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L? decay estimates for weighted

oscillatory integral operators on R

Malabika Pramanik and Chan Woo Yang

Abstract

In this paper, we formulate necessary conditions for decay rates
of LP operator norms of weighted oscillatory integral operators on R
and give sharp L? estimates and nearly sharp LP estimates.

1. Introduction

Suppose f and g are real-analytic, real-valued functions in a neighborhood V/
of the origin in R? with £(0,0) = ¢(0,0) = 0 and let x be a smooth function
of compact support in V. We consider the oscillatory integral operator

o) = / NED gz, y) Pz, ) (y) dy,

where € is any positive number. In this paper we will study the decay rate
in A of ||T)\||Lp_>Lp as A — 00.

The case where g(z,y) = 1 has been studied in [3], [6], [10], [11], [12],
and [15]. In [10] and [11], Phong and Stein considered a case where the
phase function f(z,y) is a real homogeneous polynomial and they obtained
sharp decay estimates for ||Ty||zz_r2. In [12], they took into account of
more general cases where the phase function f(z,y) is a real analytic func-
tion and they proved ||T)||r2—z2 ~ A™® where § is the reduced Newton
distance of f(x,y). In [15] Rychkov developed the ideas of Phong and Stein
in [12] and Seeger in [16] to obtain sharp L? decay estimates for the case
where the phase function f(x,y) is a real smooth function with the condition
that the formal power series expansion of fi at the origin does not vanish.
He proved ||Ty||z2—z2 ~ A7, where § is the reduced Newton distance of
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the formal power series expansion of f(x,y) at the origin, with a loss of a
certain power of log A in the case where all solutions r(x) of f}, (z,r(z)) =0
have the same asymptotic fractional power series expansion with leading
power 1. In [3], Greenblatt gave a new proof for the theorem of Phong
and Stein in [12]. For LP estimates, Greenleaf and Seeger obtained sharp
decay estimates [6]. They considered oscillatory integral operators in R”™
with a real smooth phase function with the assumption of two-sided fold
singularities. They established sharp L” — L9 decay estimates of the oscil-
latory integral operators. In [17], Seeger formulated optimal L? regularity
of generalized Radon transforms on R? and he obtained sharp LP regularity
estimates except endpoints. In [19], sharp LP decay estimates for Ty have
been established excluding estimates on vertices of Newton polygon of f .

The case where g = f; has been studied in [13]. In [13] Phong and
Stein proved best possible decay estimate, that is, ||Th||z2—z2 ~ A~/ when
9(r,y) = fr,(7,y) and e = 1/2. We wish to investigate the improvement in
the decay rate of ||T)||»r—r» when f is unrelated to g.

Higher dimensional case even without any damping factor has not been
understood well. There have been a few L? estimates of special cases [1],
2], [6], [7], [9]. Sharp L? estimates under the assumption of two-sided fold
singularities were obtained in [9]. Optimal estimates with one-sided fold
singularity have been established in [2] and [4]. Related operators with
various types of higher order singularities have been treated in [1], [5] and [7].
We recommend [8] as a more detailed and organized survey on this subject.

The case where the weight g(z,y) is not related to f(z,y) has been con-
sidered by the first author in a different context [14]. In [14] she introduced
weighted Newton distance to treat the weighted integral. We shall use some
notions in [14] and we briefly describe them. We start with factorizing f;,
and g

(11) fg/c/y(xay> = Ul(xay)xalyﬂl H (y—r,,(:c))
vel(fi,)

(1.2) g(x.y) = Us(z,y)a*y® ] (v - su(@))
REI(g)

where I(h) denotes a set whose elements are used to index roots of h and U,
i = 1,2 are real analytic functions with U;(0,0) # 0. We assume that index
sets I(f;,) and I(g) are disjoint. a;’s and 3;’s are non-negative integers and
r,(z)’s and s,(z)’s are Puiseux series of the form

r,(7) = c, ™ + O(x™) and s,(v) = c,a™ + O(z")
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where for any n € I(f;,)UI(g), b, > a, are rational numbers and ¢, # 0. We
re-index the combined set of distinct exponents a, and a, with v € I(f7,)
and p € I(g) into increasing order so that

O<ar <as <---<ap.
For I € {1,..., N} we define

my = #vellf),) : rr)=ca™+---, ¢, #0}
m o= #{pellg) : sulx) =cua™ +--, ¢ #0}

where # A denotes the cardinality of a set A. We call m; and n; generalized
multiplicities of f;’ and g, respectively, corresponding to the exponent a;.
Now we define

A = o+ Y ami, B = Bi+ Zij\il+1 m;
Ci = ax+ Ziﬂ a;Ny, Dy = [+ Zij\il+1 n;.

Then {(A;, B;)} and {(C}, D;)} are sets of vertices of the Newton diagrams of
=y and g, respectively. The number of common roots of f; and g is an im-
portant information to obtain optimal estimates. To extract the information

we use a coordinate transformation 7 given by

n:(@y) = (2,y = q(z))

where ¢ is a convergent real-valued Puiseux series in a neighborhood of the
origin. For f}) on and g on we can define previous notions such as A;, Bj,
C}, Dy, and a; in the same way. To avoid confusion we use notations A4;(n),
Bi(n), Ci(n), Di(n), and a;(n) to specify the coordinate transformation 7.
For the sake of simplicity we define Ej(n) and Fj(n) as

E(n) = Ai(n) +a(n)Bi(n)
F(n) = Ci(n)+ai(n)Di(n)

For a coordinate transform 7 : (z,y) — (x,y — ¢(x)) we define &, as

& = { deg (r(z) — q(x))|y = r(z) is a root of f1 (x,y) =0 or g(z,y) =0,
r(z) =cx® +---(c #0) and deg(r(z) — q(z)) > a;}

where deg(p(x)) is the degree of the leading term of a Puiseux series p. For
ay(n) € &, we define

Hyp(n) = Er(n) + 1+ 2ar(n) — a;.
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We define E;, F), and H; as
E, = E(id), F,=F/(id), and H,= H;;(id)

where id is the identity map on R2. Here we remark that since Eria = {ai},
ay(id) = a; so H; = Ej+1+q;. To describe optimal decay rate of ||Ty || zr—r»
we shall need the following notations. Let K = [0,1] x R. For ay(n) € &,
we define subsets Ay, A;, and A, () of K as

1 1 1
Ay = {(—,a)e[(:ag—, andagl——},
p p p
4 — {( eF+2qq 1—q 1}’

1
—,a)eK:a§ + - —
p
1 Fy
./4171/(77) = {(5,04) e K:a< il

2H, H p

() +2ar(m)  1-al
2Hl,l/(’f]) * Hl,l’(n) 1_9} '

Here we note that if n = id and a; = ay(n), then A, (n) = A;. We set

A=A and A=) [ Auw).
l

n L
a (77)651,7,

Now we finally define A as
A=A,N A N As.

From the definitions it is clear that A; is a special case of A; where n = id so
As C A;. Actually it is not necessary to define those two sets in a separate
way. Here we separately define A; and Ay because we want to simplify
notations in the proof of the first step of each theorem and give clear ideas
of proofs.

Remark 1.1 When we define A4;;(n) we include the case where ay () = oco.
In this case we assume that

(1.3) Au(n) = {(%a) €K a< %}.

Theorem 1.2 (Necessity) If T\ is bounded on LP(R) with ||T)||pr—1r <
O(A™?), then (1/p,a) € A.

Remark 1.3 The definition of domain A has been motivated from earlier
works in [12], [17] and [19]. We write

<T >
ITsllrore = sup <Dy >
peLpr pelr HSOHLPHwHLp’
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To find necessary conditions for LP decay estimates we have to consider the
case where the oscillation of the phase function Af does not play any role
even if \ is very large. This situation happens when ¢ and v are supported in
small intervals whose lengths depend on A, f, and g so that |\ f(z,y)| ~ cA™!
and |g(z,y)| is bounded below when = and y are in the support of ¢ and ¢,
respectively. To be more precise we fix A\ > Ay for some \g, sufficiently large.
A set of the form

B={(z,y) €suppx |a <z <b c<y<d}

is defined to be a “testing box” if there exist functions Fj, F5, : R — R
depending on B satisfying

s A(f(2,y) = Fi(2) = Ba(y)| < .

(z,y)€EB

Set I} = [a,b] and Iy = [c,d]. If § denote the class of all testing boxes, then

e 2 mae {sup {10l i [oto, )12} a2
BeF (z,y)eB

Since we have a weight |g(z,y)|? in our operator, we have to choose the
testing box carefully so that |g(z,y)|*/? has a lower bound in terms of .
If not, we just have a trivial bound. If g = 1, then it is known that A is
an image of the reduced Newton polygon by a map (m,n) — (72—, ——)
in [19]. T) is called a damped oscillatory integral operator if g = 2y This
case has been studied by Phong and Stein in [13]. Their results show that
A is a triangular region with vertices (0,0), (1,0), and (1/2,1/2) if g = f},
and ¢ > 1. When g = f}/, and ¢ < 1, the region A can be obtained by
interpolation of results in [13] and [19].

Theorem 1.4 (L? estimates) If (1/2,a) € A, then
I Tallzzr2 < O(A7).

Theorem 1.5 (L? estimates) If (1/p,a) € int(A), then we have
T |[Lr—rr < O(A™).

Remark 1.6 In Theorem 1.5 we only have estimates in the interior of A.
During the proof of the theorem one can easily observe that we have esti-
mates on some part of the boundary of A. We shall discuss this in detail in
part 1 of the final remark.
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2. Proof of Theorem 1.2

In this section we shall prove Theorem 1.2. The idea of the proof is described
in Remark 1.3.

Proof of Theorem 1.2. Suppose that T} is bounded on L” with
T r—ra < O(A7Y).

First we shall show that (1/p,a) € A;. Suppose fy, (z,y) = > o Cpg2?y?.
Then we have

p+1,,q+1
'y

flzy) = Zcpqm+F1($)+F2(y)

p,q>0

= ) Gy + Fi(x) + Fa(y)

p,q>1

where F(z) and Fy(y) are real analytic. Note that the Newton diagram of
> pa>1 Cog2Py? is same as the reduced Newton diagram of f. We fix [ and
recall H) = Aj+a;B;+a;+ 1. Let R > 0 and ¢; be constants to be specified.
Now, for large positive A, we define the function ), ¥ by

() = e MR if R < y)\“l/Hl <R+
Y= 0 otherwise,

and '
Dn(x) = e” M) if R < g AVHI < R4 ¢
M= 0 otherwise.

We claim that for any € > 0, in the support of ¢, (y)¥x(z) we have:
‘)\f(as, y) = AFy(2) = AFs(y) = 5quq‘ <e

where the sum Y is taken over (p, q) that belong to the face of the reduced
Newton diagram with equation p + a;q = H;, as long as ¢, is taken to be
small in terms of Y '|¢,,|R? and then ) is taken to be large. To prove the
claim, first we note that if 0 < ¢; < R is sufficiently small then we have

/ ~
Z |Cpgl|[ APy — 1
! C1
< Y a1+ ) A+ e 1] RS
€

’Z/ Cpg(A2Py? — RY)

IA

A

5
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Also, because of the convex nature of the Newton diagram, p + a;q > C' for
all other (p, ¢) such that ¢,, # 0, so,

Z CpgPy?| <

(p,q);p+arq#H,

DO ™

If we take, say € < 7/2 then this shows that

| < Thpr, by > | = / MY gz, y)|2x (2, y)er (y)r(x)dyda
]RQ

= [ R RO o g e, y)| by
($7y)€S)\

— / (A @) AP @) AP0~ 60 B g )| dyd
($7y)€S)\

where Sy = {(z,9)|1 < Az <14 ¢, R < yAH < R+ ¢;}. Hence we
have

| < Thor, oy > | > C x(x,9)|g(z,y)|2dydz.
(xvy)esk

Let R > 2-max{|c|;y = cx™+--- is a root of g} and R > 1. Then g(z,y) ~
|z|%|y|P* on the support of ) (y)¥x(x). We therefore have

a;+1

F . a1
|<T,\g0)\,¢)\> | ZC)\ Hll 2\ H

as A — o0o. Hence, we have

‘ T 1/} | )\_Q.EA_L‘H

< )\90)\ A > Hl 2 Hl
’ 2 C ,&,L( ,l)

[leallp - 1Al A e

which implies

Therefore (1/p, ) € A;.
We show that (1/p,a) € A;. Let r be a root of f (x,y) = 0 or

Ty
g(x,y) =0in (1.1) and (1.2) and set r(x) = cx® + ---. We choose a coordi-
nate transform 7 : (z,y) — (x,y — ¢(x)) with convergent Puiseux series ¢ of

real coefficients. We choose ay (1) so that a; < ap(n). Here we assume that
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the lowest degree term of ¢ is 2 because to define A; (1) we assume that
ay(n) > a;. Suppose r(z) = 7(x) + O(|z|* ™). We define ) and 9, as
e~ (Y) if f(/\—l/Hl r(n )+ R\~ (m)/Hyp(n) < y
(PA(y) — < T(/\ 1/H, l/(n)) + 2R\ ay(n)/Hy ()
0 otherwise,

and

e~ IAFL(z) if N1/ H () <z <\ 1/ Hyp(n) 4 AT (ay (m)—ar+1)/H, 1 (n)
¥a(e) = 0 otherwise
where ¢; and R are constants, and F}, F, are real-valued functions to be
specified later. On the support of ¢y (y)ia(z) we have

ly —r(z)| < M:();l/Hz,y(n)) + QRN )/ Hy () _ F(z) + O\~ ay (n)/Hyp (n ))‘.

Suppose 7(z) = ax®+Bxb+- - - where without loss of generality o > 0, 3 > 0.
Then
ly —r(z)| < |a)\—al/Hz,z'(77) + GATO Hiw () g pxmar M/ Hyw () _ o \=au/ Hyp (m)
_ ﬁ[)\—l/Hz l’(”)(l + e Nl (m=a)/Hyp(n) O()\—az/(n)/Hz,u(n))H
< 3RM\-w )/ Hyy()
and
|y _ 7”(33)| > ’R)\_al’(ﬂ)/Hz,z’(U) + f()\—l/Hl,l/(n))
a[)\—l/Hz,l’(U)(l + Cl/\—(al'(n)—al)/Hz,z’(ﬂ))]al
— AT/ Hiw () O()\*az’(ﬁ)/Hl,z/(Ti)N
> By )
- 2

Let ( ()\) yo(A)) be a fixed point on the support of ¢,(y)¥(x). Then for
any (x,y) in the support
- f;:(sa yD)]dS

// (s,t)dtds
= f(z,y) = f(@o,y) — f(@,90) + [ (0, y0).

Let FQ( ) = [(@o(N),y), Fi(z) = f(z,90(N)) — f(20(),50(A)). We notice
that for (s,t) in the support of ¢, (y)¥(x),

|f:i:/y(87 t)‘ ~ ‘t — f(5)|Bl’ 77)|S’Al/(77)

I
&\
© 8

ha
—~
\.CID
<
S—

Ay (mtay () By (n)
~ RBrmy) Hyyr ()
l/(n)

RBl/(n)/\ H l/(n)
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By the same reason if (x,y) is in the support of v, (y)i¥a(z), then

l’ (n)

gz, y)| ~ A T

Therefore we have

/ / (s,t)dtds

By choosing ¢ sufficiently small, we can ensure that for some 0 < € < 7/4

|/\f(x,y) - )\f($07y) - )\f(l‘, yo) + )\f(l‘o,yo)‘ < €.

Hence we have

| <Thpn,ton > | 2> / \9(z, y)|2dydz
(z,y) €S

By _ap(n) _ap(m)—a;+1
~ RBl/(n)—i-l)\ H, (1) )\ EIC P Hy ()

~ RBrm+L_ o \71

eFl/(n) a[/(ﬂ) al/(n)—az+1

> )\ 2HwO) o HpO o Hyp ()

This yields

_EFL/(W)+2al/(77)_ l—a; 1
2H, ,/(n) H, /(n)p
>CA L L ,

| < Thpx, ¥y > |

ol Il

which implies
eFy(n) +2ar(n) 1—a 1

2H, 1 (n) Hip(n)p

Therefore (1/p, ) € As.

Finally we shall show that (1/p, ) € Ap. There exists (g, yo) such that
l9(z0,50)] = k > 0. Let

Fi(z) = Z W@ _ xo)i

and

We define 9, (z) and ¢, (y) by
RO gy <y <yo+ AT
otherwise,

—AR() if o<z <zo4 ¢
otherwise.
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By choosing a small number ¢; > 0 we have

A (2,y) = [0, 0) — Fa(x) = Fa(y))] < /4.

Hence we have

> O\

efi)\f(:vo,yo) / T/\(p)\<5€)1/})\<x>dx

and
I falle ~ A7 and  ||gal| L ~ 1.

Therefore we have a < 1 — 1/p. By exchanging the role of f\ and g, we
have av < 1/p. This shows that (1/p,«) € Ap. |

3. Proof of Theorem 1.4

The proof of Theorem 1.3 follows the main ideas in [12] and [13]. Namely,
one writes Ty as a sum of almost orthogonal operators

L=2.T

where T7, will be defined later. The dyadic rectangles [27/,277 7] x[27527F+1]
in the definition of T]);C can be divided into two categories, depending on their
proximity to the zero varieties of f;/ and g. If a rectangle is located away
from these zero varieties, then the L?-norm of Tfk may be estimated using a
combination of the operator Van der Corput lemma in [12, Section 3| and [13,
Lemma 1] and Schur’s lemma. Near a branch of the zero varieties, one
needs a finer resolution of 7}’\19 to operators supported on “curved rectangles”
adapted to that branch. It is then possible to determine the sizes of f}, and g
on these finer domains, so that the operator Van der Corput and Schur’s
lemmas can again be used. The resolution process terminates in a finite
number of steps, since a real-analytic function can only vanish to finite
order in a small neighborhood of the origin. Moreover the steps followed
at the finer levels of decomposition match closely those in the first step.
We therefore present in detail only the computations for the initial stage
of recursion. Calculations for the successive steps are left to the interested
reader.

Proof of Theorem 1.4. Recall that the quantities a;, ar (1), Ay, By, Cy, Dy,
etc. can be read off the generalized Newton diagrams of f; and g. Without
loss of generality, let a; > 1. We write

Tho(z) = / N | g(, )P ) () () () dy
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where , ,
(o[ Lo
Xil?) =Y 0 otherwise.

We consider four ranges of j, k:
o ) Kk <KL ap1];
° k< ayj;
o k> ap;
o k~ay,

where A < B, A> B, and A ~ B mean that A+ C < B, A > B+ C,
and A — C < B < A+ C respectively for some C' > 0 which makes the
following arguments hold true. Since the treatments of the first three cases
are similar, we only consider two cases: @) < k < a;11J; k =~ a;j.

Case 1: a) < k < aj11)

In this case

| (,y)| ~ 2727 Bk g (2, y)| ~ 27C2 DIk

on the support of x;(z)xx(y). The operator Van der Corput lemma in [12,
Section 3] and [13, Lemma 1] yields

(3.1) | T5a]| < C(A2~Aui=Bik)=1/29=<(Cii+Dik)/2
and by using Schur’s lemma we obtain
(3.2) | T55]| < 2= i+k)/29=e(Cij+Dik) /2.
If we put k& = a;j +r with 0 < r < (a141 — a;)j, we can rewrite (3.1)
and (3.2) as

||ijk|| < rnin{/\—1/22j(z41—66’z)/22k(Bz—5Dz)/27 2—j(1+eCl)/22—k(1+5Dl)/2}

S min {A*1/22]’(El*EFl)/QQT'(Bl*EDl)/27 27j(1+al+6Fl)/2277‘(1+6Dl)/2} )

First we assume

A 1/29i(Ei—eFi)/29r(Bi—eDi) /2 < 2—j(1+az+€Fz)/22—7”(1+6Dl)/2’

which is equivalent to

2jHl/2 < A1/22—7‘(1+Bl)/2

ie.,

1 r(1+B;)

(33) 2j/2 < \TH QT2
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By the choice of r we also have
(3.4) 2i/2 > 9¥ery e

By combining (3.3) and (3.4) we obtain

r 1 _ r(14+By)
22(al+17al) < )\2(1+al+Al+alBl) 2 2(1+al+Al+alBl)’

which implies

1 A+1—%

(35) 2% < )\5.1+al+1+Al+al+1Bl‘
By the definition of A;(n), Bi(n), Ci(n), Di(n) and a;(n) it is easy to see that

(3.6) Ai(n) +api(m)Bi(n) = Aipi(m) + a1 (n) Biga(n),
(3.7) Ci(n) + airai(m)Di(n) = Crpa(n) + ar41(n) Diga(n).

Applying (3.6) with n = id to (3.5) we obtain

(3.8) 25 < AT i

Here we separately treat two cases: E; > €Fj; B < €Fj.
Subcase 1: E; > ¢F;

In this case we use (3.3) to obtain

E;—e€F,
(3.9) S ITgll < A2 05
J

where |+ BNE P
= (B —eDy)— 1F l>;fl_€ 2
l

If I <0, then the summation of (3.9) in r yields

_141+al+€Fl
> | Tikl] < A2

(3,k); aj<k<<ay 1]

If I > 0, then we use (3.8) to make a summation of (3.9) in r and obtain

1 1taptery; 1 (a1 —epl
Toll < A2 M@ A2 o
ik =~
(4,k); arj<k<Ka41]

1[1+al+€Fl _ (az+1*al)1]
Hy Hipq

< A2
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We claim that

l+a+el; (w1 —a)] 1+ a1 +e(Cr+ aaDy)
(3.10) - - .
H, Hi L+ a1+ A+ a1 B

By rewriting (3.10) we have to show

(14 a; + e(Cr + aD)][1 + a1 + A+ a1 Bl) — (a1 — @)
X [(Bl — EDl)(l —|— a; —f- Al + alBl) — (Bl —|— 1){Al —|— CLZBZ — E(C[ —|— CLZDZ)}]
= [1 + aj41 + E(Cl + al+1DZ)][1 +a; + Al + alBl].

Now we take derivatives of the left and right hand sides with respect to a;,1:

d
Jan (LHS) = (1+B)[l+a,+¢e(Cr+ aDy)]
+1
- [(Bl - ED1)<1 +a; + Al + CLlBl) — (Bl + 1) X
X{Al + alBZ — E(Cl + CL[D[)}]
= (1 —+ Bl)[l + a; + E(Cl + CLlDl) + Al + alBl — E(Cl + alDl)]
- (Bl - EDl)(l +a; + Al + CLlBl)
= (1 + EDZ)<1 + a; —|— Al + alBl),
d
(RHS) = (1 -+ 6D1)<1 “+ a; + Al -+ alBl).
dagy

Also if a;41 = a; then it is easy to see that the left hand side is same to the
right hand side. Thus (3.10) has been proved, which implies

1taj+eFy; 1 (agp1—apl 1 ltae gty

Z Tl < ATET AT A S)\% i

(4,k); aj<k<Lag 41

Subcase 2: E; < ¢F)
(3.4), (3.6), and (3.7) yield

r Ej—eF, » E —eF
STl < A-EoFaiw 9 (Bi—eD) < \~1ob aru
J
If Eyi1 > €Fpiq, then (3.5) yields

1 Bip1—eFin 1 Mapg g teFigg

S Il £ AN <A

(4,k); aj<k<ary1g
If Ej4q < €Fjyq, then

> 1Tl < A2

(5,k); aij<k<Ka41j
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Now we consider the case where

1 r(+By

(3.11) 2j/2 > \TH QT 2,

We note that (3.4) still holds true in this case. We consider two cases:

1 7‘(1+Bl) r
(3.12) \2H; 9 T 2H; > 922(aj1-ay) :
1 7‘(1+Bl) r
(3.13) A\2H; 9 " 2H; < 22app1-ap)
We rewrite (3.12) to obtain
- ajp1-9
(3.14) 25 < \ 2 |

By using (3.11) we obtain
1 ElfeFl ry
3Tl < A-5A " 0

J

If I < 0 then we have a convergent geometric series which we sum to obtain

1 l+a;+eF;

STl <A
7.k

If I > 0 then we use (3.14) and (3.10) to obtain

1 e teFyg

STl <72
gk

Now we rewrite (3.13) to obtain

A+1—9Y

(3.15) 25 > \ M

By using (3.4) we obtain

r l4+a;+el]

STyl < 27 e g E (e,
J

We then use (3.15) to get

Itagpgtelyy

STl <A™
ik

which is the desired estimate.
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Case 2: k=~ qj

In this case the dyadic rectangle is close to roots y = r(x) of f; (z,y) = 0
or g(z,y) = 0 of the form cz® + --- (¢ # 0). If ¢ is a complex number,
then |y —r(z)| ~ 27 so further resolution of singularities is not necessary.
Therefore we may assume that c is a positive real number. We set t(z) = cx™

and 7 : (2,y) = (2,y — t(x)). Let
al(n) < (12(77) << ak(n) < e

be leading exponents of {r,(z)—t(x) | v € I(f},)}U{s.(x)—t(z) | p € I(g)}.
Since we consider a dyadic rectangle close to y = cx®, we may assume that
a;(n) > a;. If ap(n)j < m < apy1j then we have

12, )]~ 2 AR g(g, )| o 97O DRI,

We write
T mpl) = / N ED g, )| (s 9) 0 () (@) Xk ()X (9 — 1)) dy.

By applying the operator Van der Corput lemma and Schur’s lemma again
we obtain

(3.16) ||TJAka < C(/\Qf(Au(n)jJrBy(n)m))71/2(27(01/(n)j+Du(n)m))e/{
(3.17) HT]Aka < Qfmgj(azfl)ﬂ(27(le(n)j+Du(n)m))6/2

since Ay < 27™ and Az < 27™2%~! where Ay is the maximal variation in y
for a fixed z in the region under consideration and Az is defined in a similar
way. Now we follow the same procedure in Case 1 to prove the desired
estimate. Since arguments are parallel to those in Case 1, we omit detailed
calculations. By putting m = ay(n)j +r with 0 < r < (ap41(n) — ar(n))7,
we obtain

< min { A"V B () =<Fr @)/ 297 (By ()~ (1) 2

2—j[(1+2al/(n)—al)+eFl/ (77)]/22—T(2+6Dl/(7]))/2} )

177

Y

First we consider the case where
\~1/2 9i(Eu (m)—eFir(m)/2 9r (Bu (m)~<Dy(n))/2 <

< 2-il(+2ay () —a)+eFy (0))]/2 9—r(2+eDy () /2

Y

that is,

r By (m+2
2 Hyy(n)

(3.18) 2112 < AT )
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By the choice of r we also have
(3.19) 93/2 > ZW_
(3.18) and (3.19) yield

1@ q (M —ay ()
< A2 Hl,l’(n)

(1]

2

We therefore have

1 2al/ <”’I)*al+1+5Fl/ (n)

5l 3
J

where
(Br(n) +2)(Er(n) — eFv(n))
J = B/ — ED/ — .
( l (77) l (77)) Hl,l’(n)
If J < 0, then
1 Qal/(n)fal+1+eFl/(7])
) Tl A2 0™
Jikm; ap(n)j<m<ay 1 (n)j
If 7 > 0, then

2ay 4 1 (M —ay+iteFy ()

_1
> T2l < A2

Jkm; ap (n)j<m<ay 1(n)j

To treat the case where

T By (n)+2
2 Hl,l/(ﬁ)

23/2 5 Ny
we can use the same argument for (3.11). We omit the detail here.

If m ~ ay(n)j, then there exists ¢ such that y — #(z) is “small”. Put
y—1t(z) ~ 2P and repeat the same arguments as before until we completely
resolve the singularities. By putting things together we conclude

1T < Cx2

where
. 11 1+al+e(Cl—|—alDl)
0=min ( -, =
2°2 1+al—|—Al+alBl
1 14 2ar(n) — ar+ €(Cr(n) + ar(n) Dy (ﬁ)))
2 1+ 2ar(n) — ar+ (Ar(n) +av(n)Br(n) )’

which is the desired estimate for p = 2. [ |
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4. Proof of Theorem 1.5

In this section we will prove Theorem 1.5. We construct an analytic family of
operators T so that when Re(3) = 1/2, T{ is a damped oscillatory integral
operator of the form

T (z) = / N1 (2, ) [V x (2, y) e (y)dy,

whose L? decay estimate we know of. When Re(8) = —a/(1 — 2a), we

p(1—2a)

shall prove T f is bounded on L T=ro | which yields Theorem 1.5 by complex
interpolation in [18].

Proof of Theorem 1.5. We consider an analytic family of operators

(4.1)  To(x)= /6”“9”’”\9(:6,y)lﬁ(m‘ﬁ)lf;’y(x?y)\ﬁx(%y)cﬂ(y)dy-

We note that TV = T).
Theorem 4.1 ([13]) If Re(5) = 1/2 then
1T Mlz2r2 = O(NH).

When Re(8) = —a/(1 — 2a), T} is a form of fractional integration and we
want to obtain estimate without any decay rate. To do this we shall use the
following lemma.

Lemma 4.2 If K(x,y) > 0 be the kernel of an operator T and K(x,y)
satisfies the following,

/K(x,y)y;dy < Ca, /K(x,y)xild:v <Cy,
where 1/p+1/q =1, then

To(x) = / K (2, 9)o(y)dy

18 bounded in LP.

Proof of Lemma 4.2. For ¢ € L” and ¢ € L4 (%D +% = 1) with ||¢||, =
|]g = 1, we have
1 11
o))l = le(y)zriyrag(e)y x|

IN

1 111 11
Z—)Iso(y)l”w Tya + 5|¢(fﬂ)lqy rTv.
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Therefore, we have

‘//my oo () dydz

//Kx y)—=le(y) Pz~ qudydvar//Kx Y)=|o(x)|y P dyda
< C/p+Clq.

This completes the proof. [ |

Now we shall prove the following lemma.

Lemma 4.3 Let py = p(ll%;aa) and By = —1%=. If (1/p, ) € int(A), then

T is bounded on L with the operator norm O(1).

Proof of Lemma 4.3. Since the oscillation does not play any role, it
suffices to obtain LP° boundedness of the operator

- / L9, ) V2 £ ()P, o)y,

Let

K(z,y) = |g(a,y)| 20| f1 (2, ).

By Lemma 4.2, it suffices to show that

1 C
(4.2) /]K(x’y)wdy < Z1/m0
and
1 C
(4.3) /IK(%?J)MCZ?C < a0’
where 1/pg+1/qo =1 and I = [—|I|,|I]] with a sufficiently small ||. Since

the argument to prove (4.3) is parallel to the argument for (4.2), we shall
only show (4.2). The proof can be divided into finite steps and we shall here
show the first two steps. To complete the proof we can repeat the same
argument.

Step I: Considering each quadrant separately, we may assume that x > 0,
y > 0and I = [0,|[]]. After reindexing if necessary, we may assume that
there exist ¢, > 0, d; > 0, and C; > 0 such that ¢; < d; < C}, |ri(z)| = djz™ +
o(z™), and |s;(z)| = dix™ + o(xz®). We divide I into several subintervals:
0 <y <cuatn, gzt <y < Cx®, Crpx®+ <y < gz, and Ciz™ <y < ||
and separately treat each cases.
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Case 1: 0 <y < ¢ z%".
If0 <y <c,z*, then

g(x,y)| ~ 2% yP, and |f (x,y)] ~ zmyPr.

xy
Since (a, 1/p) € A C Ay, we have

eD, + 2 1 1
2(B,+1) B,+1p’

(4.4) a <
which is equivalent to

1 1
€Dp(= — Bo) + Buflp — — > —1.
2 Po

Consequently,

/C"I K(m) y)y_%dy ~ o 1»6071(1/2_/@0)4'147150yEDn(l/Q_ﬂ0)+Bnﬁ0—1/POdy
0 0
< p€Fn(1/2=Po)+Enfo—an/potan

Since (o, 1/p) € int(A) C int(.A;), we have

1 H, lan +2a, 1-—a,
_l’_

1 a
Fn P En --= nT — —
¢ <2 60)+ Po Do ta +p0 1 -2« 2H, pH,

which implies

Cn7n 1 C
/0 K(z,y) yL/po dy < xl/po’

Case 2: Ciz* <y < ¢pqx™+t.

It Ciz* <y < ¢+, then

lg(z,y)| ~ zyP, and |1 (z,y)| ~ zyP

By using (3.6) and (3.7) we obtain

cpx?l 1
/ K(z,y) dy

1
Gt yH/ro

cx®l
~ / xECl(l/QfﬁO)‘FALBO
Cly1a®i+1

< C’xEFl(1/2—/30)+Ez/@0—az/p0+az| In :E| + O zcFr+1(1/2=Po)+Ei10—ai+1/potar | In :E|

yEDz (1/2—Bo)+BiBo—1/po dy
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where |In z| occurs when €D;(1/2— )+ B;Go—1/po = —1. Since (o, 1/p) €
int(A) C int(A;), we have
1 Hl GE + 20,5 1— a;

1 ay
€Fi(5 = Bo) + Eifo — — +a + — = + B
G =)+ B =+ at =150 | Tog, pH,

which implies

al

c|x 1
/ K(x,y)—7—dy < c

1 1 :
Cpypqz®+1 Y /Po x1/Po

Case 3: Ciz™ <y < |I].
If Cix™ <y <|I|, then

lg(z,y)| ~ zCy™, and |fr (z,y)] ~ z0y".

By using (3.6) and (3.7) again, we obtain

1] 1]
dy ~ €C0(1/2=P50)+A0fo / y6D0(1/2—ﬁo)+Boﬂo—1/pody

Crz*1

< C[xeFo(1/2*ﬂo)+Eoﬂo + x6F1(1/2*ﬁ0)+E17a1/p0+“1]’ In :L"

K(z,y)

Crz*1

yl/po

By using the fact (a,1/p) € int(A) C int(A;) again, one can see that the
right-hand side is bounded by Cz~'/P0 which is the desired estimate.

Case 4: cz* <y < Ciz™.
If qz® <y < Cix™,

lg(z,y)| ~ 2%y 11 ly — si()],

aqz®<|s;(z)|<Crz™

(@)l ~ aty 11 ly —ri(@)].

ez <|ri(2) | <Crat

To treat this case we need finer decomposition of the domain of integration.
Here we start the second step.

Step II: We introduce the following notation:
St = {ri(@) | ri(x) = 'z + o(a™)}.
We assumed that for all r;(z) and s;(z) satisfying
az® <|rij(x)], |s;j(z)] < Cix™,
|7;(z)| and |s;(z)| have the same leading term d;z*, that is,

7 (z)] = diz™ + o(x®) and |s;(x)| = djz™ + o(z™).
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If we set 7;(z) = cf'x™ + o(x™), we have three possible cases: (i) Im(cf') # 0,
(ii) ¢ <0, and (iii) ¢ > 0. In (i) and (ii), we have

|y —rj(2)] ~ 2

if y is in the range {¢x® < y < Cjz™}. Hence we may assume that ¢ =
d; > 0. Now we define a coordinate transformation 7 so that

n(z,y) = (v, y + 'x™).

If we rewrite the integral in terms of y;, we have

Cix® 1 Cx%l
/ K(z,y)——dy < :C“l/p‘)/ K(z,y1 + ¢ x™)dy,

1
1 Yy /po Cx®

0 Cx®
= g~/ / K(z,y1 + ¢'x®)dy, + z /o / K(x,y1 + ¢x™)dy;
—Cz% 0

- _[l’_ + ]l7+.

Since the treatment of I; 4 is similar to that of I;_, we only treat ;.
To do this we may assume that we can find ¢, diy, and Cjp such that
0< < du/ < Cl,l/’

Iri(x) — fa®| = dl,l/x“l’(") + O(x‘lz/(n))’

and
|sy(x) — o] = du/xal’(”) + o(x“l’(")).

We decompose the region {(z,y) : 0 < y < Cz“} into several subregions:
0<y< Cl,n1$a"1("), meal(n) <y < Cz™, Cl’l,+1xal’+1(77) <y < cl,l/xal’(”),
and cu/xal’(”) <y< C’l,l/a:al’("). We treat each cases in a separate way. Since
the treatment of each case is same to that of each case of Step I, we omit the
detailed calculation. Actually one can simply replace a;, A;,... with ap(n),
Ap(n),... in the arguments of Step I.

Case 1: 0 <y < cl,nlxanl(”).
By using the same argument for Case 1 of the previous step we obtain

ny N1 ()

/ ) K (2, + 0™ dy < CaFa (02~ B0+ By ()oan, (1)
0

Since (1/p, a) € int(A) C int(.Ac), we obtain

ay 1

eFn (m)(1/2 = Bo) + Eny(0)Bo + an, (n) — o + o

— Hl,nl(ﬁ) EFm(n) + 2an1(77) 1 11— —al >0,
1 =2« 2H) 0, (n) pHy ., (0)

which implies the desired estimate.
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Case 2: Cl’l/+1xal’+1(771) <y< Cl’lll'al/(nl).

We also use the same idea for Case 2 of the previous step to obtain

ar (m)

T
/ K(z,y1 + c'z")dy,

apr (1)
Crprpaz

S C[xEFl’(77)(1/2—50)""]51’(77)504“11'(77) + :L‘6F1/+1(77)(1/2—50)+El’+1(77)60+dl/+1(77)]| In {L‘|
Since (1/p, ) € int(A) C int(A¢), we obtain

eFy(1)(1/2 = Bo) + Eu(n)fo + av(n) — p— e

_ Hiw(m) [eFr(n) +2ar(n) = 1—a
1 =2« 2H; 1 (n) pH; ()

which implies the desired estimate.

Case 3: C’lylxal(") <y < Cx™.

In this case we have
Cz%l
/ K<m7y1+claxal)dy1 < xer(1/2—ﬂo)+Elﬂo+az+1.6F1(77)(1/2—/30)+E1(77)50+a1(77)’

Cl’lxln(v)

which gives the desired estimate of this case.

Case 4: cl,l/xal’(”) <y< C“,xau(n)_

It remains to show

Cl,llﬁl?al/(n)
:c_‘”/po/ K(x,y+ ¢z™)dy < Ca '/,

U/ral/(ﬂ)

To prove this inequality we start the third step which has the same argu-
ment with the second step. We repeat the same argument until we com-
pletely resolve the roots of f; and g, that is, until there is at most one
root in the range of the integral. If we have only one root r(x) in the
range of the integral and if the root is a real root, we have to integrate
ly — 7(z)| 7B () =eDnim)M)/20-20) with respect to y near r(x), where 7 is
a coordinate change defined by 7(z,y) = (z,y —r(z)) and n(7) is the largest
index of ay (7). The convergence of the integration is guaranteed because by
using (1.3) we have

€D (7)) +2

(4.5) a < 2Bon) (1) + 2)
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and (4.5) implies
20:Bn () (1) — €Dngip (77)
2(1 - 2a)
If r(z) is not real, we perform the same process with summation of first
finite terms of r(x) whose coefficient is real. We can easily see that we have
the desired estimates for all integrals which will occur in each step. [ |

< 1.

To finish the proof of Theorem 1.5 we interpolate Lemma 4.3 with The-
orem 4.1. |

Remark 4.4 1. In the proof of Theorem 1.5, we use the strict inequalities
at two places (4.4) and (4.5). When we prove (4.3), we have to use one more
strict inequality

ECD i 1 l
(14+Ag) 1+ Agp

(4.6) a<sy

Therefore, Theorem 1.4. can be extended to the boundary of A when
(1/p,a) is not on any of a line which bounds the region in (4.4), (4.5)
or (4.6). It would be interesting to obtain L? decay estimates when (1/p, «)
is on one of these lines.

2. Let 6; and 95 be the weighted Newton distance and the optimal
decay rate, respectively. We give an example showing that in general the
optimal decay rate for L? operator norm of Ty can be smaller than the
weighted Newton distance which has been introduced in [14]. We take f
and g such that

fhe) = (= a) (- o )
g(z,y) = (y—azV -2
Without any change of variable, we have

alzN, A1:N<R1+M1), 3120, ClzNRQ, anlez().

One can check that

. 1—|—N—|—€NR2
T 1+ N+ N(Ry + M)

01

By using the change of variables 1 : (z,y) — (z,y — V), we have
0,2(77) = kN, A2 = ]{]NMh Bg = R, 02 = 2]\/YR27 and D2 =0.

We then have
14+ 2kN — N + €(2NR;)

8y = .
*71+2kN — N +kN(M, + R,)
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Given N there exists k£ such that

5 2N B 2
> ON+N(M +R) 2+M+R,

For large N, we have

1+€R2
VUl R+ M

Now choosing € and Ry so that eRy > 1, we get 5 < 4.

Acknowledgments The authors would like to thank both Prof. E.M.
Stein and the referee for valuable suggestions to improve exposition of this

paper.

References

1]

CoMECH, A.: Damping estimates for oscillatory integral operators with
finite type singularities. Asymptot. Anal. 18 (1998), no. 3-4, 263—-278.

CoMECH, A.: Optimal estimates for Fourier integral operators with one-
sided folds. Comm. Partial Differential Equations 24 (1999), 1263-1281.

GREENBLATT, M.: A direct resolution of singularities for functions of two
variables with applications to Analysis. J. Anal. Math. 92 (2004), 233-257.
GREENLEAF, A. AND SEEGER, A.: Fourier integral operators with fold
singularities, J. Reine Angew. Math. 455 (1994), 35-56.

GREENLEAF, A. AND SEEGER, A.: Fourier integral operators with cusp
singularities. Amer. J. Math 120 (1998), no. 5, 1077-1119.

GREENLEAF, A. AND SEEGER, A.: On oscillatory integral operators with
folding canonical relations. Studia Math. 132 (1999), no. 2, 125-139.

GREENLEAF, A. AND SEEGER, A.: Oscillatory integral operators with low-
order degeneracies. Duke Math. J. 112 (2002), no. 3, 397-420.

GREENLEAF, A. AND SEEGER, A.: Oscillatory and Fourier integral opera-
tors with degenerate canonical relations. In Proceedings of the 6th Interna-
tional Conference on Harmonic Analysis and Partial Differential Equations
(El Escorial, 2000). 93-141. Publ. Mat., Vol. Extra, 2002.

PAN, Y. AND SoGGE, C.D.: Oscillatory integrals associated to folding
canonical relations. Collog. Math. 60/61 (1990), no. 2, 413-419.

PuonG, D.H. anND STEIN, E. M.: Oscillatory integrals with polynomial
phases. Invent. Math. 110 (1992), no. 1, 39-62.

PHoNG, D.H. aAnND STEIN, E. M.: Models of degenerate Fourier integral
operators and Radon transforms. Ann. of Math. (2) 140 (1994), 703-722.
PuoNG, D. H. AND STEIN, E. M.: The Newton Polyhedron and oscillatory
integral operators. Acta Math. 179 (1997), 105-152.



LP DECAY ESTIMATES FOR WEIGHTED OSCILLATORY INTEGRAL OPERATORS ON R 1095

[13]
[14]
[15]
[16]
[17]

[18]

[19]

PuoNG, D.H. AND STEIN, E. M.: Damped oscillatory integral operators
with analytic phases. Adv. Math. 134 (1998), 146-177.

PrAMANIK, M.: Convergence of two-dimensional weighted integrals. Trans.
Amer. Math. Soc. 354 (2002), no. 4, 1651-1665.

RycHKOV, V.S.: Sharp L? bounds for oscillatory integral operators with
C*° phases. Math. Z. 236 (2001), no. 3, 461-489.

SEEGER, A.: Degenerate Fourier integral operators in the plane. Duke
Math. J. 71 (1993), 685-745.

SEEGER, A.: Radon transforms and finite type conditons. J. Amer. Math.
Soc. 11 (1998), 869-897.

STEIN, E. M. AND WEISS, G.: Introduction to Fourier analysis on Euclid-
ean spaces. Princeton Mathematical Series 32. Princeton University Press,
Princeton, N.J., 1971.

YANG, C. W.: LP improving estimates for some classes of Radon transform.
Trans. Amer. Math. Soc. 357 (2005), 3887-3903.

Recibido: 29 de julio de 2002
Revisado: 28 de octubre de 2003

Malabika Pramanik

Mathematics 253-37

California Institute of Technology
Pasadena, CA 91125, USA

malabika@its.caltech.edu

Chan Woo Yang
Department of Mathematics
Korea University

Seoul 136-701, Korea
cw_yang@korea.ac.kr



