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Completeness in L1(R)

of discrete translates

Joaquim Bruna, Alexander Olevskii and Alexander Ulanovskii

Abstract

We characterize, in terms of the Beurling-Malliavin density, the
discrete spectra Λ ⊂ R for which a generator exists, that is a function
ϕ ∈ L1(R) such that its Λ-translates ϕ(x − λ), λ ∈ Λ, span L1(R).
It is shown that these spectra coincide with the uniqueness sets for
certain analytic classes. We also present examples of discrete spectra
Λ ⊂ R which do not admit a single generator while they admit a pair
of generators.

1. Introduction

1.1. The famous Wiener Tauberian theorem states that a function f ∈L1(R)
spans L1(R) by translations, in the sense that the linear combinations of
translates (τλ f)(t) = f(t − λ) of f , λ ∈ R, are dense in L1(R), if and only
if f̂(ζ) �= 0 for all ζ ∈ R. The corresponding result for L2(R) is that a
function f ∈ L2(R) spans L2(R) by translations if and only if f̂(ζ) �= 0
almost everywhere in R.

LetX be some translation-invariant function space on R (that is, τλ f ∈X
for f ∈ X, λ ∈ R). A function ϕ ∈ X may have the property that only a
certain set of translates τλϕ where λ belong to some set Λ, suffice to span X:

Definition 1 Let ϕ ∈ X and Λ ⊂ R. We say that ϕ is a Λ-generator for X
if the linear span T (ϕ,Λ) of the translates τλ ϕ, with λ ∈ Λ, is dense in X.

It is natural to ask which spectra Λ admit a generator ϕ in a fixed
space X. This question is most interesting when Λ is discrete, which we will
assume from now on.
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In case Λ is the set of integers Z, that is, we are dealing with integer
translates of a fixed function, it is well-known that no Z-generators exist in
Lp(R), 1 ≤ p ≤ 2. In L2(R), this easily follows from Plancherel’s theorem
and the fact that T (ϕ,Λ) has Fourier transform

(1.1) T (ϕ,Λ)∧ = ϕ̂ E(Λ) ,

where E(Λ) denotes the linear span of the exponentials eiλζ with frequen-
cies λ ∈ Λ. If Λ = Z this consists entirely of 2π-periodic functions and
hence ϕ̂ · E(Λ) cannot be dense in L2(R). A similar argument works in
Lp(R), 1 ≤ p < 2.

However, surprisingly enough, in Lp(R), p > 2, there do exist Z-genera-
tors. This result was established in [1], and another proof can be obtained
from results of [7] (see also [3] for a particular case).

In the space L2(R), using a certain construction based on small divisors,
Olevskii [8] showed that an arbitrary perturbation of Z of the form

(1.2) Λ = {n+ an , an �= 0 , an → 0 }
admits a generator ϕ ∈ L2(R).

It is immediate to see using Plancherel’s theorem that T (ϕ,Λ) is dense
in L2(R) if and only if ϕ̂(ζ) �= 0 almost everywhere and E(Λ) is dense in
the weighted L2-space L2(R, ω), with ω = |ϕ̂|2, an a.e. positive weight. In
particular, if Eε denotes the set Eε = {ω ≥ ε}, E(Λ) will be dense in L2(Eε),
and |Eε| → ∞ as ε→ 0. Thus, if Λ has a generator in L2(R), E(Λ) is dense
in L2 in sets of arbitrarily large measure.

This shows the connection of these questions with the subject of den-
sity of exponentials E(Λ) in function spaces and, in particular, with Lan-
dau’s results. Landau [5] constructed certain perturbations of the integers
Λ = {n + an} where an are bounded, such that E(Λ) is dense in L2 on
any finite union of the intervals (2π(k − 1) + ε, 2πk − ε), ε > 0, in par-
ticular on sets with arbitrarily large measure. In [11] Landau’s result was
extended to every sequence Λ as in (1.2), where an have an exponential de-
cay. We mention here that if E(Λ) is complete in L2 on ‘Landau sets’, then
one can construct a Λ−generator for L2(R) which belongs to the Schwartz
class S(R). Such generators are presented in [9] for sequences (1.2) with
exponentially small an. It is also shown in [9] that the exponential decay is
in a sense necessary, since a slower decay of an cannot guarantee existence
of a generator even from L1(R).

In general there is a sort of balance between the size of Λ and the ‘small-
ness’ of ϕ̂. The faster ϕ̂ tends to zero at ±∞ the sparser spectra Λ may
serve as translation sets, the ”denser” Λ is the more general ϕ may work
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as a generator. The spectra Λ considered in [8] and [9] are ”sparse” in the
sense that they all have density one; a number of results for spectra Λ with
infinite density can be found in [12] and [10].

In connection with these questions, we point out that no Riesz bases (nor
a frame) exists in L2(R) consisting of translates of a fixed function ϕ ([2]).
On the other hand, to the best of our knowledge, it is not known whether a
Schauder bases of translates exists in L2(R).

1.2. This paper deals with the caseX = L1(R). Our main result (Theorem 1
below) gives a characterization of the translation sets Λ ⊂ R admitting a
generator ϕ. The L1-case is in a sense easier than the L2-case because
now ϕ̂ must be a non-vanishing continuous function and what is involved
is the question of density of exponentials E(Λ) in intervals. It is therefore
not surprising that the Beurling-Malliavin spectral radius formula, which we
now recall, appears in this setting and in the statement of the main result.
The spectral radius R(Λ) of a set Λ ⊂ R is defined

R(Λ) = sup{ ρ > 0 ; E(Λ) is complete inC[−ρ, ρ ] },
where C(I) denotes the space of continuous functions on the interval I. One
setsR(Λ) = 0 when E(Λ) is not complete in C[−ρ, ρ ] for any positive ρ. Thus
if 0 < R(Λ) < ∞, we have that E(Λ) is complete in C[−ρ, ρ] if ρ < R(Λ)
and incomplete if ρ > R(Λ). The Fourier transform of the dual space, the
space of finite complex Borel measures supported in [−ρ, ρ], is a (proper)
subspace of the Bernstein space

Bρ =
{
F entire: |F (x+ iy)| ≤ CF e

ρ|y|, x+ iy ∈ C
}
,

where CF > 0 is a constant depending on F . If Λ is not complete in C[−ρ, ρ],
then there is a function F ∈ Bρ which vanishes on Λ. On the other hand, if
a function G ∈ Bρ vanishes on Λ, the function F (t) = G(t)(sin εt/εt)2 is the
Fourier transform of a finite (absolute continuous) measure concentrated on
[−ρ − 2ε, ρ + 2ε] which is orthogonal to E(Λ). Hence, for R(Λ) finite and
positive, we have

R(Λ) = sup
{
ρ > 0 : Λ is a uniqueness set for Bρ

}
(1.3)

= inf
{
ρ > 0 : ∃F ∈ Bρ, F �= 0, such that F|Λ = 0

}
.

Here and in the sequel, Λ being a uniqueness set for a certain class Y means
that F ∈ Y and F|Λ = 0 imply F ≡ 0.

In the beginning of the sixties Beurling and Malliavin (see [4, vol. 2])
established that R(Λ) = πDBM(Λ), where DBM(Λ) is a certain exterior
density whose definition will be recalled in section 3.
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1.3. With this notation we can now formulate our main result:

Theorem 1 A discrete set Λ ⊂ R admits a generator for L1(R) if and only
if R(Λ) = +∞.

The necessity of the condition R(Λ) = +∞ follows essentially from the
remarks in paragraph 1.1. and will be detailed in section 2. We will give
two proofs of the sufficiency. The first one, also in section 2, is constructive,
based solely on R(Λ) = +∞ without using any density. The second one, in
section 3, uses the geometrical information DBM(Λ) = +∞.

This second proof develops the following natural approach to the prob-
lem, relating it with uniqueness sets for generalized Bernstein classes. Let N
be the class of all functions f ∈ L1(R) such that f̂ does not vanish:

(1.4) N = {f ∈ L1(R) : f̂(ζ) �= 0, ζ ∈ R}.
By duality, a function ϕ is a Λ-generator for L1(R) if and only if h ∈ L∞(R)
and (h 	 ϕ̌)(λ) =

∫ +∞
−∞ h(t)ϕ(t − λ) dt = 0, λ ∈ Λ, implies h = 0 (here

ϕ̌(t) = ϕ(−t)). Applying Wiener’s theorem, we see that ϕ is a Λ-generator
if and only if ϕ ∈ N , and h ∈ L∞(R) and (h 	 ϕ̌)(λ) = 0, λ ∈ Λ, imply
h 	 ϕ̌ = 0. This can be restated by saying that ϕ is a Λ-generator in L1(R)
if and only if it satisfies: (i) ϕ ∈ N , and (ii) Λ is a uniqueness set for the
class L∞(R) 	 ϕ̌.

Given any Λ with infinite spectral radius, it follows from (1.3) that Λ
is a uniqueness set for every Bernstein class Bρ. However, clearly, we have
N ∩ Bρ = ∅, for all ρ, and so no space L∞(R) 	 ϕ̌, ϕ ∈ N , is included in
any of the Bernstein spaces. In order to prove Theorem 1, one may try to
construct larger spaces of analytic functions Y such that Λ is a uniqueness
set for Y , and L∞(R) 	 ϕ̌ ⊆ Y , for some ϕ ∈ N . It turns out that the
‘smallest’ spaces Y with this property can be realized as the generalized
Bernstein classes Bσ defined as follows. Let σ be a monotone function on
(0,∞) satisfying σ(y) ↗ ∞, y → ∞. We set:

(1.5) Bσ =
{
F entire : |F (x+ iy)| ≤ CF e

|y|σ(|y|), x+ iy ∈ C
}
.

In section 3 we prove:

Theorem 2 For a discrete set Λ ⊂ R, the following conditions are equiva-
lent:

(a) Λ admits a generator ϕ for L1(R).

(b) Λ is a uniqueness set for some generalized Bernstein class Bσ.

When (b) holds, the generator ϕ can be chosen in Bσ.
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If a set Λ has finite spectral radius then, by Theorem 1, Λ does not admit
generators in L1(R). In section 4 we look at the problem of two generators
and show that there exist spectra Λ which do not admit a single genera-
tor while they admit a pair of generators. More specifically, we show that
every Λ of form (1.2) with ‘exponentially small’ an admits two generators.

2. The spectral radius proof of the main theorem

A basic well know remark concerning the spectral or completeness radius
R(Λ) is that its value is not affected if the sup-norm on [−ρ, ρ] is replaced
by any reasonable norm. This fact is behind both the proof of the necessity
and sufficiency of the condition.

2.1. Let us prove first that R(Λ) = +∞ is necessary. If ϕ ∈ L1(R) is a
Λ-generator, it follows from (1.1) and the trivial estimate ‖f̂‖∞ ≤ ‖f‖1 that
an arbitrary f̂ , with f ∈ L1(R), can be approximated in the sup-norm by
functions in ϕ̂ E(Λ). Since ϕ 	 f ∈ L1(R), ϕ̂f̂ can be approximated as well.
We know too that ϕ̂ has no zeros, by Wiener’s theorem. Now fix ρ > 0;
every test function ψ supported in (−ρ, ρ) serves as f̂ , and therefore ϕ̂ψ is
well approximated by ϕ̂ E(Λ) in the sup-norm. Since ϕ̂ is bounded below
on (−ρ, ρ) it follows that every ψ is approximated in the sup-norm by E(Λ).
The density of such ψ in C [−ρ, ρ] shows that E(Λ) is dense in C [−ρ, ρ]
and ρ being arbitrary, one has R (Λ) = +∞.

2.2. To prove that R (Λ) = +∞ is a sufficient condition we will make use of
the remark above and consider instead of the sup-norm the Sobolev norm

‖ ψ ‖2 + ‖ ψ′ ‖2 .

More precisely, if I is an interval we consider the space

L2
1(I) =

{
h ∈ L2(I) : h′ ∈ L2(I)

}
(consisting of absolutely continuous functions) endowed with the norm
‖ h ‖I = ‖ h ‖L2(I) + ‖ h′ ‖L2(I). The reason to consider ‖ h ‖I is that

if ‖ f̂ ‖R is finite then f ∈ L1(R) and

(2.1) ‖ f ‖1 ≤‖ f̂ ‖R,

as it is immediately checked.
The fact that if R (Λ) = +∞, E (Λ) is dense in L2

1 (−ρ, ρ) for every ρ > 0
can be checked in an elementary way, i.e. by first approximating h′ and then
integrating.
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We consider now the space

E =
{
f ∈ L1(R) : f̂ is of class C1 and compactly supported

}
.

It is clear that E is dense in L1(R) and separable. We fix a sequence (fk)
∞
k=1,

fk ∈ E dense in L1(R). Fix some sequence εk → 0, say εk = 2−k. Associ-
ated to Λ with R (Λ) = +∞ and to the sequences (fk)

∞
k=1, (εk)

∞
k=1 we will

construct a positive Φ ∈ L2
1 (R) with the following property:

“For each k = 2, 3, . . . there exists a trigonometric polyno-
mial Pk(ζ) =

∑
λ∈Λk

cλe
iλζ with frequencies in a finite subset Λk

of Λ, such that
‖ f̂k − PkΦ ‖R< εk. ”

If ϕ̂ = Φ then (2.1) gives ϕ ∈ L1(R) such that

‖ fk −
∑
λ∈Λk

cλτλϕ ‖1 ≤ εk.

Since given an arbitrary g ∈ L1(R) and ε > 0 there are infinitely many k
such that ‖ g − fk ‖1< ε, this will prove that ϕ is indeed a Λ-generator
in L1(R).

We will use at certain points the trivial estimate

‖ HG ‖I ≤ B(G) ‖ H ‖I , G,H ∈ L2
1(R),

where B(G) =‖ G ‖∞ + ‖ G′ ‖∞.

Let (Ik)
∞
k=1, (Jk)

∞
k=1 be open intervals centered at 0, with

J1 ⊂ I1 ⊂ J2 ⊂ I2 ⊂ · · · ⊂ Jk ⊂ Ik ⊂ Jk+1 ⊂ Ik+1 ⊂ · · ·
Ik \ Jk consisting in two unit intervals and such that f̂k is supported in Jk.
The function Φ will be an even continuous piecewise linear function that will
be built step by step (the condition of piecewise continuity is not essential
for the construction). We will exploit the fact that

(2.2) “ E (Λ) is dense in L2
1(I) for every interval I ”

Let δk > 0 be such that
∑∞

n=k δn = εk. We shall now construct even
piecewise linear functions Gk, k = 1, 2, . . . , and trigonometrical polynomi-
als Pk with frequencies from Λ, each Gk being positive and decreasing on
Ik ∩ (0,∞), Gk = 0 outside Ik, B(Gk) < 1, ‖ Gk ‖R≤ 1, Gk = Gk+1 in
Ik−1, k = 2, 3, . . . and such that

(2.3) ‖ f̂k − PkGk ‖R≤ δk, k = 1, 2, . . . ,

and

(2.4) max{1, B(P1), . . . , B(Pk)} ‖ Gk+1 −Gk ‖R≤ δk+1, k = 1, 2, . . .
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To begin, clearly there exists an even piecewise linear function G1 posi-
tive, decreasing on I1∩ (0,∞) and vanishing outside I1 such that B(G1) < 1
and ‖ G1 ‖R< 1. Recall that f̂1 is zero outside J1 ⊂ I1. By (2.2), there is a
trigonometric polynomial P1 with frequencies from Λ such that ‖ f̂1/G1 −
P1 ‖I1< δ1. Since G1 vanishes outside I1 and B(G1) < 1, this implies (2.3)
with k = 1.

Next, one can choose an even piecewise linear function G2 positive de-
creasing on I2 ∩ (0,∞) and vanishing outside I2 such that G2 is so close
to G1 (hence, G2 is close to zero on I2 \ I1) that B(G2) < 1, ‖ G2 ‖R< 1
and (2.4) holds with k = 1. The same argument we used for G1 shows that
there exists P2 such that (2.3) holds with k = 1.

Assume that we have found G1, . . . , Gn satisfying the properties above.
Then, clearly, we may find Gn+1 which is even, piecewise linear, positive and
decreasing on In+1∩ (0,∞) and vanishing outside In+1 such that Gn+1 = Gn

on In−1 and Gn+1 is so close to Gn that B(Gn+1) < 1, ‖ Gn+1 ‖R< 1 and
(2.4) holds with k = n. Again, the argument we used for G1 shows that
there is a trigonometrical polynomial Pn+1 with frequencies from Λ such
that (2.3) holds true with k = n+ 1.

Now define Φ = Gk on Ik−1. Then,

‖ Φ ‖R ≤ lim
k→∞

‖ Gk ‖R ≤ 1,

which shows that ϕ ∈ L1. Moreover, by (2.3) and (2.4), since f̂k = 0 outside
Jk ⊂ Ik and Gn = 0 outside In, we have for every k = 2, 3, . . .

‖ f̂k − PkΦ ‖R = ‖ f̂k − PkGk+1 ‖Ik
+

∞∑
n=k

‖ PkGn+2 ‖In+1\In

≤‖ f̂k − PkGk ‖R + ‖ PkGk+1 − PkGk ‖R +
∞∑

n=k

‖ PkGn+2 − PkGn+1 ‖R

≤ δk + δk+1 +
∞∑

n=k+1

δn+1 = εk,

as desired.

3. Uniqueness sets for generalized Bernstein classes

In this section we prove Theorem 2 stated in the Introduction.

3.1. We first verify the ‘easy’ part (b) ⇒ (a). We assume that Λ is a
uniqueness set for some Bσ with σ(y) ↗ ∞ as y → +∞, and we want to
produce ϕ ∈ Bσ which is a Λ-generator. The proof is based on the fact that
for any σ(y) ↗ ∞ we have Bσ∩N �= ∅, where the class N is defined in (1.4).
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More precisely, we need the following

Lemma 3.1 For any σ(y) ↗ ∞, y → ∞, there is a positive function on
(0,∞), ω(s) ↗ ∞, such that∫ ∞

0

eys−ω(s) ds ≤ eyσ(y), y ≥ 0.

This is a simple and well-known fact, and so we omit the proof.

The proof of (a) ⇒ (b) is as follows. First we apply Lemma 3.1 to
σ(y)−2ε, with some fixed number ε > 0. Define g as ĝ(s) = e−ω(|s|), then g ∈
Bσ−2ε. Set ϕ(t) = g(t) sinc2(εt), where sinc t = sin t/t. The Fourier transform
of sinc(εt) is χε(s), the characteristic function of the interval [−ε, ε]. Hence,
ϕ̂ = ĝ 	 χε 	 χε. Since ĝ is everywhere positive, the same is true for ϕ̂, which
gives ϕ ∈ N .

We shall use the trivial estimate:

(3.1)
∣∣sinc2ε(x+ iy)

∣∣ ≤ C
e2ε|y|

1 + x2 + y2
, x+ iy ∈ C,

where C is some constant. This estimate shows that ϕ ∈ Bσ and that
ϕ(x+ iy) is in L1 on any line z = x+ iy,−∞ < x <∞. The latter implies
that for every f ∈ L∞(R) the convolution f 	 ϕ̌ is defined at every complex
point x+ iy. Using (3.1) and g ∈ Bσ−2ε we obtain:

|f 	 ϕ̌(x+ iy)| =

∣∣∣∣
∫ ∞

−∞
ϕ(x+ iy − s)f(s) ds

∣∣∣∣ ≤ ‖f‖∞
∫ ∞

−∞
|ϕ(x+ iy)| dx

≤ ‖f‖∞ max
x

|g(x+ iy)|
∫ ∞

−∞
C

e2ε|y|

1 + x2 + y2
dx

≤ C1e
|y|σ(|y|), ∃C1 > 0, x+ iy ∈ C.

Hence, L∞(R) 	ϕ ⊆ Bσ. As explained in paragraph 1.3 this shows that ϕ is
a Λ−generator for L1(R).

3.2. For the proof of (a) ⇒ (b) we start recalling the definition of the
Beurling-Malliavin exterior density. There are several equivalent definitions
of this density DBM . One suitable for us here is as follows (see [4, vol. 2]).
Suppose Λ ⊂ (0,∞) and let D be a positive number. A family of disjoint
intervals Ik = (ak, bk), 0 < a1 < b1 < · · · , ak ↗ +∞ is called substantial
for D if

nΛ(ak, bk)

bk − ak

> D , k = 1, 2, . . . ,
∑

k

(bk − ak

bk

)2

= +∞ .

Here nΛ(I) is the number of points of Λ in an interval I.
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The density DBM(Λ) is then defined,

DBM(Λ) = sup
{
D > 0 : there exists a substantial family for D

}
.

If no D > 0 admits a substantial family, one sets DBM(Λ) = 0. For a
general Λ, one defines DBM(Λ) = max{DBM(Λ+), DBM(Λ−)} where Λ+ =
Λ ∩ R+, Λ− = (−Λ) ∩ R+. From now on we may assume Λ ⊂ (0,∞).
Observe that traditionally in the definition of substantial family, one writes∑

k(bk − ak)
2a−2

k = ∞, while for our purposes it is more convenient to use∑
k(bk − ak)

2b−2
k = ∞. However, these definitions are equivalent, since as

remarked in [4], the divergence of the first series implies the divergence of
the other.

According to the definitions, DBM(Λ) = +∞ means that for every D > 0
there exists a substantial family of intervals for D. In order to quantify this
we introduce the following definition.

Definition Suppose Λ ⊂ (0,∞). If Ψ(s) is an increasing function in
(0,+∞), we call a family of disjoint intervals Ik = (ak, bk) ⊂ (0,∞) sub-
stantial for Ψ if

Λ(ak, bk)

bk − ak

> Ψ(bk − ak) and
∑

k

(bk − ak

bk

)2

= +∞ .

By a diagonal procedure it is immediate to prove:

Lemma 3.2 If Λ ⊂ (0,∞) and DBM(Λ) = +∞, there exists an increasing
function Ψ(s) ↗ +∞ which admits a substantial family of intervals.

This lemma gives all we will use on Λ. To prove the implication (a) ⇒ (b),
for a given Λ with DBM(Λ) = ∞, we have to find a function σ(y) ↗ ∞ such
that Λ is a uniqueness set for Bσ. This is the subject of the following

Theorem 3.3 Assume Λ ⊂ (0,∞), and a family of disjoint intervals Ik =
(ak, bk) is substantial for some function Ψ(s) ↗ ∞. Then Λ is a uniqueness
set for Bσ, whenever σ satisfies:

(a) For all x ∈ R

(3.2) σ(x) ≤ 1

2e
Ψ

( x

2e

)
.

(b) There exists a sequence of integers nj → ∞ such that

(3.3)
1

σ(2bnj
)

nj∑
k=1

Ψ(bk − ak)

(
bk − ak

bk

)2

→ ∞, j → ∞.

It is clear that for any function Ψ(s) ↗ ∞ there is a function σ(s) ↗ ∞
which satisfies both assumptions (3.2) and (3.3). Hence, the implication (a)
⇒ (b) of Theorem 2 is a consequence of Theorem 3.3.
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3.3. The proof of Theorem 3.3 will be a consequence of a series of lemmas.
Denote by B0

σ the subclass of Bσ of functions

(3.4) |F (x+ iy)| ≤ e|y|σ(|y|), x+ iy ∈ C.

Lemma 3.4 Assume a function F ∈ B0
σ has n zeros on some interval [a, b].

Then

(3.5) |F (x)| ≤ (b− a)n min
y>0

eyσ(y)

yn
, for every x ∈ [a, b].

Proof. Indeed, set Q(x) =
∏n

k=1(x − xk) where xk are the zeros of F on
(a, b). The following interpolation formula is well known: for every x ∈ [a, b]
there is a number t ∈ (a, b) such that

F (x) =
n∑

k=1

F (xk)Q(x)

Q′(xk)(x− xk)
+
F (n)(t)Q(x)

n!
=
F (n)(t)Q(x)

n!
.

By Cauchy’s inequality, we have

|F (x)| ≤ |Q(x)| max
a≤t≤b

|F (n)(t)|
n!

≤ (b− a)n max
a≤t≤b

min
R>0

max0≤θ<2π |F (t+Reiθ)|
Rn

≤ (b− a)n min
y>0

eyσ(y)

yn
. �

Lemma 3.5 Suppose Ψ and σ satisfy (3.2). If F ∈ B0
σ has

n ≥ (b− a) Ψ(b− a)

zeros on an interval (a, b), a > 0, then

(3.6)

∫ b

a

log |F (x)|
x2

dx ≤ −(log 2)
(b− a

b

)2

Ψ(b− a).

Proof. Let yn be the number defined by ynσ(yn) = n. Then, by (3.5),

|F (x)| ≤ (b− a)n e
ynσ(yn)

yn
n

= (b− a)nen−n log yn , for every x ∈ [a, b].

Hence, ∫ b

a

log |F (x)|
x2

dx ≤ b− a

ab
(n log(b− a) + n− n log yn)

= −b− a

ab

(
n log

yn

e(b− a)

)
.

Since n ≥ (b− a)Ψ(b− a), it follows from (3.2) and the definition of yn that
yn ≥ 2e(b− a), and this gives (3.6). �
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Lemma 3.5. relates the size of the logarithmic integral to the number of
zeros. One can obtain a slightly better estimate by using Jensen’s formula
for ellipses (see [4] for the case of Bernstein classes). On the other hand, the
next lemma establishes that the logarithmic integral of F ∈ Bσ cannot be
too large negative.

Lemma 3.6 If F ∈ B0
σ, F �≡ 0 then

(3.7)

∫
1≤|x|≤R

log |F (x)|
x2

dx ≥ −16

3
σ(2R ) + 0(1), R→ ∞.

Proof. We use Carleman’s formula [6, Ch. 5]; for R > 1:

∫ R

1

( 1

x2
− 1

R2

)
log |F (x)F (−x)| dx+

2

R

∫ π

0

log |F (Reiθ)| sin θ d θ ≥ C

where C depends only on F . By (3.4), log |F (x)| ≤ 0. Using that

x−2 ≤ 4

3
(x−2 −R−2) for |x| ≤ R/2,

we get
3

4

∫
1≤|x|≤R/2

log |F (x)|
x2

≥ C − 4σ(R) .

�

In fact the proof of the lemma shows that for F satisfying

|F (z)| = 0
(
eσ(|z|)|z|),

log− |F (x)| controls log+ |F (x)|.
With Lemmas 3.5. and 3.6. we can now complete the proof of Theo-

rem 3.3. Suppose G �≡ 0 ∈ Bσ vanishes on Λ. Set F = G/C where C is a
constant such that F ∈ B0

σ. Then Lemma 3.5. applies to every Ik = [ak, bk],
so adding (3.6) in k ≤ n

∫ bn

1

log |F (x)|
x2

dx ≤ −C1

n∑
k=1

Ψ (bk − ak)
(bk − ak

bk

)2
,

which combined which (3.7) gives

σ(2bn) − C2

n∑
k=1

Ψ(bk − ak)
(bk − ak

bk

)2 ≥ C3,

with constants C1, C2 and C3 independent of n. This is in contradiction
with hypothesis (3.3). Hence F ≡ 0, and Λ is a uniqueness set for Bσ.
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4. Pairs of generators

Definition 2 We say that Λ admits a pair of generators if there exist two
L1−functions ϕ1 and ϕ2 such that all linear combinations of ϕ1(t− λ1) and
ϕ2(t− λ2), λ1, λ2 ∈ Λ, are dense in L1(R).

Suppose a sequence Λ has a finite spectral radius. Then by Theorem 1,
the Λ−translations of one function cannot be dense in L1(R). However,
Λ may admit a pair of generators. Observe that all perturbations of the
integers (1.2) have spectral radius π (that is, DBM(Λ) = 1). If the an

in (1.2) are exponentially small then Λ does admit a pair of generators, as
shown in the following

Theorem 4.1 Suppose a real sequence an, n ∈ Z, satisfies:

(4.1) 0 �= |an| ≤ Cr|n|, n ∈ Z,

where C > 0 and 0 < r < 1 are some constants. Then the sequence Λ =
{n+ an}n∈Z admits a pair of generators.

It is easy to check that the set of integers itself does not admit a pair
(nor any finite number) of generators. Thus the situation with two gener-
ators in L1(R) is somewhat similar to the situation with one generator in
L2(R), where the set of integers does not admit generator while every small
perturbation of it does.

We shall need two auxiliary lemmas.

Lemma 4.2 Suppose an satisfy (4.1), ρ < π, and a function g ∈ Bρ. If
there is a constant C > 0 such that |g(n + an)| ≤ C|an| for all n ∈ Z then
g ≡ 0.

Proof. Let b > 0 satisfy ρ+b < π. By (3.1), the function g(z) sinc bz belongs
to Bρ+b ∩ L2(R) (that is it belongs to the Paley-Wiener space PWρ+b). Let
us estimate the values of g at the integer points:

(4.2) |g(n)| ≤ |g(n+ an)|+ |g(n+ an)− g(n)| ≤ (C + ‖g′‖∞)|an| = K|an|,
where K <∞ since by Bernstein’s inequality ‖g′‖∞ ≤ (2ρ+ b)‖g‖∞ <∞.

Set G = ĝ. Then G ∈ L2(R) and is concentrated on [−ρ−b, ρ+b]. Write

G(x) =
1

2π

∞∑
n=−∞

g(−n)einx,

where the Fourier series converges to G in L2 norm.
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One can easily verify that by (4.1) and (4.2) the Fourier series admits
analytic continuation into some strip in the complex plane. However, since
G(x) = 0 on (ρ+ b, π), the Fourier series is identically zero, and we conclude
that G(x) = 0 a.e. �

To formulate the next lemma, we introduce two auxiliary functions

ϕ1(t) = sinc2at
∞∑

k=−∞
e−|k|+2πikt, ϕ2(t) = e−iπtϕ1(t),

where a is a constant to be chosen later.

Lemma 4.3 Suppose 0 < a < π/2, and an satisfy (4.1). Then the set
Λ = {n+ an} is a uniqueness set for each class L∞ 	 ϕ̌j, j = 1, 2.

Proof. We use an argument similar to the one in the proof of the main
result of [9]. Clearly, ϕ1 ∈ L1(R), for all values a. Since sinc at has as
Fourier transform the characteristic function χa(x) of [−a, a], we get

ϕ̂1 = χa 	 χa 	

∞∑
k=−∞

e−|k|δ2πk,

where δc is the unite measure concentrated at the point c. This shows that
the support of the Fourier transforms of ϕj is as follows:

(4.3)
supp ϕ̂1 =

∞⋃
k=−∞

[−2a+ 2kπ, 2a+ 2kπ] = [−2a, 2a] + 2πZ,

supp ϕ̂2 = supp ϕ̂1 + π.

Observe that both ϕ̂1 and ϕ̂2 are strictly positive on their support.

We have to verify that f ∈ L∞(R) and f 	 ϕ̌j(n+ an) = 0, for all n ∈ Z,
imply f ∗ ϕ̌j = 0. However, it suffices to check this for j = 1 only. Indeed,
since ϕ2(t) = e−πitϕ1(t), we have

f 	 ϕ̌2(t) = eπit[(fe−πis) 	 ϕ̌1](t),

and the implication for j = 2 follows from the one for j = 1. Notice too
that ϕ1 is even, that is, ϕ̌1 = ϕ1.

Set

gj(t) =
∞∑

k=−∞
e−|k|kj

∫ ∞

−∞
sinc2a(t− s)e−2πiksf(s) ds, j = 0, 1, 2, . . .
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so that

f 	ϕ1(t) =
∞∑

k=−∞
e−|k|+2πikt

∫ ∞

−∞
sinc2a(t−s)e−2πiksf(s) ds =

∞∑
j=0

(2πit)j

j!
gj(t).

To prove the lemma, we show by induction that f 	 ϕ1(n + an) = 0, n ∈ Z,
implies

(4.4) gj ≡ 0, j = 0, 1, 2, . . .

By (3.1) we see that gj ∈ B2a for all j = 0, 1, . . . Since

0 = f ∗ ϕ̌1(n+ an) =
∞∑

k=−∞
e−|k|+2πikan

∫ ∞

−∞
sinc2 a(n+ an − s)e−2πiksf(s) ds,

we obtain for each n ∈ Z

|g0(n+ an)| =

∣∣∣∣∣
∞∑

k=−∞
e−|k| (e2πikan − 1

) ∫ ∞

−∞
sinc2 a(n+ an − s)e−2πiksf(s) ds

∣∣∣∣∣
≤ C0|an|,

where

C0 = ‖f‖∞‖sinc2at‖1

∞∑
k=−∞

2π|k|e−|k| <∞.

Hence, by Lemma 4.2, we see that (4.4) holds for j = 0.

Suppose (4.4) is true for 0 ≤ n < l. Clearly, for each integer l there is a
constant Kl such that the inequality

|eiα −
l∑

j=0

(iα)j

j!
| ≤ Kl|α|l+1

holds for every real α. Applying it with α = 2πkan, we obtain:

(2πan)l

l!
|gl(n+ an)| =

∣∣∣∣∣f 	 ϕ̌1(n+ an) −
l∑

k=0

(2πian)j

j!
gj(n+ an)

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

k=−∞
e−|k|

(
e2πikan −

l∑
j=0

(2πikan)j

j!

)∫ ∞

−∞
sinc2a(n+ an − s)e−2πiksf(s)ds

∣∣∣∣∣
≤ Cl|an|l+1,
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where

Cl = Kl(2π)l+1

∞∑
k=−∞

e−|k||k|l+1‖f‖∞‖sinc2at‖1 <∞.

Hence,
|gl(n+ an| ≤ Cl|an|, n ∈ Z

(note that here is where the assumption an �= 0 is used). Lemma 4.2 gives
gl ≡ 0, so that (4.4) is true, which proves the lemma. �

Let us now turn to the proof of Theorem 4.1. We shall now simply
check that for every π/4 < a < π/2 the functions ϕ1 and ϕ2 form a pair of
generators for every sequence Λ = {n + an} satisfying the assumptions of
Theorem 4.1. Assume a function f ∈ L∞(R) satisfies f 	 ϕ̌j(n + an) = 0,
j = 1, 2, for all n ∈ Z. To prove Theorem 4.1 we have to show that f = 0 a.e.
By Lemma 4.3, f 	 ϕ̌j = 0, j = 1, 2. Hence, f 	 (ϕ̌1 + ϕ̌2) = 0. However, as
it easily follows from (4.3), the function ϕ̂1 + ϕ̂2 is everywhere positive for
a > π/4. We conclude, by Wiener’s theorem, that f = 0 a.e.
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