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An extension of

the Krein-Smulian Theorem

Antonio S. Granero

Abstract

Let X be a Banach space, u € X** and K, Z two subsets of X**.
Denote by d(u, Z) and d(K, Z) the distances to Z from the point u
and from the subset K respectively. The Krein-Smulian Theorem
asserts that the closed convex hull of a weakly compact subset of a
Banach space is weakly compact; in other words, every w*-compact
subset K C X** such that d(K, X) = 0 satisfies d(co®” (K), X) = 0.

We extend this result in the following way: if Z C X is a closed
subspace of X and K C X** is a w*—compact subset of X**, then

d(@" (K),Z) < 5d(K, Z).
Moreover, if ZN K is w*-dense in K, then d(co¥” (K), Z) < 2d(K, Z).
However, the equality d(K, X) = d(c6”" (K), X) holds in many cases,
for instance, if /1 € X*, if X has w*-angelic dual unit ball (for exam-
ple, if X is WCG or WLD), if X = ¢;(I), if K is fragmented by the
norm of X** etc. We also construct under CH a w*-compact subset
K C B(X**) such that K N X is w*-dense in K, d(K,X) = % and
d(coV (K),X) = 1.

1. Introduction

If X is a Banach space, let B(X) and S(X) be the closed unit ball and unit
sphere of X, respectively, and X* its topological dual. If u € X** and K, Z
are two subsets of X**  let d(u,Z) = inf{||u — z|| : z € Z} be the distance
to Z from u, d(K,Z) = sup{d(k,Z) : k € K} the distance to Z from K,
co(K) the convex hull of K, o(K) the norm-closure of co(K) and co®" (K)
the w*-closure of co(K).
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This paper is devoted to investigate the connection between the distances
d(©o¥ (K), Z) and d(K, Z), when Z C X** is a subspace of X (in particular,
when Z = X) and K is a w*-compact subset of X**. There exist some facts
that suggest that the distance d(co® (K), Z) is controlled by the distance
d(K,Z). Indeed, on the one hand, we have the classical Theorem of Krein-
Smulian (see [5, p. 51]). Using the terminology of distances, this Theorem
asserts the following: if X is a Banach space, every w*-compact subset
K C X** with d(K, X) = 0 (that is, K C X is a weakly compact subset of
X) satisfies d(co”” (K), X) = 0 (that is, the closed convex hull ¢6(K) of K
in X is weakly compact).

On the other hand, if the dual X* of the Banach space X does not
contain a copy of {1, it is very easy to prove that d(K,Z) = d(co” (K), Z)
for every w*-compact subset K C X** of X** and every subspace Z C X**.
Indeed, in this case co(K) = co® (K) (see [9]). So, as d(co(K), Z) = d(K, Z)
(this follows from the fact that the function ¢(u) := d(u, Z), Yu € X**, is
convex when Z C X*™ is a convex subset of X**), we easily obtain that
d(K,Z) =d(@" (K),Z).

In view of these facts, one is inclined to conjecture that d(K,X) =
d(©o¥ (K), X) for every w*-compact subset K C X** and every Banach
space X. Unfortunately, assuming the Continuum Hypothesis (for short,
C'H), this is not true because of the following result we will prove here.

Theorem 1 Under CH, if X = (5 (wh) (= subspace of the elements f €
Uoo(w™) with countable support), there exists a w*-compact subset H C B(X™**)
such that d(H,X) =1/2, HN X is w*-dense in H and d(co* (H),X) = 1.
However, there exist many Banach spaces X for which the equality
d(K,X) = d(co”" (K), X) holds, for every w*-compact subset K C X**,
for example, the class of Banach spaces with property J.
Definition 2 A Banach space X has property J (for short, X € J) if for
every z € B(X*™)\ X and for every number b € R with 0 < b < d(z,X),
there exists a sequence {x} }n>1 C S(B(X"),2,b) :={u € B(X*) : z(u) > b}
such that z}, 2 0.

For this class of Banach spaces with property J we prove the following result.

Theorem 3 Let X be a Banach space such that X € J. Then for every
w*-compact subset K C X** we have d(K, X) = d(co* (K), X).

In the following corollary we state that many Banach spaces have prop-
erty J and, so, satisfy Theorem 3. Recall that, for a Banach X, the dual unit
ball (B(X™),w*) i is angelic in the w*-topology if, for every subset AcC B(X*)

and every z € A , there exists a sequence {a,},>1 C A such that a, iy
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Corollary 4 If X is a Banach space such that (B(X™*),w*) is angelic (for
example, if X is weakly compactly generated (for short, WCG) or weakly
Lindeldf determined (for short, WLD)), then X € J and, so, for every
w*-compact subset K C X** we have d(K, X) = d(co*" (K), X).

Although the equality d(K, X) = d(co” (K), X) does not hold in gen-
eral, we can ask whether there exists a universal constant 1 < M < oo
such that d(co¥ (K), X) < Md(K, X) for every Banach space X and every
w*-compact subset K C X**.

The answer to this question is affirmative. We prove the following result,
which extends the Krein-Smulian Theorem.

Theorem 5 If X is a Banach space, Z C X a closed subspace of X and
K C X** a w*-compact subset, then d(co® (K),Z) < 5d(K, 7).

When K N Z is w*-dense in K, the argument used in Theorem 5 gives
the following result.

Theorem 6 Let X be a Banach space, Z C X a closed subspace and K C
X** a w*-compact subset. If Z N K is w*-dense in K, then d(co® (K), Z) <
2d(K, 7).

Finally, we also obtain the following result.

Theorem 7 Let I be an infinite set and X = (1(I). Then for every w*-
compact subset K C X** we have d(co® (K), X) = d(K, X).

A version of the problem we study here was considered (independently) by
M. Fabian, P. Héjek, V. Montesinos and V. Zizler in [7]. They study the
class of w*-compact subsets K C X** such that K N X is w*-dense in K.
Instead of distances, they deal with the notion of e-weakly relatively compact
subsets of X (for short, e-WRK) introduced in [8]. A bounded subset H of

X is said to be eWRK, for some € > 0, if HC X 4+ eB(X**), that is, if
d(ﬁw ,X) < e. Using arguments based on the techniques of double limit
due to Grothendieck and Pték, they prove that the constant M = 2 holds for

this category of w*-compact subsets K C X** such that K N X is w*-dense
in K. More precisely, they prove the following beautiful result.

Theorem ([7]) Let X be a Banach space and H C X a bounded subset of X .
Assume that H is e-WRK for some € > 0. Then the convex hull co(H) is
2¢-WRK. Moreover, if (B(X*),w*) is angelic, or X* does not contain a copy
of U1, then co(H) is e-WRK.

Observe that the Theorem of Krein-Smulian follows from this result
when € = 0.
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2. Proofs of the results

Let us introduce some notation and terminology (see [1], [4], [6], [11]). | A] de-
notes the cardinality of a set A, w™ the first uncountable ordinal, ¥, the first
uncountable cardinal and C'H the continuum hypothesis. A Hausdorff com-
pact space K is said to have property (M) if every Radon Borel measure
on K has separable support supp(u). If K is a convex compact subset of
some locally convex linear space X and p is a Radon Borel probability mea-
sure on K, r(u) denotes the barycentre of . Recall (see [3]) that r(u) € K
and that r(p) satisfies 2*(r(n)) = [, «*(k)dp for every z* € X*.

If X is a Banach space, let X+ = {z € X** : (z2;2) = 0, Vo € X}
denote the subspace of X*** orthogonal to X. If Y C X is a subspace
of X, let YHX*) = {# € X* : (2,y) = 0, Vy € Y} be the subspace
of X* orthogonal to Y, YH(X**) = {z € X** : (2,9y) = 0, Vy € Y},
etc. So, X+ = X+(X**). Recall that, if u € X (resp., u € X**), then
d(u,Y) = sup{(z,u) : z € B(YL(X*))} (resp., d(u,Y) = sup{(z,u) : z €
B(Y+(X**))}). If A C X is a subset of X, [A] denotes the linear span of A.

Let I be an infinite set with the discrete topology. Then:

(0) We use the symbol /. (I) to denote the Banach space of all f
(f(i))ier € R! with supremum norm finite ||f|| := sup{|f(i)| : i
I} < oo. The symbol ¢y(I) means its subspace consisting from f
(f(i))ier € s(I) such that the set {i € I : |f(i)] > €} is finite for
all e > 0.

(1) If f € Loo(I), supp(f) = {i € I : f(i) # 0} will be the support of f and

f the Stone-Cech extension of f to BI, where (I is the Stone-Cech
compactification of I.

(2) Let ¢l = U{ZBI : A C I, Acountable} and (¢ (I) = {f € l(I) :
supp(f) countable}. Observe that cI is an open subset of SI and
that, if f € (1), then f € (5 (1) if and only if figner = 0.

(3) Let £({0,1}}) = {x € {0,1} : supp(z) countable} and X([-1,1]!) =
{z € [-1,1]' : supp(x) countable}.

(4) Recall that a compact space is said to be a Corson space if it is home-
omorphic to some compact subset of 3([—1, 1]).

mm 1l

Proof of Theorem 1. We use a modification of the Argyros-Mercou-
rakis-Negrepontis Corson compact space without property (M) [1, p. 219].
In the following we adopt the notation and terminology of [1, p. 219].
Let €2 be the space of Erdos, that is, the Stone space of the quotient algebra
M, /Ny, where A is the Lebesgue measure on [0, 1], M), is the algebra of A-
measurable subsets of [0, 1] and N, is the ideal of A-null subsets of [0, 1]. s
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a compact extremely disconnected space (because M, /N, is complete) and
there exists a strictly positive regular Borel normal probability measure A
on ©, determined by the condition A(V') = A(U), V being any clopen subset
of Q@ and U a A\-measurable subset of [0, 1] such that V = U + N,.

Now we proceed as in [1, 3.11 Lemmal with small changes. Write [0, 1] =
{ze : € <wt} and let {K¢ : & < w} be the well-ordered class of compact
subsets of [0, 1] with strictly positive Lebesgue measure. For each { < w*
we choose a compact subset U C [0, 1] such that:

(a) Us C{z,: £ <p<wh}nKe.
(b) If AM(K¢) = 1, then Ug satisfies the condition A(Ug) > 0. If A\(K) < 1,
Ue satisfies the condition A(K¢) — (1 — A(K)) < A(Ue) < AM(Ky).

Let V¢ be the clopen subset of 2 corresponding to Ug. Then {V; : £ <w™} is
a pseudobase of €2 that witnesses the failure of the property caliber w™, that
is, if A C wt and |A| = Ny, then NgeaVe = 0. Moreover, (b) automatically
implies that [{{ < w™ : AMUg) > t}| = Ny for every 0 < ¢t < 1, whence
€ < wt : AN(V;) >t} =R, for every 0 < t < 1.

Consider A = {A C wT : MgeaVe # 0}. Clearly, A is an adequate
family (see [11, p. 1116]) such that every element of A is a countable subset
of wt. Moreover, there are elements A € A with |A| = Xy. Indeed, apply
a well-known result from measure theory (see Lemma 8) and the fact that
{¢€ < wt : X\(Vp) > §} is infinite for some (in fact, every) 0 < § < 1.

So, if K ={14: A€ A} c ({0,1}*") C ¢ (w"), then K is a Corson
compact space with respect to the w*-topology o (s (w™), ¢1(w™)). Define
the continuous map 7" : Q — K so that, for every z € Q, T'(z) = 14, where
A, ={{ €w':x eV} Observe that A, € A and, so, T'(x) € K, Yz € Q.

Let L =T(Q2) C K. Then L is a Corson compact space without prop-
erty (M), because L is nonseparable but L is the support of u, where
i = T(X) is the probability on K image of A under 7. So, as L C K,
K is also a Corson compact space without property (M).

Let I be the space w™, with the discrete topology, and X = ¢ (I). Then,
the dual space X* is

X* = 6,(I) @ Mg(cI\ I),

where Mpg(cI \ I) is the space of Radon Borel measures v on I such that
supp(v) C ¢l \ I and @, means ¢;-sum (that is, if a Banach space Y has the
decomposition Y = Y@ Yoandy € Y, with y = y1+ys and y; € Y7, 92 € Y3,
then [|y|| = ||y1]| + |ly2l]). Observe that ¢1(1) &, Mg(cI\I) can be considered
as a l-complemented closed subspace of (€ (1))* = ¢1(I) &1 Mg(GI\ I).
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The bidual of X is
X =loo(I) Boo Mp(cI \ 1),

where @, means /,-sum (that is, if a Banach space Y has the decomposition
Y =Y, Yoand y € Y, with y = y1 + 32 and y; € Yi,y2 € Y3, then
lyll = sup{||vall, |y2]|})- Let mq, e : X** — X** be the canonical projections
onto l(I) and Mg(cl \ I)*, respectively. The subspaces m(X**) = {(I)
and mo (X ™) = Mpg(cI\I)* are w*-closed subspaces of X**. Moreover, the w*-
topology o(X**, X*) coincides on 71 (X ™) = { (1) with the o(ls (1), (1(1))-
topology. For z € X** we write x = (z1,22), with m(z) = 21 € {(I) and
mo(x) = x9 € Mg(cI \ I)*. So, if J: X — X** is the canonical embedding
and f € X, then J(f) = (f1, f2), where fi = m(f) = f and ma(f) = fo is
such that fo(v) =v(f) = fd\] fdv, for every v € Mg(cl\ I).

The map ¢ : loo(I) — X** such that ¢(f) = (f,0), Vf € l(I), is an
isomorphism between (. (I) and 71 (X**), for the norm-topologies and also
for the o({x (1), ¢1(1))-topology of £ (I) and the w*-topology of my(X**).
So, H := ¢(K) = {(k,0) : k € K} C B(X*) is a Corson compact space
without property (M), which is homeomorphic to K. Since the family A is
adequate (in particular, B € Aif B C A and A € A), the subset {14: A €
A, A finite} of K is dense in K. So, as J(14) = (14,0) when A C wt is
finite, we get that H N J(X) is w*-dense in H, because

o({14: A€ A, A finite}) = {(14,0) : A € A, A finite} =
=J{14: A€ A A finite}) C HN J(X).

Claim 1. d(H,J(X)) = 3.

Indeed, pick f € K and assume that f = 1,4, for some A € A. If
|A] < Vg, clearly o(f) = (f,0) = J(f), that is, ¢(f) € J(X) . Suppose that
|A] = Ro. Then d(¢(f), J(X)) = 3 because:

(a) Clearly, [l¢(f) — 3J(f)|| = 3, whence d(¢(f), J(X)) < 3.

(b) On the other hand, ||¢(f) — J(g)|| > % for every g € X. Indeed, let
g € X and assume that [|¢(f) — J(g)|| < 3. Then ||f —g| < 3 in l(1),
which implies that % < g on A (because f = 14) and so § > % on A7
Since |A| = Vo, we can pick p € A \I Ccl\I. Letd, e Mg(cI\1I) be
such that 0,(h) = h(p) for every h € l«(I). Notice that ||d,| = 1. Then, if
J(9) = (9. 92), we have

[(0(f) = J(9)) ()] = [ = 92(0p)| = | —/ g-doy)l =1-a)|= %

cI\I

Finally, recall that there are elements A € A with |A| = N,.
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Claim 2. (" (H), J(X)) = 1.

Indeed, first d(co®” (H), J(X)) < 1 because co® (H) C B(X**). On the
other hand, let v := ¢(u) be the probability on ¢(L) image of p under ¢.
Since ¢(L) C B(m(X*)) and 71 (X**) is a convex w*-closed subset of X**
we conclude that co®" (¢(L)) C B(m (X*)). So, as r(v) € c® (¢(L)), we
get that r(v) = (20, 0) for some 2y € B({o(1)). If £ € I, define me : X** — R
by me(f1, f2) = f1(§), for all (f1, fa) € X** = loo(I) oo Mpr(cI\I)*. Observe
that m¢ is a w*-continuous linear map on X™**. So

%@:mmm:mwm:/

MmmwMV:Z}@mﬂ:M%»

Thus, for every 0 < ¢ < 1 we have, by construction, |[{§ € I : zo(§) > t}| =
{¢ € T:\(Ve) >t} =Ny, and this implies that ||zg — g|| > 1 in Lo (1), for
every g € X = (5 (I), whence [|(z0,0) — J(g)|| > 1 for every g € X, that
is, d((z0,0),J(X)) > 1. Finally, we obtain d(co® (H), J(X)) > 1 because
(20,0) € @ (¢(L)) C @0 (H).

And this completes the proof. [ |

Remark. Theorem 1 gives, under C'H, a negative answer to the follow-
ing question posed in Problem 3 of [7]: if X is a Banach space and H C X
a e-WRK, is co(H) a eeWRK?

We need the following well known result from measure theory.

Lemma 8 Let (2,%, 1) be a measure space with j positive and finite and
{A, }new C X be a sequence of measurable sets with u(A,) > 6 > 0 for all
n < w and some § > 0. Then there exists an infinite subset I C w such that

Mner A, # 0.

Proof. Consider the sequence B,, = Ug>, Ak, n > 1. The sequence { By, },,>1
is decreasing and u(B,,) > ¢ for every n > 1. Hence pu(Np<wB,) > 6 and
therefore N, B, # 0. Choose w € N,.,B, and inductively a sequence
{As, tr<ws i < g1, such that w € A, for all k <w. Then [ = {n; : k <
w} is the desired infinite subset. |

Proposition 9 Let I be an infinite set and X = (co(1), ]| - ||cc). Then every
w*-compact subset K C X** satisfies d(K,X) = d(eo"" (K), X).

Proof. First, recall that if f € X** = ((I), then

d(f, X) =sup{|f(p)| : p € BI\ I}.
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Suppose that there exists a w*-compact subset K C B(X*) such that
d(K,X) < d(co” (K),X). Then we can find two real numbers a,b such
that

d(K,X)<a<b<d@@" (K),X)<1.

Pick 29 € 0¥ (K) such that d(zy, X) > b. So, there exist ¢ > 0 and py €
BI\I such that |Z5(po)| > b+e, for example, Z5(py) > b+e€. Let U C I be such
that py € 7" and 20(j) > b+e¢, Vj € U. Let pu be a Radon Borel probability
on K such that zp = r(u) and denote A; := {k € K : k(j) > b}, j € U,
which is a closed subset of K.

Claim. p(A;) > 15, VjeU.

Indeed, let 7 : {oo(I) — R, j € I, be such that 7;(f) = f(j) for every
f € lx(I). Observe that m; is a w*-continuous linear map on ¢ (I), for
every j € I. Thus, for every j € U we have

20(§) = m5(z0) = my(r(11)) = /K s (k)dji = /K B(j)dp =

— [ Kt [ kG < )+ (0 A
Aj

K\A,

and this implies ()= b
20(7) — €
W) 2 T > Ty
Let Vi, C U be an arbitrary infinite subset. By Lemma 8 there exists
an infinite countable subset Ny C Vj such that (0 # Njen,A; C K. Pick
zo € Njen,A;. Then for every q € FOM \ I we have Zy(q) > b, which implies
d(xg, X) > b, a contradiction, because z, belongs to K. [ |

If (X, 7) is a topological space, a subset K C X is said to be reqular in
X if and only if the interior set int(K) is dense in K.

Corollary 10 Let I be an infinite set, H C 31 \] a compact subset which
is reqular in BI\ I, and Yg = {f € lsc() : flu = 0}. Then for every
w*-compact subset K C o, (I) we have d(K,Yy) = d(co” (K), Yy).

Proof. First, observe that d(z,Yy) = sup{|Z(x)| : * € H} for every z €
loo(I). Suppose that there exist a w*-compact subset K C B({«(I)) and
real numbers a, b such that:

d(K,Yy) <a<b<d@” (K),Yy) <1.

Let 2y € @" (K) be such that d(zy,Yy) > b. Since int(H) is dense in H,
there exists pp € int(H) such that, for example, Zo(pg) > b + €, for some
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€ > 0. Let U C I be an infinite subset such that p, € [ \I C H and
20(j) > b+ ¢, ¥Vj € U. By an argument similar to that of Proposition 9,
we find an infinite countable subset No C U and a vector xq € K such
that @o(q) > b, for every q € mm \ I C H, which implies d(z¢,Yy) > b, a
contradiction, because xg € K and d(K,Yy) < a < b. [ |

We now prove Theorem 3 and Corollary 4.
Proof of Theorem 3. Suppose that there exist a w*-compact subset K C
B(X**) and real numbers a, b such that:
d(K,X) <a<b<d@@ (K),X).

Pick 2y € co¥ (K) with d(zy, X) > b. Since X € J we can choose a sequence
{2} s1 C S(B(X*), 20, b) such that 2% 25 0. Let T : X — c¢o == co(N) be
such that T'(z) = (x}(2))n>1, Vo € X. Clearly, T is a linear continuous map
with ||T']| < 1. Let L = T**(K), which is a w*-compact subset of B({«,).

Claim 1. d(L,c,) < d(K, X).

Indeed, let cg = {f € ¢ : (f,u) =0, Yu € ¢y} and pick v € B(cp).
Then ||7***(v)|| <1 and for every x € X we have:

(T (v),z) = (v, T"z) = (v,Tx) = 0.
So, T**(B(cy)) C B(X™). Hence, if k € K and T**(k) =: h € L we have:

d(h, co) = sup{{v,h) : v € B(cy)} =
= sup{(v, T**(k)) : v € B(cg)} = sup{(T"**(v), k) : v € B(cy)} <
< sup{{w, k) : w € B(X*H)} = d(k, X).

Claim 2. If wy := T"*(z) € co¥ (L), then d(wy,cy) > .
Indeed, let {e,},>1 be the canonical basis of ¢;, which satisfies T*(e,,) =
x}, Yn > 1. Since z}, € &(B(X™), 29, b), then

(2'1) <w07€n> = <T**<Z0)7QN> = <Z07T*(€n)> = <Z0’x;> > b.

Let 1 be a w*-limit point of {e,, },,>1 in (¢, w*). Clearly, 1 € B(cg) and
also ¥ (wy) > b by (2.1). So, d(wq, co) > b.
Therefore, L. C B({,) is a w*-compact subset such that

d(L,co) < d(K,X) < a<b<d(wp,co) <dcc” (L),c),

a contradiction to Proposition 9. [ |
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Of course, not every Banach space has property J. Indeed, if X is a
non-reflexive Grothendieck Banach space (for example, if X = (. (I) with
infinite), then clearly X does not have property J. Moreover, X cannot be
isomorphically embedded into a Banach space with property J.

However, the family of Banach spaces fulfilling property J is very large.
For example, this family includes the class of Banach spaces X whose dual
unit ball (B(X*), w") is angelic in the w*-topology. Recall that every WCG
(even every WLD) Banach space belongs to this class (see [2]).

Proof of Corollary 4. The proof of this fact is standard and well known.
Let us prove that if zp € B(X™)\ X and 0 < b < d(zg, X), then

0e BB, 2.0 "

Find ¢ € S(X+) € X** such that ¢(z) > b. As B(X*) is w*-dense in
B(X*™*) and 9(29) > b, then

O'(X*** X**)

¥ € S(B(X), 20.b) ,

whence we obtain

0SB, 20,0) " ",
because ¢ € X*. Finally, it is enough to apply the fact that (B(X*),w*) is
angelic. ]

Now we prove some auxiliary facts. If X is a Banach space, let Ix: X — X
denote the identity map of X, Jx : X — X** the canonical embedding of
X into X** and Ry : X™* — X the canonical restriction map such that
(Rx(z),x) = (z,Jx(x)), for every z € X*** and every = € X. Notice that
Rx = (Jx)* and that Rx o Jy+ = Ix«.

It is well-known that Jx«(X™*) is 1-complemented into X***, by means of
the projection Px : X*** — X*™* such that Px = Jx~oRyx. Since ker(Pyx) =
{z € X : (2,Jx(x)) =0, Vo € X} = X!, we have the decomposition
X** = X+@ Jx«(X*). The subspace X is complemented in X*** by means
of the projection Qx : X** — X*™* such that QQx = Ix++ — Px. Observe
that 1 < ||Qx|| < 2 and that:

B(X*) € Qx(B(X™)) C [|Qx|| - B(X™) € 2B(X™).

Lemma 11 Let X be a Banach space and Qx : X*** — X*** be the canon-
ical projection onto X*+. Assume that Y C X is a closed subspace. Then,
for every u € Y** (considered Y** as a subspace of X**) we have:

d(u, X) < d(w,Y) < Qx| - d(u, X) < 2d(u, X).
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Proof. First, it is clear that d(u, X) < d(u,Y’), because Y C X.

In the following we distinguish X from Jx(X), Y from Jy(Y), etc. Let
1 : Y — X denote the inclusion map. Then ¢* : X* — Y™ is a quotient

Skokok

map, i** : Y — X** is an inclusion map such that (i**);y = 4, and i

-k

X — Y** is a quotient map such that (i**),x- = i*. Observe that
i***(B(X™*)) = B(Y**). It is easy to see that Jy oi = i** o Jy and that
Jy« 01* =" o Jx«, whence we obtain

i* o RX —i*o (JX)* — (JX OZ)* — (Z** o Jy)* — (Jy)* 0 i = RY 0

Claim. Qy o™ = 1" 0 Qx.

Indeed, we have

From the Claim we obtain ||Qy|| < ||Qx]|| and
B(Y™) C Qy(B(Y™)) = Qy(i™ (B(X™))) =
=i (Qx(B(X™)) ™ ([Qx| - B(X™)).
Thus, if u € Y**, we finally get

d(u, Jy(Y)) = sup{(z,u) : z € B(Y")}
< sup{("*(w), u) : w € [|Qx|| - B(X")}
= [Qxll - sup{(w, i (v)) : w € B(X™)}
= [|QxI[ - d(* (u), Jx (X))
< 2d(i**(u), Jx(X)). |

Let us prove our extension of the Krein-Smulian Theorem.

Proof of Theorem 5. Suppose that there exist a closed subspace Z C X
and a w*-compact subset K C B(X™*) such that

d(@" (K),Z) > 5d(K, 7).
Then we can find zy € @0 (K) and a,b > 0 such that
d(z0, Z) >b>ba > 5bd(K, Z).

Pick ¢ € S(Z+(X***)) with () > b.
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Step 1. Since ¥(zg) > b, there exists z € S(X*) such that z7(z9) > b.
So, as zy € €0 (K) we can find 7, € co(K) with

ni ni
m = Z)\uﬂuy mi € K, A >0, Z/\li =1,
i—1 i—1

such that xj(n) > b. Since d(n;, Z) < a we have the decomposition 7;; =
m; +ni; with n1; € Z and nf; € aB(X™).

Step 2. Let Yy = [{nf, : 1 <i < mny}] C Z. Since dim(Y;) < ny < oo,
¥(z) > b and ¥ € Y{H(X*), there exists x5 € S(X*) such that 23(zy) > b
and x5y, = 0. So, as }(2) > b, i = 1,2, and 2, € " (K), we can find
n2 € co(K) with

ng o
Ny = Z)\Qin%a Ny € K, Ag; >0, Z/\% —1,

i=1 =1
such that xf(n2) > b,7 = 1,2. Since d(12;, Z) < a we have the decomposition
Ti = My + N3 With 1y; € Z and 13; € aB(X™).
By reiteration, we obtain the sequences {x}},>1 C S(X*), nr € co(K)
with

ng Nk
M= Meilleir i € K, Mg >0, Y Mg =1,

i=1 i=1
Nk = n,ii + 77/%;' with 77,; € 7 and 77/%;' €aB(X™), k>1,

such that z;(ny) > b, =1,...,k, and 2}, v. =0, where

)
Ve=[{n} i=1...k1<j <n}] C Y1 CZ

Let Y = Up>1 Yy C Z and K7 = (K+aB(X™))NY**. Then Y is a closed
separable subspace of Z and K is a w*-compact subset of Y** (considered
Y** canonically embedded into Z** C X**). Observe that {n}ji 1 >1,1<
Ji <n;} C Ky. By Lemma 11, since K7 C Y™ and d(K7, Z) < 2a, we have
d(K1,Y) < 4a (in fact, d(K1,Y) < 2[|Qz[la < 2||@x|la < 4a). As Y has
property J (because Y is separable and, so, WCG, see Corollary 4), we get
d(©ov (K,),Y) = d(K,Y), whence d(co® (K,),Y) < 4a.

Let 19 be a w*-limit point of {nx}r>1 in X**.

Claim 1. d(no,Y) < ba.

Indeed, first

o € @w*({mﬁ ) > 1,1 < jz < nl}) C @w*(Kﬁ + CLB(X**>
On the other hand, d(co®" (K,),Y) < 4a. Hence, d(no,Y) < 5a.
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Claim 2. d(19,Y) > b.

Indeed, let ¢ € B(X**) be a w*-limit point of {2 },,>1. Since () > b
if k& > n, then z%(n) > b, Yn > 1, whence ¢(n9) > b. Moreover, ¢ €
Y+ (X***) because i1y, = 0and Y, C Y. Hence, d(no,Y) = ¢(no) = 0.

Since b > Ha we get a contradiction and this completes the proof. |

Proof of Theorem 6. Suppose that there exist a closed subspace Z C X
and a w*-compact subset K C B(X™), with Z N K w*-dense in K, such
that d(co® (K), Z) > 2d(K, Z). Then we can find zy € co* (K) and a,b > 0
such that d(zg, Z) > b > 2a > 2d(K, Z). Pick ¢ € S(Z+(X***)) such that
¥ (29) > b. We follow the argument of Theorem 5 with the following changes:

(i) As Z N K is w*-dense in K we choose n, € co(Z N K) with n, =
SO ATk, ki € Z N K and A > 0,37 Ay = 1

(ii) Define

Vi=[{ng :i=1,..,k1<j <ni}] Y = Up1Ys C Z and

Clearly, d(K,,7Z) < d(K,Z) < a, whence d(K1,Y) < 2d(K1,7Z) < 2a
(in fact, d(K1,Y) < [|Qz|le < [|@x|la < 2a). Since Y is separable, we
have d(eo" (K,),Y) = d(K,Y) < 2a. Finally, every w*-limit point 1, of
{m}rs1 in X** satisfies ny € @0 (K1), d(no,Y) < 2a and d(no,Y) > b, a
contradiction. |

Remarks. (1) The argument of Theorem 5 in fact yields the following
d(@" (K), Z) < 2/|Qz| + D)d(K, Z) < 2llQx|| + 1)d(K, Z) < 5d(K, Z).
In Theorem 6 we also obtain
d(@" (K),Z) < |QzIld(K, Z) < |Qx||d(K, Z) < 2d(K, Z).

(2) Let Y C X be a subspace of the Banach space X and assume
that d(co® (K),X) < Md(K,X) for some 1 < M < oo and every w*-
compact subset K C X**. Then using the fact that d(z,X) < d(z,Y) <
|Qx||d(z, X) < 2d(z,X), for every z € Y** it can be proved easily that
d(@” (K),Y) < M||Qx||d(K,Y) < 2Md(K, X), for every w*-compact sub-
set K C Y™,

A subset A C X* is said to be fragmented by the norm of X* (see [6,
p.81], [10]) if for every subset B C A and every ¢ > 0 there exists a w*-
open subset V' C X* such that V N B # () and diam(V N B) < €, where
diam(V N B) means the diameter of V' N B. In order to prove Corollary 13
and Theorem 7 we need the following lemma.
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Lemma 12 Let X be a Banach space, Z C X* a subspace and K C B(X™)
a w*-compact subset such that there exist a,b > 0 with:

d(K,Z) < a<b<d@ (K),2Z).

Then there exist zy € 0 (K) and v € S(ZH(X*)) with (z) > b such
that, if i is a Radon Borel probability measure on K with barycentre r ()= 2o,
then: (a) p is atomless; (b) if H = supp(u), for every w*-open subset V' of
X* with VN H # () there exists £ € e (V N H) such that ¥(§) > b; and
(c) H is not fragmented by the norm of X*.

Proof. Pick z € @o¥" (K) and ¥ € S(Z*+(X**)) such that 9(z) > b+ ¢ for
some € > 0. By the Bishop-Phelps theorem, there exists ¢ € S(X**) with
|9 — ¢|| < €/4 such that ¢ attains its maximum value on co* (K) in some
2 € @0 (K). So:

(22)  00) 2 () = () + (6= U)(2) > bre—qe=b+ e,
(2.3) P(20) = ¢(20) + (¥ — @) (20) > b+ Ze — ie =b+ %e and
(24) ke K, o(k) = v(k) + (6 — ¢)(k) < a+ ie b+ %e < 6(0).

In particular, observe that zo ¢ K by (2.4).

(a) Let u be a Radon Borel probability on K with barycentre r(u) = z
and suppose that p has some atom, that is, there exist 0 < A < 1 and
ko € K such that = X\ - 6, + g1, p1 > 0. If A =1 then p = d,, whence
r(pn) = ko € K, which is impossible because r(u) = zo ¢ K by (2.4). So,
0< A<l e, pu #0and ||py]] =1—=A>0. Then g = X0, + (1 — )72

llpa
and

%zmm:A%+u—Avwiw,

whence, since ¢(ko) < ¢(zo) (by (2.4)) and ¢(r(£)) < ¢(20) (because

lleall
r(fa) € €0 (K)), we get

¢@@=AM%%+O—AMWWZMD<AM%%+G—AMWQZ¢@&

a contradiction.

(b) Let H = supp(u) and suppose that there exists a w*-open subset V' of
X* with VN H # () such that (&) < b, for every £ € @0 (VN H). Let yy =
pvnm denote the restriction of pto VN H (that is, uy(B) = w(BNV N H),
for every Borel subset B C K) and uy := 1 — py. Observe that puq, ps are
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positive measures such that p; # 0 (because () # VN H = V Nsupp(u)) and
po # 0 (if po = 0, ice., p = py = pyvnm, then zg = r(p) € ¥ (VN H))
and ¥ (z9) < b, a contradiction to (2.3)). Thus, we have the decomposition
i = pu1 + fio and so:

H1
th”

)+ [lpa] - (2.

20 = T(M) = H:U’1H ’ T’( H:U’QH

Since r(m‘j—i”) eco” (VNH), then qﬁ(r(”‘;—i”)) < b, whence gzﬁ(r(m)) < b+ie
(because ||t — ¢|| < €/4). Therefore, taking into account that T(ﬁ) €
co¥ (K) and (2.2) we get

. . H1 Ll b(r H2
$(20) = [| |9 (HMH)H“HM [é( (Iluzll)) <

< [l (6 + ie) + llp2ll¢(z0) < [lpall@(z0) + lln2ll¢(z0) = ¢(20),

a contradiction.

(c) Let n = b— a and suppose that H is fragmented by the norm of X*.
Then there exists a w*-open subset V' such that V' N H # () and diam(V N
H) < 1. Therefore, if hg € VN H, then c0® (VN H) C B(ho;n/2) (= closed
ball with center hy and radius 7/2). Hence, for every ¢ € c® (V N H)

we have
n

0(E) < Ulh) + 5 < d(ho, Z) + 3 <a+ g <D,

a contradiction to (b). |

N3

Corollary 13 Let X be a Banach space, Z C X* a subspace and K C

X* a w'-compact subset which is fragmented by the norm of X*. Then
d(eo¥ (K),Z) = d(K, Z).

Proof. This follows immediately from Lemma 12. It also follows from [10,
Theorem 2.3] where it is proved that co(K) = co*” (K ) whenever K C X* is
w*-compact subset such that (K, w*) is fragmented by the norm of X*. W

Now we prove Theorem 7. Observe that we cannot apply Theorem 3
because we do not know whether ¢;(I) has property J when I is uncount-
able (if I is countable it has because ¢;(I) is separable in this case). In
fact, if we assume that there exists an uncountable measurable cardinal «
(see [4, p. 186, 196] for definitions) and [ is a set with |I| = «a, then it is easy
to prove that ¢1(1) fails to have property J.
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Proof of Theorem 7. First, observe that X* = {,(I) and X** is the space
Mpg(5I) of Radon Borel measures on 1. Thus, X** has the decomposition

Notice that the subspace ¢;(I) of this decomposition coincides with the space
J(X), J : X — X* being the canonical inclusion. If yu € Mg(BI), we

write po = pi1 + po, where py € ¢1(1) and po = psng € Mgr(BI\ I). So,

d(p, X) = [l p2[-
Suppose that there exist a w*-compact subset K C B(X**) and two
numbers a, b > 0 such that:

d(K,X) <a<b<d@(K)X).

By Lemma 12 we have the following Fact:

Fact. There exist ¢ € S(X*) and a w*-compact subset ) # H C K such
that for every w*-open subset V with VN H # () there exists £ € co® (VN H)
with (&) > b.

Step 1. By the Fact we can pick & € @® (H) with ¢(&) > b and
xy € S(X*) with z7(&) > b. Now we choose

ni "
m= Z )\11‘7711' € CO(H), M € H, )\11' 2 O’ Z )\11' —_ 1’
=t =1

such that z3(n;) > b. If gy =y} + 0}, with ni € (1(1) and n} € Mr(BI\ 1),
then

il = d(m, X) < d(K, X) < a,
whence ||n1]| = ||mll = 73] > b — a, because ||m|| > x5 (m) > b. So, we can
find y; € B(X*) = B({) with finite support supp(y1) = {711, ---sY1p, } C [
such that y;(n}) > b — a. Since y;(n}) = 0, we have

yi(m) =) >b—a,
whence it follows that y;(n1;) > b — a for some 1 < i < njy.

Step 2. Let V} = {u € X** : y1(u) > b— a}, which is a w*-open subset
of X** with Vi N H # (), because ny; € Vy N H for some 1 < i < ny. By
the Fact there exists & € @0 (Vi N H) with (&) > b. Since (&) > b
and ¥(e,,,) =0, 1 <i < p; (where e,,, € ¢;(I) is the unit vector such that
ey (v) = 1, if v = 15, and e, (y) = 0, if v # 71;), there exists 23 € B(X")
with 23(&) > b and z3(e,,,) =0, 1 <i < p;. Clearly, we can choose

n2 n2
7)222/\21'7721600(‘/1QH)7 nu € ViNH, Xy >0, Z)\Qizlu
i=1 i=1

such that z3(n2) > b.
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As yi(ne;) > b—a, 1 <i<mny, we get yi(1n2) >b—a. Let gy =nd + n3,
with nd € ¢,(I), n3 € Mz(BI\I) and ||n3]| = d(ns, X) < d(K, X) < a. Since

2]l = 125(m)| = [23(n2) — 25(my)| = a5 (me)| = |25 (n3)| > b — a,

and x5 = 0 on supp(y;), we can find y, € B(X*) with finite support
supp(y2) = {Va1, -, Y2p} € I\ supp(yi) such that ys(ns) > b — a. Hence,
Yo(1m2) = y2(n3) > b — a and this implies y2(n2;) > b — a for some 1 < i < ny.

By reiteration, we obtain the sequence {yy}r>1 C B(X™) with pairwise
disjoint supports and the sequence {n;}r>1 C co(H) C B(X™) such that
Yn(nK) > b—a for k > n.

Since || > 0, il| < 1 (because the vectors {yx hx>1 C B({s) have pairwise
disjoint supports) and (3 i, v:)(n.) > n(b —a), Vn > 1, we get ||n,| >
n(b —a), ¥Yn > 1, a contradiction, because ||n,|| < 1. [
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