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Asymptotics of the integrated density
of states for periodic elliptic
pseudo-differential operators

in dimension one

Alexander V. Sobolev

Abstract
We consider a periodic pseudo-differential operator on the real

line, which is a lower-order perturbation of an elliptic operator with
a homogeneous symbol and constant coefficients. It is proved that the
density of states of such an operator admits a complete asymptotic
expansion at large energies. A few first terms of this expansion are
found in a closed form.

1. Introduction

Spectral theory of periodic operators offers an abundant array of problems
with regard to all aspects of spectral structure. One of such problems is
the asymptotics of the (integrated) density of states D(λ) as the spectral
parameter (the energy) λ tends to infinity. Although the study of this ob-
ject presents an independent interest, it also helps to obtain other important
spectral properties. For instance, the high energy asymptotics of D(λ) pro-
vides information on the size of spectral gaps, or, studying a “generalized
density of states”, one can sometimes find out whether or not the number
of gaps is finite, see [2], [4] and [9]. In the recent years a number of results
was obtained for the density of states for the Schrödinger operator

(1.1) H = −∆ + V,

in L2(Rd), d ≥ 1, with a real-valued function V , periodic with respect to a
d-dimensional lattice Γ ⊂ Rd.
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Below we denote by O ⊂ Rd a standard fundamental domain of the
lattice Γ. For this operator, as well as for any other elliptic self-adjoint
differential operator the density of states is defined by the formula

(1.2) D(λ) = lim
L→∞

N(λ;H
(L)
D )

Ld
.

Here H
(L)
D is the restriction ofH to the cube [0, L)d with the Dirichlet bound-

ary conditions, and N(λ; · ) is the counting function of the discrete spectrum

of H
(L)
D . To be precise, the quantity D(λ) is called the integrated density

of states, but for the sake of brevity we call it simply the density of states.
This will not cause any confusion. Calculation of the density of states D0(λ)
for the unperturbed operator H0 = −∆ is an elementary exercise: one easily
proves (see e.g. Proposition 2.1 below) that D0(λ) = (2π)−d wd λ

d/2, where
we have denoted by wd the volume of the unit ball in Rd.

The first asymptotic formulas for the operator (1.1) were obtained in the
case d = 1 ([12]). It was shown that for C∞-smooth 2π-periodic functions V
the density of states admits a complete expansion in the powers of λ−1:

(1.3)



D(ρ2) =

1

π
ρ+

N∑
j=1

bjρ
1−2j +O

(
ρ1−2(N+1)

)
, ρ→ ∞, ∀N ;

b1 = − 1

4π2

∫ 2π

0

V (x)dx, b2 = − 1

16π2

∫ 2π

0

|V (x)|2dx.
The remaining coefficients are found via certain explicit and simple recursion
relations. Note also that in addition to this formula, an asymptotics for the
spectral function of H was derived in [12].

The first results on the multi-dimensional Schrödinger operator were es-
tablished in [13] (see also [14] for an elementary proof) for almost periodic
potentials V . It was proved that

D(ρ2) = D0(ρ
2) +O(ρd−2), ρ→ ∞.

As the spectral theory of almost periodic operators is beyond the scope of
this paper, for further references on the subject we refer to [5] and [14]. For
periodic potentials the above formula was improved in [4] with the help of
a sophisticated microlocal technique: for C∞-smooth V ’s it was shown that

D(ρ2) = D0(ρ
2)+ c2ρ

d−2 +O(ρd−3+ε), ∀ε > 0, c2 = − dwd

2(2π)d|O|
∫

O

V (x)dx.

A further improvement was achieved even for the more general operator
(−∆)l + V , l > 1/2, in [5] through the use of a suitable perturbation argu-
ment:

(1.4) D(ρ2l) = D0(ρ
2l) + c2,lρ

d−2l +O(ρd+1−4l ln ρ), c2,l = c2l
−1.
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The difference between the one- and multi-dimensional cases is not surpris-
ing. For d = 1 one can carry out more or less complete perturbation analysis
of the Floquet eigenvalues. On the contrary, for d ≥ 2 the eigenvalues split
in two groups behaving differently under the perturbation V . One group of
eigenvalues behaves essentially as in the case d = 1, and their contribution
can be relatively easily evaluated by means of the perturbation theory. The
analysis of the other group of eigenvalues presents a major obstacle. This
group consists of “anomalous” eigenvalues which move by a quantity of or-
der ‖V ‖ under the perturbation V , and therefore cannot be considered as
small perturbations of the unperturbed eigenvalues (see e.g. [15], Ch. 4). In
the relevant literature they are sometimes called resonant, unstable or singu-
lar eigenvalues, see [3], [6]. Various spectral properties of the operator H can
be established by checking that the quantity of these “anomalous” eigenval-
ues is negligible in some sense. For instance, this strategy was successfully
applied in [15] for the justification of the Bethe-Sommerfeld conjecture, and
in [5] for the proof of (1.4). On the other hand, this approach does not allow
one to study further terms (if they exist) in the asymptotics of D(λ). In
spite of these difficulties at least a partial analysis of the resonant eigenval-
ues is possible. As was shown in [3] (see also [6], Section 4.6), they can be
described by a suitable effective one-dimensional Schrödinger operator.

The aim of the present paper is to study the density of states of a periodic
elliptic pseudo-differential operator in L2(R), of the form

(1.5) H = H0 +B, H0 = Op(h0), B = Op(b)

where H0 is a pseudo-differential operator (PDO) with the symbol h0(ξ) =
|ξ|m, m > 0. The operator B is a symmetric PDO of order α < m with a
symbol b(x, ξ) which is 2π-periodic in x. It is shown (see Theorems 2.3, 2.4)
that the density of states admits a complete asymptotic expansion with a
remainder estimate uniform in the symbol b in a certain sense. A few first
terms of this expansion are calculated explicitly. It is also possible to find
all the subsequent coefficients as well, but the author has been able to find
neither a compact formula for the coefficients, nor a simple recursion relation
for them. Applying Theorem 2.3 to the Schrödinger operator one recovers
the first coefficients in the decomposition (1.3) found previously in [12].
Note that the assumption that the principal symbol h0 is x-independent, is
not essential. A more general principal term, for instance a(x)H0a(x) with
a positive periodic function a(x), reduces to (1.5) by a simple change of
variables.

Although the study of such a one-dimensional problem presents an inde-
pendent interest, the main motivation comes from the link with the multi-
dimensional case mentioned above: in a subsequent publication it is intended
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to apply the asymptotics ofD(λ) in the case d = 1 to the study of the density
of states for the multi-dimensional Schrödinger operator. For this applica-
tion it would be sufficient to study the operator (1.5) of order m = 2 and a
perturbation B of order α = 0, but the techniques used in the paper allow
for arbitrary m > 0 and arbitrary α < m without any additional effort.

The key point of the approach in the paper is to find a similarity trans-
formation which reduces H to a PDO of a convenient form. In the one-
dimensional case, for an elliptic PDO on the circle one can find a suitable
FIO such that after the similarity transformation the operator reduces to a
PDO with constant coefficients, up to a smoothing operator of order −∞.
This reduction is presented in a systematic way in [11] (see also survey [1]
for relevant references). A further generalisation was suggested in [7], [8]
and some companion papers. In the multi-dimensional case a convenient
reduction is also possible in certain cases. For instance, in [16] the operator
−∆ + V on the sphere Sd, d ≥ 1 is reduced up to terms of higher orders, to
−∆ + Ṽ where Ṽ is a PDO of order 0, commuting with −∆.

Our approach can be viewed as a variant of the method described in [11].
The similarity transformation S is sought in the form of a unitary operator
S = eiΨ in L2(R) with a self-adjoint bounded periodic PDO Ψ. The re-
quirement that S∗HS should be a PDO with constant coefficients leads to
a series of commutator-type equations for the symbol of Ψ. Afterwards, the
density of states for the obtained PDO with constant coefficients is found
directly. As can be seen from the proof, see Sect. 4, the assumption that
the principal symbol h0 is x-independent, is crucial for finding S in the form
eiΨ without the use of the FIO technique.

Let us describe briefly how the methods and results of this paper are ap-
plied to the study of the Schrödinger operator P = −∆+V with a real-valued
periodic potential V in higher dimensions. For d ≥ 2 one also constructs a
similarity transformation S in the form eiΨ. However, a complete reduction
to a PDO with constant coefficients is not possible any more, since the at-
tempt to find a suitable smooth symbol ψ(x, ξ) leads to a symbol singular
for values of ξ on a set Λ which is a union of hyper-planes

Λθ = {ξ ∈ Rd : θ(ξ + θ/2) = 0}
where θ ∈ Γ†, Γ† being the dual lattice. One can avoid this singularity
by performing a “partial” reduction, which replaces the potential V in the
neighbourhood of each Λθ with an appropriate zero order PDO, acting only
in the variable along the direction θ. At this point the one-dimensional
results apply and they eventually provide an asymptotics of the density of
states for the operator P . Note that the set Λ is exactly the set responsible
for the existence of the resonant eigenvalues mentioned previously.
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The paper is organized as follows. Section 2 contains the precise defini-
tions of objects studied in the paper, and the statement of the main result
(see Theorems 2.3, 2.4). In Section 3 necessary information on the calculus
of periodic PDO’s is collected, and the perturbation B is prepared for the
reduction of the operator H0 + B to a PDO A0 with constant coefficients.
This reduction is implemented in Section 4. In Section 5 the integrated den-
sity of states for the operator A0 is analyzed and the proof of Theorem 2.3
is completed.

2. Periodic pseudo-differential operators. Main result

2.1. Classes of PDO’s

In order to define periodic PDO’s we need first to introduce a relevant class of
symbols. Although this paper is mainly concerned with the one-dimensional
case, these definitions without additional cost can be given for arbitrary
dimension d ≥ 1. Let Γ ∈ Rd be a lattice. Denote by O its fundamental
domain. For example, for O one can choose a parallelepiped spanned by
a basis of Γ. The dual lattice and its fundamental domain are denoted
by Γ† and O† respectively. In particular in the case Γ = (2πZ)d one has
Γ† = Zd and it is natural to take O = [0, 2π)d, O† = [0, 1)d. The volume
of the fundamental domain does not depend on its choice, it is called the
determinant of the lattice Γ and denoted d(Γ) = |O|.

For any u ∈ L2(O) define the Fourier coefficients

û(θ) =
1√
d(Γ)

∫
O

e−iθxu(x)dx, θ ∈ Γ†.

Let us now define the periodic symbols and PDO’s associated with them.
Let b = b(x, ξ),x, ξ ∈ Rd, be a periodic complex-valued function, that is

b(x + γ, ξ) = b(x, ξ), ∀γ ∈ Γ.

Denote by b̂(θ, ξ),θ ∈ Γ†, the Fourier coefficient of the function b( · , ξ). Let
w : Rd → R be a locally bounded function such that w(ξ) ≥ 1, ∀ξ ∈ Rd

and

(2.1) w(ξ + η) ≤ Cw(ξ)〈η〉κ, ∀ξ,η ∈ Rd,

for some κ ≥ 0. We say that the symbol b belongs to the class Sα =
Sα(w), α ∈ R, if for any l ≥ 0 and any non-negative s ∈ Z the condition

(2.2) b
(α)
l,s = max

p≤l
max
|s|≤s

sup
ξ,θ

〈θ〉p w(ξ)−α+|s||Ds
ξb̂(θ, ξ)| <∞,



60 A.V. Sobolev

is fulfilled. Here we have used the standard notation 〈t〉 =
√

1 + |t|2, ∀t ∈
Rd. Also, for any s ∈ Zd we denote |s| = s1 + s2 + · · · + sd. We mainly
use classes Sα with the weight w(ξ) = 〈ξ〉, which satisfies (2.1) for κ = 1.
Note that Sα is an increasing function of α, i.e. Sα ⊂ Sβ for α < β.
For later reference write the following convenient bounds that follow from
definition (2.2) and property (2.1):

|Ds
ξ b̂(θ, ξ)| ≤ b

(α)
l,s 〈θ〉−lw(ξ)α−s,(2.3)

|Ds
ξb̂(θ, ξ+η) − Ds

ξb̂(θ, ξ)| ≤(2.4)

≤ C b
(α)
l,s+1〈θ〉−lw(ξ)α−s−1〈η〉κ|α−s−1||η|, s = |s|,

with a constant C depending only on α, s. For any symbol b ∈ Sα we define
the PDO Op(b) in the usual way:

Op(b)u(x) =
1

(2π)d

∫ ∫
b(x, ξ)eiξ(x−y)u(y)dydξ,

the integrals being over Rd. One can easily see that under the condi-
tion b

(α)
l,0 < ∞, l > d, the r.h.s. is finite for any u from the Schwarz

class S(Rd). Moreover, later we show that for α = 0 this condition guaran-
tees the boundedness of Op(b) in L2(Rd). From now on S(Rd) is taken as a
natural domain for all PDO’s at hand. Observe that the operator Op(b) is
symmetric if its symbol satisfies the condition

(2.5) b̂(θ, ξ) = b̂(−θ, ξ + θ).

We shall call such symbols symmetric.
For methodological purposes, apart from Sα we also need a class of sym-

bols, depending on a scalar parameter σ ≥ σ0 > 0 in a controllable way.
To keep things as simple as possible, we allow only the dependence on σ
which will be needed for our argument later. Assume that b = b(x, ξ;σ) is
a C∞-function of σ ≥ σ0, such that ∂n

σb( · , · ;σ) ∈ Sα for each σ ≥ σ0 and

(2.6) b
(α,δ)
l,s,r := max

n≤r
sup
σ≥σ0

σn−δ ∂n
σb( · , · ;σ)

(α)
l,s <∞,

for some β ∈ R and all non-negative integers l, s, r. The class of such symbols
is denoted by Tα,δ = Tα,δ(w;σ0). Clearly, Tα,δ ⊂ Tβ,ζ if α ≤ β, δ ≤ ζ. It is
natural to identify the original class Sα with a subset of Tα,0 which consist
of symbols constant in σ. When it is not confusing, sometimes we omit the
dependence of symbols b ∈ Tα,δ on the parameter σ. Note that similarly
to (2.3), one can deduce from (2.6) that

(2.7) |∂n
σDs

ξ b̂(θ, ξ;σ)| ≤ b
(α,δ)
l,s,n 〈θ〉−lw(ξ)α−sσδ−n.
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We are interested in spectral properties of the operator H = H0 + B,B =
Op(b) in H = L2(Rd). Here b ∈ Sα(w), w(ξ) = 〈ξ〉, is a symmetric symbol,
H0 = Op(h0) with the symbol h0(ξ) = |Fξ|m, where m > α and F is a
non-degenerate matrix having real valued entries. Clearly, H0 is self-adjoint
on the domain D(H0) = Hm(Rd). As we shall see later, any PDO with a
symbol b ∈ Sα, α < m is H0-bounded with the relative bound zero. More
precisely, under the condition b

(α)
l,0 <∞, l > d we have

(2.8) ‖Bu‖ ≤ ε‖H0u‖ + Cε‖u‖, ∀ε > 0,

with Cε = Cε(b). Hence the operator H = H0 + B is also self-adjoint on
D(H) = D(H0). Due to the Γ-periodicity of the symbol b, the operator H
commutes with the shifts along the lattice vectors, i.e.

HTγ = TγH, γ ∈ Γ.

with (Tγu)(x) = u(x+γ). This allows us to use the Floquet decomposition.

2.2. Floquet decomposition

We identify the space H with the direct integral

G =

∫
O†

H dk, H = L2(O).

This identification is implemented by the Gelfand transform

(2.9) (Uu)(x,k) =
1√
d(Γ†)

e−i〈k,x〉 ∑
γ∈Γ

e−i〈k,γ〉u(x + γ), k ∈ O†,

which is initially defined on u ∈ S(Rd) and extends by continuity to a unitary
mapping from H onto G. The unitary operator U reduces Tγ to the diagonal
form:

(UTγU
−1f)( · ,k) = ei〈k,γ〉f( · ,k), ∀γ ∈ Γ.

Let us consider a self-adjoint operator A in H which commutes with Tγ for
all γ ∈ Γ. Then A is partially diagonalised by U (see [10]), that is, there
exists a measurable family of self-adjoint operators A(k) acting in H, such
that

(2.10) UAU ∗ =

∫
O†
A(k)dk.

It is easy to show that any periodic operator T , which is A-bounded with
relative bound ε < 1, can be also decomposed into a measurable set of fibers
T (k) in the sense that

(UTf)( · ,k) = T (k)(Uf)( · ,k), a.e. k ∈ O†,
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for all f ∈ D(A). Moreover, the fibers T (k) are A(k)-bounded with the
bound ε, and if T is symmetric, then the operator A(k)+T (k) is self-adjoint
on D(A(k)).

If A = Op(a) with a real-valued symbol a ∈ L∞
loc

(Rd) depending only
on ξ, then A(k) is a self-adjoint PDO on the torus Td = Rd/Γ defined as
follows:

A(k)u(x) =
1√
d(Γ)

∑
µ∈Γ†

ei〈µ,x〉a(µ + k)û(µ).

If a(ξ) → ∞ as |ξ| → ∞, then the spectrum of each A(k) is purely discrete
with eigenvalues given by λ(b)(k) = a(b + k),b ∈ Γ†. Consequently, the
number of eigenvalues below each λ ∈ R is essentially bounded from above
uniformly in k ∈ O†. If T is a periodic symmetric operator which is A-
bounded with a bound ε < 1, then the spectrum of A(k) + T (k) is also
purely discrete and the counting function is also bounded uniformly in k.

The above applies to the operators A = H0 = Op(h0) with h0(ξ) = |Fξ|m
and T = B = Op(b) with a symmetric symbol b ∈ Sα(w), w = 〈ξ〉, α < m.
In, particular the spectrum of H(k) = H0(k) + B(k) is purely discrete,
with eigenvalues λj(k) enumerated in increasing order counting multiplicity.
Moreover, the counting function

N(λ,k) = #{j : λj(k) ≤ λ}, λ ∈ R,

satisfies N(λ, · ) ∈ L∞(O†). Let us introduce the notation for the Fourier
coefficients of this function:

N̂(λ,b) =
1

(2π)d

∫
O†
e−i〈b,k〉N(λ,k)dk, b ∈ Γ.

The zeroth coefficient is called the (integrated) density of states for the
operator H:

(2.11) D(λ) = N̂(λ,0) =
1

(2π)d

∫
O†
N(λ,k)dk.

For periodic differential elliptic operators this is equivalent to the stan-
dard definition (1.2) of the density of states, see [14]. For general PDO’s
the formula (1.2) is not applicable, and thus (2.11) is used as a defini-
tion. Sometimes we need to reflect the dependence of the counting func-
tion and density of states on the operator. In this case we use the notation
N(λ,k;H), D(λ;H), N̂(λ,b;H).

In fact, if necessary, one can obtain more information on the operators
H0(k) and B(k). First of all, using the fact that the symbol of H0(k) is
|F(µ + k)|m one concludes that D(H0(k)) = Hm(Td). Secondly, applying



Density of states 63

the Gelfand transform (2.9) to Op(b), one finds that, similarly to H0(k), the
operator B(k) is a PDO on the torus of the form

B(k)u(x) =
1√
d(Γ)

∑
µ∈Γ†

ei〈µ,x〉b(x,µ + k)û(µ).

Moreover, if the symbol b(x, ξ) is smooth in ξ, then the family B(k) is
smooth in k. Note however that for our purposes we need neither this
explicit formula, nor the smoothness property.

We shall need one more notational convention. For any measurable set
C ⊂ Rd we denote by χ( · ,C) the characteristic function of C. Then the
operator

P = P(C) = Op(χ(ξ,C))

is a projection in H. Moreover, PD(H) ⊂ D(H). Since the operator P com-
mutes with Tγ, it is also decomposable, and similarly to H(k), the operator

(PHP)(k) = P(k)H(k)P(k),

restricted to the subspace P(k)H has discrete spectrum. For the counting
function of this spectrum we use the notation N(λ,k; PHP).

The quantity N̂(λ,b; Op(a)) has a transparent geometrical meaning if
the symbol a does not depend on x. We state the appropriate formulas in
the form of a proposition for later reference.

Proposition 2.1 Let A = Op(a) with a real-valued symbol a ∈ L∞
loc(R

d) be
such that a(ξ) → ∞ as |ξ| → ∞. Then for any λ ∈ R

N̂(λ,b;A) =
1

(2π)d

∫
ξ:a(ξ)≤λ

e−ibξdξ.

In particular, (2π)dD(λ;A) equals the volume of the body {ξ : a(ξ) ≤ λ}.
Proof. Let us prove the formula for D(λ). Denote

Θ(t) =

{
0, t < 0;

1, t ≥ 0.

Observe that the eigenvalues of A(k) equal a(µ + k), µ ∈ Γ†, so that

(2π)dD(λ) =
∑
µ∈Γ†

∫
O†

Θ
(
λ− a(µ + k)

)
dk

=

∫
a(ξ)≤λ

dξ = vol(ξ ∈ Rd : a(ξ) ≤ λ),

as required. �
Note the invariance of the density of states under certain unitary trans-

formations:
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Lemma 2.2 Let W : H → H be a Γ-periodic unitary operator, i.e.

WTγ = TγW, ∀γ ∈ Γ.

Then the operator W is also decomposable in the direct integral, with fibres
W (k) that are unitary operators in H. In particular

N(λ,k;W ∗HW ) = N(λ,k;H),

and

D(λ;H) = D(λ;W ∗HW ), N̂(λ,b;H) = N̂(λ,b;W ∗HW ), ∀b ∈ Γ.

2.3. Main result

The present paper deals with the asymptotics of the density of states D(λ)
as λ → ∞ for the case d = 1. The perturbation Op(b) is supposed to
belong to the class Sα(w) with w(ξ) = 〈ξ〉 and α < m. When d = 1
we always assume for convenience that Γ = 2πZ. We prove the ex-
istence of an asymptotic expansion for N̂(λ, 2πn), n ∈ Z, as λ → ∞ for
the one-dimensional case, and calculate explicitly a few first terms of this
asymptotics. However, a number of auxiliary results will be established for
general d ≥ 1. To emphasise the difference between d = 1 and d > 1 we use
the notation x, ξ and k in the case d = 1 instead of x, ξ and k for d > 1.
Denote

B1(ξ) =

∫ 2π

0

b(x, ξ)dx, B2(ξ) =

∫ 2π

0

|b(x, ξ)|2dx.
Before stating the result we need a few more definitions. Similarly to the
class Tα,δ(w;σ0) of PDO’s depending on the parameter σ, we also introduce
the class

Tν
j,δ = Tν

j,δ(ξ0, σ0) ⊂ C∞(R \ (−ξ0, ξ0) × [σ0,∞)), ξ0 ≥ 0, σ0 > 0,

of functions µ = µ(ξ;σ) such that

(2.12) ∂n
σ∂

s
ξµ(ξ;σ) ≤ Cs,n〈ξ〉(δ−κ)j+ν−sσ−n, κ = m− α > 0,

for all non-negative integer s, n. A function µ is said to belong to Tν
j,δ

uniformly in the symbol b ∈ Tα,β (or b ∈ Sα) if the constants Cs,n in (2.12)

depend only on the constants in the estimates b
(α,δ)
l,s,r ≤ Cl,s,r. We say that

the function a(ξ;σ) is represented by an asymptotic series
∑∞

j=1 µj(ξ;σ) with
µj ∈ Tν

j,δ if

(2.13) u
(ν)
M+1(ξ;σ; a) := a(ξ;σ) −

M∑
j=1

µj(ξ;σ) = O(〈ξ〉(M+1)(δ−κ)+ν),
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for all M ∈ N. We write this down as follows: a(ξ;σ) =
∑∞

j=1 µj(ξ;σ). We
say that that a function ω belongs to a class Tε

k,δ uniformly in the series a,
if the estimates of the form (2.12) for ω are satisfied with constants Cs,n

depending only on the constants in corresponding estimates for the functions
µj and for the remainder u

(ν)
M+1(ξ;σ; a).

Suppose that another function g(ξ;σ) is represented by an asymptotic
series

g(ξ;σ) =
∞∑

j=1

ωj(ξ;σ)

with ωj ∈ Tε
j,δ. Then we say that this series is uniform with respect to

the series a(ξ;σ), if the functions ωj belong to Tε
j,δ uniformly in a, and the

remainder u
(ε)
M+1(ξ;σ; g) satisfies (2.13) uniformly in a.

By Sν
j,δ ⊂ Tν

j,δ(0, σ0) we denote the set of functions µ ∈ Tν
j,δ depending

only on the variable ξ ∈ R.

The main result is contained in the following Theorem:

Theorem 2.3 Let m > 0. Let b ∈ Sα(w), w(ξ) = 〈ξ〉, be a symmetric
2π-periodic symbol with α < m. Then there exists a sequence of functions
νj , j = 1, 2, . . . , that belong to S1

j,0 uniformly in b, such that the sum

ξM (ρ) = ρ+
M∑

j=1

νj(ρ)

describes the asymptotics of the density of states and of the other Fourier
coefficients of the counting function N(ρm,k) for all ρ ≥ 0, any M ∈ N and
n ∈ Z \ {0} by the formulas

D(ρm) =
1

2π

[
ξM(ρ) − ξM(−ρ)] +O(〈ρ〉−(M+1)κ+1), κ = m− α,(2.14)

N̂(ρm; 2πn) = − 1

4π2in

(
exp(−2πinξM(ρ)) − exp(−2πinξM(−ρ)))

+O(〈ρ〉−(M+1)κ+1).(2.15)

The first two functions νj are given by the formulas

ν1(ρ) = − 1

2πm
ρ|ρ|−mB1(ρ),(2.16)

ν2(ρ) = − 1

4πm2
ρ−2m+1

[
(m− 1)B2(ρ) − ρB′

2(ρ)
]
+O(〈ρ〉−2κ−1),(2.17)

|ρ| ≥ 2. The asymptotics (2.14) and (2.15) and the formulas for ν1 and
ν2 are uniform in b in the sense that the remainders depend only on the
constants in the bounds b

(α)
l,s ≤ Cl,s. Besides, the remainder in (2.15) is

uniform in n ∈ Z \ {0}.
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The above Theorem follows from the next Theorem, in which the asymp-
totics of D(ρm) is studied for a symbol b depending on ρ:

Theorem 2.4 Let m > 0. Let b ∈ Tα,δ(w), w(ξ) = 〈ξ〉, be a symmetric 2π-
periodic symbol b(x, ξ) = b(x, ξ; ρ) with α1 + δ < m where α1 = max(0, α).
Then there exists a sequence of functions νj, j = 1, 2, . . . , that belong to S1

j,δ

uniformly in b, such that the asymptotics of the density of states and of the
other Fourier coefficients of the counting function N(ρm,k) for all ρ ≥ 0,
any M ∈ N and n ∈ Z\{0} is described by the formulas (2.14) and (2.15), in
which the remainder estimates are replaced by O(〈ρ〉M(δ−κ)+1). The first two
functions νj are given by the formulas (2.16) and (2.17), in the latter for-
mula the remainder being replaced by O(〈ρ〉2(δ−κ)−1). The asymptotics (2.14)
and (2.15) and the formulas for ν1 and ν2 are uniform in b in the sense that

the remainders depend only on the constants in the bounds b
(α,δ)
l,s,r ≤ Cl,s,r.

Besides, the remainder in (2.15) is uniform in n ∈ Z \ {0}.
Remark 2.5 Let us observe that the formulas (2.14) and (2.15) have the
asymptotic meaning only for large ρ. For bounded ρ these formulas simply
say that the density of states is bounded uniformly in b. The latter fact can
be inferred from Proposition 2.1 without any sophisticated analysis. Indeed,
getting slightly ahead, and using (3.3) with σ = ρ, we conclude that

|(Op(b)u, u)| ≤ C((H0 + ρm)u, u).

Here we have used that α + δ < m. Consequently,

|N̂(ρm, 2πn;H0 +B)| ≤ D(ρm;H0 +B) ≤ D
(
cρm; C̃H0

)
.

By Proposition 2.1 the r.h.s. is bounded from above uniformly in b for
ρ ≤ C.

Remark that for the Schrödinger operator H = −d2/dx2 + V with a
periodic potential V ∈ C∞ the asymptotics obtained in Theorem 2.3 give

D(ρ2) =
1

π
ρ− 1

4π2ρ

∫ 2π

0

V (x)dx− 1

16π2ρ3

∫ 2π

0

|V (x)|2dx+O(ρ−5).

This formula agrees with the first three terms of the complete asymptotic
expansion established in the paper [12] for this case. Note also that the
term with O(ρ−4) is absent, as in [12]. For the Fourier coefficients in the
case b(x, ξ) = V (x) Theorem 2.3 gives:

N̂(ρ2; 2πn)=
1

2π2n
sin

[
n

(
2πρ− 1

2ρ

∫ 2π

0

V (x)dx− 1

8ρ3

∫ 2π

0

|V (x)|2dx
)]

+O(ρ−5).
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3. Periodic pseudo-differential operators

3.1. Elementary results for periodic PDO’s

As was indicated in the previous section, the calculus of PDO’s is the main
technical tool. In this section we collect the required properties of PDO’s
for arbitrary d ≥ 1. Most of them, morally speaking, are quite standard,
but nevertheless we provide full proofs. Recall that S(Rd) is taken as a
natural domain of Op(b). Unless otherwise stated, all symbols are supposed
to belong to the class Sα = Sα(w) or Tα,β = Tα,β(w;σ0) with an arbitrary
function w satisfying (2.1), the function w and the parameter σ being usually
omitted from the notation. Recall that the class Sα is naturally viewed as a
subset of Tα,0 of symbols constant in σ.

Let us first prove a test of boundedness, which will be systematically
used:

Lemma 3.1 Assume that b
(0,β)
l,0,0 < ∞ with some β ∈ R and l > d. Then

B = Op(b) is bounded in H and ‖B‖ ≤ Cσβ b
(0)
l,0,0 with a constant C = Cl

independent of b.

Proof. The Lemma is obvious for the symbols with one non-trivial Fourier
coefficient. The general case follows by summation using the bound (2.7)
with l > d. �

Since Op(b)u ∈ S(Rd) for any b ∈ Tα,δ and u ∈ S(Rd), the product
Op(b) Op(g), b ∈ Tα,δ, g ∈ Tβ,γ , is well defined on S(Rd). A straightforward
calculation leads to the following formula for the symbol b◦ g of the product
Op(b) Op(g):

(b ◦ g)(x, ξ) =
1

d(Γ)

∑
θ,φ

b̂(θ, ξ + φ)ĝ(φ, ξ)ei(θ+φ)x,

and hence

(3.1) (̂b ◦ g)(χ, ξ) =
1√
d(Γ)

∑
θ+φ=χ

b̂(θ, ξ + φ)ĝ(φ, ξ), χ ∈ Γ†, ξ ∈ Rd.

Lemma 3.2 Let b ∈ Tα,δ, g ∈ Tβ,γ. Then b ◦ g ∈ Tα+β,δ+γ and

b ◦ g (α+β,δ+γ)
p,s,r ≤ Cl,s,r b

(α,δ)
l,s,r g

(β,γ)
l,s,r ,

for some l = l(p, s).
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Proof. We omit the dependence on σ from the notation. Let s = |s|.
By (3.1) and (2.7)

|∂n
σDs

ξ(b ◦ g)(χ, ξ)| ≤
≤ Cs

∑
θ+φ=χ

∑
n1+n2=n

∑
|s1|+|s2|=s

|∂n1
σ Ds1

ξ b̂(θ, ξ + φ)| |∂n2
σ Ds2

ξ ĝ(φ, ξ)|

≤ Cs,l,n b
(α,δ)
l,s,n g

(β,γ)
l,s,n σ

δ+γ−n×
×

∑
θ+φ=χ

∑
s1+s2=s

〈θ〉−l〈φ〉−lw(ξ + φ)α−s1w(ξ)β−s2.

By (2.1)
w(ξ + φ)α−s1 ≤ C〈φ〉κ(|α|+s)w(ξ)α−s1,

and hence we have

b ◦ g (α+β,δ+γ)
p,s,r ≤ Cs,l,r b

(α,δ)
l,s,r g

(β,γ)
l,s,r

∑
θ,φ

(〈θ〉p + 〈φ〉p)〈θ〉−l〈φ〉−l+κ(|α|+s)

≤ C ′
l,s,r b

(α,δ)
l,s,r g

(β,γ)
l,s,r ,

for all l > d+ p+ κ(|α| + s). �

Remark 3.3 Two previous lemmas lead to two useful bounds for the oper-
ator H = H0 + Op(b) introduced in the beginning with b ∈ Sα(w), w = 〈ξ〉.

The estimate (2.8) is an immediate consequence of Lemma 3.1. Indeed,
let Ξ = Op(w). Denote b̃(x, ξ) = b(x, ξ)〈ξ〉−α. Clearly, b̃ satisfies the
condition of Lemma 3.1. Thus for any u ∈ S(Rd) and l > d we have

‖Op(b)u‖ = ‖Op(b̃)Ξαu‖ ≤ C b̃ l,0‖Ξαu‖ ≤ ε‖H0u‖ + Cε‖u‖, ∀ε > 0,

as required.
Similarly to (2.8), we can establish a form-bound. Denote

G = Ξ−α/2BΞ−α/2.

By Lemma 3.2 the symbol g of G satisfies g ∈ S0 and g
(0)
p,s ≤ C b

(α)
l,s with

a suitable l = l(p). Thus by Lemma 3.1

(3.2) |(Op(b)u, u)| = |(GΞα/2u,Ξα/2u)| ≤ C b
(α)
l,0 (Ξαu, u).

If the symbol b depends on the additional parameter σ and b ∈ Tα,δ, then
the same argument yields the bound

(3.3) |(Op(b)u, u)| = |(GΞα/2u,Ξα/2u)| ≤ Cσδ b
(α,δ)
l,0,0 (Ξαu, u).
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We are also interested in the estimates for symbols of commutators. For
PDO’s A,Ψl, l = 1, 2, . . . , N , denote

ad(A; Ψ1,Ψ2, . . . ,ΨN ) = i
[
ad(A; Ψ1,Ψ2, . . . ,ΨN−1),ΨN

]
,

ad(A; Ψ) = i[A,Ψ], adN(A; Ψ) = ad(A; Ψ,Ψ, . . . ,Ψ), ad0(A; Ψ) = A.

For the sake of convenience we use the notation ad(a;ψ1, ψ2, . . . , ψN) and
adN (a, ψ) for the symbols of multiple commutators. It follows from (3.1)
that the Fourier coefficients of the symbol ad(b, g) are given by

(3.4) âd(b, g)(χ, ξ) =
i√
d(Γ)

∑
θ+φ=χ

[
b̂(θ, ξ + φ)ĝ(φ, ξ) − b̂(φ, ξ)ĝ(θ, ξ + φ)

]
,

χ ∈ Zd, ξ ∈ Rd.

Lemma 3.4 Let b ∈ Tα,δ and gj ∈ Tβj ,εj
, j = 1, 2, . . . , N . Then

ad(b; g1, . . . , gN ) ∈ Tγ,ζ

with

γ = γN = α +
N∑

j=1

(βj − 1), ζ = ζN = δ +
N∑

j=1

εj,

and

(3.5) ad(b; g1, . . . , gN )
(γ,ζ)
l,s,r ≤ Cl,s,r b

(α,δ)
p,s+N,r

N∏
j=1

gj
(βj ,εj)
p,s+N−j+1,r,

with some p = p(l, N, s, α, βj), and a constant Cl,s,r independent of b, gj.

Proof. As in the proof of Lemma 3.2 we omit the dependence on σ from
the notation.

The proof is by induction. The claim is trivially true for N = 0, since
by definition ado(b; g) = b. Suppose that it is true for N = M − 1, M ≥ 1,
i.e. that the symbol of the M − 1-commutator satisfies

tM−1 = ad(b; g1, . . . , gM−1) ∈ TγM−1, ζM−1
,

and the bound (3.5) holds for N = M−1. Denote for brevity γ = γM−1, ζ =
ζM−1, β = βM , ε = εM , g = gM . According to (3.4) the Fourier transform of
the symbol tM = ad(tM−1; g) is:

t̂M (χ, ξ) =
i√
d(Γ)

∑
θ+φ=χ

R(θ,φ; ξ),

R(θ,φ; ξ) = t̂M−1(θ, ξ + φ)ĝ(φ, ξ) − t̂M−1(θ, ξ)ĝ(φ, ξ + θ).
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Rewrite the last formula:

R(θ,φ; ξ) =
[
t̂M−1(θ, ξ + φ) − t̂M−1(θ, ξ)

]
ĝ(φ, ξ)

+ t̂M−1(θ, ξ)
[
ĝ(φ, ξ) − ĝ(φ, ξ + θ)

]
.

By (2.4) and (2.7)

|∂n
σ Ds

ξR(θ,φ; ξ)| ≤
≤ Cp,s,nσ

−n+ζ+εw(ξ)γ+β−1−s
(
tM−1

(γ,ζ)
p,s+1,n g (β,ε)

p,s,n〈θ〉−p〈φ〉−p+κ(|γ|+2+s)

+ tM−1
(γ,ζ)
p,s,n g

(β,ε)
p,s+1,n〈θ〉−p+κ(|β|+2+s)〈φ〉−p

)
, ∀p ≥ 0.

Consequently, for sufficiently large u = u(l) we have

tM
(γ+β−1, ζ+ε)
l,s,r ≤ C

(
tM−1

(γ,ζ)
u,s+1,r g

(β,ε)
u,s,r + tM−1

(γ,ζ)
u,s,r g

(β,ε)
u,s+1,r

)
≤ C tM−1

(γ,ζ)
u,s+1,r g

(β,ε)
u,s+1,r.

This means that tM ∈ Tγ+β−1,ζ+ε, and , in view of the bound (3.5) for tM−1,
the corresponding norm of tM is estimated by:

C b
(α,δ)
p,s+M,r

M−1∏
j=1

gj
(βj ,εj)
p,s+M−j+1,r gM

(βM ,εM )
u,s+1,r ,

with some p, which yields the bound (3.5) for N = M , since γM = γM−1 +
βM − 1 and ζM = ζM−1 + εM . �

3.2. One-dimensional case. Partition of the perturbation

So far we have worked with arbitrary dimensions d ≥ 1. Now we have to
narrow down to d = 1. Also, from now on the weight in the definition of
classes Sα, Tα,δ is assumed to be w(ξ) = 〈ξ〉. The symbols b ∈ Tα,δ are
assumed to depend on the parameter ρ ≥ 1, but sometimes we omit the
dependence from the notation. Recall the assumption Γ = 2πZ as well.

Let Υ ∈ C∞
0 (R) be a non-negative function such that

(3.6) 0 ≤ Υ ≤ 1, Υ(t) =

{
1, |t| ≤ 1/4;

0, |t| ≥ 1/2.

Assume also for convenience that Υ is even, i.e. Υ(t) = Υ(−t). Set for
L ≥ 1 and θ ∈ Z

(3.7)



ζθ(ξ;L) = Υ

(
ξ + θ/2

L

)
,

ϕθ(ξ;L) = 1 − ζθ(ξ;L).
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Point out that

(3.8) ϕθ(ξ;L) = ϕ−θ(ξ + θ;L), ζθ(ξ;L) = ζ−θ(ξ + θ;L).

Note that the functions ϕθ(ξ; ρ) and ζθ(ξ; ρ), viewed as symbols, belong to
the class T0,0. Indeed, suppose that |θ| ≤ ρ/8. Then on the support of ∂ξϕθ

and ∂ξζθ one has 3ρ/16 ≤ |ξ| ≤ 9ρ/16, and thus

(3.9) |∂n
ρ ∂

s
ξϕθ(ξ; ρ)| + |∂n

ρ ∂
s
ξζθ(ξ; ρ)| ≤ Csρ

−s−n ≤ C̃s〈ξ〉−sρ−n, |θ| ≤ ρ/8.

Let b ∈ Tα,δ = Tα,δ(〈ξ〉; 1) be a symbol depending on the parameter ρ ≥ 1.
Using ϕθ, ζθ, we introduce for b five new symbols b↑, bo, b�, b�, b� from the class
Tα(〈ξ〉; 1) in the following way:

b↑(x, ξ; ρ) =
1√
2π

∑
θ

(
1 − Υ(4θρ−1)

)
b̂(θ, ξ; ρ)eiθx,(3.10)

b�(x, ξ; ρ) =
1√
2π

∑
θ �=0

b̂(θ, ξ; ρ)ϕθ(ξ; 16ρ)Υ(4θρ−1)eiθx,(3.11)

b�(x, ξ; ρ) =
1√
2π

∑
θ �=0

b̂(θ, ξ; ρ)ϕθ(ξ; ρ)ζθ(ξ; 16ρ)Υ(4θρ−1)eiθx,(3.12)

b�(x, ξ; ρ) =
1√
2π

∑
θ �=0

b̂(θ, ξ; ρ)ζθ(ξ; ρ)Υ(4θρ−1)eiθx,(3.13)

bo(x, ξ; ρ) = bo(ξ; ρ) =
1√
2π
b̂(0, ξ; ρ).(3.14)

The corresponding operators are denoted by

B↑ = Op(b↑), B� = Op(b�), B� = Op(b�), B� = Op(b�), Bo = Op(bo).

By definition of Υ
b = bo + b� + b� + b� + b↑.

The role of each of these operator is easy to explain. The symbol b↑ contains
only Fourier coefficients with |θ| ≥ ρ/16, and the remaining symbols contain
the Fourier coefficients with |θ| ≤ ρ/8. The symbol b� is supported in the
region where ξ is small compared to ρ, and thus, as it will be shown later,
it does not contribute to the asymptotics of the density of states D(ρm).
The symbol b�, on the contrary, contains a cut-off on the “large” values of ξ
and hence does not affect D(ρm) either. The only significant components
of b are the symbols b� and bo. The symbol bo will remain as it is, and
the symbol b� will be transformed in the next Section to another symbol,
independent of x.
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Often we combine B�, B� and B↑: for instance B�,� = B� + B�, B�,�,↑ =
B�,� + B↑. A similar convention applies to the symbols. In view of (3.9)
under the condition b ∈ Tα,δ the above symbols belong to class Tα,δ and the
following bounds hold:

(3.15) b�
(α,δ)
l,s,r + b�

(α, d)
l,s,r + b�

(α,δ)
l,s,r + bo

(α,δ)
l,s,r + b↑ (α,δ)

l,s,r ≤ Cl,s,r b
(α,δ)
l,s,r ,

see (2.6) for definition of · (α)
l,s,r. To check that the introduced operations

preserve symmetry, calculate using (3.8)

b̂�(−θ, ξ + θ) = b̂(−θ, ξ + θ)ζ−θ(ξ + θ; ρ)Υ(4θρ−1)

= b̂(θ, ξ)ζθ(ξ; ρ)Υ(4θρ−1) = b̂�(θ, ξ).

Therefore, by (2.5) the operator B� is symmetric if so is B. Similarly for
B�, B� and B↑.

Let us list some other elementary properties of the introduced operators.
In the Lemma below we use the projection P(C),C ⊂ R whose definition
was given before Proposition 2.1.

Lemma 3.5 Let b ∈ Tα,δ(w; 1), w = 〈ξ〉, with some α, δ ∈ R. Denote for
some R ≥ 0

(3.16) ΩR = {ξ ∈ R : |ξ| ≥ R}, ΛR = R \ ΩR.

Then the following statements hold:

(i) The operator Op(b�) is bounded and

‖Op(b�)‖ ≤ Cl b
(α,δ)
l,0,0 ρ

α1+δ,

with α1 = max(α, 0). Moreover, for any R ≥ 11ρ/16

P(ΩR) Op(b�) = Op(b�)P(ΩR) = 0.

(ii) For any β ∈ R one has b� ∈ Tβ,α−β+δ and

(3.17) b�
(β,α−β+δ)
l,s,r ≤ C b

(α,δ)
l,s,r ,

with a constant C depending only on l, s, r, α, β. In particular, the
operator B� is bounded and

‖B�‖ ≤ Cl b
(α,δ)
l,0,0 ρ

α+δ,

for any l > 1.
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(iii) Let R ≤ 3ρ. Then

P(ΛR)B� = B�P(ΛR) = 0.

(iv) If R ≤ Cρ, then

(3.18) ‖P(ΛR)B↑‖ + ‖B↑P(ΛR)‖ ≤ Cl,p b
(α,δ)
l,0,0 ρ

δ+p−l,

for some fixed p and any sufficiently big l ≥ p.

Proof. Proof of (i). By (2.7)

|b̂(θ, ξ; ρ)| ≤ b
(α,δ)
l,0,0 ρ

δ〈θ〉−l〈ξ〉α,
for any l > 0. In each term in the r.h.s. of (3.13) the value |ξ| does not
exceed ρ/2 + |θ/2| ≤ 9ρ/16, so that

(3.19) |b̂�(θ, ξ; ρ)| ≤ C b
(α,δ)
l,0,0 ρ

α1+δ〈θ〉−l, ∀l > 0,

with α1 = max{0, α}. By Lemma 3.1 this implies the sought bound for the
norm ‖Op(b�)‖.

Since the value of |ξ| on the support of b�(x, · ; ρ) is less than 9ρ/16, the
second part of statement (i) follows from the definition (3.13) by inspection.

Proof of (ii). By (2.7) and (3.9)

|∂n
ρ ∂

s
ξ b̂

�(θ, ξ; ρ)| ≤ Cp,s,nρ
δ−n b (α,δ)

p,s,n〈ξ〉β−s〈ξ〉α−β|θ|−p.

Since 3ρ/16 ≤ |ξ| ≤ 9ρ on the support of b�(x, · ; ρ), we have

|∂n
ρ ∂

s
ξ b̂

�(θ, ξ; ρ)| ≤ Cp,s,nρ
δ+α−β−n b (α,δ)

p,s,n〈ξ〉β−s|θ|−p.

This means that b� ∈ Tβ,δ+α−β and (3.17) holds. The bound for the norm
follows from (3.17) and Lemma 3.1.

Proof of (iii) is similar to (i). Indeed, the value of |ξ| on the support of
b�(x, · ; ρ) is greater than 4ρ − |θ|/2 ≥ 63ρ/16, so that the required result
follows by inspection.

Proof of (iv). By definition of the function Υ the sum (3.10) contains
only θ : |θ| ≥ ρ/16. Thus, in view of (2.6) and (3.15), for any l ≥ p we have

|∂n
ρ ∂

s
ξ b̂

↑(θ, ξ; ρ)| ≤ ρδ−n b (α,δ)
p,s,n 〈ξ〉α−s|θ|−l ≤ Cρδ−n+p−l b (α,δ)

p,s,n 〈ξ〉α−s|θ|−p,

so that
b↑ (α,δ+p−l)

p,s,r ≤ C b↑ (α,δ)
l,s,r .
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Instead of P(ΛR) consider a “smoothed out projection” ER = Op(ΥR),
UR(ξ) = Υ(ξ(4R)−1). By definition of Υ we have P(ΛR) = P(ΛR)ER. Also,
ΥR ∈ Tβ,0 for any β ∈ R and in particular

ΥR
(−α,0)
l,s,r ≤ Cl,sR

α1, α1 = max{0, α}.
According to Lemma 3.2 the symbol t of the product ER Op(b↑) belongs to
the class T0,δ+p−l and

t
(0,δ+p−l)
r,0,0 ≤ C b↑ (α,δ+p−l)

p,0,0 ΥR
(−α,0)
p,0

≤ C ′
l b

(α,δ)
l,0,0 ρ

p−l+α1,

for some p = p(r) and arbitrary l ≥ p. By Lemma 3.1 this proves the
bound (3.18) for P(ΛR) Op(b↑). The same argument leads to the same bound
for Op(b↑)P(ΛR). �

4. A “gauge transformation”

In this and all the subsequent sections we assume that Sα = Sα(w), Tα,δ =
Tα,δ(w; 1) with w(ξ) = 〈ξ〉. Symbols from Tα,δ are supposed to depend on
the parameter ρ ≥ 1.

4.1. Preparation

Suppose that b ∈ Tα,δ with some α < m and δ ∈ R. Our strategy will be
to find a unitary operator which reduces H = H0 + Op(b) to another PDO,
whose symbol, up to some controllable small errors, depends only on ξ. The
sought unitary operator will be constructed in the form U = eiΨ with a
suitable bounded self-adjoint Γ-periodic PDO Ψ. This is why we sometimes
call it a “gauge transformation”. It is useful to consider eiΨ as an element
of the group

U(t) = exp{iΨt}, ∀t ∈ R.

We assume that the operator ad(H0,Ψ) is bounded, so that

U(t)D(H0) = D(H0) .

This assumption will be justified later on. Let us express the operator

At = U(−t)HU(t)

via its (weak) derivative w.r.t. t:

At = H +

∫ t

0

U(−t′) ad(H; Ψ)U(t′)dt′.
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By induction it is easy to show that

A1 = H +
M∑

j=1

1

j!
adj(H; Ψ) +R

(1)
M+1,(4.1)

R
(1)
M+1 =

∫ 1

0

dt1

∫ t1

0

dt2 . . .

∫ tM

0

U(−tM+1) adM+1(H; Ψ)U(tM+1)dtM+1.

The operator Ψ is sought in the form

(4.2) Ψ =
M∑

k=1

Ψk, Ψk = Op(ψk),

with symbols ψk from some suitable class Tβ,ε, β = βk, ε = εk to be specified
later on. Substitute this formula in (4.1) and rewrite, regrouping the terms:

A1 =H0+B+
M∑

j=1

1

j!

M∑
l=j

∑
k1+k2+···+kj=l

ad(H; Ψk1 ,Ψk2 , . . . ,Ψkj
) +R

(1)
M+1+R

(2)
M+1,

R
(2)
M+1 =

M∑
j=1

1

j!

∑
k1+k2+···+kj≥M+1

ad(H; Ψk1 ,Ψk2 , . . . ,Ψkj
).(4.3)

Rewrite:

A1 =H0+B+
M∑
l=1

ad(H0; Ψl)+
M∑

j=2

1

j!

M∑
l=j

∑
k1+k2+···+kj=l

ad(H0; Ψk1 ,Ψk2 , . . . ,Ψkj
)

+
M∑

j=1

1

j!

M∑
l=j

∑
k1+k2+···+kj=l

ad(B; Ψk1 ,Ψk2 , . . . ,Ψkj
) +R

(1)
M+1 +R

(2)
M+1.

Switch the summation signs:

A1 =H0+B+
M∑
l=1

ad(H0; Ψl)+
M∑
l=2

l∑
j=2

1

j!

∑
k1+k2+···+kj=l

ad(H0; Ψk1 ,Ψk2 , . . . ,Ψkj
)

+
M+1∑
l=2

l−1∑
j=1

1

j!

∑
k1+k2+···+kj=l−1

ad(B; Ψk1 ,Ψk2 , . . . ,Ψkj
) +R

(1)
M+1 +R

(2)
M+1.

Introduce the notation

B1 = B,

Bl =
l−1∑
j=1

1

j!

∑
k1+k2+···+kj=l−1

ad(B; Ψk1 ,Ψk2 , . . . ,Ψkj
), l ≥ 2,(4.4)

Tl =
l∑

j=2

1

j!

∑
k1+k2+···+kj=l

ad(H0; Ψk1 ,Ψk2 , . . . ,Ψkj
), l ≥ 2.(4.5)
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We emphasise that the operators Bl and Tl depend only on Ψ1,Ψ2, . . . ,Ψl−1.
Let us make one more rearrangement:

A1 = H0 +B +
M∑
l=1

ad(H0,Ψl) +
M∑
l=2

Bl +
M∑
l=2

Tl +RM+1,

RM+1 = BM+1 +R
(1)
M+1 +R

(2)
M+1.(4.6)

Now we can specify our algorithm for finding Ψk’s. The symbols ψk will be
found from the following system of commutator equations:

ad(H0; Ψ1) +B�
1 = 0,(4.7)

ad(H0; Ψl) +B�
l + T �

l = 0, l ≥ 2,(4.8)

and hence

A1 = A0 + L�,�,↑
M (Ψ) +RM+1,(4.9)

LM =
M∑
l=1

Bl +
M∑
l=2

Tl,(4.10)

A0 = H0 +
M∑
l=1

Bo
l +

M∑
l=2

T o
l .(4.11)

Below we denote by lM the symbol of the PDO LM . Recall that by
Lemma 3.5(ii), the operators B�

l , T
�
l are bounded, and therefore, in view

of (4.7), (4.8), so is the commutator ad(H0; Ψ). This justifies the assumption
made in the beginning of the formal calculations in this Section.

4.2. Commutator equations

Before proceeding to the study of the commutator equations (4.7), (4.8) note
a few bounds for the symbol

τθ(ξ) = h0(ξ + θ) − h0(ξ).

Assuming that |ξ| ≥ 3|θ|/2, we obtain that

c|θ| 〈ξ〉m−1 ≤ |τθ(ξ)| ≤ C|θ| 〈ξ〉m−1,

|∂s
ξτθ(ξ)| ≤ Cs|θ| 〈ξ〉m−1−s.

Moreover,

(4.12) |∂s
ξτ

−1
θ | ≤ Cs|θ|−1〈ξ〉−m+1−s, |ξ| ≥ 3|θ|/2 > 0.

Note that the condition |ξ| ≥ 3|θ|/2 is satisfied for ξ on the support of
ϕθ( · ; ρ) for |θ| ≤ ρ/8. These estimates will come in handy in the next
lemma.
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Lemma 4.1 Let A = Op(a) be a symmetric PDO such that a ∈ Tα,δ. Then
the PDO Ψ with the Fourier coefficients of the symbol ψ(x, ξ; ρ) given by

(4.13)



ψ̂(θ, ξ; ρ) = i

â�(θ, ξ; ρ)

τθ(ξ)
, θ 
= 0,

ψ̂(0, ξ; ρ) = 0,

solves the equation

(4.14) ad(H0; Ψ) + Op(a�) = 0.

Moreover, the operator Ψ is bounded and self-adjoint, ψ ∈ Tβ, δ+α−β−m+1

for all β ∈ R, and

(4.15) ψ
(β,δ+α−β−m+1)
l,s,r ≤ C a (α,δ)

p,s,r ,

with some p = p(l, s, r). The constant C is independent of the parameter
ρ ≥ 1 and the symbol a.

Proof. For brevity we omit ρ from the notation. Let t be the symbol of
ad(H0; Ψ). The Fourier transform t̂(θ, ξ) is easy to find using (3.1):

t̂(θ, ξ) = i
(
h0(ξ + θ) − h0(ξ)

)
ψ̂(θ, ξ) = iτθ(ξ)ψ̂(θ, ξ).

Therefore the equation (4.14) amounts to

iτθ(ξ)ψ̂(θ, ξ) = −â�(θ, ξ; ρ) = −â(θ, ξ; ρ)ϕθ(ξ; ρ)ζθ(ξ; 16ρ)Υ
(
4|θ|ρ−1

)
.

By definition (3.12), a solution ψ̂ exists and is given by (4.13). The symbol ψ̂
satisfies the condition (2.5), so that Ψ is a symmetric operator. Recall also
that by Lemma 3.5(ii)

a� (β,α−β+δ)
l,s,r ≤ C a

(α,δ)
l,s,r ,

for any β ∈ R, and hence, using (4.12) we get (4.15). The estimate (4.15)
with β = 0 and Lemma 3.1 ensure the boundedness of Ψ. �

Remark 4.2 Let a be as in Lemma 4.1 and consider the commutator
ad(Op(g),Ψ) with some symmetric symbol g ∈ Tγ,ζ . By (3.4) the symbol
(ad(g, ψ))o is given by the formula

t̂(0, ξ) = i
1

(2π)1/2

∑
θ

[
ĝ(−θ, ξ + θ)ψ̂(θ, ξ) − ĝ(θ, ξ)ψ̂(−θ, ξ + θ)

]
= i

1

(2π)1/2

∑
θ

[
ĝ(θ, ξ)ψ̂(θ, ξ) − ĝ(θ, ξ)ψ̂(θ, ξ)

]
= − 1

(2π)1/2

∑
θ

1

τθ(ξ)

[
ĝ(θ, ξ)â�(θ, ξ) + ĝ(θ, ξ)â�(θ, ξ)

]
.
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Let us apply Lemma 4.1 to equations (4.7) and (4.8). Recall the notation
κ = m− α.

Lemma 4.3 Let b ∈ Tα,δ be a symmetric symbol, and denote

ζl = (δ − κ)l + 1, εl = (δ − κ)l +m, l ≥ 1.

Then there exists a sequence of self-adjoint bounded PDO’s Ψl, l = 1, 2, . . .
with the symbols ψl ∈ Tβ,ζl−β for any β ∈ R, such that (4.7) and (4.8)
hold, and

(i)

(4.16) ψl
(β,ζl−β)
r,s,u ≤ C

(
b (α,δ)

p,n,u)
l, l ≥ 1;

(ii) The symbols bl, tl of the corresponding operators Bl, Tl belong to
Tγ,εl−γ with arbitrary γ ∈ R, and

(4.17) bl
(γ,εl−γ)
r,s,u + tl

(γ,εl−γ)
r,s,u ≤ C( b (α,δ)

p,n,u)
l, l ≥ 2;

(iii) The symbols bol (ξ; ρ) and tol (ξ; ρ) belong to the class Tm
l,δ(0, 1), and

(4.18) bo2(ξ; ρ) + to2(ξ; ρ) = − 1

2π

∑
θ �=0

|b̂(θ, ξ; ρ)|2
τθ(ξ)

Υ
(
4|θ|ρ−1

)[
2 − Υ

(
4|θ|ρ−1

)]

for all 3ρ/4 ≤ |ξ| ≤ 2ρ.
The constant C in (4.16) and (4.17) does not depend on b, but depends on

l, r, s, α, β, δ,m, u. The integer-valued parameters p, n in (4.16) and (4.17)
depend on l, r, s, α, β, δ,m.

(iv) Suppose that δ ≤ κ and that b
(α,δ)
l,s,0 ≤ Cl,s for all l and s, then for

some positive integer p, n the following bound holds:

(4.19) ‖RM+1‖ ≤ C̃( b
(α,δ)
p,n,0)

M+1ρ(δ−κ)(M+1)+m.

The constant C̃ depends only on the constants Cl,s and the parametersM,α,m.

Proof. The existence of ψ1 ∈ Tβ,ζ1 with the required properties follows
from Lemma 4.1. Further proof is by induction as follows.

To make the calculations less cumbersome, throughout the proof we
adopt the following notational convention. If two symbols, φ1 and φ2 satisfy
the estimate φ1

(β,χ)
l,s,r ≤ C φ2

(ω,γ)
p,n,r with some p = p(l, s) and n = n(l, s)

and all r ≥ 0, we simply write φ1
(β,χ) ≤ C φ2

(ω,γ).
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Suppose that ψk with k = 1, 2, . . . ,K − 1 satisfy (4.16). In order to
conclude that ψK also satisfies (4.16), first we need to check that bK and tK
satisfy (4.17).

Step I. Estimates for bl. To begin with we prove that all the sym-
bols bl with l ≤ K, satisfy the estimate (4.17). We first obtain a bound
for ad(b;ψk1ψk2 , . . . , ψkj

) with k1 + k2 + · · · + kj = l − 1 . To this end we
use (4.16) with β = (γ − α)j−1 + 1 and Lemma 3.4 to conclude that

ad(b;ψk1 , ψk2 , . . . , ψkj
) (γ,εj−γ) ≤ C b (α,δ)

j∏
n=1

ψkn

(β,ζkn−β)(4.20)

≤ C b (α,δ)

j∏
n=1

( b (α,δ))kn = C( b (α,δ))l.(4.21)

This implies that bl satisfies (4.17) for all l ≤ K.

Step II. Estimates for tl. For the symbols tl the proof is by induction.
First of all, note that

ad(h0;ψ1, ψ1) = − ad(b�, ψ1),

so that, by Lemma 3.4, (3.17) and (4.2), for β = γ − α + 1 we have:

ad(h0;ψ1, ψ1)
(γ,ε2−γ) ≤ C b� (α,δ) ψ1

(β,ζ1−β) ≤ C( b (α,δ))2,

and thus t2 satisfies (4.17). Suppose that all tk with k ≤ l − 1 ≤ K − 1
satisfy (4.17). Then by definition (4.8), Step I of this proof, and (3.15), all
ad(h0;ψk), k ≤ l − 1, satisfy the same bound:

ad(h0;ψk)
(β,εk−β) ≤ C( b (α,δ))k.

Remembering that the definition (4.5) of tl involves only ψk with k ≤ l− 1,
and applying Lemma 3.4 again, we obtain for k1 + k2 + · · · + kj = l, j ≥ 2
and β = (γ − 1)j−1 + 1:

ad(h0;ψk1 , ψk2 , . . . , ψkj
) (γ,εl−γ) = ad

(
ad(h0;ψk1);ψk2 , . . . , ψkj

)
(γ,εl−γ)

≤ C ad(h0;ψk1)
(β,εk1

−β)

j∏
n=2

ψkn

(β,ζkn−β) ≤ C( b (α,δ))l,

which leads to (4.17) for all tl, l ≤ K.

Step III. To handle ΨK we use the solution Ψ of the equation (4.14)
constructed in Lemma 4.1. Then from definition (4.8), (4.15) and Steps I, II
we immediately conclude that ψK ∈ Tβ,ζK−β with arbitrary β ∈ R and that

ψK
(β,ζK−β) ≤ C( bK

(β,εK−β) + tK
(β,εK−β)) ≤ C( b (α,δ))K ,

as required.



80 A.V. Sobolev

Step IV. Proof of (iii). The first statement is an immediate consequence
of (4.17) with γ = εl and (3.15).

By (4.4) and by (4.5), (4.7)

B2 = ad(B; Ψ1), T2 = −1

2
ad(B�; Ψ1).

It follows from (4.13) that

ψ̂1(θ, ξ; ρ) = i
b̂�(θ, ξ; ρ)

τθ(ξ)
.

Remark 4.2 and definition (3.14) lead to the formula

to2(ξ; ρ) =
1

2π

∑
θ �=0

|b̂�(θ, ξ; ρ)|2
τθ(ξ)

.

For all |ξ| ∈ [9ρ/16, 47ρ/16] and |θ| ≤ ρ/8 we have the bound ρ/2 ≤ |ξ +
θ/2| ≤ 3ρ, and therefore, by (3.12) b�(θ, ξ; ρ) = b(θ, ξ). Consequently,

to2(ξ; ρ) =
1

2π

∑
θ �=0

|b̂(θ, ξ; ρ)|2
τθ(ξ)

[
Υ

(
4|θ|ρ−1

)]2
.

Similarly one shows that the symbol bo2(ξ) of (ad(B; Ψ1))
o satisfies the for-

mula

bo2(ξ; ρ) = − 1

π

∑
θ �=0

|b̂(θ, ξ; ρ)|2
τθ(ξ)

Υ
(
4|θ|ρ−1

)
,

and hence (4.18) is fulfilled.

Step V. Bounds for the remainder. Until the end of the proof we denote
by b (α,δ) the norm b

(α,δ)
r,s,0 with some suitable r, s. The remainder RM+1

(see (4.6)) consists of three components. In view of (4.17) with γ = 0, and
Lemma 3.1, the norm of BM+1 is bounded by

C( b (α,δ))M+1ρ(δ−κ)(M+1)+m,

as required.
Consider now R

(1)
M+1 defined in (4.1). Let ψ =

∑M
l=1 ψl. Since δ ≤ κ and

b (α,δ) ≤ C, we have Tβ,ζl−β ⊂ Tβ,ζ1−β and hence, in view of (4.2),

(4.22) ψl
(β,ζ1−β) ≤ Cl b

(α,δ), l ≥ 1, and ψ (β,ζ1−β) ≤ C b (α,δ).

Similarly, by definition (4.10) we have lM
(β,ε1−β) ≤ Cl b

(α,δ) in view
of (4.17).
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It follows from (4.2), (4.7) and (4.8) that ad(H0,Ψ) + L�
M = 0. Now it

follows from (3.15) that

ad(h0, ψ) (β,ε1−β) ≤ C lM
(β,ε1−β) ≤ C b (α,δ).

Using (4.22) and Lemma 3.4 we conclude that

adM+1(h, ψ) (γ,εM+1−γ) ≤ C
(
b (α,δ)

)M+1

for any γ ∈ R. By Lemma 3.1 this leads to the required estimate for the
norm ‖R(1)

M+1‖.
In the same way the norm of the error R

(2)
M+1 defined in (4.3) can be

shown to satisfy the same bound. This completes the proof of (4.19). �

Let us now summarise the results of this section in the following Theorem:

Theorem 4.4 Let b ∈ Tα,δ, α < m, δ ≤ κ = m − α, be a symmetric
symbol. Then for any positive integer M there exists a symbol ψ ∈ Tβ,ε1−β,
∀β ∈ R, of the form (4.2) such that

(i) the operator A1 = e−iΨHeiΨ has the form (4.9), and

(ii) the conclusions of Lemma 4.3 hold for the symbols ψl, bl, tl and the
remainder RM+1.

This theorem reduces the operator H to a form convenient for further
calculation of the density of states. The next step is to carry out such a
calculation for the operator A0 with constant coefficients. After that it will
be shown that the remaining components of A1, that is L↑, L� and L�, do
not affect the asymptotics.

5. Density of states

5.1. Operator A0

We begin our study of the density of states with the operator A0 defined
in (4.11). According to Lemma 4.3(iii) we have bol , t

o
l ∈ Tm

l,δ(0, 1), so that the
symbol a0(ξ; ρ) of A0 can be written as

(5.1) a0(ξ; ρ) = |ξ|m +
M∑

j=1

µj(ξ; ρ), ρ ≥ 1,

where µj ∈ Tm
j,δ(0, 1) uniformly in the symbol b and µ1 = bo, µj = boj + toj ,

j ≥ 2. Since A0 has a symbol independent of x, in order to find its density
of states or N̂(ρm; 2πn), n ∈ Z, we can immediately use Proposition 2.1.
To this end we need to identify the set where a0(ξ; ρ) < ρm. This is the
objective of the next lemma.
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In this lemma we consider a more general symbol which is given by an
asymptotic series:

(5.2) a(ξ; ρ) = |ξ|m +
∞∑

j=1

µj(ξ; ρ), µj ∈ Tm
j,δ(ξ0, 1),

with some ξ0 > 0. Define a sequence of functions ωj = ωj(η; ρ), j = 1, 2, . . .
by the following recursion relations:

m|η|mη−1ω1 + µ1 = 0,

ωl = − η

m|η|mµl −
l∑

s=2

(m− 1) · · · (m− s+ 1)

s!
η−s+1

∑
p1+p2+···+ps=l

ωp1 · · ·ωps

− η

m|η|m
l−1∑
s=1

1

s!

∑
j+p1+p2+···+ps=l

∂sµj(η)ωp1 · · ·ωps , l ≥ 2.(5.3)

One can easily compute the first two functions ωj :

ω1 = − 1

m
η|η|−mµ1,(5.4)

ω2 = − 1

m
η|η|−mµ2 − m− 1

2m2
η−2m+1µ2

1 +
1

2m2
η2−2m(µ2

1)
′.(5.5)

It is clear from (5.4) that ω1 ∈ T1
1,δ(ξ0, 1) uniformly in the series for a. This

property implies the inclusion ωj ∈ T1
j,δ(ξ0, 1) for all j ≥ 2, also uniformly in

a. Indeed, suppose that ωj ∈ T1
j,δ(ξ0, 1) for all j ≤ J . Since the r.h.s. of the

equality (5.3) depends only on ωj, j ≤ l−1, it is a matter of routine to check
that the r.h.s. in the equality (5.3) with l = J + 1 belongs to T1

J+1,δ(ξ0, 1).
Thus ωJ+1 ∈ T1

J+1,δ(ξ0, 1).
Recall that in the formula (5.1) the symbols µj belong to Tm

j,δ(0, 1), so
that in this case ωj ∈ T1

j,δ(ξ0, 1) for any ξ0 > 0.

Lemma 5.1 Let a be as defined in (5.2) and let δ < κ. Then there exists
an η0 ≥ ξ0, uniform in the series a, such that for all η : |η| ≥ η0 the equation
a(ξ; ρ) = |η|m has exactly one root ξ(η; ρ) having the same sign as η. The
function ξ(η; ρ) can be represented as an asymptotic series

(5.6) ξ(η; ρ) = η +
∞∑

j=1

ωj(η; ρ),

with functions ωj ∈ T1
j,δ(ξ0, 1) that are defined by (5.3). The first two terms

have the form (5.4) and (5.5). The asymptotics (5.6) are uniform with
respect to the series for a.

Note that the existence of the functions ξ(η; ρ) is claimed in the region
|η| ≥ η0 which is generally speaking smaller than the region where the
functions ωj are defined.
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Proof. To avoid unnecessary repetitions, throughout the proof we always
tacitly assume that the inclusion f ∈ Tν

j,δ(·, ·) for some function f means

that f belongs to Tν
j,δ(·, ·) uniformly in the series a. Also, the symbol u

(ν)
j

denotes a function which satisfies the bound

|u(ν)
j (ξ; ρ)| ≤ Cj〈ξ〉j(δ−κ)+ν , |ξ| ≥ ξ0,

uniformly in the series a, and whose exact definition is of no importance.
Usually, the dependence on the parameter ρ is omitted from the notation.

Step I. We shall prove first that the N -approximation

ξ(N) = ξ(N)(η; ρ) = η +
N∑

j=1

ωj(η; ρ)

satisfies

(5.7) a
(
ξ(N)

) − |η|m = u
(m)
N+1,

for all η : |η| ≥ ξ0. Using Taylor’s formula we obtain:

∑
j

µj( ξ
(N)(η)

)
=

∑
j

µj(η) +
∑
j=1

N∑
s=1

1

s!
∂sµj(η)

( N∑
p=1

ωp

)s
+ u

(m)
N+2(η)

=
∑

j

µj(η) +
N∑

s=1

N∑
l=s

∑
j+p1+p2+...ps=l+1

1

s!
∂sµj(η)ωp1 . . . ωps + u

(m)
N+2

=
∑

j

µj(η) +
N∑

l=1

l∑
s=1

1

s!

∑
j+p1+p2+···+ps=l+1

∂sµj(η)ωp1 . . . ωps + u
(m)
N+2

=
∑

j

µj(η) +
N∑

l=2

l−1∑
s=1

1

s!

∑
j+p1+p2+···+ps=l

∂sµj(η)ωp1 . . . ωps + u
(m)
N+1.

For sufficiently large η1 = η1(N), one can assume that
∑N

j=1 |ωj | |η|−1 ≤ 1/2,
for |η| ≥ η1 and thus the following expansion is applicable:

|ξ(N) |m = |η|m
[
1 + η−1

N∑
j=1

ωj

]m

= |η|m +m|η|mη−1

N∑
l=1

ωl + |η|m
N∑

s=2

dsη
−s

( N∑
j=1

ωj

)s
+ u

(m)
N+1

= |η|m+m|η|mη−1

N∑
l=1

ωl +
N∑

l=2

l∑
s=2

ds|η|mη−s
∑

p1+p2+···+ps=l

ωp1 . . . ωps + u
(m)
N+1,
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where

ds =
m(m− 1) · · · (m− s+ 1)

s!
, s ≥ 1.

Substituting these decompositions in the formula for a(ξ(N)), and using def-
initions (5.3), we arrive at (5.7).

Step II. Let us now prove that for sufficiently large η the equation
a(ξ) = |η|m has exactly one solution in a vicinity of η, and that this solution

ξ(η) satisfies ξ(η) − ξ(N)(η) = u
(1)
N+1. Denote T (ξ) =

∑
j µj(ξ), and rewrite

the equation in the form

ξ = ±(|η|m − T (ξ)
)1/m

, ±η > 0.

Since |T (ξ)| ≤ C1(1 + |ξ|)α+δ and α + δ < m, this implies that C−1〈η〉 ≤
〈ξ〉 ≤ C〈η〉 for some C uniform in a. Remembering also that |T ′(ξ)| ≤
C̃1(1 + 〈η〉)α+δ−1 for such values of ξ, we can apply the fixed point theorem
to conclude that for some η0 ≥ ξ0, depending on C1, C̃1, this equation has
a unique solution ξ(η) for each η : |η| ≥ η0. To prove that ξ(η) decomposes
in the asymptotic series (5.6), let us analyze the equation for the remainder
εN+1(η) = ξ(η) − ξ(N)(η):

εN+1 = ±[|η|m − T (ξ(N) + εN+1)
]1/m − ξ(N),

assuming that |η| ≥ η0. Applying the fixed point theorem again and using
the relation (5.7), we conclude that εN+1 = O(|η|(N+1)(δ−κ)+1), as required. �

Let a0(ξ; ρ) be the symbol of the operator A0, see (5.1). Denote by
ωj(η; ρ) the functions ωj obtained from Lemma 5.1 applied to the symbol
a0(ξ; ρ). In the next two Lemmas we find the values of the symbols ω1(η; ρ)
and ω2(η; ρ) in terms of the symbol b(x, ξ). Recall the notation

B2(ξ) = B2(ξ; ρ) =

∫ 2π

0

|b(x, ξ; ρ)|2dx.

We know that µ1(ξ) = bo(ξ) = (2π)−1/2b̂(0, ξ). Now we need to find µ2. In
the bounds below the remainders are always uniform in the symbol b in the
sense specified in Theorem 2.3. Note that in contrast to Section 4 we do not
establish the precise dependence of the remainders on the norms b

(α,δ)
l,s,r .

Lemma 5.2 Let b ∈ Tα,δ with some α < m and δ < κ. Let 3ρ/4 ≤ |ξ| ≤
2ρ. Then

µ2(ξ; ρ) =
m− 1

4πm
|ξ|−m

[
B2(ξ; ρ) − |b̂(0, ξ; ρ)|2]

− 1

4πm
|ξ|−mξ∂ξ

[
B2(ξ; ρ) − |b̂(0, ξ; ρ)|2] +O(ρ2(α+δ)−m−2).
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Proof. According to (4.11), µ2(ξ) = µ2(ξ; ρ) = bo2(ξ; ρ) + to2(ξ; ρ), so that
Lemma 4.3(iii) ensures that

µ2(ξ)=− 1

2π

∑
θ �=0

|b̂(θ, ξ)|2
τθ(ξ)

χ(θ), χ(θ) = χ(θ; ρ) =Υ
(
4|θ|ρ−1

)[
2−Υ

(
4|θ|ρ−1

)]
,

for 3ρ/4 ≤ |ξ| ≤ 2ρ. Rewrite µ2(ξ) = σ1(ξ) + σ2(ξ) with

σ1(ξ) = − 1

4π

∑
θ

|b̂(θ, ξ)|2
[

1

τθ(ξ)
+

1

τ−θ(ξ)

]
χ(θ),

σ2(ξ) =
1

4π

∑
θ

1

τ−θ(ξ)

[
|b̂(θ, ξ)|2 − |b̂(−θ, ξ)|2

]
χ(θ).

Here and below, for brevity we assume without comments that the summa-
tion runs over θ 
= 0. Using the Taylor expansion for τθ we obtain

(5.8)

1

τθ(ξ)
+

1

τ−θ(ξ)
= −m− 1

m
|ξ|−m +O(θ2|ξ|−m−2),

1

τθ(ξ)
− 1

τ−θ(ξ)
=

2

θm
|ξ|−mξ +O(θ|ξ|−m−1),

Consequently

σ1(ξ) =
m− 1

4πm
|ξ|−m

∑
θ

|b̂(θ, ξ)|2χ(θ) +O(ρ2(α+δ)−m−2).

Here we have used the inequality (2.7) with s = 0. Using (2.7) again, we
can conclude that∑

θ

|b̂(θ, ξ)|2χ(θ)−
∑

θ

|b̂(θ, ξ)|2

≤
∑

|θ|≥ρ/16

|b̂(θ, ξ)|2 =
(
b

(α)
l,0

)2
O(ρ2(α+δ)−2l+1), ∀l > 1.

By Parseval’s identity

∑
θ �=0

|b̂(θ, ξ)|2 =

∫ 2π

0

|b(x, ξ)|2dx− |b̂(0, ξ)|2,

so that

σ1(ξ) =
m− 1

4πm
|ξ|−m

(
B2(ξ) − |b̂(0, ξ)|2) +O(ρ2(α+δ)−m−2) +O(ρ−l),∀l > 0.
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To find σ2(ξ), rewrite the formula for σ2 remembering that b is a symmetric
symbol (see (2.5)) and that χ(θ) = χ(−θ):

σ2(ξ) =
1

8π

∑
θ

[
1

τ−θ(ξ)
− 1

τθ(ξ)

][
|b̂(θ, ξ)|2 − |b̂(θ, ξ − θ)|2

]
χ(θ).

According to the bound∣∣∂s
ξ |b̂(θ, ξ + η)|2∣∣ ≤ C( b

(α,δ)
l,s,0 )2ρ2δ〈ξ〉2a−s〈θ〉−2l〈η〉2|α|+s,

which follows from (2.7), we have

|b̂(θ, ξ)|2−|b̂(θ, ξ − θ)|2 =

= ∂ξ|b̂(θ, ξ)|2θ +
1

2
∂2

ξ |b̂(θ, ξ)|2θ2 +O(ρ2(α+δ)−3)|θ|−2l+2|α|+6.

Combined with (5.8), this implies that

(5.9) σ2(ξ) = − 1

4πm
|ξ|−mξ

∑
θ

∂ξ|b̂(θ, ξ)|2χ(θ)

− 1

8πm
|ξ|−mξ

∑
θ

∂2
ξ (|b̂(θ, ξ)|2)θχ(θ) +O(ρ2(α+δ)−m−2).

Rewrite the second sum using (2.5):

2
∑

θ

∂2
ξ |b̂(θ, ξ)|2θχ(θ) =

∑
θ

∂2
ξ

(|b̂(θ, ξ)|2 − |b̂(−θ, ξ)|2)θχ(θ)

=
∑

θ

∂2
ξ

(|b̂(θ, ξ)|2 − |b̂(θ, ξ − θ)|2)θχ(θ).

In view of (2.4)

|∂2
ξ |b̂(θ, ξ)|2 − ∂2

ξ |b̂(θ, ξ − θ)|2| ≤ C
(
b

(α,δ)
l,3,0

)2
ρ2δ〈ξ〉2α−3〈θ〉−2l+2|α|+4,

which implies that the second term in the r.h.s. of (5.9) is of order
O(ρ2(α+δ)−m−2). Consequently,

σ2(ξ) = − 1

4πm
|ξ|−mξ

∑
θ

∂ξ|b̂(θ, ξ)|2χ(θ) + O(ρ2(α+δ)−m−2).

Applying Parseval’s identity as in the calculation for σ1 one obtains that

σ2(ξ) = − 1

4πm
|ξ|−mξ∂ξ

(
B2(ξ) − |b̂(0, ξ)|2) +O(ρ−l) +O(ρ2(α+δ)−m−2),

with arbitrary l > 0. Adding up σ1 and σ2, one arrives at the required
formula for µ2. �
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Let us now calculate the symbols ω1, ω2:

Lemma 5.3 Let b ∈ Tα,δ with α < m and δ < κ. For 3ρ/4 ≤ |η| ≤ 2ρ
one has

ω1(η; ρ) = − 1

m
√

2π
η|η|−mb̂(0, η; ρ),

ω2(η; ρ) = − m− 1

4πm2
η1−2mB2(η; ρ) +

1

4πm2
η2−2m∂ηB2(η; ρ) +O(ρ2(δ−κ)−1).

Proof. The symbol ω1(η) is easy to find from (5.4) remembering that
µ1(ξ) = (2π)−1/2b̂(0, ξ).

Let us proceed to calculating the components of the symbol (5.5). Using
Lemma 5.2, we have for 3ρ/4 ≤ |η| ≤ 2ρ

ω2(η) = ω2(η; ρ)

= −m− 1

4πm2
η1−2m(B2(η) − |b̂(0, η)|2)

− m− 1

4πm2
η1−2m|b̂(0, η)|2 +

1

4πm2
η2−2m∂η

(
B2(η) − |b̂(0, η)|2)

+
1

4πm2
η2−2m∂η|b̂(0, η)|2 +O(ρ2(α−m+δ)−1).

This leads to the required formula. �
Now we are in position to find the asymptotics of the density of states

for A0.

Theorem 5.4 (Operator A0) Let b ∈ Tα,δ with α < m and δ < κ. Let
a0(ξ; ρ) be the symbol of the operator A0 given by (5.1). Let η0 > 0 and ωj ∈
T1

j,δ(ξ0, 1),∀ξ0 > 0, be the number and symbols from Lemma 5.1 constructed
for the symbol a0(ξ; ρ). Let

(5.10) ξM(η; ρ) = η +
M∑

j=1

ωj(η; ρ).

Then the integrated density of states D(ηm;A0) and the Fourier coefficients
N̂(ηm, 2πn;A0), η ≥ 0, satisfy the formulas

D(ηm;A0) =
1

2π

[
ξM(η; ρ) − ξM(−η; ρ)] +O(〈ρ〉(M+1)(δ−κ)+1),(5.11)

N̂(ηm, 2πn;A0) = − 1

4π2in

[
exp

(−2πinξM(η; ρ)
) − exp

(−2πinξM(−η; ρ))]
+O(〈ρ〉(M+1)(δ−κ)+1).(5.12)

for all 3ρ/4 ≤ η ≤ 2ρ and ρ ≥ 1 + 4η0/3. The functions ω1, ω2 satisfy the
formulas (5.4), (5.5).
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Proof. Let ξ(±η; ρ) be the function constructed in Lemma 5.1 for η ≥ η0.
According to Proposition 2.1

2πD(ηm;A0) = ξ(η; ρ) − ξ(−η; ρ),
N̂(ηm, 2πn;A0)=− 1

4π2in

(
exp(−2πinξ(η; ρ))−exp(−2πinξ(−η; ρ))), n 
= 0,

for all η ≥ η0. In particular, the function ξ(±η; ρ) is well defined for η ∈
[3ρ/4, 2ρ] since ρ ≥ 1 + 4η0/3. In view of Lemma 5.1 for 3ρ/4 ≤ η ≤ 2ρ
we have ξ(±η; ρ) = ξM(±η; ρ) + O(ρ(M+1)(δ−κ)+1), which leads to (5.11)
and (5.12). Besides, the first two components ω1, ω2 are given by the required
formulas due to Lemma 5.3. �

5.2. Operator A1

Now it is time to understand how the density of states behaves for the
perturbed operator, i.e. A1. The first step is to establish some bounds
relating the counting functions of the fibre operators A0(k) and A1(k) for
k ∈ (0, 1). Recall that N(ρm, k;A0) and N(ρm, k;A1) are finite since the
operators A0(k), and A1(k) have purely discrete spectra (see Section 2).

Lemma 5.5 Let b ∈ Tα,δ with α1 + δ < m where α1 = max(0, α). Then for
any M > 0 there exists a number ρ0 ≥ 1 bounded from above uniformly in
b, such that

N(λ−, k;A0) ≤ N(ρm, k;A1) ≤ N(λ+, k;A0),

λ± = ρm ± cρ(M+1)(δ−κ)+m, κ = m− α,

for all ρ ≥ ρ0 and all k ∈ [0, 1]. The constant c is uniform in b and depends
on the parameter M .

Proof. In view of the bound ‖RM+1(H)‖ ≤ Cρ(M+1)(δ−κ)+m established in
Lemma 4.3, we have

(5.13) N(λ−, k;A0+L
�,�,↑) ≤ N(ρm, k;A1) ≤ N(λ+, k;A0+L

�,�,↑), L = LM .

To get rid of L�,�,↑ in (5.13), represent A0 +L�,�,↑ in a matrix form by decou-
pling the space H = L2(R) in the orthogonal sum of three subspaces corre-
sponding to the following three disjoint subsets of R: Λr, ΩR (see (3.16) for
definition) and Υr,R = Ωr ∩ΛR, where 0 < r < R <∞ with r = 11ρ/16 and
R = 2ρ. Denote

P1 = P(Λr),P2 = P(Υr,R), P3 = P(ΩR),
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so that I = P1 + P2 + P3. By Lemma 3.5 we have

(P2 + P3)L
� = L�(P2 + P3) = (P1 + P2)L

� = L�(P1 + P2) = 0.

Therefore A0 + L�,�,↑ takes the form Ã0 + L̃ with

Ã0 =


P1(A0 + L�)P1 0 0

0 A0P2 0
0 0 P3(A0 + L�,↑)P3


 ,

L̃ =


P1L

↑P1 P1L
↑P2 P1L

↑P3

P2L
↑P1 P2L

↑P2 P2L
↑P3

P3L
↑P1 P3L

↑P2 0


 .

By (4.10), Lemma 4.3 and Lemma 3.5(iv), the norm of the operator L̃
is bounded by Clρ

−l with arbitrary l > 0 uniformly in b. Therefore the
estimate (5.13) transforms into the two-sided bound

(5.14) N(λ−, k; Ã0) ≤ N(ρm, k;A1) ≤ N(λ+, k; Ã0).

Notice that λ+ ≤ (5ρ/4)m, λ− ≥ (4ρ/5)m for a sufficiently large ρ0. Thus
the proof of (5.14) will be completed if we show that

N(µm, k; P1(A0 + L�)P1) = N(µm, k; P1A0),(5.15)

N(µm, k; P3(A0 + L�,↑)P3) = N(µm, k; P3A0P3) = 0,(5.16)

for all µ ∈ [4ρ/5, 5ρ/4]. According to (4.17),

M∑
l=1

bl
(α,δ) +

M∑
l=2

tl
(α,δ) ≤ C.

Thus by virtue of (3.15) and (3.3) we obtain

|((L� + L↑)u, u
)| ≤ Cρδ(Ξαu, u), Ξ = Op(〈ξ〉),

and hence

((A0 + L� + L↑)P3u,P3u) ≥ (2m(ρm − Cρα+δ)P3u,P3u) ≥ (3ρ/2)m‖P3u‖2.

Here we have used the fact that α + δ < m. Therefore the fibre
(
P3(A0 +

L� + L↑)P3

)
(k) satisfies the same bound for a.a. k. This ensures (5.16).

Similarly, by Lemma 3.5(i)

‖L�‖ ≤ Cρα1+δ, α1 = max(α, 0).

The operator A0P1 satisfies A0P1 ≤ (3ρ/4)m for ρ ≥ ρ0. Since α1 + δ < m,
the norm ‖L�‖ is strictly less than (4ρ/5)m−(3ρ/4)m. Now a straightforward
perturbation argument leads to (5.15). This completes the proof of (5.14)
and that of the Lemma. �

Thus the question is reduced to the study of the operator A0.
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5.3. Proof of Theorem 2.4

Increasing if necessary the value of ρ0 = ρ0(M) from Lemma 5.5, we assume
that ρ0 ≥ 1 + 4η0/3, where η0 is the constant from Theorem 5.4. Conse-
quently, in view of Lemma 5.5 and Theorem 5.4, for ρ ≥ ρ0 and any n ∈ Z

we have

|N̂(ρm, 2πn;A1) −N̂(λ−, 2πn;A0)| ≤ 1

2π

∫ 1

0

|N(ρm, k;A1)−N(λ−, k;A0)|dk
= D(ρm, A1) −D(λ−, A0)

≤ D(λ+, A0) −D(λ−, A0) = O(ρ(δ−κ)(M+1)+1).

For the last estimate we have used the fact that ωj ∈ T1
j,δ(ξ0, 1) in the

formula (5.10). For the same reason, by Theorem 5.4 we have

N̂(ρm, 2πn;A1) = N̂(λ−, 2πn;A0) +O(ρ(δ−κ)(M+1)+1)

= N̂(ρm, 2πn;A0) +O(ρ(δ−κ)(M+1)+1), ∀n ∈ Z.

Since the unitary operator U = exp(iΨ) is Γ-periodic, by Lemma 2.2

N̂(ρm, 2πn;A1) = N̂(ρm, 2πn;H).

To find N̂(ρm, 2πn;A0) use Theorem 5.4 again. This leads to the formu-
las (2.14) and (2.15) for ρ ≥ ρ0, if one denotes νj(ξ) :=

(
1−Υ(ρ/2)

)
ωj(ξ; ρ),

ξ = ±ρ, see (3.6) for definition of the function Υ. In view of Theorem 5.4,
ν1, ν2 satisfy the required formulas and νj ∈ S1

j,δ.
To obtain formulas (2.14), (2.15) for ρ ≤ ρ0 we need to check that

|N̂(ρm, 2πn)| ≤ C, n ∈ Z,

with a constant C uniform in b. This is done in Remark 2.5. �
As was explained previously, Theorem 2.4 leads to Theorem 2.3.
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