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Approximation in law to the d-parameter
fractional Brownian sheet based on the

functional invariance principle

Xavier Bardina and Carme Florit

Abstract

We show a result of approximation in law of the d-parameter
fractional Brownian sheet in the space of the continuous functions
on [0, 7). The construction of these approximations is based on the
functional invariance principle.

1. Introduction

The aim of this work is to give a result of convergence in law to the d—para-
meter fractional Brownian sheet. The approximations are a family of con-
tinuous processes constructed using the functional invariance principle.

The fractional Brownian motion of Hurst parameter «; € (0,1) is a
centered Gaussian process B* = {B;", t > 0} with the covariance function
given by

B (B BY) = ¢ (5% + 2 |t — s)
(see, for instance, Mandelbrot and Van Ness (1968)).

The fractional Brownian motion can be extended to the multidimensional
parameter space in two ways. One is the Lévy’s fractional Brownian random
field with parameter 5 € (0, 1) (see Ciesielski and Kamont, 1995): a centered
Gaussian process Y with covariance function given by

1
B(YY;) = 5 (1% + 151 = 1t = 51*%),

for s,t € R? and where || - || denotes the Euclidean norm.
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The other extension of the fractional Brownian motion is the anisotropic
fractional Wiener random field, introduced by Kamont (1996). This is a
centered Gaussian process, defined on some probability space (€2, F, P), de-
noted by B* = {B¢, s € R%}, with covariance function given by

d
1
BaBa H - 2ai + tz‘2ai . |tz o Si|2ai) ’
=1

[\]

where a = (ay, a, ..., aq) € (0,1)% Observe thatif a; = ay = - = ag = =

we obtain the d—parameter Wiener process. i

In this paper we will work with the second extension that we will call
a d—parameter fractional Brownian sheet. In the section of preliminaries
we will see that the d-parameter fractional Brownian sheet possesses a con-
tinuous version. It is possible to give a representation in law of B* as an

integral of a deterministic kernel with respect to a d—parameter Wiener
process W = {W,; u € [0,T]¢}:

(1.1) /Otd - /Ot KOt u)dW,,

(see the next section for the definition of the kernel K¢).

On the other hand, Donsker’s theorem, known also as the functional in-
variance principle or the functional central limit theorem, states that the
Wiener process can be approximated by a random walk constructed us-
ing a family of independent identically distributed random variables. More
precisely, consider {Zy; k = (ki,...,kq) € N¢} an independent family of
centered identically distributed random variables with variance equals to 1.
Then, the process

%/ /ZZkklkun)d

keNd

where Ip_1p)(u - 1) = Iy -1 k) xx[og—1,kq) (U172, - -+, ugn), converges in law
toward a d—parameter Wiener process (see, for instance, Wichura, 1969).

Using this result and representation (1.1) it is natural to try to approxi-
mate in law the process B* by

X, (t) = %/ /Ko‘tuZZkklkun)d

keNd

The main result of this work is that this family of processes converges in
law, in the space of the continuous functions C([0, T]%), to the d—parameter
fractional Brownian sheet of parameters oo = (v, ..., aq).
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For the fractional Brownian motion, that is when d = 1, the result is
proved in Proposition 2.1 of Bardina et al. (2003) and also (for the Hurst
parameter bigger than 1) in a paper of Sottinen (2001). In this last paper the
author construct, with this type of approximations, an elementary market
model that converges weakly to the fractional analogue of the Black-Scholes
model. There exist also other approximations for the fractional Brownian
motion (see, for instance, Delgado and Jolis, 2000, Davydov, 1970, Pipiras
and Taqqu, 2000 and Hult, 2003). Finally, for the 2-parameter fractional
Brownian sheet, Bardina et al. (2003) prove a result of approximation in
law for processes constructed from a Poisson process in the plane.

We have organized the paper as follows: the next section is devoted to
some preliminaries and in Section 3 we prove our results.
As general rule the superscripts denote vectors of N¢ or R? and the

subscripts the components of the vectors, e.g. v/ = (uf,...,u}). Positive

constants, denoted by C, with possible subscripts indicating appropriate
parameters, may vary from line to line.

2. Preliminaries and notations

Consider [0,7]? C R? with the usual partial order. Given s,t € [0,T]? such
that s < t we denote by A;X(¢) the increment of the process X over the
rectangle (s,t] = [0, (si, ;) C R%

The fractional Brownian motion of Hurst parameter a; € (0,1), B* =

{B{", t € R;} admits an integral representation of the form (see for instance
Alos et al., 2001)

t
(2.1) B = / Ko, (t,8)dW,,
0

where W is a standard Brownian motion and the kernel K,, is defined on
the set {0 < s < t} and given by

Ko (t,8) = dg, (t — 5)%3

(2.2) F e (5 o) /St(u gyt (1 -(%) %_“’) du,

with d,, the following normalizing constant

o (i ietim) -
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We can extend the kernels K, over all (0,T]? by putting

- | Ky (s,x) ifs>ua
Kai(S’x)_{ 0 if s<ux

and for the sake of simplicity we will denote also by K,, these extensions.

Taking into account the expression (2.1) for the fractional Brownian mo-
tion we can consider the following integral representation for the d-parameter
fractional Brownian sheet B“:

Sd S1
(2.3) / e / Ko (s1,u1)Kay(s2,u2) - - - Koy (84, ug)dWy,
0 0

where s € [0,T]¢, a € (0,1)? and where (Wa)uepo,rja 1s a d-parameter Wiener
process. Indeed, observe that this process is a centered Gaussian process
with the same covariance function as B*. Moreover, the d-parameter frac-
tional Brownian sheet possesses a continuous version. Using the Cencov’s
criteria (see Cencov, 1956) and that the process BY is almost sure equal to
zero when ¢; = 0 for some i € {1,...,d} it is enough to prove that

(2.4) E((AB)) < Cllts = s1) - (ta—sa)] 7,

for some v > 0 and p > 2.
The increment A By has a gaussian law with E(A Bf*) = 0 and, using
the symmetry of the stochastic integral,

E ((Atha)Q) = E( </[0 ” H (Ka, (ti, u;) — Ka, (8:,u;)) qu> )
= AT]d H (K, (ti, 1) — Ko, (55,1))° du
= 1] (/[0 . (Ko, (tiyui) — Kai(suui))2dui)

d

d
B IR | (R

1=1 =1

where B is a fractional Brownian motion of Hurst parameter «;.
Using the relation between the moments of a centered gaussian law we
have that

b
2

E((ABY)) =Gy (E ((AB)Y))
for all p > 2 even and this implies the inequality (2.4).
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Let (Q,F,P) be a probability space where we have defined {Z;; k €
N7}, an independent family of identically distributed and centered random
variables, with F(Z2) =1 for all k € N, and such that E(]Z;|™) < +oo for
all k € N4, m € N,

Define for all n € N and ¢ € [0, 7%

tq t1
25 X=n! [ [ K0 Y Zdui(ue i
0 0

keNd

where
KQ<S7 U) = Kal <817 Ul)Ka2 (527 U’Q) e Kad(SCb Ud)

and
I[k—l,k)(u : n) = f[kl—l,kl)x~..x[kd—1,kd)(Uln, T ,Udn)-
We will also denote by 6,, the kernels

On(u) = né Z Zilpe—1py(u - ).

keNd

So, we can write now that

X, (t) = K(t,u)0,(u)du.
[0,7]4

We will prove the convergence as n tends to infinity, in the space of the
continuous functions C([0, T]¢), of the laws of the family X, () to the law of
the d-parameter fractional Brownian sheet.

The processes X,, are continuous for every a € (0,1)¢ and absolutely
continuous if a € [, 1)%. This is a consequence of the following lemma and
the fact that X,,(¢) is equal to zero if ¢; = 0 for some ¢ € {1,...,d}.

Lemma 2.1 Let 6 € L>=([0,T]%) and define

X(t) = K(t,u)0(u)du.

(0,774

Then,
IAX (8)] < Oty — sg) @D L () — gp) 1t

for all s,t € [0,T)¢ such that s < t.
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Proof: We have that,

AX(H) = /[0 T]dASKO‘(t,u)G(u)du

_ / Ko, (1, 15) — Ko (55, u1)) 0(u)du
(0,774 ;=

< ||9||OOH/ ltir ) — Ko (52, 05)] .

But,

/ (Ko, (t1y ) — K (51, 0) | dt; =

[0,7]
:/ | Ko, (ti; wi) 0,0, (i) — Ko, (53, u3) o5, (i) | du
[0,T7]
ti Si
(26) = / ’Kai (tw U,Z)| dul + / |Kai(ti7 Ul) — Kai<3ia UZ)| dul

Si 0

Let us begin with the first summand of the last expression. If «; <
then using (2.2) we have that

t;
Ko, (ti,ui) < Cy, (“i - Ui)ai_% +/ (z — Ui)ai_%dx) ’

and )
/ | Ko, (ti, u;)|du; < Cq,(t; — Si)aﬁ%.

On the other hand, when a; > 1,

7

1 [t
Ka‘(ti’ui) = Caiuzg O"/ (x—ui)aifixai*%daﬁ
U

and

t; ti 1
/ \Kal(tl,uzﬂduz S Ca¢<ti - Si)ai_% / UZQ Zdui S (tz - Si).
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For the second summand of (2.6), notice that if a; = 3, then

/ |Ka1(tz,ul) — Kai(si,uiﬂ duZ = 0
0

When «; # %, we will use some bounds for the partial derivative of
the kernel K. From (2.2) it is easy to check that the kernel K,,(¢,s) is
differentiable with respect to the first variable in the set {0 < s < ¢} and that

Nlw

0 1, /s\z-% o
SEa(t8) = da(oi—3) (3)7 (=9 H,

Then, for a; > % we have that

OK,, | |
‘ - (t, 8)‘ S Caisé_az (t _ S)a’_%
And so,

0K,

ot
Si t;
dr | du;
o L el
S t; 3
< Co [ ([ - wriar) a
0 S;

S CaZv(tz' - Sz)/ u >
0

_ai(Si . ui)ai_idui
3 1
= CaiB (5 — O, 0 — 5) (tl — Si).

IA

/ ’Kai(thui) - Kai(8i7ui)‘ du;
0

(r,w;)

Sl

When «o; < % we have that

‘ 0K,

<O (t— )% 3.
5 (t,9)| < Cy,(t—9)

In this situation, we obtain the following majorization

S; S; ti aKa
/|Kai<ti,ui>—Kaxsi,ui)mui < / (/ Z
0 0 S

or (r, i)

dr) du;

S; t;
< Cai/ </ (T - ui)aigdr) duz
0 S;
ti 1 1
= C,, / <(r — ;)% — 7“‘“7) dr
1 41 ai+i it3
= Cai <(tl — Si)aﬁ_z - til 2 + Sil 2)
S Coz,- (tz - Si)ai—i_%.

The proof of the lemma is now complete. [ |
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3. Approximations in law

The main result of this paper is the following theorem:

Theorem 3.1 The sequence of laws in C([0, T]?) of the processes { X,,(t); t€
0, T4} defined by (2.5) converges weakly to the law of {BY; t € [0,T]%}.

In order to prove this result we have to check that the family of laws
of the processes { X} is tight and that any weakly convergent subsequence
converges to the law of the d-parameter fractional Brownian sheet.

First of all we will see two technical lemmas. The first one will be useful
to check the identification of the limit law.

Lemma 3.2 Consider f1, fa,..., fqa € L*([0,T]). Then,

([ (Lo Joosn) <1 [

Proof: Notice that,

E(/[O,T}d (ﬁfi(“i)) 9n(U)du) T

=1

But,
E(0,(w)b,(v) = n'E K > ZiTjy g (u- n)) ( > ZiIyy (v n))}
keNd keNd
= 0" Y Tpma ()l (v n),
keNd

because for all k& € N we have that E(Z;,) =0 and E(Z7) = 1.
Using now that for all a,b € R, ab < %(a2 +b?),

R0 0 T ol ()

keNd =1

< H/O f7 () du;.

This finishes the proof of the lemma. |
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We will prove the tightness of the laws using the following lemma:

Lemma 3.3 For any even number m € N, there exists a constant C,, such
that for any s,t € [0,T]* with s <t

SupE [AX, (O™ < C H )T
Proof: We have that
(31)  E[AX, (1) [ / Kot ) —Kai(si,ui))en(u)du}m
m o od OT]d
4” H[H w; (Lo, ul) — Ko, (si,w 1 {HG ujl ~du™

7j=1 +q=1

Observe that

m m

(o] o[ fT (5 et )]

Jj=1 =1 *keNd

dm m
=n 2 Z (Zkl s ka)[[kl,l’m)(u : n) s [[km_Lkm)(u : n)

But notice that E(Zy1 -+ Zgm) = 0 if for some j € {1,...,m}, k/ # k!
for all € {1,...,m} \ {j}, that is, if some variable Z,; appears only once
in the product Zp1 - -+ Zgm.

On the other hand, since E(|Z;|™) < oo for all k € N? and m € N,
E(Zyi -+ Zym) is bounded for all k', ... k™ € N¢ . So,

E[H Hn(uj)} <n%C Z Ty (uh - n) - o Tgmq gy (U™ - 1),
j=1

with
A" ={(k',... k™) e N"™ for all | € {1,...,m},
k' = k7 for some j € {1,...,m}\ {1}}.
Notice that,

Z ][kl_l’k1)<ul ) Ipgmg ey (U™ - n) < Ipm (u',...,u™),

D™= {(u',...,u™) €[0,T)%"; foralll € {1,...,m} there exists

: 1
je{l,...,m}\ {I} such that |u] —ul| < — foralli=1,...,d}.
n
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We can bound Ipm(u',...,u™) by a finite sum of products of indicators
where in each product of indicators appear all the dm variables uj, ..., u7
but each indicator concerns only two or three of them. Moreover, each
variable appears only in one of the indicators of each product. So, expres-
sion (3.1) is equal to a sum of products of the following two kinds of terms:

(1) For some [ # j, 1,5 € {1,...,m},

Olz(t'”ul) K%(sl,ui))

::]g

Cn / KO[-L t’L?uz) Koéz<sl7 1
[0,T]24

7,:1
X HI[O’%)(IU{ — ul|)du’du'.
i=1

(11) For some different [, j,r € {1,...,m},

d d
d
2/ oz, tzaul ozZ Sza 1 za z Kai(siaui))
0, ]Sd

’LZ]. ’LZ].

< ] (K (tiuf) = Ko (s, Z))H 1) (lf = i) Hf[o - ujl)

d
X H [[07%)(|u;’ — ul|)du? dul du”.

Then, to prove the result it suffices to bound the first type of products
by CTIL, (t: — 5:)>* and the second one by C [, (t; — s;)3*.

But using that for all a,b € R, 2ab < a? 4 b%, we have that the first type
of terms is bounded by,

d
/ H o (ti,ul) — Ko, (s, 1)) H[[O (Ju? — ul|)du? du

z:l
d

< C'/ H (Ko, (tiul) — Kal(s,,uz)) du’
[0,7] ;-1
d
< o[ (B - Boey)
i=1

d
= CH(tl - Si)Qai,
i=1

where for all ¢ € {1,2,...,d}, {B*} is a standard fractional Brownian
motion of parameter ;.
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On the other hand, we can study the terms of type (i¢) in the follow-

),

ing way:
d
!
- KOCZ' (Si7 uz

d
/ H (Koéi (tth) - Kai(shug)) H (KOéi (thui)
[0,7]34 54 i=1
d d ‘
) [ Zp (1l — u2])

— Ko, (si,u)) Hf[o,n)(’u —u

X H (073 t“ul 7
=1
i 10,0 g, T

i=1

X HI[O,l)(WZ — uj|)du’ du'du
d ‘ ‘ d
- Kai(tiaug)_Kai<Si:ug) 1 (|U] —ul|)
/[o,TPdH( )H o)
d d
X H oo (ti1h) = Ko, (si,u)) [ [ (Ko, (ti, ) = Ko, (si,u]))
Ti=1 i=1
N du"du'du?

Ijp,1)(] wl — ul) H_[[Ol)

=

X
1

and the last expression can be bounded by
d 3
! >

@
Il

J
— Ko, (s, u]
i=1

d
/| (G
[OT]Zd =1
d
ozz 517 7 H 17 z

d
X a; 7,; z
(L (/ i
d 2 1
1 2
X HI[07%)<|U )HI[O,%)<|UZ_Ué|) T) du duj)
i=1 1
As for the terms of type (i), we have that
d
(Ju] —u ])dulduj)

D) T oy

QL

d
</[0T]2d (Kai(ti,ug) — K, (si,u
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On the other hand,

d

(/ (/ H (Koéz(tiauﬁ) - Kai(si7u’li)>
[0T12d 0.7 37
2 N 2
X HI (Jul — ur]) H][o 1(] |)dur) dulduj)

d d
2 "
(/ H O‘z tis z ocz Sz; , H K i, u z Kai(siaui ))
z:l =1
d

XH ti, ui*) — Ko, (50,14 Hf[o (fed = w1 T o2y (i — )
i=1
X HI (Jul — ul? H[[o,i)(‘“? - uﬁ|)duldujdu”dur2)
2 T
>~ (nd/ al tzauz) oc, 327 z H oc, za 2 _Kaz(szaull))
[0,T]34

d
><H tiu;?) = Koy (50, 4;° ))Hf[o (it = i)

H (Kai (ti’ u:) - Kai(si’ u:))

i=1

1

2

%
X HI u? — ué|)duldu”du”) ,

and this expression can be majorized as follows

d

(5 o T ) = o ) TT ) = K0
n= Jo,rpd ;- p
d :
x H Io, 1 (i = uﬁ!)duldu”dum)
1 d )
- (—d/ H o2 t“uz (S“Ui)) X
0,712 ;7
d
X H o (ti Ul = Ko, (55, ul)) du du”)
d 1 d
1 )21 N
= (W H(tz —s)" ’) = 1_[(75Z — 5;)%%,
i=1 i=1

using again the bound for the terms of type (7).

=
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So, we have obtained that the terms of type (i7) can be bounded by

d

CH(ti — ;)

=1

and this finishes the proof of the lemma. ]

3.1. Proof of Theorem 3.1

We need to prove that the family of laws of the processes {X,,} is tight and
we have to identify the limit law of any convergent subsequence as the law
of a d-parameter fractional Brownian sheet.

Using the criterion given by Bickel and Wichura (1971) and that the
processes X,, are null when some coordinate equals zero the tightness is a
consequence of Lemma 3.3.

To check the identification of the limit law we have to prove the con-
vergence of the finite dimensional distributions of {X,} to those of the d-
parameter fractional Brownian sheet, { B*}.

It suffices to prove that for any £ € N, a1,...,a; € R and s',...,s" €
[0, 7% the characteristic function of

k
Z a; X, (s7)
j=1

converges to the characteristic function of

k

§ «
astj,

J=1

when n tends to infinity.

Consider for any s/ € [0,T]? sequences {p}'},...,{p’'} of elementary
functions such that for any i € {1,...,d}, {p/'} converges in L([0,1]) to
K., (s!,-) as I tends to infinity.

We introduce also the following notations

d
Xil = / T1 7' (1:)6n ()il
(0,714 ;4

d
Xl — / Hp{’l(ui)qu,
0,714 54

where {W,; u € [0,T]?} is a standard d-parameter Wiener process.
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Then for any A\ € R,
‘ {exp z)\Zaj ] {exp MZa]BO‘ H
(3.2) §’E exp MZaJ — exp MZaJXJZ } ’
+ |E {exp(z’)\ Z ani’l)] —F {exp(i)\ Z anj’l)] ‘
J

J

+|B [exp(i)\ Z a; X7 — exp(i Z a; B )1 '

By the mean value theorem the first summand can be bounded by
C max{E|X,(s’) — X7}
j
And we can bound this expectation in the following way:

E|X,,(s) _XJ‘J|

_E‘/ ( K, ( s ) du‘
.H H

:Ew/ dfg**””‘MWWDK@@&wf~K@w;wwawm4
[0,T7]

*d/ ) (B (5, 102) = 7' (102) ) K (5. 109) -+ Koy (5 0a) ()
OT

T wwm~@uw4mmw%wwwwwwﬁwm)

[N

- j’l(U1)>2 (KOQ(SQ,uQ))2 e (Kad(3d7ud)) du)
* (/[;’T}d (p%l(ul))Q (K%(Sé,ug) - pg’l<u2)>2 (Ka3(3§,u3))2 X e

IA
VRS
=
=
s
VRS
s
u
=
£
=
i)
—

(NI

peee ([ () () (K = ) )

where we have applied Lemma 3.2.
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Observe that each sumand is a product of bounded integrals where one

of them is equal to
2
| (Kalslow) = ') dus
[0,7]

for some i € {1,...,d}. This integral, if [ is large enough, can be made
arbitrarily small independently of n.

Since {7} are elementary functions, the random variables X7 are linear
combinations of increments of the process

Y, (s) = / 0, (u)du.
[0,81} X X [O,Sd}

Moreover, the laws of these processes converge weakly, in C([0,T]%), to the
law of the d-parameter Wiener process from the functional invariance prin-
ciple (see, for instance, Wichura, 1969). Then, the linear combinations of
the increments of Y,, will converge in law to X7, and so, fixed | € N, the
second summand of (3.2) tends to zero when n — 0.

Finally, the third summand of (3.2) is bounded by

J
—C'max{ ‘/[OT (ﬁpi’l (u;) — ﬁKai(si,ui)>qu

i=1 i=1

d
< (C'max (/ ( (u;) K, (i, u; ) du) ,
7 0.7} 11 11

using the properties of the stochastic integral. And this last expression
converges to zero when [ T oo independently of n by the same arguments
used for the first summand of (3.2).

The proof of Theorem (3.1) is now complete.

Cmax{ ‘X” BY

|
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