An extension of the Krein-Šmulian Theorem

Antonio S. Granero

Abstract

Let X be a Banach space, $u \in X^{**}$ and K, Z two subsets of X^{**} . Denote by d(u, Z) and d(K, Z) the distances to Z from the point u and from the subset K respectively. The Krein-Šmulian Theorem asserts that the closed convex hull of a weakly compact subset of a Banach space is weakly compact; in other words, every w*-compact subset $K \subset X^{**}$ such that d(K, X) = 0 satisfies $d(\overline{\operatorname{co}}^{w^*}(K), X) = 0$.

We extend this result in the following way: if $Z \subset X$ is a closed subspace of X and $K \subset X^{**}$ is a w*-compact subset of X^{**} , then

$$d(\overline{\operatorname{co}}^{w^*}(K), Z) \le 5d(K, Z).$$

Moreover, if $Z \cap K$ is w*-dense in K, then $d(\overline{\operatorname{co}}^{w^*}(K), Z) \leq 2d(K, Z)$. However, the equality $d(K, X) = d(\overline{\operatorname{co}}^{w^*}(K), X)$ holds in many cases, for instance, if $\ell_1 \not\subseteq X^*$, if X has w*-angelic dual unit ball (for example, if X is WCG or WLD), if $X = \ell_1(I)$, if K is fragmented by the norm of X^{**} , etc. We also construct under CH a w*-compact subset $K \subset B(X^{**})$ such that $K \cap X$ is w*-dense in K, $d(K, X) = \frac{1}{2}$ and $d(\overline{\operatorname{co}}^{w^*}(K), X) = 1$.

1. Introduction

If X is a Banach space, let B(X) and S(X) be the closed unit ball and unit sphere of X, respectively, and X^* its topological dual. If $u \in X^{**}$ and K, Z are two subsets of X^{**} , let $d(u, Z) = \inf\{\|u - z\| : z \in Z\}$ be the distance to Z from u, $d(K, Z) = \sup\{d(k, Z) : k \in K\}$ the distance to Z from K, $\operatorname{co}(K)$ the convex hull of K, $\overline{\operatorname{co}}(K)$ the norm-closure of $\operatorname{co}(K)$ and $\overline{\operatorname{co}}^{w^*}(K)$ the w*-closure of $\operatorname{co}(K)$.

 $2000\ Mathematics\ Subject\ Classification:\ 46B20,\ 46B26.$

Keywords: Krein-Šmulian Theorem, Banach spaces, compact sets.

This paper is devoted to investigate the connection between the distances $d(\overline{\operatorname{co}}^{w^*}(K), Z)$ and d(K, Z), when $Z \subset X^{**}$ is a subspace of X (in particular, when Z = X) and K is a w*-compact subset of X^{**} . There exist some facts that suggest that the distance $d(\overline{\operatorname{co}}^{w^*}(K), Z)$ is controlled by the distance d(K, Z). Indeed, on the one hand, we have the classical Theorem of Krein-Šmulian (see [5, p. 51]). Using the terminology of distances, this Theorem asserts the following: if X is a Banach space, every w*-compact subset $K \subset X^{**}$ with d(K, X) = 0 (that is, $K \subset X$ is a weakly compact subset of X) satisfies $d(\overline{\operatorname{co}}^{w^*}(K), X) = 0$ (that is, the closed convex hull $\overline{\operatorname{co}}(K)$ of K in X is weakly compact).

On the other hand, if the dual X^* of the Banach space X does not contain a copy of ℓ_1 , it is very easy to prove that $d(K,Z) = d(\overline{\operatorname{co}}^{w^*}(K),Z)$ for every w*-compact subset $K \subset X^{**}$ of X^{**} and every subspace $Z \subset X^{**}$. Indeed, in this case $\overline{\operatorname{co}}(K) = \overline{\operatorname{co}}^{w^*}(K)$ (see [9]). So, as $d(\operatorname{co}(K),Z) = d(K,Z)$ (this follows from the fact that the function $\varphi(u) := d(u,Z)$, $\forall u \in X^{**}$, is convex when $Z \subset X^{**}$ is a convex subset of X^{**}), we easily obtain that $d(K,Z) = d(\overline{\operatorname{co}}^{w^*}(K),Z)$.

In view of these facts, one is inclined to conjecture that $d(K, X) = d(\overline{\operatorname{co}}^{w^*}(K), X)$ for every w*-compact subset $K \subset X^{**}$ and every Banach space X. Unfortunately, assuming the Continuum Hypothesis (for short, CH), this is not true because of the following result we will prove here.

Theorem 1 Under CH, if $X = \ell_{\infty}^{c}(\omega^{+})$ (= subspace of the elements $f \in \ell_{\infty}(\omega^{+})$ with countable support), there exists a w^{*} -compact subset $H \subset B(X^{**})$ such that d(H,X) = 1/2, $H \cap X$ is w^{*} -dense in H and $d(\overline{co}^{w^{*}}(H),X) = 1$.

However, there exist many Banach spaces X for which the equality $d(K,X) = d(\overline{\operatorname{co}}^{w^*}(K),X)$ holds, for every w*-compact subset $K \subset X^{**}$, for example, the class of Banach spaces with property J.

Definition 2 A Banach space X has property J (for short, $X \in J$) if for every $z \in B(X^{**}) \setminus X$ and for every number $b \in \mathbb{R}$ with 0 < b < d(z, X), there exists a sequence $\{x_n^*\}_{n\geq 1} \subset \mathfrak{S}(B(X^*), z, b) := \{u \in B(X^*) : z(u) \geq b\}$ such that $x_n^* \stackrel{w^*}{\to} 0$.

For this class of Banach spaces with property J we prove the following result.

Theorem 3 Let X be a Banach space such that $X \in J$. Then for every w^* -compact subset $K \subset X^{**}$ we have $d(K, X) = d(\overline{co}^{w^*}(K), X)$.

In the following corollary we state that many Banach spaces have property J and, so, satisfy Theorem 3. Recall that, for a Banach X, the dual unit ball $(B(X^*), w^*)$ is angelic in the w*-topology if, for every subset $A \subset B(X^*)$ and every $z \in \overline{A}^{w^*}$, there exists a sequence $\{a_n\}_{n\geq 1} \subset A$ such that $a_n \stackrel{w^*}{\to} z$.

Corollary 4 If X is a Banach space such that $(B(X^*), w^*)$ is angelic (for example, if X is weakly compactly generated (for short, WCG) or weakly Lindelöf determined (for short, WLD)), then $X \in J$ and, so, for every w^* -compact subset $K \subset X^{**}$ we have $d(K,X) = d(\overline{co}^{w^*}(K),X)$.

Although the equality $d(K,X) = d(\overline{\operatorname{co}}^{w^*}(K),X)$ does not hold in general, we can ask whether there exists a universal constant $1 \leq M < \infty$ such that $d(\overline{co}^{w^*}(K), X) \leq Md(K, X)$ for every Banach space X and every w*-compact subset $K \subset X^{**}$.

The answer to this question is affirmative. We prove the following result, which extends the Krein-Smulian Theorem.

Theorem 5 If X is a Banach space, $Z \subset X$ a closed subspace of X and $K \subset X^{**}$ a w^* -compact subset, then $d(\overline{co}^{w^*}(K), Z) \leq 5d(K, Z)$.

When $K \cap Z$ is w*-dense in K, the argument used in Theorem 5 gives the following result.

Theorem 6 Let X be a Banach space, $Z \subset X$ a closed subspace and $K \subset X$ X^{**} a w^* -compact subset. If $Z \cap K$ is w^* -dense in K, then $d(\overline{co}^{w^*}(K), Z) < 0$ 2d(K,Z).

Finally, we also obtain the following result.

Theorem 7 Let I be an infinite set and $X = \ell_1(I)$. Then for every w^* compact subset $K \subset X^{**}$ we have $d(\overline{co}^{w^*}(K), X) = d(K, X)$.

A version of the problem we study here was considered (independently) by M. Fabian, P. Hájek, V. Montesinos and V. Zizler in [7]. They study the class of w*-compact subsets $K \subset X^{**}$ such that $K \cap X$ is w*-dense in K. Instead of distances, they deal with the notion of ϵ -weakly relatively compact subsets of X (for short, ϵ -WRK) introduced in [8]. A bounded subset H of X is said to be ϵ -WRK, for some $\epsilon > 0$, if $\overline{H}^{w^*} \subset X + \epsilon B(X^{**})$, that is, if $d(\overline{H}^{w^*}, X) < \epsilon$. Using arguments based on the techniques of double limit due to Grothendieck and Pták, they prove that the constant M=2 holds for this category of w*-compact subsets $K \subset X^{**}$ such that $K \cap X$ is w*-dense in K. More precisely, they prove the following beautiful result.

Theorem ([7]) Let X be a Banach space and $H \subset X$ a bounded subset of X. Assume that H is ϵ -WRK for some $\epsilon > 0$. Then the convex hull co(H) is 2ϵ -WRK. Moreover, if $(B(X^*), w^*)$ is angelic, or X^* does not contain a copy of ℓ_1 , then co(H) is ϵ -WRK.

Observe that the Theorem of Krein-Šmulian follows from this result when $\epsilon = 0$.

2. Proofs of the results

Let us introduce some notation and terminology (see [1], [4], [6], [11]). |A| denotes the cardinality of a set A, ω^+ the first uncountable ordinal, \aleph_1 the first uncountable cardinal and CH the continuum hypothesis. A Hausdorff compact space K is said to have property (M) if every Radon Borel measure μ on K has separable support supp (μ) . If K is a convex compact subset of some locally convex linear space X and μ is a Radon Borel probability measure on K, $r(\mu)$ denotes the barycentre of μ . Recall (see [3]) that $r(\mu) \in K$ and that $r(\mu)$ satisfies $x^*(r(\mu)) = \int_K x^*(k) d\mu$ for every $x^* \in X^*$.

If X is a Banach space, let $X^{\perp} = \{z \in X^{***} : \langle z, x \rangle = 0, \ \forall x \in X\}$ denote the subspace of X^{***} orthogonal to X. If $Y \subset X$ is a subspace of X, let $Y^{\perp}(X^*) = \{z \in X^* : \langle z, y \rangle = 0, \ \forall y \in Y\}$ be the subspace of X^* orthogonal to Y, $Y^{\perp}(X^{***}) = \{z \in X^{***} : \langle z, y \rangle = 0, \ \forall y \in Y\}$, etc. So, $X^{\perp} = X^{\perp}(X^{***})$. Recall that, if $u \in X$ (resp., $u \in X^{**}$), then $d(u,Y) = \sup\{\langle z, u \rangle : z \in B(Y^{\perp}(X^*))\}$ (resp., $d(u,Y) = \sup\{\langle z, u \rangle : z \in B(Y^{\perp}(X^{***}))\}$). If $A \subset X$ is a subset of X, [A] denotes the linear span of A.

Let I be an infinite set with the discrete topology. Then:

- (0) We use the symbol $\ell_{\infty}(I)$ to denote the Banach space of all $f = (f(i))_{i \in I} \in \mathbb{R}^I$ with supremum norm finite $||f|| := \sup\{|f(i)| : i \in I\} < \infty$. The symbol $c_0(I)$ means its subspace consisting from $f = (f(i))_{i \in I} \in \ell_{\infty}(I)$ such that the set $\{i \in I : |f(i)| > \epsilon\}$ is finite for all $\epsilon > 0$.
- (1) If $f \in \ell_{\infty}(I)$, supp $(f) = \{i \in I : f(i) \neq 0\}$ will be the *support* of f and \check{f} the *Stone-Čech extension* of f to βI , where βI is the *Stone-Čech compactification* of I.
- (2) Let $cI = \bigcup \{\overline{A}^{\beta I} : A \subset I, A \text{ countable}\}\$ and $\ell_{\infty}^{c}(I) = \{f \in \ell_{\infty}(I) : \text{supp}(f) \text{ countable}\}\$. Observe that cI is an open subset of βI and that, if $f \in \ell_{\infty}(I)$, then $f \in \ell_{\infty}^{c}(I)$ if and only if $\check{f}_{|\beta I \setminus cI} = 0$.
- (3) Let $\Sigma(\{0,1\}^I) = \{x \in \{0,1\}^I : \text{supp}(x) \text{ countable}\}\$ and $\Sigma([-1,1]^I) = \{x \in [-1,1]^I : \text{supp}(x) \text{ countable}\}.$
- (4) Recall that a compact space is said to be a *Corson space* if it is homeomorphic to some compact subset of $\Sigma([-1,1]^I)$.

Proof of Theorem 1. We use a modification of the Argyros-Mercourakis-Negrepontis Corson compact space without property (M) [1, p. 219]. In the following we adopt the notation and terminology of [1, p. 219]. Let Ω be the space of Erdös, that is, the Stone space of the quotient algebra M_{λ}/N_{λ} , where λ is the Lebesgue measure on [0, 1], M_{λ} is the algebra of λ -measurable subsets of [0, 1] and N_{λ} is the ideal of λ -null subsets of [0, 1]. Ω is

a compact extremely disconnected space (because M_{λ}/N_{λ} is complete) and there exists a strictly positive regular Borel normal probability measure $\tilde{\lambda}$ on Ω , determined by the condition $\tilde{\lambda}(V) = \lambda(U)$, V being any clopen subset of Ω and U a λ -measurable subset of [0,1] such that $V = U + N_{\lambda}$.

Now we proceed as in [1, 3.11 Lemma] with small changes. Write $[0,1] = \{x_{\xi} : \xi < \omega^+\}$ and let $\{K_{\xi} : \xi < \omega^+\}$ be the well-ordered class of compact subsets of [0,1] with strictly positive Lebesgue measure. For each $\xi < \omega^+$ we choose a compact subset $U_{\xi} \subset [0,1]$ such that:

- (a) $U_{\xi} \subset \{x_{\rho} : \xi < \rho < \omega^{+}\} \cap K_{\xi}$.
- (b) If $\lambda(K_{\xi}) = 1$, then U_{ξ} satisfies the condition $\lambda(U_{\xi}) > 0$. If $\lambda(K_{\xi}) < 1$, U_{ξ} satisfies the condition $\lambda(K_{\xi}) (1 \lambda(K_{\xi})) < \lambda(U_{\xi}) \leq \lambda(K_{\xi})$.

Let V_{ξ} be the clopen subset of Ω corresponding to U_{ξ} . Then $\{V_{\xi} : \xi < \omega^{+}\}$ is a pseudobase of Ω that witnesses the failure of the property caliber ω^{+} , that is, if $A \subset \omega^{+}$ and $|A| = \aleph_{1}$, then $\cap_{\xi \in A} V_{\xi} = \emptyset$. Moreover, (b) automatically implies that $|\{\xi < \omega^{+} : \lambda(U_{\xi}) > t\}| = \aleph_{1}$ for every 0 < t < 1, whence $|\{\xi < \omega^{+} : \tilde{\lambda}(V_{\xi}) > t\}| = \aleph_{1}$ for every 0 < t < 1.

Consider $\mathcal{A} = \{A \subset \omega^+ : \cap_{\xi \in A} V_{\xi} \neq \emptyset\}$. Clearly, \mathcal{A} is an adequate family (see [11, p. 1116]) such that every element of \mathcal{A} is a countable subset of ω^+ . Moreover, there are elements $A \in \mathcal{A}$ with $|A| = \aleph_0$. Indeed, apply a well-known result from measure theory (see Lemma 8) and the fact that $\{\xi < \omega^+ : \tilde{\lambda}(V_{\xi}) > \delta\}$ is infinite for some (in fact, every) $0 < \delta < 1$.

So, if $K = \{\mathbf{1}_A : A \in \mathcal{A}\} \subset \Sigma(\{0,1\}^{\omega^+}) \subset \ell_{\infty}^c(\omega^+)$, then K is a Corson compact space with respect to the w*-topology $\sigma(\ell_{\infty}(\omega^+), \ell_1(\omega^+))$. Define the continuous map $T : \Omega \to K$ so that, for every $x \in \Omega$, $T(x) = \mathbf{1}_{A_x}$, where $A_x = \{\xi \in \omega^+ : x \in V_{\xi}\}$. Observe that $A_x \in \mathcal{A}$ and, so, $T(x) \in K$, $\forall x \in \Omega$.

Let $L = T(\Omega) \subset K$. Then L is a Corson compact space without property (M), because L is nonseparable but L is the support of μ , where $\mu = T(\tilde{\lambda})$ is the probability on K image of $\tilde{\lambda}$ under T. So, as $L \subset K$, K is also a Corson compact space without property (M).

Let I be the space ω^+ , with the discrete topology, and $X = \ell_{\infty}^c(I)$. Then, the dual space X^* is

$$X^* = \ell_1(I) \oplus_1 M_R(cI \setminus I),$$

where $M_R(cI \setminus I)$ is the space of Radon Borel measures ν on βI such that $\operatorname{supp}(\nu) \subset cI \setminus I$ and \oplus_1 means ℓ_1 -sum (that is, if a Banach space Y has the decomposition $Y = Y_1 \oplus_1 Y_2$ and $y \in Y$, with $y = y_1 + y_2$ and $y_1 \in Y_1, y_2 \in Y_2$, then $||y|| = ||y_1|| + ||y_2||$). Observe that $\ell_1(I) \oplus_1 M_R(cI \setminus I)$ can be considered as a 1-complemented closed subspace of $(\ell_\infty(I))^* = \ell_1(I) \oplus_1 M_R(\beta I \setminus I)$.

The bidual of X is

$$X^{**} = \ell_{\infty}(I) \oplus_{\infty} M_R(cI \setminus I)^*,$$

where \oplus_{∞} means ℓ_{∞} -sum (that is, if a Banach space Y has the decomposition $Y=Y_1\oplus_{\infty}Y_2$ and $y\in Y$, with $y=y_1+y_2$ and $y_1\in Y_1,y_2\in Y_2$, then $\|y\|=\sup\{\|y_1\|,\|y_2\|\}$). Let $\pi_1,\pi_2:X^{**}\to X^{**}$ be the canonical projections onto $\ell_{\infty}(I)$ and $M_R(cI\setminus I)^*$, respectively. The subspaces $\pi_1(X^{**})=\ell_{\infty}(I)$ and $\pi_2(X^{**})=M_R(cI\setminus I)^*$ are w*-closed subspaces of X^{**} . Moreover, the w*-topology $\sigma(X^{**},X^*)$ coincides on $\pi_1(X^{**})=\ell_{\infty}(I)$ with the $\sigma(\ell_{\infty}(I),\ell_1(I))$ -topology. For $x\in X^{**}$ we write $x=(x_1,x_2)$, with $\pi_1(x)=x_1\in\ell_{\infty}(I)$ and $\pi_2(x)=x_2\in M_R(cI\setminus I)^*$. So, if $J:X\to X^{**}$ is the canonical embedding and $f\in X$, then $J(f)=(f_1,f_2)$, where $f_1=\pi_1(f)=f$ and $\pi_2(f)=f_2$ is such that $f_2(\nu)=\nu(f)=\int_{cI\setminus I}fd\nu$, for every $\nu\in M_R(cI\setminus I)$.

The map $\phi: \ell_{\infty}(I) \to X^{**}$ such that $\phi(f) = (f,0), \ \forall f \in \ell_{\infty}(I)$, is an isomorphism between $\ell_{\infty}(I)$ and $\pi_1(X^{**})$, for the norm-topologies and also for the $\sigma(\ell_{\infty}(I), \ell_1(I))$ -topology of $\ell_{\infty}(I)$ and the w*-topology of $\pi_1(X^{**})$. So, $H := \phi(K) = \{(k,0) : k \in K\} \subset B(X^{**})$ is a Corson compact space without property (M), which is homeomorphic to K. Since the family \mathcal{A} is adequate (in particular, $B \in \mathcal{A}$ if $B \subset A$ and $A \in \mathcal{A}$), the subset $\{\mathbf{1}_A : A \in \mathcal{A}, A \text{ finite}\}$ of K is dense in K. So, as $J(\mathbf{1}_A) = (\mathbf{1}_A, 0)$ when $A \subset \omega^+$ is finite, we get that $H \cap J(X)$ is w*-dense in H, because

$$\phi(\{\mathbf{1}_A : A \in \mathcal{A}, A \text{ finite}\}) = \{(\mathbf{1}_A, 0) : A \in \mathcal{A}, A \text{ finite}\} =$$
$$= J(\{\mathbf{1}_A : A \in \mathcal{A}, A \text{ finite}\}) \subset H \cap J(X).$$

Claim 1. $d(H, J(X)) = \frac{1}{2}$.

Indeed, pick $f \in K$ and assume that $f = \mathbf{1}_A$, for some $A \in \mathcal{A}$. If $|A| < \aleph_0$, clearly $\phi(f) = (f, 0) = J(f)$, that is, $\phi(f) \in J(X)$. Suppose that $|A| = \aleph_0$. Then $d(\phi(f), J(X)) = \frac{1}{2}$ because:

- (a) Clearly, $\|\phi(f) \frac{1}{2}J(f)\| = \frac{1}{2}$, whence $d(\phi(f), J(X)) \le \frac{1}{2}$.
- (b) On the other hand, $\|\phi(f) J(g)\| \ge \frac{1}{2}$ for every $g \in X$. Indeed, let $g \in X$ and assume that $\|\phi(f) J(g)\| \le \frac{1}{2}$. Then $\|f g\| \le \frac{1}{2}$ in $\ell_{\infty}(I)$, which implies that $\frac{1}{2} \le g$ on A (because $f = \mathbf{1}_A$) and so $\check{g} \ge \frac{1}{2}$ on $\overline{A}^{\beta I}$. Since $|A| = \aleph_0$, we can pick $p \in \overline{A}^{\beta I} \setminus I \subset cI \setminus I$. Let $\delta_p \in M_R(cI \setminus I)$ be such that $\delta_p(h) = \check{h}(p)$ for every $h \in \ell_{\infty}(I)$. Notice that $\|\delta_p\| = 1$. Then, if $J(g) = (g, g_2)$, we have

$$|(\phi(f) - J(g))(\delta_p)| = |-g_2(\delta_p)| = |-\int_{cI\setminus I} \check{g} \cdot d(\delta_p)| = |-\check{g}(p)| \ge \frac{1}{2}.$$

Finally, recall that there are elements $A \in \mathcal{A}$ with $|A| = \aleph_0$.

Claim 2. $d(\overline{co}^{w^*}(H), J(X)) = 1.$

Indeed, first $d(\overline{\operatorname{co}}^{w^*}(H), J(X)) \leq 1$ because $\overline{\operatorname{co}}^{w^*}(H) \subset B(X^{**})$. On the other hand, let $\nu := \phi(\mu)$ be the probability on $\phi(L)$ image of μ under ϕ . Since $\phi(L) \subset B(\pi_1(X^{**}))$ and $\pi_1(X^{**})$ is a convex w*-closed subset of X^{**} , we conclude that $\overline{\operatorname{co}}^{w^*}(\phi(L)) \subset B(\pi_1(X^{**}))$. So, as $r(\nu) \in \overline{\operatorname{co}}^{w^*}(\phi(L))$, we get that $r(\nu) = (z_0, 0)$ for some $z_0 \in B(\ell_\infty(I))$. If $\xi \in I$, define $\pi_{\xi} : X^{**} \to \mathbb{R}$ by $\pi_{\xi}(f_1, f_2) = f_1(\xi)$, for all $(f_1, f_2) \in X^{**} = \ell_\infty(I) \oplus_\infty M_R(cI \setminus I)^*$. Observe that π_{ξ} is a w*-continuous linear map on X^{**} . So

$$z_0(\xi) = \pi_{\xi}(z_0, 0) = \pi_{\xi}(r(\nu)) = \int_{\phi(L)} \pi_{\xi}(k) d\nu = \int_L k(\xi) d\mu = \tilde{\lambda}(V_{\xi}).$$

Thus, for every 0 < t < 1 we have, by construction, $|\{\xi \in I : z_0(\xi) > t\}| = |\{\xi \in I : \tilde{\lambda}(V_{\xi}) > t\}| = \aleph_1$, and this implies that $||z_0 - g|| \ge 1$ in $\ell_{\infty}(I)$, for every $g \in X = \ell_{\infty}^c(I)$, whence $||(z_0, 0) - J(g)|| \ge 1$ for every $g \in X$, that is, $d((z_0, 0), J(X)) \ge 1$. Finally, we obtain $d(\overline{\operatorname{co}}^{w^*}(H), J(X)) \ge 1$ because $(z_0, 0) \in \overline{\operatorname{co}}^{w^*}(\phi(L)) \subset \overline{\operatorname{co}}^{w^*}(H)$.

And this completes the proof.

Remark. Theorem 1 gives, under CH, a negative answer to the following question posed in Problem 3 of [7]: if X is a Banach space and $H \subset X$ a ϵ -WRK, is co(H) a ϵ -WRK?

We need the following well known result from measure theory.

Lemma 8 Let (Ω, Σ, μ) be a measure space with μ positive and finite and $\{A_n\}_{n<\omega}\subset\Sigma$ be a sequence of measurable sets with $\mu(A_n)>\delta>0$ for all $n<\omega$ and some $\delta>0$. Then there exists an infinite subset $I\subset\omega$ such that $\cap_{n\in I}A_n\neq\emptyset$.

Proof. Consider the sequence $B_n = \bigcup_{k \geq n} A_k$, $n \geq 1$. The sequence $\{B_n\}_{n \geq 1}$ is decreasing and $\mu(B_n) > \delta$ for every $n \geq 1$. Hence $\mu(\bigcap_{n < \omega} B_n) \geq \delta$ and therefore $\bigcap_{n < \omega} B_n \neq \emptyset$. Choose $w \in \bigcap_{n < \omega} B_n$ and inductively a sequence $\{A_{n_k}\}_{k < \omega}$, $n_k < n_{k+1}$, such that $w \in A_{n_k}$ for all $k < \omega$. Then $I = \{n_k : k < \omega\}$ is the desired infinite subset.

Proposition 9 Let I be an infinite set and $X = (c_0(I), \|\cdot\|_{\infty})$. Then every w^* -compact subset $K \subset X^{**}$ satisfies $d(K, X) = d(\overline{co}^{w^*}(K), X)$.

Proof. First, recall that if $f \in X^{**} = \ell_{\infty}(I)$, then

$$d(f,X) = \sup\{|\check{f}(p)| : p \in \beta I \setminus I\}.$$

Suppose that there exists a w*-compact subset $K \subset B(X^{**})$ such that $d(K,X) < d(\overline{\operatorname{co}}^{w^*}(K),X)$. Then we can find two real numbers a,b such that

$$d(K, X) < a < b < d(\overline{\operatorname{co}}^{w^*}(K), X) \le 1.$$

Pick $z_0 \in \overline{\operatorname{co}}^{w^*}(K)$ such that $d(z_0, X) > b$. So, there exist $\epsilon > 0$ and $p_0 \in \beta I \setminus I$ such that $|\check{z}_0(p_0)| > b + \epsilon$, for example, $\check{z}_0(p_0) > b + \epsilon$. Let $U \subset I$ be such that $p_0 \in \overline{U}^{\beta I}$ and $z_0(j) > b + \epsilon$, $\forall j \in U$. Let μ be a Radon Borel probability on K such that $z_0 = r(\mu)$ and denote $A_j := \{k \in K : k(j) \geq b\}, \ j \in U$, which is a closed subset of K.

Claim. $\mu(A_j) > \frac{\epsilon}{1-b}, \ \forall j \in U.$

Indeed, let $\pi_j: \ell_{\infty}(I) \to \mathbb{R}, \ j \in I$, be such that $\pi_j(f) = f(j)$ for every $f \in \ell_{\infty}(I)$. Observe that π_j is a w*-continuous linear map on $\ell_{\infty}(I)$, for every $j \in I$. Thus, for every $j \in U$ we have

$$z_0(j) = \pi_j(z_0) = \pi_j(r(\mu)) = \int_K \pi_j(k) d\mu = \int_K k(j) d\mu =$$

$$= \int_{A_j} k(j) d\mu + \int_{K \setminus A_j} k(j) d\mu \le \mu(A_j) + (1 - \mu(A_j))b,$$

and this implies

$$\mu(A_j) \ge \frac{z_0(j) - b}{1 - b} > \frac{\epsilon}{1 - b}.$$

Let $V_0 \subset U$ be an arbitrary infinite subset. By Lemma 8 there exists an infinite countable subset $N_0 \subset V_0$ such that $\emptyset \neq \bigcap_{j \in N_0} A_j \subset K$. Pick $x_0 \in \bigcap_{j \in N_0} A_j$. Then for every $q \in \overline{N_0}^{\beta I} \setminus I$ we have $\check{x}_0(q) \geq b$, which implies $d(x_0, X) \geq b$, a contradiction, because x_0 belongs to K.

If (X, τ) is a topological space, a subset $K \subset X$ is said to be regular in X if and only if the interior set $\operatorname{int}(K)$ is dense in K.

Corollary 10 Let I be an infinite set, $H \subset \beta I \setminus I$ a compact subset which is regular in $\beta I \setminus I$, and $Y_H = \{f \in \ell_{\infty}(I) : \check{f}_{|H} = 0\}$. Then for every w^* -compact subset $K \subset \ell_{\infty}(I)$ we have $d(K, Y_H) = d(\overline{co}^{w^*}(K), Y_H)$.

Proof. First, observe that $d(z, Y_H) = \sup\{|\check{z}(x)| : x \in H\}$ for every $z \in \ell_{\infty}(I)$. Suppose that there exist a w*-compact subset $K \subset B(\ell_{\infty}(I))$ and real numbers a, b such that:

$$d(K, Y_H) < a < b < d(\overline{\operatorname{co}}^{w^*}(K), Y_H) \le 1.$$

Let $z_0 \in \overline{\operatorname{co}}^{w^*}(K)$ be such that $d(z_0, Y_H) > b$. Since $\operatorname{int}(H)$ is dense in H, there exists $p_0 \in \operatorname{int}(H)$ such that, for example, $\check{z}_0(p_0) > b + \epsilon$, for some

 $\epsilon > 0$. Let $U \subset I$ be an infinite subset such that $p_0 \in \overline{U}^{\beta I} \setminus I \subset H$ and $z_0(j) > b + \epsilon$, $\forall j \in U$. By an argument similar to that of Proposition 9, we find an infinite countable subset $N_0 \subset U$ and a vector $x_0 \in K$ such that $\check{x}_0(q) \geq b$, for every $q \in \overline{N_0}^{\beta I} \setminus I \subset H$, which implies $d(x_0, Y_H) \geq b$, a contradiction, because $x_0 \in K$ and $d(K, Y_H) \leq a < b$.

We now prove Theorem 3 and Corollary 4.

Proof of Theorem 3. Suppose that there exist a w*-compact subset $K \subset B(X^{**})$ and real numbers a, b such that:

$$d(K, X) < a < b < d(\overline{\operatorname{co}}^{w^*}(K), X).$$

Pick $z_0 \in \overline{\operatorname{co}}^{w^*}(K)$ with $d(z_0, X) > b$. Since $X \in J$ we can choose a sequence $\{x_n^*\}_{n \geq 1} \subset \mathfrak{S}(B(X^*), z_0, b)$ such that $x_n^* \stackrel{w^*}{\to} 0$. Let $T: X \to c_0 := c_0(\mathbb{N})$ be such that $T(x) = (x_n^*(x))_{n \geq 1}, \ \forall x \in X$. Clearly, T is a linear continuous map with $||T|| \leq 1$. Let $L = T^{**}(K)$, which is a w*-compact subset of $B(\ell_\infty)$.

Claim 1. $d(L, c_0) \leq d(K, X)$.

Indeed, let $c_0^{\perp} = \{ f \in c_0^{***} : \langle f, u \rangle = 0, \ \forall u \in c_0 \}$ and pick $v \in B(c_0^{\perp})$. Then $||T^{***}(v)|| \leq 1$ and for every $x \in X$ we have:

$$\langle T^{***}(v), x \rangle = \langle v, T^{**}x \rangle = \langle v, Tx \rangle = 0.$$

So, $T^{***}(B(c_0^{\perp})) \subset B(X^{\perp})$. Hence, if $k \in K$ and $T^{**}(k) =: h \in L$ we have:

$$d(h, c_0) = \sup\{\langle v, h \rangle : v \in B(c_0^{\perp})\} =$$

$$= \sup\{\langle v, T^{**}(k) \rangle : v \in B(c_0^{\perp})\} = \sup\{\langle T^{***}(v), k \rangle : v \in B(c_0^{\perp})\} \le$$

$$\leq \sup\{\langle w, k \rangle : w \in B(X^{\perp})\} = d(k, X).$$

Claim 2. If $w_0 := T^{**}(z_0) \in \overline{co}^{w^*}(L)$, then $d(w_0, c_0) \ge b$.

Indeed, let $\{e_n\}_{n\geq 1}$ be the canonical basis of ℓ_1 , which satisfies $T^*(e_n) = x_n^*, \ \forall n \geq 1$. Since $x_n^* \in \mathfrak{S}(B(X^*), z_0, b)$, then

$$(2.1) \langle w_0, e_n \rangle = \langle T^{**}(z_0), e_n \rangle = \langle z_0, T^*(e_n) \rangle = \langle z_0, x_n^* \rangle \ge b.$$

Let ψ be a w*-limit point of $\{e_n\}_{n\geq 1}$ in (ℓ_{∞}^*, w^*) . Clearly, $\psi \in B(c_0^{\perp})$ and also $\psi(w_0) \geq b$ by (2.1). So, $d(w_0, c_0) \geq b$.

Therefore, $L \subset B(\ell_{\infty})$ is a w*-compact subset such that

$$d(L, c_0) \le d(K, X) < a < b \le d(w_0, c_0) \le d(\overline{co}^{w^*}(L), c_0),$$

a contradiction to Proposition 9.

Of course, not every Banach space has property J. Indeed, if X is a non-reflexive Grothendieck Banach space (for example, if $X = \ell_{\infty}(I)$ with I infinite), then clearly X does not have property J. Moreover, X cannot be isomorphically embedded into a Banach space with property J.

However, the family of Banach spaces fulfilling property J is very large. For example, this family includes the class of Banach spaces X whose dual unit ball $(B(X^*), \mathbf{w}^*)$ is angelic in the \mathbf{w}^* -topology. Recall that every WCG (even every WLD) Banach space belongs to this class (see [2]).

Proof of Corollary 4. The proof of this fact is standard and well known. Let us prove that if $z_0 \in B(X^{**}) \setminus X$ and $0 < b < d(z_0, X)$, then

$$0 \in \overline{\mathfrak{S}(B(X^*), z_0, b)}^{\sigma(X^*, X)}$$
.

Find $\psi \in S(X^{\perp}) \subset X^{***}$ such that $\psi(z_0) > b$. As $B(X^*)$ is w*-dense in $B(X^{***})$ and $\psi(z_0) > b$, then

$$\psi \in \overline{\mathfrak{S}(B(X^*), z_0, b)}^{\sigma(X^{***}, X^{**})},$$

whence we obtain

$$0 \in \overline{\mathfrak{S}(B(X^*), z_0, b)}^{\sigma(X^*, X)},$$

because $\psi \in X^{\perp}$. Finally, it is enough to apply the fact that $(B(X^*), \mathbf{w}^*)$ is angelic.

Now we prove some auxiliary facts. If X is a Banach space, let $I_X: X \to X$ denote the identity map of X, $J_X: X \to X^{**}$ the canonical embedding of X into X^{**} and $R_X: X^{***} \to X^*$ the canonical restriction map such that $\langle R_X(z), x \rangle = \langle z, J_X(x) \rangle$, for every $z \in X^{***}$ and every $x \in X$. Notice that $R_X = (J_X)^*$ and that $R_X \circ J_{X^*} = I_{X^*}$.

It is well-known that $J_{X^*}(X^*)$ is 1-complemented into X^{***} , by means of the projection $P_X: X^{***} \to X^{***}$ such that $P_X = J_{X^*} \circ R_X$. Since $\ker(P_X) = \{z \in X^{***}: \langle z, J_X(x) \rangle = 0, \ \forall x \in X\} = X^{\perp}$, we have the decomposition $X^{***} = X^{\perp} \oplus J_{X^*}(X^*)$. The subspace X^{\perp} is complemented in X^{***} by means of the projection $Q_X: X^{***} \to X^{***}$ such that $Q_X = I_{X^{***}} - P_X$. Observe that $1 \leq \|Q_X\| \leq 2$ and that:

$$B(X^{\perp}) \subset Q_X(B(X^{***})) \subset ||Q_X|| \cdot B(X^{\perp}) \subset 2B(X^{\perp}).$$

Lemma 11 Let X be a Banach space and $Q_X : X^{***} \to X^{***}$ be the canonical projection onto X^{\perp} . Assume that $Y \subset X$ is a closed subspace. Then, for every $u \in Y^{**}$ (considered Y^{**} as a subspace of X^{**}) we have:

$$d(u, X) \le d(u, Y) \le ||Q_X|| \cdot d(u, X) \le 2d(u, X).$$

Proof. First, it is clear that $d(u, X) \leq d(u, Y)$, because $Y \subset X$.

In the following we distinguish X from $J_X(X)$, Y from $J_Y(Y)$, etc. Let $i:Y\to X$ denote the inclusion map. Then $i^*:X^*\to Y^*$ is a quotient map, $i^{**}:Y^{**}\to X^{**}$ is an inclusion map such that $(i^{**})_{\restriction Y}=i$, and $i^{***}:X^{***}\to Y^{***}$ is a quotient map such that $(i^{***})_{\restriction X^*}=i^*$. Observe that $i^{***}(B(X^{***}))=B(Y^{***})$. It is easy to see that $J_X\circ i=i^{**}\circ J_Y$ and that $J_{Y^*}\circ i^*=i^{***}\circ J_{X^*}$, whence we obtain

$$i^* \circ R_X = i^* \circ (J_X)^* = (J_X \circ i)^* = (i^{**} \circ J_Y)^* = (J_Y)^* \circ i^{***} = R_Y \circ i^{***}.$$

Claim.
$$Q_Y \circ i^{***} = i^{***} \circ Q_X$$
.

Indeed, we have

$$Q_Y \circ i^{***} = (I_{Y^{***}} - J_{Y^*} \circ R_Y) \circ i^{***} = i^{***} - J_{Y^*} \circ R_Y \circ i^{***} =$$

$$= i^{***} - J_{Y^*} \circ i^* \circ R_X = i^{***} - i^{***} \circ J_{X^*} \circ R_X =$$

$$= i^{***} \circ (I_{X^{***}} - J_{X^*} \circ R_X) = i^{***} \circ Q_X.$$

From the Claim we obtain $||Q_Y|| \le ||Q_X||$ and

$$B(Y^{\perp}) \subset Q_Y(B(Y^{***})) = Q_Y(i^{***}(B(X^{***}))) =$$

$$= i^{***}(Q_X(B(X^{***}))) \subset i^{***}(\|Q_X\| \cdot B(X^{\perp})).$$

Thus, if $u \in Y^{**}$, we finally get

$$d(u, J_Y(Y)) = \sup\{\langle z, u \rangle : z \in B(Y^{\perp})\}$$

$$\leq \sup\{\langle i^{***}(w), u \rangle : w \in ||Q_X|| \cdot B(X^{\perp})\}$$

$$= ||Q_X|| \cdot \sup\{\langle w, i^{**}(u) \rangle : w \in B(X^{\perp})\}$$

$$= ||Q_X|| \cdot d(i^{**}(u), J_X(X))$$

$$\leq 2d(i^{**}(u), J_X(X)).$$

Let us prove our extension of the Krein-Šmulian Theorem.

Proof of Theorem 5. Suppose that there exist a closed subspace $Z \subset X$ and a w*-compact subset $K \subset B(X^{**})$ such that

$$d(\overline{\operatorname{co}}^{w^*}(K), Z) > 5d(K, Z).$$

Then we can find $z_0 \in \overline{\operatorname{co}}^{w^*}(K)$ and a, b > 0 such that

$$d(z_0, Z) > b > 5a > 5d(K, Z).$$

Pick $\psi \in S(Z^{\perp}(X^{***}))$ with $\psi(z_0) > b$.

Step 1. Since $\psi(z_0) > b$, there exists $x_1^* \in S(X^*)$ such that $x_1^*(z_0) > b$. So, as $z_0 \in \overline{\operatorname{co}}^{w^*}(K)$ we can find $\eta_1 \in \operatorname{co}(K)$ with

$$\eta_1 = \sum_{i=1}^{n_1} \lambda_{1i} \eta_{1i}, \ \eta_{1i} \in K, \ \lambda_{1i} \ge 0, \ \sum_{i=1}^{n_1} \lambda_{1i} = 1,$$

such that $x_1^*(\eta_1) > b$. Since $d(\eta_{1i}, Z) < a$ we have the decomposition $\eta_{1i} = \eta_{1i}^1 + \eta_{1i}^2$ with $\eta_{1i}^1 \in Z$ and $\eta_{1i}^2 \in aB(X^{**})$.

Step 2. Let $Y_1 = [\{\eta_{1i}^1 : 1 \le i \le n_1\}] \subset Z$. Since $\dim(Y_1) \le n_1 < \infty$, $\psi(z_0) > b$ and $\psi \in Y_1^{\perp}(X^{***})$, there exists $x_2^* \in S(X^*)$ such that $x_2^*(z_0) > b$ and $x_{2 \upharpoonright Y_1}^* = 0$. So, as $x_i^*(z_0) > b$, i = 1, 2, and $z_0 \in \overline{\operatorname{co}}^{w^*}(K)$, we can find $\eta_2 \in \operatorname{co}(K)$ with

$$\eta_2 = \sum_{i=1}^{n_2} \lambda_{2i} \eta_{2i}, \ \eta_{2i} \in K, \ \lambda_{2i} \ge 0, \ \sum_{i=1}^{n_2} \lambda_{2i} = 1,$$

such that $x_i^*(\eta_2) > b$, i = 1, 2. Since $d(\eta_{2i}, Z) < a$ we have the decomposition $\eta_{2i} = \eta_{2i}^1 + \eta_{2i}^2$ with $\eta_{2i}^1 \in Z$ and $\eta_{2i}^2 \in aB(X^{**})$.

By reiteration, we obtain the sequences $\{x_n^*\}_{n\geq 1}\subset S(X^*),\ \eta_k\in \mathrm{co}(K)$ with

$$\eta_k = \sum_{i=1}^{n_k} \lambda_{ki} \eta_{ki}, \ \eta_{ki} \in K, \ \lambda_{ki} \ge 0, \ \sum_{i=1}^{n_k} \lambda_{ki} = 1,$$
$$\eta_{ki} = \eta_{ki}^1 + \eta_{ki}^2 \text{ with } \eta_{ki}^1 \in Z \text{ and } \eta_{ki}^2 \in aB(X^{**}), \ k \ge 1,$$

such that $x_i^*(\eta_k) > b, i = 1, ..., k$, and $x_{k+1}^*|_{Y_k} = 0$, where

$$Y_k = [\{\eta^1_{ij_i} : i = 1, ..., k; 1 \le j_i \le n_i\}] \subset Y_{k+1} \subset Z.$$

Let $Y = \overline{\bigcup_{k \geq 1} Y_k} \subset Z$ and $K_1 = (K + aB(X^{**})) \cap Y^{**}$. Then Y is a closed separable subspace of Z and K_1 is a w*-compact subset of Y^{**} (considered Y^{**} canonically embedded into $Z^{**} \subset X^{**}$). Observe that $\{\eta^1_{ij_i} : i \geq 1, 1 \leq j_i \leq n_i\} \subset K_1$. By Lemma 11, since $K_1 \subset Y^{**}$ and $d(K_1, Z) \leq 2a$, we have $d(K_1, Y) \leq 4a$ (in fact, $d(K_1, Y) \leq 2\|Q_Z\|a \leq 2\|Q_X\|a \leq 4a$). As Y has property J (because Y is separable and, so, WCG, see Corollary 4), we get $d(\overline{co}^{w^*}(K_1), Y) = d(K_1, Y)$, whence $d(\overline{co}^{w^*}(K_1), Y) \leq 4a$.

Let η_0 be a w*-limit point of $\{\eta_k\}_{k\geq 1}$ in X^{**} .

Claim 1. $d(\eta_0, Y) \leq 5a$.

Indeed, first

$$\eta_0 \in \overline{\operatorname{co}}^{w^*}(\{\eta_{ij_i} : i \ge 1, 1 \le j_i \le n_i\}) \subset \overline{\operatorname{co}}^{w^*}(K_1) + aB(X^{**}).$$

On the other hand, $d(\overline{co}^{w^*}(K_1), Y) \leq 4a$. Hence, $d(\eta_0, Y) \leq 5a$.

Claim 2. $d(\eta_0, Y) \geq b$.

Indeed, let $\phi \in B(X^{***})$ be a w*-limit point of $\{x_n^*\}_{n\geq 1}$. Since $x_n^*(\eta_k) > b$ if $k \geq n$, then $x_n^*(\eta_0) \geq b$, $\forall n \geq 1$, whence $\phi(\eta_0) \geq b$. Moreover, $\phi \in Y^{\perp}(X^{***})$ because $x_{n+1|Y_n}^* = 0$ and $Y_n \subset Y_{n+1}$. Hence, $d(\eta_0, Y) \geq \phi(\eta_0) \geq b$. Since b > 5a we get a contradiction and this completes the proof.

Proof of Theorem 6. Suppose that there exist a closed subspace $Z \subset X$ and a w*-compact subset $K \subset B(X^{**})$, with $Z \cap K$ w*-dense in K, such that $d(\overline{\operatorname{co}}^{w^*}(K), Z) > 2d(K, Z)$. Then we can find $z_0 \in \overline{\operatorname{co}}^{w^*}(K)$ and a, b > 0 such that $d(z_0, Z) > b > 2a > 2d(K, Z)$. Pick $\psi \in S(Z^{\perp}(X^{***}))$ such that $\psi(z_0) > b$. We follow the argument of Theorem 5 with the following changes:

- (i) As $Z \cap K$ is w*-dense in K we choose $\eta_k \in \operatorname{co}(Z \cap K)$ with $\eta_k = \sum_{i=1}^{n_k} \lambda_{ki} \eta_{ki}$, $\eta_{ki} \in Z \cap K$ and $\lambda_{ki} \geq 0$, $\sum_{i=1}^{n_k} \lambda_{ki} = 1$;
 - (ii) Define

$$Y_k = [\{\eta_{ij_i} : i = 1, ..., k; 1 \le j_i \le n_i\}], Y = \overline{\bigcup_{k \ge 1} Y_k} \subset Z \text{ and } K_1 = w^* \text{-cl}(\{\eta_{ij_i} : i \ge 1, 1 \le j_i \le n_i\}) \subset Y^{**} \cap K.$$

Clearly, $d(K_1, Z) \leq d(K, Z) < a$, whence $d(K_1, Y) \leq 2d(K_1, Z) \leq 2a$ (in fact, $d(K_1, Y) \leq \|Q_Z\|a \leq \|Q_X\|a \leq 2a$). Since Y is separable, we have $d(\overline{\operatorname{co}}^{w^*}(K_1), Y) = d(K_1, Y) \leq 2a$. Finally, every w*-limit point η_0 of $\{\eta_k\}_{k\geq 1}$ in X^{**} satisfies $\eta_0 \in \overline{\operatorname{co}}^{w^*}(K_1)$, $d(\eta_0, Y) \leq 2a$ and $d(\eta_0, Y) \geq b$, a contradiction.

Remarks. (1) The argument of Theorem 5 in fact yields the following $d(\overline{\operatorname{co}}^{w^*}(K), Z) \leq (2\|Q_Z\| + 1)d(K, Z) \leq (2\|Q_X\| + 1)d(K, Z) \leq 5d(K, Z).$

In Theorem 6 we also obtain

$$d(\overline{co}^{w^*}(K), Z) \le ||Q_Z|| d(K, Z) \le ||Q_X|| d(K, Z) \le 2d(K, Z).$$

(2) Let $Y \subset X$ be a subspace of the Banach space X and assume that $d(\overline{\operatorname{co}}^{w^*}(K), X) \leq Md(K, X)$ for some $1 \leq M < \infty$ and every w*-compact subset $K \subset X^{**}$. Then using the fact that $d(z, X) \leq d(z, Y) \leq \|Q_X\|d(z, X) \leq 2d(z, X)$, for every $z \in Y^{**}$, it can be proved easily that $d(\overline{\operatorname{co}}^{w^*}(K), Y) \leq M\|Q_X\|d(K, Y) \leq 2Md(K, X)$, for every w*-compact subset $K \subset Y^{**}$.

A subset $A \subset X^*$ is said to be fragmented by the norm of X^* (see [6, p. 81], [10]) if for every subset $B \subset A$ and every $\epsilon > 0$ there exists a w*-open subset $V \subset X^*$ such that $V \cap B \neq \emptyset$ and $\operatorname{diam}(V \cap B) \leq \epsilon$, where $\operatorname{diam}(V \cap B)$ means the diameter of $V \cap B$. In order to prove Corollary 13 and Theorem 7 we need the following lemma.

Lemma 12 Let X be a Banach space, $Z \subset X^*$ a subspace and $K \subset B(X^*)$ a w^* -compact subset such that there exist a, b > 0 with:

$$d(K, Z) < a < b < d(\overline{co}^{w^*}(K), Z).$$

Then there exist $z_0 \in \overline{co}^{w^*}(K)$ and $\psi \in S(Z^{\perp}(X^{**}))$ with $\psi(z_0) > b$ such that, if μ is a Radon Borel probability measure on K with barycentre $r(\mu) = z_0$, then: (a) μ is atomless; (b) if $H = \operatorname{supp}(\mu)$, for every w^* -open subset V of X^* with $V \cap H \neq \emptyset$ there exists $\xi \in \overline{co}^{w^*}(V \cap H)$ such that $\psi(\xi) > b$; and (c) H is not fragmented by the norm of X^* .

Proof. Pick $z \in \overline{\operatorname{co}}^{w^*}(K)$ and $\psi \in S(Z^{\perp}(X^{**}))$ such that $\psi(z) > b + \epsilon$ for some $\epsilon > 0$. By the Bishop-Phelps theorem, there exists $\phi \in S(X^{**})$ with $\|\psi - \phi\| \le \epsilon/4$ such that ϕ attains its maximum value on $\overline{\operatorname{co}}^{w^*}(K)$ in some $z_0 \in \overline{\operatorname{co}}^{w^*}(K)$. So:

(2.2)
$$\phi(z_0) \ge \phi(z) = \psi(z) + (\phi - \psi)(z) > b + \epsilon - \frac{1}{4}\epsilon = b + \frac{3}{4}\epsilon ,$$

(2.3)
$$\psi(z_0) = \phi(z_0) + (\psi - \phi)(z_0) > b + \frac{3}{4}\epsilon - \frac{1}{4}\epsilon = b + \frac{1}{2}\epsilon$$
 and

$$(2.4) \forall k \in K, \phi(k) = \psi(k) + (\phi - \psi)(k) < a + \frac{1}{4}\epsilon < b + \frac{3}{4}\epsilon < \phi(z_0).$$

In particular, observe that $z_0 \notin K$ by (2.4).

(a) Let μ be a Radon Borel probability on K with barycentre $r(\mu) = z_0$ and suppose that μ has some atom, that is, there exist $0 < \lambda \le 1$ and $k_0 \in K$ such that $\mu = \lambda \cdot \delta_{k_0} + \mu_1$, $\mu_1 \ge 0$. If $\lambda = 1$ then $\mu = \delta_{k_0}$, whence $r(\mu) = k_0 \in K$, which is impossible because $r(\mu) = z_0 \notin K$ by (2.4). So, $0 < \lambda < 1$, i.e., $\mu_1 \ne 0$ and $\|\mu_1\| = 1 - \lambda > 0$. Then $\mu = \lambda \cdot \delta_{k_0} + (1 - \lambda) \frac{\mu_1}{\|\mu_1\|}$ and

$$z_0 = r(\mu) = \lambda k_0 + (1 - \lambda)r(\frac{\mu_1}{\|\mu_1\|}),$$

whence, since $\phi(k_0) < \phi(z_0)$ (by (2.4)) and $\phi(r(\frac{\mu_1}{\|\mu_1\|})) \leq \phi(z_0)$ (because $r(\frac{\mu_1}{\|\mu_1\|}) \in \overline{\text{co}}^{w^*}(K)$), we get

$$\phi(z_0) = \lambda \phi(k_0) + (1 - \lambda)\phi(r(\frac{\mu_1}{\|\mu_1\|})) < \lambda \phi(z_0) + (1 - \lambda)\phi(z_0) = \phi(z_0),$$

a contradiction.

(b) Let $H = \operatorname{supp}(\mu)$ and suppose that there exists a w*-open subset V of X^* with $V \cap H \neq \emptyset$ such that $\psi(\xi) \leq b$, for every $\xi \in \overline{\operatorname{co}}^{w^*}(V \cap H)$. Let $\mu_1 = \mu_{|V \cap H|}$ denote the restriction of μ to $V \cap H$ (that is, $\mu_1(B) = \mu(B \cap V \cap H)$, for every Borel subset $B \subset K$) and $\mu_2 := \mu - \mu_1$. Observe that μ_1, μ_2 are

positive measures such that $\mu_1 \neq 0$ (because $\emptyset \neq V \cap H = V \cap \text{supp}(\mu)$) and $\mu_2 \neq 0$ (if $\mu_2 = 0$, *i.e.*, $\mu = \mu_1 = \mu_{\uparrow V \cap H}$, then $z_0 = r(\mu) \in \overline{\text{co}}^{w^*}(V \cap H)$) and $\psi(z_0) \leq b$, a contradiction to (2.3)). Thus, we have the decomposition $\mu = \mu_1 + \mu_2$ and so:

$$z_0 = r(\mu) = \|\mu_1\| \cdot r(\frac{\mu_1}{\|\mu_1\|}) + \|\mu_2\| \cdot r(\frac{\mu_2}{\|\mu_2\|}).$$

Since $r(\frac{\mu_1}{\|\mu_1\|}) \in \overline{\operatorname{co}}^{w^*}(V \cap H)$, then $\psi(r(\frac{\mu_1}{\|\mu_1\|})) \leq b$, whence $\phi(r(\frac{\mu_1}{\|\mu_1\|})) \leq b + \frac{1}{4}\epsilon$ (because $\|\psi - \phi\| \leq \epsilon/4$). Therefore, taking into account that $r(\frac{\mu_2}{\|\mu_2\|}) \in \overline{\operatorname{co}}^{w^*}(K)$ and (2.2) we get

$$\phi(z_0) = \|\mu_1\|\phi(r(\frac{\mu_1}{\|\mu_1\|})) + \|\mu_2\|\phi(r(\frac{\mu_2}{\|\mu_2\|})) \le$$

$$\le \|\mu_1\|(b + \frac{1}{4}\epsilon) + \|\mu_2\|\phi(z_0) < \|\mu_1\|\phi(z_0) + \|\mu_2\|\phi(z_0) = \phi(z_0),$$

a contradiction.

(c) Let $\eta = b - a$ and suppose that H is fragmented by the norm of X^* . Then there exists a w*-open subset V such that $V \cap H \neq \emptyset$ and diam $(V \cap H) < \frac{\eta}{2}$. Therefore, if $h_0 \in V \cap H$, then $\overline{\operatorname{co}}^{w^*}(V \cap H) \subset B(h_0; \eta/2)$ (= closed ball with center h_0 and radius $\eta/2$). Hence, for every $\xi \in \overline{\operatorname{co}}^{w^*}(V \cap H)$ we have

$$\psi(\xi) \le \psi(h_0) + \frac{\eta}{2} \le d(h_0, Z) + \frac{\eta}{2} < a + \frac{\eta}{2} < b,$$

a contradiction to (b).

Corollary 13 Let X be a Banach space, $Z \subset X^*$ a subspace and $K \subset X^*$ a w^* -compact subset which is fragmented by the norm of X^* . Then $d(\overline{co}^{w^*}(K), Z) = d(K, Z)$.

Proof. This follows immediately from Lemma 12. It also follows from [10, Theorem 2.3] where it is proved that $\overline{\operatorname{co}}(K) = \overline{\operatorname{co}}^{w^*}(K)$ whenever $K \subset X^*$ is w*-compact subset such that (K, w^*) is fragmented by the norm of X^* .

Now we prove Theorem 7. Observe that we cannot apply Theorem 3 because we do not know whether $\ell_1(I)$ has property J when I is uncountable (if I is countable it has because $\ell_1(I)$ is separable in this case). In fact, if we assume that there exists an uncountable measurable cardinal α (see [4, p. 186, 196] for definitions) and I is a set with $|I| = \alpha$, then it is easy to prove that $\ell_1(I)$ fails to have property J.

Proof of Theorem 7. First, observe that $X^* = \ell_{\infty}(I)$ and X^{**} is the space $M_R(\beta I)$ of Radon Borel measures on βI . Thus, X^{**} has the decomposition

$$X^{**} = \ell_1(I) \oplus_1 M_R(\beta I \setminus I).$$

Notice that the subspace $\ell_1(I)$ of this decomposition coincides with the space $J(X), J: X \to X^{**}$ being the canonical inclusion. If $\mu \in M_R(\beta I)$, we write $\mu = \mu_1 + \mu_2$, where $\mu_1 \in \ell_1(I)$ and $\mu_2 = \mu_{\uparrow \beta I \setminus I} \in M_R(\beta I \setminus I)$. So, $d(\mu, X) = \|\mu_2\|$.

Suppose that there exist a w*-compact subset $K \subset B(X^{**})$ and two numbers a, b > 0 such that:

$$d(K, X) < a < b < d(\overline{\operatorname{co}}^{w^*}(K), X).$$

By Lemma 12 we have the following Fact:

Fact. There exist $\psi \in S(X^{\perp})$ and a w*-compact subset $\emptyset \neq H \subset K$ such that for every w*-open subset V with $V \cap H \neq \emptyset$ there exists $\xi \in \overline{\operatorname{co}}^{w^*}(V \cap H)$ with $\psi(\xi) > b$.

Step 1. By the Fact we can pick $\xi_1 \in \overline{\operatorname{co}}^{w^*}(H)$ with $\psi(\xi_1) > b$ and $x_1^* \in S(X^*)$ with $x_1^*(\xi_1) > b$. Now we choose

$$\eta_1 = \sum_{i=1}^{n_1} \lambda_{1i} \eta_{1i} \in \text{co}(H), \quad \eta_{1i} \in H, \quad \lambda_{1i} \ge 0, \quad \sum_{i=1}^{n_1} \lambda_{1i} = 1,$$

such that $x_1^*(\eta_1) > b$. If $\eta_1 = \eta_1^1 + \eta_1^2$, with $\eta_1^1 \in \ell_1(I)$ and $\eta_1^2 \in M_R(\beta I \setminus I)$, then

$$\|\eta_1^2\| = d(\eta_1, X) \le d(K, X) < a,$$

whence $\|\eta_1^1\| = \|\eta_1\| - \|\eta_1^2\| > b - a$, because $\|\eta_1\| \ge x_1^*(\eta_1) > b$. So, we can find $y_1 \in B(X^*) = B(\ell_\infty)$ with finite support supp $(y_1) = \{\gamma_{11}, ..., \gamma_{1p_1}\} \subset I$ such that $y_1(\eta_1^1) > b - a$. Since $y_1(\eta_1^2) = 0$, we have

$$y_1(\eta_1) = y_1(\eta_1^1) > b - a,$$

whence it follows that $y_1(\eta_{1i}) > b - a$ for some $1 \le i \le n_1$.

Step 2. Let $V_1 = \{u \in X^{**} : y_1(u) > b - a\}$, which is a w*-open subset of X^{**} with $V_1 \cap H \neq \emptyset$, because $\eta_{1i} \in V_1 \cap H$ for some $1 \leq i \leq n_1$. By the Fact there exists $\xi_2 \in \overline{\operatorname{co}}^{w^*}(V_1 \cap H)$ with $\psi(\xi_2) > b$. Since $\psi(\xi_2) > b$ and $\psi(e_{\gamma_{1i}}) = 0$, $1 \leq i \leq p_1$ (where $e_{\gamma_{1i}} \in \ell_1(I)$ is the unit vector such that $e_{\gamma_{1i}}(\gamma) = 1$, if $\gamma = \gamma_{1i}$, and $e_{\gamma_{1i}}(\gamma) = 0$, if $\gamma \neq \gamma_{1i}$), there exists $x_2^* \in B(X^*)$ with $x_2^*(\xi_2) > b$ and $x_2^*(e_{\gamma_{1i}}) = 0$, $1 \leq i \leq p_1$. Clearly, we can choose

$$\eta_2 = \sum_{i=1}^{n_2} \lambda_{2i} \eta_{2i} \in \text{co}(V_1 \cap H), \quad \eta_{2i} \in V_1 \cap H, \quad \lambda_{2i} \ge 0, \quad \sum_{i=1}^{n_2} \lambda_{2i} = 1,$$

such that $x_2^*(\eta_2) > b$.

As $y_1(\eta_{2i}) > b - a$, $1 \le i \le n_2$, we get $y_1(\eta_2) > b - a$. Let $\eta_2 = \eta_2^1 + \eta_2^2$, with $\eta_2^1 \in \ell_1(I)$, $\eta_2^2 \in M_R(\beta I \setminus I)$ and $\|\eta_2^2\| = d(\eta_2, X) \le d(K, X) < a$. Since

$$\|\eta_2^1\| \geq |x_2^*(\eta_2^1)| = |x_2^*(\eta_2) - x_2^*(\eta_2^2)| \geq |x_2^*(\eta_2)| - |x_2^*(\eta_2^2)| > b - a,$$

and $x_2^* = 0$ on $\operatorname{supp}(y_1)$, we can find $y_2 \in B(X^*)$ with finite support $\operatorname{supp}(y_2) = \{\gamma_{21}, ..., \gamma_{2p_2}\} \subset I \setminus \operatorname{supp}(y_1)$ such that $y_2(\eta_2^1) > b - a$. Hence, $y_2(\eta_2) = y_2(\eta_2^1) > b - a$ and this implies $y_2(\eta_{2i}) > b - a$ for some $1 \le i \le n_2$.

By reiteration, we obtain the sequence $\{y_k\}_{k\geq 1}\subset B(X^*)$ with pairwise disjoint supports and the sequence $\{\eta_k\}_{k\geq 1}\subset \operatorname{co}(H)\subset B(X^{**})$ such that $y_n(\eta_k)>b-a$ for $k\geq n$.

Since $\|\sum_{i=1}^n y_i\| \le 1$ (because the vectors $\{y_k\}_{k\ge 1} \subset B(\ell_\infty)$ have pairwise disjoint supports) and $(\sum_{i=1}^n y_i)(\eta_n) > n(b-a), \ \forall n \ge 1$, we get $\|\eta_n\| > n(b-a), \ \forall n \ge 1$, a contradiction, because $\|\eta_n\| \le 1$.

Acknowledgements. The author would like to thank the referee for many suggestions which helped to improve this paper.

References

- [1] Argyros, S., Mercourakis, S. and Negrepontis, S.: Functional-analytic properties of Corson-compact spaces. *Studia Math.* **89** (1988), 197-229
- [2] Argyros, S. and Mercourakis, S.: On weakly Lindelöf Banach spaces. *Rocky Mountain J. Math.* **23** (1993), 395-446.
- [3] Choquet, G.: Lectures on analysis. Vol. II: Representation theory. A. Benjamin, Inc., New York-Amsterdam, 1969.
- [4] COMFORT, W. W. AND NEGREPONTIS, S. A.: Chain Conditions in topology. Cambridge Tracts in Math. 79. Cambridge Univ. Press, 1982.
- [5] DIESTEL, J. AND UHL, J. J.: Vector measures. Mathematical Surveys 15. American Mathematical Society, Providence, R.I., 1977.
- [6] Fabian, M.: Gâteaux differentiability of convex functions and topology. Weak Asplund Spaces. Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1997.
- [7] Fabian, M., Hájek, P., Montesinos, V. and Zizler, V.: A quantitative version of Krein's Theorem. Rev. Mat. Iberoamericana 21 (2005), no. 1, 237–248.
- [8] Fabian, M., Montesinos, V. and Zizler, V.: A characterization of subspaces of weakly compactly generated Banach spaces. *J. London Math. Soc.* (2) **69** (2004), no. 2, 457–464.

- [9] HAYDON, R.: Some more characterizations of Banach spaces containing ℓ_1 . Math. Proc. Cambridge Philos. Soc. 80 (1976), 269–276.
- [10] Namioka, I.: Radon-Nikodým compacts spaces and fragmentability. Mathematika **34** (1987), no. 2, 258–281.
- [11] Negrepontis, S.: Banach spaces and topology. In *Handbook of set-theoretic topology*, 1045–1142. North-Holland, 1984.

Recibido: 6 de febrero de 2003 Revisado: 30 de abril de 2004

> Antonio S. Granero Departamento de Análisis Matemático Facultad de Matemáticas Universidad Complutense de Madrid 28040-Madrid, Spain AS_granero@mat.ucm.es

Supported in part by DGICYT grant BFM2001-1284.