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The Poisson’s problem for the Laplacian
with Robin boundary condition in

non-smooth domains

Loredana Lanzani and Osvaldo Méndez

Abstract
Given a bounded Lipschitz domain Ω ⊂ R

n, n ≥ 3, we prove that
the Poisson’s problem for the Laplacian with right-hand side in Lp−t(Ω),
Robin-type boundary datum in the Besov space B

1−1/p−t,p
p (∂Ω)

and non-negative, non-everywhere vanishing Robin coefficient b ∈
Ln−1(∂Ω), is uniquely solvable in the class Lp2−t(Ω) for (t, 1

p) ∈ Vε,
where Vε (ε ≥ 0) is an open (Ω,b)-dependent plane region and V0 is
to be interpreted ad the common (optimal) solvability region for all
Lipschitz domains. We prove a similar regularity result for the Pois-
son’s problem for the 3-dimensional Lamé System with traction-type
Robin boundary condition. All solutions are expressed as boundary
layer potentials.

1. Introduction

In this article we use layer potentials to obtain optimal regularity results for
the Poisson’s problem for the Laplacian with Robin boundary condition and
for the 3-dimensional Lamé system with traction-Robin boundary condition,
on a bounded, non-smooth (Lipschitz) domain. Specifically, given a bounded
Lipschitz domain Ω ⊂ Rn and a non-negative, non-everywhere vanishing
scalar function b, we study the Poisson’s problem for the Laplacian with
Robin boundary condition

(1.1)




∆u = f ∈ Lp−t,0(Ω) in Ω

∂u

∂N
+ bu = g ∈ B

1− 1
p
−t,p

p (∂Ω) on ∂Ω,
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and, for n = 3, the Lamé System with traction-Robin boundary condition

(1.2)




Lu = f ∈ Lp−t,0(Ω) in Ω ,

∂u

∂ν
+ bu = g ∈ B

1− 1
p
−t,p

p (∂Ω) on ∂Ω .

Here Lps,0(Ω) stands for a suitable variant of the usual potential spaces de-
fined via the Fourier transform (see Section 2 for the relevant definitions).
For a three-dimensional vector field u defined in Ω and µ > 0, λ > −2µ

3
, the

differential operator in (1.2) is defined by

(1.3) Lu := µ∆u + (λ+ µ)∇ div u.

The boundary condition in (1.2) with b = 0 has been extensively studied in
the literature due to its importance in elasticity theory (see [4], [3], [17]). Our
main results are Theorems 4.5 and 5.2 for problem (1.1) and Theorems 6.4
and 6.5 for the Lamé system (1.2).

We aim to expressing the solutions as the sum of a Newtonian potential
(for Problem (1.2), elastic potential) and a single layer potential on the
boundary. To this end, we solve first the homogeneous versions (f = 0)
of (1.1) and (1.2) and show that the (unique) solution can be expressed in
the form

(1.4) u(X) = ST −1(g)(X),

where T is an operator acting on an appropriate function space (Section 4)
and S is the single layer potential on ∂Ω (see (1.7)). In both cases we first
establish L2(∂Ω) and Hardy-Space type results for the invertibility of the
solution operator T . Then, via interpolation, we extend the invertibility
of T to Besov spaces Bs,p

p (∂Ω) for p and s ranging throughout an (optimal)
region Uε, where the positive number ε depends on the Robin coefficient b
and the Lipschitz character of Ω. The solution for the non-homogeneous
problems is then obtained by adding the Newtonian potential of f to (1.4),
see (5.3).

The paper is structured as follows: In Section 1, we briefly present the
notation and terminology to be used throughout the article; in Section 2
we introduce the function spaces needed for the proper formulation of (1.1)
and (1.2). In Section 3 we investigate the Fredholm index of the solution
operator T on various function spaces; Section 4 is devoted to the study of
invertibility of the boundary operator associated with (1.1) on suitable func-
tion spaces; the solvability of (1.1) is presented in Section 5. The invertibility
and solvability results for Problem (1.2) are given in Section 6.
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Given a Lipschitz domain Ω ⊂ Rn with boundary ∂Ω, (γ(P ))P∈∂Ω de-
notes a fixed family of two-sided non-tangential cones (see [23]). As usual,
+γ(P ) ⊆ Ω and −γ(P ) ⊆ R

n \Ω symbolize the interior and exterior part of
γ(P ) respectively. For u : Ω → C, P ∈ ∂Ω, let

(1.5) M(u)(P ) = sup{|u(X)| , X ∈ γ(P )}
denote the ((γ(P ))P∈∂Ω-dependent) non-tangential maximal function. As is
customary, X stands for a generic point in Rn \ Ω, while the notation P
or Q is reserved for points on ∂Ω; surface measure will be written as dσ.
The (dσ-a.e defined) exterior unit normal vector at a point P ∈ ∂Ω will be
denoted by N(P ).

Let Γ be the fundamental solution of the Laplacian, i.e.,

(1.6) Γ(X) =
1

(2 − n)ωn|X|n−2
, X ∈ R

n \ {0},

where ωn (n ≥ 3) stands for the surface measure of the unit ball in Rn. Let
L(∂Ω) denote the space of Lipschitz functions on ∂Ω and let L′

(∂Ω) stand
for its dual. In preparation for Section 4, we define the single layer potential
with density Λ ∈ L′

(∂Ω) as

(1.7) S(Λ)(X) = 〈Λ,Γ(X − ·)〉 , X ∈ R
n \ ∂Ω.

The boundary trace is written as

(1.8) S(Λ)(P ) = 〈Λ,Γ(P − ·)〉 , P ∈ ∂Ω.

In particular, if f ∈ L1(∂Ω),

(1.9) S(f)(X) =

∫
∂Ω

f(Q)Γ(X −Q) dσ(Q).

The double layer potential with density f : ∂Ω → C is defined as

(1.10) D(f)(X) =

∫
∂Ω

f(Q)
∂

∂N(Q)
Γ(X − ·) dσ(Q);

these potentials are well defined and harmonic in X ∈ Rn \ ∂Ω. As a conse-
quence of the L2-boundedness of the Cauchy integral operator on Lipschitz
curves ([1]), the singular integral operators

(1.11) Kf(P ) = p.v.

∫
∂Ω

f(Q)
∂

∂N(Q)
Γ(P − ·) dσ(Q)

and its formal transpose

(1.12) K∗f(P ) = p.v.

∫
∂Ω

f(Q)
∂

∂N(P )
Γ(P − ·) dσ(Q)

are bounded on Lp(∂Ω) for 1 < p < ∞. Furthermore, K∗ is bounded on
Hp(∂Ω) (the atomic Hardy space, defined on ∂Ω, see ([2])) for n−1

n
< p ≤ 1.
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We refer the reader to Section 2 for the definition of the Besov spaces
Bs,p
p on ∂Ω; meanwhile we state the trace properties of the layer potentials:

for a detailed discussion, see [23].

For 1 < p <∞ and f ∈ Lp(∂Ω), the following trace formulae hold:

(1.13) lim
±γ(P )�X→P

Df(X) = ±1

2
f(P ) +Kf(P ) dσ − a.e. P

and

∂

∂N
S(f)(P ) = lim

±γ(P )�X→P
〈∇S(X), N(P )〉

= ∓1

2
f(P ) +K∗f(P ) dσ − a.e. P,(1.14)

where 〈a, b〉 denotes the Euclidean scalar product in Rn. For 1 ≤ p < ∞,
0 < s < 1 and f ∈ Bs,p

p (∂Ω), (1.13) takes up the form

(1.15) TrDf = ±1

2
f(P ) +Kf(P ),

where Tr stands for the trace operator (see [12]). For f ∈ B−s,p
p (∂Ω), the

“interior” statement in (1.14) is to be understood in the following weak sense
(see [8] for the details): for arbitrary φ ∈ Bs,q

q (∂Ω) (q = p
p−1

) extended to Ω

as a function in L
s+1/q,q
q (Ω), the equality

〈∇S , ∇φ〉 = 〈(−1

2
I +K∗)f , φ〉

holds.

2. Function spaces and potentials

In this section we introduce the various spaces that naturally arise in the
study of the regularity problems under consideration here. Once again Ω ⊂
Rn, n ≥ 3, will stand for a bounded, Lipschitz domain with connected
boundary ∂Ω. For 0 < p, q ≤ ∞, let As,qp (Rn) denote either the Besov space
Bs,q
p (Rn) or the Triebel-Lizorkin space F s,q

p (Rn) (e.g [21] for the definition
and a complete survey on these spaces). For s ≥ 0 the corresponding spaces
As,qp (∂Ω) are defined by localization, whereas for t > 0 and 1 < p, q ≤ ∞,
we define

A−t,q
p (∂Ω) = (At,q

′
p′ (∂Ω))∗,

where p′ and q′ stand for the Hölder-conjugate exponents of p and q re-
spectively. The spaces As,qp (Ω) are defined as spaces of distributions (in Ω)
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obtained by restriction to Ω of distributions in As,qp ; more precisely, for s ∈ R

and p, q ∈ (0,∞], we let

As,qp (Ω) =
{
f ∈ D′

(Ω) : f = F |Ω, F ∈ As,qp (Rn)
}
.

These spaces are Banach when endowed with the quotient norm

‖f‖As,q
p (Ω) = inf

{
‖F‖As,q

p (Rn), F |Ω = f
}
.

Furthermore, for s, p and q as above, we let

(2.1) Ȧs,qp (Ω) =
{
f ∈ D′

(Rn) : supp f ⊆ Ω
}
.

For s ∈ R, 1 < p, q <∞, the following equalities hold for the dual spaces:

(2.2)
(
Ȧs,qp (Ω)

)∗
= As,q

′
p′ (Ω)

and

(2.3)
(
As,qp (Ω)

)∗
=

(
Ȧs,q

′
p′ (Ω)

)
.

See [11] for a proof of (2.2). The identity (2.3) was proved in [8] for p = q;
a slight modification of the arguments presented there makes both proofs
work also for p 
= q. We recall that for p ∈ (0,∞], the embedding

F 1,2
p (D) → F 0,2

p (D)

is well defined and compact for any smooth, bounded domain D (see [5]).
Based on this observation and using a customary localization and duality
argument it is not hard to prove that for a bounded Lipschitz domain the
embedding

(2.4) i : F 1,2
p (∂Ω) → F 0,2

p (∂Ω)

is well defined and compact.
For real s, let Lps(R

n) denote the potential spaces defined via the Fourier
transform (see [11]), i.e.,

Lps(R
n) =

{
(I − ∆)−

s
2 (g) : g ∈ Lp(Rn)

}
,

with

‖f‖Lp
s

= ‖(I − ∆)
s
2 (f)‖Lp .
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It is well known (see [21]) that the Triebel-Lizorkin scale (F s,2
p )s,p contains

both Lps (which coincide with the classic Sobolev spaces when s is a non-
negative integer) and the atomic Hardy spaces Hp, 0 < p ≤ 1. More pre-
cisely, for s ∈ R and 1 < p <∞, we have

(2.5) F s,2
p (Rn) = Lps(R

n),

whereas, for 0 < p ≤ 1,

(2.6) F 0,2
p (Rn) = Hp

in(R
n),

where the right hand side stands for the inhomogeneous spaces (no vanishing
moment condition is required for the corresponding atoms (see also [9])). In
the sequel, we will freely use (2.5) and (2.6). Occasionally, we will write
Lps,0(Ω) instead of Ḟ s,2

p (Ω) (see (2.1)). In closing this section we recall a few
results (see [8, Lemma 9.1] and preceding Remark) that will be needed in
Section 5.

Lemma 2.1 For 0 < s, 1 < p < ∞ and k = 1, 2, . . . , n the partial deriva-
tive operator

∂k : Lps(Ω) → Lps−1(Ω)

is well defined and bounded.

Lemma 2.2 If 0 < s < 1, 1 < q <∞, 1
p

+ 1
q

= 1 and −s+ 1
q
≤ 0, then

Lq−s+ 1
q

(Ω) =

(
Lp
s−1+ 1

p

(Ω)

)∗
,

whereas if −s+ 1
q
≥ 0, we have

Lp
s−1+ 1

p

(Ω) =

(
Lq−s+ 1

q

(Ω)

)∗
.

Finally, with the same notation used in Lemma 2.2, given 1
q
< t < 1+ 1

q
and

an n-dimensional vector field F ∈ Lp1−t(Ω) (1
p
+ 1

q
= 1) whose divergence has

a continuous extension to Lqt (Ω) (i.e., if divF ∈ Lp−t,0(Ω)), we identify the

normal component F · N of F with the linear functional in B
1−1/p−t,p
p (∂Ω)

(which depends on the aforementioned extension), defined via:

〈F ·N , φ〉 = 〈divF , φ̃〉 + 〈F , ∇φ̃〉

for every φ ∈ Bq
t−1/q(∂Ω) extended to φ̃ ∈ Lqt (Ω). Notice that the normal

component does not depend on the particular extension φ̃. Furthermore,

‖F ·N‖Bp

1− 1
p−t

(∂Ω) ≤ C(t, p,Ω)
(
‖F‖Lp

1−t(Ω) + ‖ divF‖Lq
t (Ω)

)
.
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2.1. The Newtonian Potential

We now define the Newtonian potential and investigate its main features
as an operator on the Sobolev and Besov scales. Let n ≥ 3, ωn and Γ
be defined by (1.6). Consider the restriction operator RΩ (from Rn to Ω)
acting on distributions; let E ′

(Ω) stand for the space of compactly supported
distributions in Ω, and let N denote the convolution operator

(2.7) N : E ′ → D′

defined by

(2.8) N (Λ) = Γ ∗ Λ.

We define the Newtonian potential on Ω,

NΩ : E ′
(Ω) → D′

(Ω)

as

(2.9) NΩ(f) = RΩN (f̃),

where f̃ denotes a compactly supported distribution in Rn, which is defined
via the identity

〈f̃ , φ〉 = 〈f , RΩ(φ)〉.
The Sobolev-Besov regularity of NΩ, was studied in [8]:

Theorem 2.3 Let 1 < p, q < ∞, 1
p

+ 1
q

= 1 and 1 ≤ s ≤ 3. Then the

Newtonian potential defined by (2.9) is bounded as a linear operator

NΩ : Lp−s,0(Ω) → Lp2−s(Ω).

Moreover, if 1 < s < 3, NΩ is bounded as an operator

NΩ : Bp
−s,0(Ω) → Bp

2−s(Ω).

For a distribution f ∈ Lp1
p
−s−1,0

(Ω) and −1 ≤ s− 1
p
≤ 2, the vector field

∇NΩ(f) ∈ Lp−s+ 1
p

(Ω)

has normal component (denoted ∂NΩ(f)
∂N

) in the space Bq
−s(∂Ω).

Proof. See Proposition 2.1 and 9.7 in [8]. �
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2.2. Mapping properties of the boundary layer

We conclude this Section by recalling the following mapping property of the
single layer potential on the scale B−s,p

p (∂Ω) (with 0 < s < 1). See [8] for
further details.

Theorem 2.4 For 0 < s < 1 and 1 < p <∞, the single layer potential

S : B−s,p
p (∂Ω) → B

1−s+ 1
p
,p

p (Ω) ∩ Lp
1−s+ 1

p

(Ω)

is a bounded linear operator. Here, the intersection is endowed with the
norm

‖f‖
B

1−s+ 1
p ,p

p (Ω)∩Lp

1−s+ 1
p
(Ω)

= max
{
‖f‖

B
1−s+ 1

p ,p

p (Ω)
, ‖f‖Lp

1−s+ 1
p
(Ω)

}
.

3. Fredholm analysis of the solution operator

In this section we investigate the Besov-space regularity and the invertibility
of the operator that gives the solution of the Poisson’s problem (1.1) namely
the operator T in (1.4). More precisely, we define T as (see (1.8) and [14]):

(3.1) T = −1

2
I +K∗ + bS

and we show that under certain conditions on s and p (involving the Lipschitz
character of Ω), T is invertible on the Besov scale B−s,p

p (∂Ω) (Theorem 4.5).
To this end, we show that T has vanishing Fredholm index on appropriate
Besov spaces (indeed, T is a compact perturbation of the solution operator
for the Neumann problem). We start with a Lemma that plays a central
role, both in this Section and in Section 5, where it is crucial to justify the
weak formulation of the Robin boundary condition.

Lemma 3.1 Let Ω ⊂ R
n denote a bounded Lipschitz domain with connected

boundary. Assume that b ∈ Ln−1(∂Ω), 1 < q < ∞, n ≥ 3 and 0 < s < 1.
Let Tb denote pointwise multiplication times b, namely

(3.2) Tb(ψ) = ψb.

Then Tb is bounded as an operator

(3.3) Tb : B1−s,q
q (∂Ω) → B−s,q

q (∂Ω).

Moreover, for q < n− 1, Tb is bounded as an operator

(3.4) Tb : Lq1(∂Ω) → Lq(∂Ω).
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Proof. For q < n−1, assertion (3.4) follows from the Sobolev’s embedding
Theorem: for ψ ∈ Lq1(∂Ω), we have

‖bψ‖Lq(∂Ω) ≤ ‖b‖Ln−1(∂Ω)‖ψ‖
L

q(n−1)
n−1−q (∂Ω)

≤ ‖b‖Ln−1(∂Ω)‖ψ‖Lq
1(∂Ω).

We next claim that for n ≥ 3, Tb maps B1−s,1
1 (∂Ω) boundedly into B−s,1

1 (∂Ω).
To see this, select s = (n− 1)(1

p
− 1) and let a denote an Lt−F 1,2

p -atom for

1 < t < n− 1, so that there exists a ball B(r) of radius r > 0, with

• supp a ⊆ B(r) ∩ ∂Ω ,

• ‖a‖F 1,2
t (∂Ω) ≤ r(n−1)( 1

t
− 1

p
).

On account of well-known embedding theorems, we have that

F 1,2
t (∂Ω) ⊆ L

t(n−1)
n−1−t (∂Ω),

whence

‖ba‖F 0,2
t (∂Ω) ≤ ‖b‖Ln−1(∂Ω)‖a‖F 1,2

t (∂Ω) ≤ c‖b‖Ln−1(∂Ω)r
(n−1)( 1

t
− 1

p
),

where c is a positive constant independent on a.
Therefore, ba is an Lt − F 0,2

p (∂Ω)-atom (see [9]) and it follows that Tb is
bounded as an operator

(3.5) Tb : F 1,2
p (∂Ω) → F 0,2

p (∂Ω)

with norm bounded by a constant times ‖b‖Ln−1(∂Ω) (here that F s,q
p (∂Ω)

denotes the Triebel-Lizorkin space, see Section 2). Before completing the
proof, we recall some functional-analytic tools from [17]. For a given quasi-
Banach space X, let X̂ denote the Banach envelope of X, i.e. X̂ is the
“minimal” Banach space that containsX (see [17] for the precise definition of
the “hat” operation). Any continuous linear operator T on X has a natural
linear and bounded extension T̂ to X̂. We recall that the hat operator
preserves isomorphisms and compactness. More precisely,

(3.6) ‖T̂‖B(X̂,X̂) ≤ ‖T‖B(X,X)

and if T is an isomorphism (or is compact) on X, so is T̂ on X̂. Moreover,
it was proved in [17] that the following identifications hold for 0 < p < 1:

F̂ 0,2
p (∂Ω) = B

−(n−1)( 1
p
−1),1

1 (∂Ω)

and

F̂ 1,2
p (∂Ω) = B

1−(n−1)( 1
p
−1),1

1 (∂Ω).
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Therefore, it follows from (3.5) that the “hat” extension of Tb, which, as it
is easily verified, is still multiplication times b, maps F̂ 1,2

p (∂Ω) = B1−s,1
1 (∂Ω)

boundedly into F̂ 0,2
p (∂Ω) = B−s,1

1 (∂Ω). It is now easily verified that Tb is
self-adjoint. Thus, Tb is bounded as an operator

Tb : Bs,∞
∞ (∂Ω) → Bs−1,∞

∞ (∂Ω).

Standard interpolation arguments now yield the rest of the proof. We remark
that the norm of Tb as defined above satisfies the bound

(3.7) ‖Tb‖B(B1−s,p
p (∂Ω),B−s,p

p (∂Ω)) ≤ C‖b‖Ln−1(∂Ω)

for some positive constant C = C(Ω, p, s). �

Recall now that for 0 < s < 1 and 1 < p <∞, the embedding

(3.8) Bs,p
p (∂Ω) ↪→ Bs−1,p

p (∂Ω)

is compact (see [5]). Next, on account of Lemma 3.1 and results in [23] we
claim that for 0 < s < 1 and 1 < p <∞, the operator

(3.9) Tb ◦ S : Bs−1,p
p (∂Ω) → Bs−1,p

p (∂Ω)

is also compact. Indeed, for smooth b it is clear that bS maps Bs−1,p
p (∂Ω)

into Bs,p
p (∂Ω) (recall that S is a bounded operator from Bs−1,p

p (∂Ω) into
Bs,p
p (∂Ω) for 0 < s < 1, see [8]); this observation and the bound (3.7) allow

us to use a standard approximation argument to complete the proof of the
claim. We now compute the Fredholm index of the operator T (see 3.1) on
the Besov scale Bs−1,p

p (∂Ω) for 0 < s < 1. On account of (3.9), T has the
same Fredholm index as the operator −1

2
I + K∗. The latter is studied in

the following Lemma.

Lemma 3.2 There exists 0 < ε = ε(Ω) depending on the Lipschitz character
of Ω such that the operator R = 1

2
I −K is Fredholm and has index 0 when

acting on the following spaces:

(i) L2(∂Ω)

(ii) L2
1(∂Ω)

(iii) B1−s,1
1 (∂Ω) for 0 < s < ε.

Also, for s as in (iii), R∗ is Fredholm and has index 0 as an operator acting
on Bs−1,∞

∞ (∂Ω), and closed range and index 0 as an operator on F 0,2
1 (∂Ω).
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Proof. The proofs of (i) and (ii) are essentially contained in [23], whereas
(iii) was established in [2]: for the sake of completeness we sketch these
proofs here. Let Ãs,qp (∂Ω) stand for the elements in (the space of distri-
butions) As,qp (∂Ω) which vanish on constants. It is well known (see [23])
that as an operator on L2(∂Ω), R∗ has closed range; moreover, range(R∗) =
L̃2(∂Ω) = F̃ 0,2

p (∂Ω), and ker(R∗) = 〈f0〉, where
∫
∂Ω
f0 = 1 and S(f0) is

a non-zero constant. Thus, the index of R on L2(∂Ω) is 0 and, further-
more, R∗ is invertible as an operator on L̃2(∂Ω). The following topological
decomposition is easily verified:

L2(∂Ω) = 〈f0〉 ⊕ L̃2(∂Ω),

whence

(3.10) L2(∂Ω) = ⊥(〈f0〉) ⊕ 〈1〉 = range(R) ⊕ 〈1〉.
Now R is bounded as an operator acting on L2

1(∂Ω), (see [23]). Let g ∈
L2(∂Ω) and R(g) = f ∈ L2

1(∂Ω). Write

u(X) = S(R∗)−1

(
S−1(f) −

(∫
∂Ω

S−1fdσ
)
f0

)
(X).

Integration by parts in Ω yields

u(X) = D(u|∂Ω)(X) − S
( ∂u
∂N

)
(X).

In particular, there exist a constant c and a function h ∈ L2
1(∂Ω) such that

R(h) = c+ f = c+R(g),

from which it follows that c = 0 and g ∈ L2
1(∂Ω), hence the closedness

assertion in (ii). We also note that the above argument shows that the
range of R as an operator on L2

1(∂Ω) has codimension 1 (see( 3.10)), from
which we obtain

L2
1(∂Ω) = 〈1〉 ⊕ range(R).

The kernel of R on L2
1(∂Ω) is the subspace generated by the constant 1.

Thus, the Fredholm index of R on L2
1(∂Ω) is 0, as claimed. We note in

passing that these observations imply that the range of R∗ as an operator on
L2

−1(∂Ω) is closed and equal to L̃2
1(∂Ω), whence, as an operator on L2

−1(∂Ω),
ker(R∗) = 〈f0〉.

Finally, it was proved in [8] that for 0 < s < ε = ε(Ω), the operator

(3.11) R : B1−s,1
1 (∂Ω) → B1−s,1

1 (∂Ω)

is bounded and has closed range in B1−s,1
1 (∂Ω), and that the single layer po-

tential operator, S (which is self-adjoint) is an isomorphism from B−s,1
1 (∂Ω)

onto B1−s,1
1 (∂Ω), hence also from Bs−1,∞

∞ (∂Ω) onto Bs,∞
∞ (∂Ω).
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Since
L2

1(∂Ω) = B1,2
2 (∂Ω) ⊆ B1−s,1

1 (∂Ω),

the unique function g0 ∈ Bs−1,∞
∞ (∂Ω) with S(g0) = 1 is a non-zero multiple

of the generator of the kernel of R∗ in L2
−1(∂Ω). Thus, when R∗ is considered

as an operator on Bs−1,∞
∞ (∂Ω), we have

(3.12) ker(R∗) = 〈f0〉.
It is easy to see that the range of R∗ on the above space also coincides with
B̃s−1,∞

∞ (∂Ω) (since R∗ is an isomorphism there). We now proceed to prove
the last statement in Lemma 3.2. The closedness of the range of R∗ as an
operator on F 0,2

1 (∂Ω) follows from [2]; indeed, it is shown there that the
range of R∗ coincides with the space of functions in F 0,2

1 (∂Ω) which have
vanishing integral. Recall that L2(∂Ω) = F 0,2

2 (∂Ω) ⊆ F 0,2
1 (∂Ω) (see [19]).

Selecting f ∈ F 0,2
1 (∂Ω) with R∗(f) = 0, integration by parts in Ω (which is

legitimate since M(f) ∈ L1(∂Ω), see(1.5)) in conjunction with the fact that
S : F 0,2

1 (∂Ω) → F 1,2
1 (∂Ω) is an isomorphism (see [2] and [17]) easily yields

that f is a multiple of the generator of ker(R∗) and from this, it follows
immediately that the index of R∗ is 0. �

4. Invertibility of the solution operator

Throughout this section we fix b ∈ Ln−1(∂Ω). The solution operator to the
Poisson’s problem (1.1) (with f = 0) was defined in (3.1).

Lemma 4.1 If b ≥ 0, b > 0 on a set of positive Surface measure and n ≥ 3,
the operator T is invertible on F 0,2

1 (∂Ω).

Proof. Let f ∈ F 0,2
1 (∂Ω) with T (f) = 0. Since M(∇S(f)) ∈ L1(∂Ω)

(see [2]), we may integrate by parts and obtain

(4.1)

∫
Ω

|∇Sf(X)|2dx = −
∫
∂Ω

b(P )S(f)2(P )dσ(P ),

from which it can be easily seen that T is injective on F 0,2
1 (∂Ω) (see [14]).

Next, we show that

(4.2) bS : F 0,2
1 (∂Ω) → F 0,2

1 (∂Ω)

is compact. To this end we recall the atomic decomposition of the above
spaces: we refer the reader to [9] and [17] for further details. Let A be an
Lp1 − F 1,2

1 (∂Ω) atom , i.e., there exists a number r, 0 < r < ε(∂Ω),

• suppA ⊆ B(r) ∩ ∂Ω

• ‖A‖F 1,2
p (∂Ω) ≤ c(rn−1)

1
p
−1.
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Choosing 1 < p < n−1, Hölder’s inequality and the Sobolev Embedding
Theorem grant

‖bA‖Lp(∂Ω) ≤ ‖b‖Ln−1(∂Ω)‖A‖
L

(n−1)p
n−1−p (∂Ω)

≤ ‖b‖Ln−1(∂Ω)‖A‖Lp
1(∂Ω) ≤ ‖b‖Ln−1(∂Ω)r

(n−1)( 1
p
−1).

Thus bA is a p-atom for F 0,2
1 (∂Ω) (see [9]) and the boundedness of the

operator in (4.2) follows at once. Since the operator (4.2) can be approxi-
mated (in the operator norm) by bjS, for smooth (Lipschitz) functions bj,
the compactness statement will follow once it has been established for Lips-
chitz b. Indeed, multiplication by a smooth b defines a bounded operator on
F 1,2

1 (∂Ω), thus for such a b the compactness result is a direct consequence of
the compact embedding (2.4). This, in conjunction with (iii) in Lemma 3.2
and the above injectivity result, yield the invertibility of T on F 0,2

1 (∂Ω), as
claimed. �
Lemma 4.2 The operator T has index 0 on B−1,2

2 (∂Ω) for n > 3. For
n = 3, T has index 0 on B−s,2

2 (∂Ω) for 0 < s < 1, and index 0 on B−1,2
2 (∂Ω)

if we assume b ∈ Lr(∂Ω) for some r > 2.

Proof. On account of (ii) in Lemma 3.2, the claim will follow once we
show that bS is compact as an operator on B−1,2

2 (∂Ω) = L2
−1(∂Ω). To this

end we first consider the case n > 3 and show the bound

(4.3) ‖bS‖B(L2
−1(∂Ω),L2

−1(∂Ω)) ≤ ‖b‖Ln−1(∂Ω)‖S‖B(L2
−1(∂Ω),L2

−1(∂Ω)),

where b ∈ L(∂Ω). To prove (4.3), note that for Λ ∈ L2
−1(∂Ω) we have,

sup
‖ψ‖

L2
1
=1

|〈bS(Λ), ψ〉| = sup
‖ψ‖

L2
1
=1

|〈S(Λ), bψ〉|,

and also

|〈S(Λ), bψ〉| ≤ ‖S(Λ)‖L2(∂Ω)‖bψ‖L2(∂Ω)

≤ ‖S(Λ)‖L2(∂Ω)‖b‖Ln−1‖ψ‖
L

2(n−1)
n−3 (∂Ω)

≤ ‖S(Λ)‖L2(∂Ω)‖b‖Ln−1(∂Ω)‖ψ‖L2
1(∂Ω).

We now recall that for b ∈ L∞(∂Ω), the operator defined by pointwise
multiplication times b is bounded on L2(∂Ω). Thus, for such a function b,
bS is compact on L2

−1(∂Ω). Since any b ∈ Ln−1(∂Ω) can be approximated
by Lipschitz functions (in the Ln−1(∂Ω)-norm) the estimate (4.3) yields
the compactness of the operator bS on L2

−1(∂Ω). The case n = 3 follows

from Lemma 3.1 and the fact that 1
2
I −K∗ has index 0 on B−s,2

2 (∂Ω)
(see [8], (3.11) and (3.12) in Lemma 3.2)). �
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Lemma 4.3 The operator T has index 0 on L2(∂Ω) for n > 3. If n = 3,
then T has index 0 on L2(∂Ω) provided b ∈ Lr(∂Ω) for some r > 2.

This result was proved in [14], Corollary 2.4. Here we recall the main steps
in the proof. Clearly, bS = Tb ◦ S is compact if b ∈ L∞(∂Ω). For n > 3,
b ∈ Ln−1(∂Ω) and f ∈ L2(∂Ω), we have:

‖bS(f)‖L2(∂Ω) ≤ ‖b‖Ln−1(∂Ω)‖S(f)‖ 2(n−1)
n−3

(∂Ω)
.

A similar argument holds for n = 3 and b ∈ Lr(∂Ω) for r > 2. It follows
that bS can be approximated in the L2(∂Ω) operator norm by compact
operators. Thus, T is a compact perturbation of an operator of index 0 (see
Lemma 3.2, (i)). The proof is concluded. �

Lemma 4.4 Let 0 ≤ b ∈ Ln−1(∂Ω), b > 0 on a set of positive Surface mea-
sure. Then, if n = 3, T is invertible on Bs,2

2 (∂Ω) = L2
s(∂Ω) for −1 < s < 0.

If n > 3, the operator T is invertible on Bs,2
2 (∂Ω) = L2

s(∂Ω) for −1 ≤ s ≤ 0.

Proof. We first deal with the case n > 3. Since for f ∈ L2(∂Ω), one has

∫
Ω

|∇S(f)(X)|2dx =

∫
∂Ω

(−1

2
I +K∗)(f)(Q)S(f)(Q)dσ(Q),

it follows at once from Lemma 3.2 and Lemma 4.3 that T is invertible on
L2(∂Ω). Next, we show that T is injective on B−1,2

2 (∂Ω) = L2
−1(∂Ω). If

f ∈ L2
−1(∂Ω) and T (f) = 0, then

(−1

2
I+K∗)(f) = −bS(f) ∈ L2

0(∂Ω) =:
{
f : f ∈ L2(∂Ω) and

∫
∂Ω

fdσ = 0
}
.

Since S(f) ∈ L2(∂Ω) (see [23]), it follows from Hölder’s inequality that

for p = 2(n−1)
n+1

one has bS(f) ∈ Lp(∂Ω) ⊆ L2
−1(∂Ω). Since 1

2
I − K∗ is an

isomorphism on Lp0(∂Ω), there exists g ∈ Lp0(∂Ω) such that

(1

2
I −K∗

)
(g) =

(1

2
I −K∗

)
(f).

Let f0 ∈ L2(∂Ω) ⊆ Lp(∂Ω) be such that f0 ∈ ker(1
2
I −K∗), and

∫
∂Ω
f0 
= 0.

Then S(f0) is a non zero constant on ∂Ω. Assume f0 is normalized so that
S(f0) = 1. Since the index of 1

2
I − K∗ as an operator on L2

−1(∂Ω) is 0, it
follows that f − g = cf0. Thus, T (g) = −cb. But T is invertible on Lp(∂Ω),
so g = −cf0. Hence f = 0. It follows from Lemma 4.2 that T is invertible
on B−1,2

2 (∂Ω) for n > 3. Lemma 4.4 is now obtained for n > 3 by (complex)
interpolation.
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Concerning the case n = 3, we know from Lemma 4.2 that for −1 < s < 0
the Fredholm index of T on Bs,2

2 (∂Ω) is 0. Choosing p = 2
1−s < 2 it is easy

to see that
Lp(∂Ω) ⊆ Bs,2

2 (∂Ω).

If f ∈ Bs,2
2 (∂Ω) is in the kernel of T . it follows from Sobolev’s Embedding

Theorem that bS(f) ∈ Lp(∂Ω), as S(f) ∈ Bs+1,2
2 (∂Ω). As in the case

n > 3, this implies that T is injective, hence invertible on Bs,2
2 (∂Ω). Notice

that, as observed in [17], the invertibility results just proved yield a number
ε > 0 depending only on b and the Lipschitz character of Ω, such that T is
invertible on Lp(∂Ω) and on B−1,p

p (∂Ω) for 2− ε < p < 2+ ε. This concludes
the proof. �

In view of the functional–analytic remarks recalled in the proof of
Lemma 3.1, the operator T , (which coincides with T̂ on smooth functions)

is an isomorphism on B
−n( 1

p
−1),1

1 (∂Ω) for 1 − ε(Ω) < p < 1. Moreover, for
s > r and s− n−1

2
≥ r − (n− 1), we have the embedding (see [20])

Bs 2
2 (∂Ω) ⊆ Br,1

1 (∂Ω).

Thus, for t, ρ > 0 such that 0 < t+ ρ < 1, we have

B−t∞
∞ (∂Ω) ⊂ B−t−ρ,2

2 (∂Ω),

and T must be injective on B−t,∞
∞ (∂Ω). Since 1

2
I − K∗ has index 0 on

B−t,∞
∞ (∂Ω) for t close to 1 (Lemma 3.2), it follows that T is also invertible

on B−t,∞
∞ (∂Ω) for t close to 1.

Next, for ε > 0, let Uε denote the plane region determined (in the (s, 1
p
)-

plane) by the conditions −1 < s < 0, 0 < 1
p
< 1 and

(4.4)
1

2
− ε+

1
2
− ε

1 − ε
s <

1

p
<

1
2
− ε

1 − ε
(s+ ε) + 1.

That is, Uε is the interior of the hexagon with vertices (0, 1), (−ε, 1),
(−1, 1

2
+ ε), (−1, 0), (−1 + ε, 0) and (0, 1

2
− ε). We are now in a position to

prove our main invertibility result:

Theorem 4.5 Let Ω ∈ Rn, n ≥ 3 be a given bounded Lipschitz domain with
connected boundary ∂Ω, 0 ≤ b ∈ Ln−1(∂Ω) with b > 0 on a set of positive
Surface measure. Then there exists a positive number ε depending only on b
and the Lipschitz character of Ω such that the operator T = −1

2
I+K∗+bS is

an isomorphism on Bs,p
p (∂Ω) for (s, 1

p
) ∈ Uε. If n > 3, T is an isomorphism

on Lq(∂Ω) for 1 < q ≤ 2 + ε. The region Uε is optimal, in the sense that
given any (s, 1

p
) /∈ Uε there exists a Lipschitz domain Ωs,p such that the

associated T is not invertible in Bs,p
p (∂Ω).



196 L. Lanzani and O. Méndez

Proof. The proof follows from the invertibility results in Lemma 4.4 and
complex interpolation (see [17]). Although interpolating the invertibility of
an operator requires some care (see [6] for a counterexample), all difficulties
in the present case were overcome in [8]. It was also proved there that Uε is
sharp (in the above sense) for the invertibility of −1

2
I+K∗ on B̃s,p

p (∂Ω) in the
class of Lipschitz domains. The corresponding assertion for the invertibility
of T follows easily from there; for example, let (s, 1

p
) /∈ Uε, e.g. p ≥ 2,

−1 < s < 0. If T were an isomorphism on Bs,p
p (∂Ω) for such s and p, it would

follow that (−1
2
I +K∗) has index 0 as an operator on Bs,p

p (∂Ω) ⊆ L2
−1(∂Ω).

Since the range of −1
2
I + K∗ has codimension at least 1, it is immediate

that ker(−1
2
I + K∗) ⊆< f0 > (in the notation of Lemma 4.4) must have

dimension one, whence (−1
2
I + K∗) must map Bs,p

p (∂Ω) onto B̃s,p
p (∂Ω). In

particular, it would follow that −1
2
I + K∗ is an isomorphism on B̃s,p

p (∂Ω).
But it is well known that if (s, 1

p
) /∈ Uε, a Lipschitz domain can be found

for which (−1
2
I +K∗) is not an isomorphism on B̃p

s (∂Ω). The case p ≤ 2 is
handled similarly. �

5. The Poisson’s Problem

In this section we discuss the solution of problem (1.1). The first order of
business is to properly formulate the boundary condition, which we do in
Definition 5.1. We then obtain existence and a-priori estimates for the solu-
tion, which, in particular, grant uniqueness in the Sobolev class. Note that
we obtain a strong solution, for which we exhibit an explicit representation
as the sum of a Newtonian potential and a single layer potential.

Definition 5.1 Let 1 < p <∞, 1
p
+ 1

q
= 1, 1− 1

p
< t < 2− 1

p
, f ∈ Lp−t,0(Ω),

b ∈ Ln−1(∂Ω) (n ≥ 3) and g ∈ B
1−1/p−t,p
p (∂Ω). A function u ∈ Lp2−t(Ω) is a

solution of the boundary value problem

(5.1)




∆u = f in Ω

∂u

∂N
+ bu|∂Ω = g

if for every φ ∈ B
t−1/q, q
q (∂Ω) extended to φ̃ ∈ Lqt (Ω), one has

(5.2) 〈∇u , ∇φ〉 + 〈Tru, Trφ〉 = 〈g , Trφ〉 + 〈f , φ〉.

We observe that all pairings above make sense, on account of Lemma 2.2
and the remark thereafter, and Lemma 3.1.
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Theorem 5.2 Let Ω ⊂ Rn, n ≥ 3 denote a bounded Lipschitz domain with
connected boundary. Let 0 ≤ b ∈ Ln−1, b > 0 on a set of positive Surface
measure. Then there exists a positive number ε (depending only on b and the
Lipschitz character of Ω) such that whenever (t, 1

p
) belongs to the hexagon Vε

with vertices (0, 1),(ε, 1),(3
2
− ε, 1

2
+ ε), (2, 0), (2− ε, 0) and (1

2
+ ε, 1

2
− ε), the

problem (5.1) has a unique solution in Lp2−t(Ω) for any f and g as specified
in Definition 5.1. Letting NΩ denote the Newtonian potential (2.9), S the
single layer potential (1.7) and T the operator (3.1), the solution is given by

(5.3) u(X) = NΩ(f)(X) + ST −1(g − T (NΩ(f)))(X)

and is subject to the a priori estimate

‖u‖Lp
2−t(Ω) ≤ C

(
‖f‖Lp

−t(Ω) + ‖g‖
B

1− 1
p−t

p (∂Ω)

)
,

where C is a positive constant depending only on p, b, t and the Lipschitz
character of Ω.

Proof. It is easy to verify that (t, 1
p
) ∈ Vε if and only if (1− t− 1

p
, 1
p
) ∈ Uε,

(see (4.4)). The existence and representation statements follow then imme-
diately from Theorem 2.3, by reducing (5.1) to a homogeneous problem with

non-zero boundary data in B
1−t−1/p, p
p (∂Ω), combined with the invertibility

results in the previous section, from which a solution of the form (1.4) is
obtained. Indeed, recall that

(5.4) ∆NΩ(f) = f.

From Theorem 2.3 and Theorem 4.5, we have that

(5.5) h = T −1

(
∂NΩ

∂N
+ bTrNΩ(f)

)

is well defined as an element of B
1−t− 1

p
,p

p (∂Ω). In light of formula (1.14) and
Theorem 2.4, it is now clear that

(5.6) S
(
T −1(g) − h

)
(X).

is a solution to problem 5.1 with f = 0 and boundary datum g − T (h)
(see (1.4)). Thus, we obtain the representation 5.3. It remains to prove
uniqueness. For (t, 1

p
) ∈ Vε, let u ∈ Lp2−t(Ω) be a solution of (5.1) with

f = 0 and g = 0. Then, Tr(u) ∈ B
2−1/p−t,p
p (∂Ω). Let now w ∈ Lqt (Ω)

stand for a solution to (5.1) with f = 0 and an arbitrary boundary data

g ∈ B
1/p+t−2, q
q (∂Ω). It can be readily concluded from (5.2) that Tru ∈

ker g. Uniqueness now follows from the corresponding result for the Dirichlet
problem with boundary data in B

2−1/p−t,p
p (∂Ω) (see [11]). �
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6. The 3-dimensional Lamé System

As a further application of the functional-analytic ideas outlined in the pre-
vious chapters, we present here a version of the Poisson’s Problem for the
3-dimensional Lamé System of elastostatics. The dimensional restriction is
due to the fact that the endpoint result corresponding to F 0,2

1 is only known
for n = 3 (see [3]). In this Section, the terminology associated with the
domain Ω has the same meaning as before and 3-dimensional vector valued
functions on Ω will be denoted by boldface. To simplify the notations, we
continue to use As,qp for the space of vector-valued functions with compo-
nents in As,qp . For µ > 0 and λ > −2

3
µ (called the Lamé constants), the

Lamé operator is defined as

L := µ∆u + (λ+ µ)∇ div u.

Of particular interest in applications is the (Neumann-type) Traction bound-
ary condition, namely

∂u

∂ν
:= (λ div uN + µ[∇u + ∇tu]N),

where the superscript t indicates the usual transposition of matrices. We
state Lemma 6.1, whose proof can be obtained by slightly modifying the
arguments in Lemma 3.1 for n = 3.

Lemma 6.1 Let b ∈ L2(∂Ω) be a scalar function, 1 < p <∞ and 0 < s < 1.
Then the map Tb, defined on smooth vector fields as the pointwise product
times b (componentwise), maps B1−s,p

p (∂Ω) boundedly into B−s,p
p (∂Ω).

Next, we let g ∈ B
1− 1

p
−t,p

p (∂Ω), 1 < p < ∞, 1
p

+ 1
q

= 1 and 1
q
< t < 1 + 1

q
.

By a solution to the Poisson’s problem

(6.1)




Lu = f ∈ Lp−t,0(Ω) in Ω

∂u

∂ν
+ bu|∂Ω = g,

.

we mean a vector-valued function u ∈ Lq2−t(Ω) such that for every ψ ∈
B
t−1/q,q
q (∂Ω) extended to ψ̃ ∈ Lqt (Ω), the equality

〈f , ψ̃〉 + µ〈∇u + (∇u)t,∇ψ̃ + (∇ψ̃)t〉 + λ〈div u, div ψ̃〉 + 〈bu,ψ〉 = 〈g,ψ〉.
holds. We point out that the above expression is well defined on account
of Lemma 6.1 and (a suitable version of) Lemma 2.2. The matrix of fun-
damental solutions for the 3-dimensional system of elastostatics is given
by Γ(X) = (Γij)ij(X), X ∈ R

3 \ {0}, with

(6.2) Γij(X) =
1

8π

(
1

µ
+

1

2µ+ λ

)
δij +

1

8π

(
1

µ
− 1

2µ+ λ

)
XiXj

|X|3
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In analogy with the terminology in Section 2, we define the Elastic Potential
of a density f , NΩ(f) via the analogue of formula (2.9), where Γ stands for
the matrix with entries given by (6.2). The Elastic Potential bears mapping
properties analogous to those of the Newtonian potential in Theorem 2.3.
This can be proved by carrying out the minor obvious modifications to fit
the present setting. We also define the single, double and boundary layer
potential operators with density f respectively as

(6.3) S(f)(X) = 〈f ,Γ(X − ·)〉 , X ∈ R
3,

for f ∈ L′
(∂Ω), and, for

f : ∂Ω → C,

we let

(6.4) K(f)(P ) = p.v.

∫
∂Ω

(
∂

∂ν(Q)
Γ(P − ·)

)
f(Q) dσ(Q)

and

D(f)(X) =

∫
∂Ω

(
∂

∂ν(Q)
Γ(X − ·)

)
f(Q) dσ(Q) , X ∈ R

3 \ ∂Ω.

The corresponding boundary traces are given by

lim
X→P,X∈±γ(P )

∂

∂ν
S(f)(X) =(6.5)

= ∓1

2
f(P ) + p.v.

∫
∂Ω

(
∂

∂ν(P )
Γ(P − ·)

)t

f(Q) dσ(Q)

= ∓1

2
f(P ) +K∗(f)(P )

and

lim
X→P,X∈±γ(P )

D(f)(X)(6.6)

= ±1

2
f(P ) + p.v.

∫
∂Ω

(
∂

∂ν(Q)
Γ(P − ·)

)
f(Q) dσ(Q)

= ±1

2
f(P ) +K(f)(P ).

In (6.5) and (6.6), the conormal derivative ∂
∂ν

is applied to every column
vector of Γ. As in (1.13) and (1.14), if f ∈ Bs,p

p (∂Ω) formulas (6.5) are to
be interpreted in the trace sense.
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Furthermore, for 1 ≤ p ≤ ∞, 0 < s < 1 and density f ∈ B−s,p
p (∂Ω),

the identity (6.5) is to be interpreted in the following weak sense: for any
ψ ∈ Bs,q

q (∂Ω) extended to ψ̃ ∈ Lqs+1/q(Ω), the equality

µ〈∇u + (∇u)t,∇ψ̃ + (∇ψ̃)t〉 + λ〈div u, div ψ̃〉 = 〈(−1

2
I +K∗)f(P ),φ〉

holds.
Next we state the analogue of Theorem 2.4, namely:

Theorem 6.2 For 0 < s < 1 and 1 < p < ∞, the elastic single layer
potential

S : B−s,p
p (∂Ω) → B

1−s+ 1
p
,p

p (Ω) ∩ Lp
1−s+ 1

p
,p
(Ω)

and the elastic double layer potential

D : Bs,p
p (∂Ω) → B

s+ 1
p
,p

p (Ω) ∩ Lp
s+ 1

p

(Ω)

are bounded linear operators. Here, the intersection of two Banach spaces X
and Y is endowed with the norm

‖f‖X∩Y = max{‖f‖X , ‖f‖Y }.

Let Ψ be the (six-dimensional) vector space of R3-valued functions ψ = (ψj)j
defined on Ω and satisfying

∂iψj + ∂jψi

and for any space χ(∂Ω) of distributions on ∂Ω, let

χΨ(∂Ω) = {Λ ∈ χ(∂Ω) : 〈Λ,ψ〉 = 0 ∀ψ ∈ χ(∂Ω)}.

The following is the analogue of Lemma 3.2, with K now defined by (6.4) :

Lemma 6.3 The operator 1
2
I − K is Fredholm and has index 0 as an

operator on L2(∂Ω); on L2
1(∂Ω), and on B1−s,1

1 (∂Ω), for sufficiently small
positive s. Moreover, 1

2
I −K∗ is Fredholm and has index 0 as an operator

on F 0,2
1 (∂Ω).

Proof. It was shown in [4] that 1
2
I −K∗ (and hence 1

2
I −K) is Fredholm

and has index 0 on L2(∂Ω). The kernel of 1
2
I−K∗ as an operator on L2(∂Ω)

is precisely the space of restrictions to ∂Ω of functions in Ψ (see above),
which from now on we denote Ψ(∂Ω). Proceeding as in Lemma 3.2, one
easily concludes that

(6.7) L2(∂Ω) = Ψ(∂Ω) ⊕ range(
1

2
I −K∗) = range(

1

2
I −K) ⊕ Ψ(∂Ω).
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The argument presented in Lemma 3.2 to show the closedness of range(1
2
I–K)

(as an operator on L2
1(∂Ω)) now follows along the same lines once it is real-

ized that for a 3 × 3 matrix B and a column vector function u, we have∫
Ω

(L(Bu) −BLu) =

∫
∂Ω

(
∂B

∂ν
u− B

∂u

∂ν
)dσ.

Now the range of 1
2
I −K as an operator acting on L2

1(∂Ω) consists of those
functions in L2

1(∂Ω) whose integral against elements of Ψ(∂Ω) vanishes. This
can be proved via (6.7) and the aforementioned integration by parts. Also,
ker(1

2
I − K) is Ψ(∂Ω) = (L2

Ψ(∂Ω))⊥. Therefore, 1
2
I −K∗ is Fredholm and

has index 0 on L2
−1(∂Ω). The results in [3] allow us to show (via the methods

in Theorem 3.2) that 1
2
I −K∗ and 1

2
I −K are Fredholm and have index 0

both on F 0,2
1 (∂Ω) and on B1−s,1

1 (∂Ω) (for small positive s). By duality, and
since ker(1

2
I −K∗) = Ψ on Bs−1,∞

∞ (∂Ω) (note that Bs−1,∞
∞ (∂Ω) ⊆ L2

−1(∂Ω)
and that all functions in Ψ are smooth), it follows at once that the index of
(1

2
I−K∗) as an operator on Bs−1,∞

∞ (∂Ω) is zero, which finishes the proof. �
We recall from the H1 theory established in [3] that

S : F 0,2
1 (∂Ω) → F 1,2

1 (∂Ω)

is an isomorphism, and that if f ∈ F 0,2
1 (∂Ω), then the non-tangential maxi-

mal function M(S(f)) is in L1(∂Ω)

Theorem 6.4 Let Ω ⊂ R3 be a bounded Lipschitz domain with connected
boundary ∂Ω, b ∈ L2(∂Ω), b ≥ 0, b > 0 on a set of positive Surface measure.
There exists a positive number ε depending only on the Robin coefficient b
and Ω such that the operator T = −1

2
I +K∗ + bS is invertible on Bs,p

p (∂Ω)
when the point (s, 1

p
) lies in the interior of the hexagon Uε with vertices

(−ε, 1), (0, 1), (0, 1
2
− ε), (−1 + ε, 0), (−1, 0) and (−1, 1

2
+ ε). Moreover, the

hexagon Uε is optimal in the sense described in Theorem 4.5.

Proof. The proof goes along the same lines as in the scalar case for n = 3.
We know from Lemma 3.2 that 1

2
I −K∗ is Fredholm and has index 0 as an

operator on Bs,2
2 (∂Ω) for −1 ≤ s ≤ 0. Using Lemma 6.1 we conclude that

for b ∈ L2(∂Ω), 1 < p <∞ and 0 < s < 1, the operator

bS : Bs−1,p
p (∂Ω) → Bs−1,p

p (∂Ω)

is compact. Next, we observe that for −1 < s < 0, L2(∂Ω) ⊆ Bs,2
2 (∂Ω) ⊆

B−1,2
2 (∂Ω); an argument similar to the proof of Lemma 4.4 shows now that

as an operator on Bs,2
2 (∂Ω), kerT = {0}. Hence, T is an isomorphism on

Bs,2
2 (∂Ω) for −1 < s < 0. Writing

u(X) = S(f)(X)
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for f ∈ F 0,2
1 (∂Ω), the identity (see [4])

(6.8)

∫
∂Ω

u
∂u

∂ν
dσ =

∫
Ω

(
λ(div u)2 +

µ

2
|∇u + (∇u)t|2

)
dX

(which is proved via integration by parts) allows then to proceed along the
same lines as in Lemma 4.1 and obtain that −1

2
I + K∗ + bS is invertible

on F 0,2
1 (∂Ω). Proceeding now as in the remarks following the proof of

Lemma 4.4, one concludes that for small positive s, the operators

T : B−s,1
1 (∂Ω) → B−s,1

1 (∂Ω)

and
T : Bs−1,∞

∞ (∂Ω) → Bs−1,∞
∞ (∂Ω)

are isomorphisms. The counterexamples presented in [17] in conjunction
with an argument similar to the one presented in the proof of Theorem 4.5
yield the optimality claim. �

To conclude, we observe that as in Section 5, Theorem 6.4 yields:

Theorem 6.5 Let Ω ⊂ R3 denote a bounded Lipschitz domain with con-
nected boundary, b as in Theorem 6.4. Then there exists a positive number ε,
which depends only on b and the Lipschitz character of Ω such that whenever
(t, 1

p
) belongs to the hexagon Vε described in Theorem 5.2, Problem (1.2) has

a unique solution u(X) in Lp2−t(Ω), which is given by

u(x) = NΩ(f)(X) + ST −1(g − T (NΩ)(f))(X),

and is subject to the following a priori estimate:

‖u‖Lp
2−t(Ω) ≤ C

(
‖f‖Lp

−t(Ω) + ‖g‖
B

1− 1
p−t,p

p (∂Ω)

)
.

Here, C is a positive constant, which depends only on p, b, t and the Lipschitz
character of Ω.
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