p)(e) we get

(dLa([z,y] +7(2)y — T(y)z)p)(e) =
= (XY — YX)SO)( )+ (dLa(m(z)y)p)(e) = (dLa(T(y)z)p)(e)
= (XY =Y'X")p)(e)
= (dLa([z,9])¢)(€) = (dLa([x,y])p)(e)

and comparing the left and right sides of this equation yields (10.7). We leave
the reader to verify that 7(7(x)y) = 0 for all x and y, and then part (II)
is proved.

For (IV) we note that

T(g+"h)=T(T(h")g*h)=T(T(h")g) T(h) =T(9)T(h)

and the corresponding property for T follows by differentiation.

For (V), suppose 7(x)x = 0. To prove that exp(tz) = exp/(tx) for all
t € R, it suffices to show that t — exp(tx) is a one-parameter subgroup of
A’. Noting for s,t € R that

T(exp(—tz)) exp sz = exp(T(exp(—tz))sz) = exp(e " @sz) = exp sz |
it follows from the multiplication law (10.6) that
exp(sz) " exp(tz) = exp(sx) x exp(tz) = exp((s + t)x)

This ends the proof of the lemma. [ |

10.4. Lie algebras with stratified nilshadow

The following proposition shows that any (type R) Lie algebra is a quotient
of a Lie algebra with stratified nilshadow (see Definition 2.6 for the defini-
tion of stratified nilshadow). This generalizes the well-known fact that any
nilpotent algebra is a quotient of a stratified Lie algebra.

Proposition 10.7 Let g be a Lie algebra of type R with radical q and nilrad-
ical n. There exists a Lie algebra g of type R which has stratified nilshadow
qy with respect to a pair (m,0), and a surjective homomorphism 7: g — g.
Moreover m restricts to a homomorphism of qy onto the nilshadow qy of g,
and w(qy.;) = dy.; for all j € N.
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If g, n denote respectively the radical and nilradical of g, then
N a)=q , 7 '(n)=n
(Therefore if g is respectively solvable or nilpotent, then g possesses the same
property.)

Proof. We divide the proof into three steps. In the first step we consider
a stratified, “free nilpotent” Lie algebra t such that q, is a quotient of «,
and define certain semisimple derivations R(v) of t. Second, from these
derivations and Lemma 10.5 we construct a solvable Lie algebra q such that
q = v as vector spaces, and show that t is the nilshadow of q. Finally, we
define g as a semidirect product of q with a Levi subalgebra of g.

Step 1. Fix a Levi subalgebra m and a subspace v of g satisfying all
properties of Lemma 2.1. Then the nilshadow q,, the shadow gy and the
representation 7: gy — L(gy) are defined as in Section 2. We choose 7-
invariant subspaces b;, 7 € N, and £ = h; Nn as in Lemma 2.5. Fix a basis
by,...,bs, of h; = v @€ such that by, ..., by, is a basis of v and by, 11, .. ., b4
is a basis of ;. By Proposition 2.3, by, ..., b, generate the Lie algebra q.

Suppose q is step r nilpotent. Let t be the nilpotent Lie algebra with d;
generators by, ..., by, which is free of step r, with Lie bracket [-,-]¢ (cf. [29],
and Example 1.1.5 of [11]). More precisely, t may be defined as the quotient
F /I, where F is the free Lie algebra generated by b,..., Bdl and Z is the
ideal of F spanned by all commutators [b;,, [- - - , [b;_,,b:.] - - -]] with s > r.
There is a surjective homomorphism 7: v — ¢, such that 7T(Z~91) = b; for
ie{l,...,di}.

The algebra v decomposes as

v=(Ph, = i
j=1 j=1

where ﬁj is spanned by all commutators [b;,, [ - - [I;Z-jf17 Eij]t -+ ]¢]e of length j.
This decomposition is a stratification of ¢ in the sense of [25], that is, b, gen-
erates v and [f~)j, Gk]t C 6j+k for all 5,k € N.

Let us set 0 = span{by,...,bq}, & = span{bg41,...,bq}, and it =
e [t,t]¢. Then 61 =0 ® 8 and

t=h @t =t0b o=@

Observe that 7 restricts to a linear bijection 7 : h; — by, and that 7~!(n) = a.
Define linear transformations R(v) € L(h;) by

R(v) = 77! o S(mv) om

for v € v.
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It follows using Lemma 2.2 that the R(v), v € b, are mutually commut-
ing, semisimple transformations such that }A%(v)w = 0 for all v,w € v, and
the mapping v +— ﬁ(v) is linear on v. Since g is type R, the S(mv) and
hence E(v) have only purely imaginary eigenvalues. } 3

Consider a ﬁxed ’U € v. Because t is free nilpotent on by,...,bs, the

transformations e'? L(h,), t € R, extend uniquely to automorphlsms
A(t) of ¢ such that A( ) (t) = A(s + t) for all s,t € R. Then

R(v) = lim ™ (A(t) ~ 1)

defines a derivation R(v) of t whose restriction to §, equals R(v). Com-
bining the derivation property and the fact that I~)1, e ,lN)dl generate t, one
verifies the following properties. The R(v), v € v, are mutually commut-
ing, semisimple derivations of v with only purely imaginary eigenvalues,
R(v)(0) = {0}, R(v)(¥;) C &, R(v )(h ) C b for all 7 € N, and the mapping
v +— R(v) is linear. (To verify the semlslmphclty and the eigenvalue prop-
erty, one may extend R(v) to a derivation R(v)® of the complexification t©
of v.) Moreover

(10.9) moR(v)=S(mv)om
for all v € v.
Step 2. Define 7: v — L(t) by setting

T(v+n) = R(v)

for all v € b, n € n. It follows from the properties of R(v) derived in Step 1
that 7 is a representation of v in itself by derivations. Since 7(z)y € n for
all z,y € v, and 7(n) = 0 for all n € n, we have 7(7(x)y) = 0. According to
Lemma 10.5, there is a Lie bracket [-, -] on the vector space t with

[z,y] = [z, yle + 7(2)y — 7(y)z
for z,y € v; we denote by q the Lie algebra (t, [+, ]). Note that
(10.10)  [v1,v2] = [v1, va)e, [v1, 1] = [v1,1]c + R(vi)na, [n1, 1] = [n1,n2)e

for all vi,v5 € v and ny,ny € 0. Recall that 7 is a homomorphism of t
onto qy. Then comparing (10.10) with (2.3), it follows from (10.9) and
7(0) = v, 7(7) = n, that 7 is a homomorphism of ¢ onto g.

Note that [z,y] € n for all z,y € q and that the brackets [-,:] and
[-,-]« agree on n. Therefore n contains [g, q] and is a nilpotent ideal of g.
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In particular [g, q] is nilpotent, so that q is solvable. Let n(q) denote the
nilradical of q. Since 7(n(q)) is a nilpotent ideal of q we have 7(n(q)) C n,
that is, n(§) € 7 *(n). Because 7~ '(n) = n and # is a nilpotent ideal of g,
we conclude that n(q) = n.

Let adz and ad, respectively denote the adjoint representations of q and ,
and let adgz = K(z) + S(z) denote the Jordan decomposition of adzx
for x € q.

Lemma 10.8 Forv € v one has K(v) = ad.v, S(v) = R(v).

Proof. It follows from (10.10) and the fact that R(v1)vy = 0 for all vy, v9 € 0
that adgv = ad.v + R(v) for v € v. Moreover ad.v, R(v) are respectively
nilpotent and semisimple transformations. Since R(v)v = 0 and R(v) is a
derivation of v we have

R(v) (v, z]e) = v, R(v)a]e

for all z € v. Thus R(v) commutes with ad,v, and the lemma follows from
the uniqueness of the Jordan decomposition. [

Let ro denote the subalgebra of q generated by the subspace v; we claim
that w is nilpotent. Since R(v) = S(v) is a derivation of g, and R(v)(b) =
{0}, it follows that R(v)(ro) = {0}. Then it easily follows from (10.10) that
[wy, wy] = [wy, ws], for all wy,wy € 0. Thus w is nilpotent.

Since ¢ = v ® n and n is the nilradical of g, at this stage we have es-
tablished that v satisfies properties (I), (II) of Lemma 2.1 relative to q.
Hence the nilshadow q, of q is well-defined, with Lie bracket given by rela-
tions (2.3) relative to v and q. From Lemma 10.8 and (10.10) we see that
dy = t as Lie algebras. Note that h, = 0@ (h, N#), and the transformations
S(v) = R(v) = 7(v 4+ n) map 6]- into itself for all j € N and v € v, n € n.
Thus the conditions of Definition 2.6 are satisfied by § and the subspaces b i

In summary, we have a solvable Lie algebra q, with stratified nilshadow q
with respect to v, and a surjective homomorphism 7: ¢ — q. Moreover g
has nilradical i = 7~!(n). We leave the reader to verify that q is of type R,
using that S(v) = R(v) has only purely imaginary eigenvalues for v € v.
Recalling that 7 is a homomorphism of v = q, onto q, it follows that
7(qy.;) = dy,; for all j € N.

Step 3. The arguments of this step are similar to those of Steps 1 and 2,
and we leave some verifications to the reader. Define a representation o of
min b, by

o(z)y = ([z, my])
foerm,yEf)l.
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Each o(x) extends uniquely to a derivation of v which we continue to
denote o(x), and 0(:10)(6]-) C F)j for all j € N. Using [m,v] = {0} one verifies
that o(z)v = 0 and [o(z),S(v)] = 0 for all v € v. Then it is easy to check
that o(z) is a derivation of q. Also ¢: x +— o(x) is a representation of m
in q by derivations, such that

(10.11) m(o(x)y) = [z, my]

forallz e m, y € q.

Let g be the semidirect product g = m X, q, and identify g = m & q as
vector spaces. Then the Lie bracket on g is given by [z1 + ¢1,22 + ¢2] =
(21, 22 + [q1, q2] + o(x1)q2 — 0(22)q1 for 21,29 € M, q1,¢2 € §. One checks
that g is type R. Extend m: q — q to a map 7: g — g by setting 7(z +
q) = x + 7(q) for x € m, ¢ € q. Using (10.11) one obtains that 7 is a
homomorphism of g onto g.

Note that g and m are respectively the radical and a Levi subalgebra
of g, and that [m,0] = {0}. It is now easy to see that g has stratified
nilshadow §, with respect to (m, ) (with the stratification given by {b i)

The properties 771(q) = q, 7 '(n) = 1 are easy consequences of the
construction, and the proposition is proved. [
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