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SAK Principle for a class

of Grushin-type operators

Lidia Maniccia and Marco Mughetti

Abstract
We prove Fefferman’s SAK Principle for a class of hypoelliptic
operators on R? whose nonnegative symbol vanishes anisotropically
on the characteristic manifold.

1. Introduction

In his celebrated paper [5], Fefferman suggests a strategy to get a priori
estimates (SAK principle). Suppose that one wants to know whether a
given estimate of the form

(1.1) Cllq“ullo < ||L*u||o + “small error terms”, Vu € S(R"),

holds for given symbols L,q € S?*(R"). Here S™(R"), m € R, is the set
of “global symbols” a(x,£) satisfying |8§‘8§a(m,§)| < Cup(1+ €)™ 18l for
all (z,€) € R* and all a,8 € Z7, and a* denotes the Weyl quantization
of a (see [10]). Fefferman’s idea is to obtain (1.1) by a comparison of the
symbols L and g. This is in analogy to the Fefferman-Phong inequality

proved in [4]:
S2(R™) 3 a > 0= (a“u, u)r: > —C|ull3, VueSRY).
Hérau proved (1.1) for n = 1 assuming that L(z,£) > 0 and |g(x,&)| <

L(z,§) for every (z,€) € R? (see [8]). Actually, Fefferman conjectured
that (1.1) holds under a weaker assumption, namely

(1.2) H}%ﬂ@l(%f” <c r%ele(%f),

where { B, } ,en is a suitable “partition” of the phase space R” xR¢ associated
with L(z,£).
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In this paper, we prove this result in the case n = 2 and L being the
Grushin operator with symbol

(1'3) L(%f) = 512 +x%h§§, (95,5) = (951,952,51,52) € R47 heZ,.

Similar arguments work in higher dimension for polynomial symbols having
the same kind of anisotropic vanishing. More precisely, if x = (2/,2") €
R* x R"# (accordingly & = (£,£")), one can consider operators having
real homogeneous polynomial symbols that near the characteristic mani-
fold, {(z,€) = (2/,2",£,£") € R*" : 2/ = ¢ = 0}, behave like [£|?(|2/|*" +
1€'12/|€]?). The required adjustments to treat these cases can be easily de-
duced and are here omitted. It is worthwhile to observe that the Grushin
operator in R? is “meaningful” in view of reduction theorems given in [5].

Before stating the precise result, let us observe that the weaker assump-
tion (1.2) on the symbols has, in general, non trivial consequences. For
example, considering real vector fields X; with Weyl symbols p;, a pointwise
comparison of the symbols yields

1X2ullo < OIS X2ullo + flulle).-
J

In fact, we have o“(X?) = p? + i{pe,pr}/2 + S* = p2 + S, pi(z,&) <
> p?(x, €). The full SAK Principle would even imply that

1X; Xullo < C(1D_ XFullo + [[ulle)
J
since the symbol of X; Xy is p;pr + i{pj, pr}/2 + S° and it satisfies (1.2) for
suitable rectangles By,. In fact, [p;pg| < ¢}, p; but a pointwise comparison
of {pj,pr} by the symbol of 3 X7 is in general not possible as one easily

checks in our case p; = & and p, = 2&,.

Some preliminary facts are needed in order to state the main Theorem of
this paper. From (1.3), it is easily seen that L(x,&) > 0 with characteristic
manifold given by

(1.4) U= {(z1,22,6,8) ER 1wy =& =0, & # 0}
Definition 1.1 Let R > 0 be a suitable large fized constant and consider,

for (z,€) € RY,
2h 2 R2h/(h+1) 1/2
DZ<$7£) = < l 2 + 51 + >
oy " R feR e ey
We then define, for every (x,€), (y,n) € R, the Hormander metric

Cove(ym) = — ul
@OV =D (@, &2 (R2 + [€]2) Ds(z, &)
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We want to point out that the metric G here considered is obtained by
slightly modifying the metric used in [12] for the parametrix construction.
As a consequence, the Weyl calculus defined by G is strictly related with
Boutet de Monvel’s calculus (see [3]). It is worth to observe that, near the
characteristic manifold >, the metric G is equivalent to a metric defined only
through the symbol L, namely

lyl? Ul
Cle0 001 = Ty (L ) + @I L @)+ @70

for (z,€), (y,m) € R In the following Theorem, we denote by cgy the
positive constant related to the slowly varying property of the metric G in
Definition 1.1:

1

(15) GX(Y — X) < cgy - Cvay<Z) < G)((Z> < Gy(Z),

VXY, Z € R* x R?.

Theorem 1.2 Let ¢ € S*(R?) and suppose that there exists a constant 0 <
r < csy and a covering {B(, . \(r)}jen of R2 x R such that

(1.6) Jnax lq < ¢ max L, VjeN,
(xj,Ej)(T) B(ijgj) T

where
B(Cﬂijvﬁj)(r) ={(y,n) € R* G(rjvﬁj)(y —x5,n—§) < 7“2}
and c is a constant independent of 7 € N.

Then, for every compact set K C R2, there exists a positive constant
C = C(K) such that

(1.7) 1Lz, D)ullg + [ulls = Cllg“ulls, Vu € C5°(K).

Note that one cannot expect to have (1.7) uniformly for all u in S(R?),
since L is not globally bounded in R*.

It is worth pointing out that the decomposition of the phase space T*R?
by means of the balls ng’éj)(r) given above is different from the one pro-
posed by Fefferman in [6]. This shows that there is no a-priori uniqueness
in the choice of the “good” partition of T*R"™. A very difficult problem is
to understand what a “natural” definition of ball associated with a second
order pseudodifferential operator is. This problem is studied in [13], where
a sharp definition of subunit ball for non-negative symbols of subelliptic
operators is discussed.
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The paper is organized as follows. In Section 2 we show that Theorem 1.2
can be “microlocalized” to Theorem 2.4 below and we develop some tools
needed in Section 3 for the proof of Theorem 2.4. In the Appendix some
technical results required throughout the paper are proved.

Acknowledgements. We thank A. Parmeggiani for introducing us to this
argument and for the constant support.

2. First and second level microlocalizations

Definition 2.1 Let K C R? be an arbitrary fived compact set and let x
be a function in C3°(R?) such that x = 1 on a neighborhood of K and
0 < x(z) < 1. Define

z3h

P, = €+ @)t + (1= x(0) ] €

The symbol p is an extension of the Grushin operator outside the compact
set K, whose properties are stated in the lemma below.

Lemma 2.2 The following properties hold:
1) p € S*(R?);

2) p(x,€) 20, V(z,&) € RY x (R \ {0}), and p(x,§) =0 iff (z,£) € X;

3) for every constant C > 0 and for every (closed) rectangle Q C R* such
that T1,(Q) C {(z1,22) € R? : |z1| < C} (here 11, is the projection
(z,€) € R~ x € R? ) one has

mgx p(z,§) ~ mgx L(z,¢) uniformly in Q,

with L defined by (1.3);

4) if g € S*(R?) is such that
(2.1) lp*ullg + llullg = cllg“ull,  Vu € S(R?)
for some positive constant c, then estimate (1.7 ) holds.

The previous lemma reduces the proof of Theorem 1.2 to the proof, under
the same assumptions, of (2.1). We further want to give a microlocal version
of (2.1). In order to do this we need to introduce a partition of R* in suitable
rectangles having sides parallel to the coordinate axes.

For any d > 0 and for any § = (71,%2) € R?, denote by I;(j) the
rectangle I;(7) = {y € R? : |y; — 5| < d/(2v2), i = 1,2} (d is referred
to as the diameter of I4(7)), and consider a partition {Q}},en of R* with
Q= ©Ii(x,) x Ing, (§,), such that
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o for every (z,§) € Q,, one has
(2.2) 27 R+ [€]) < M, < 273(R+ [€]);
. éiﬁ@iﬂ, = () for each pu # ' (éb is the interior of Q) and U Qlli =R%.
peN
Remark 2.3 For every (z,§) € 2Q,, one has'
1T H R+ [E]) < M, < TR+ [£]).
Denoting by (x,,,€,) the center of Q,, one has in fact

(R+ 1)) < (R+1€u]) + 16 — &l < (1 +29)M,
and
M, < 27(R+[€]) + 27016 — & <27 (R+ [€]) +27° M.
As a consequence, one gets M, ~ M, whenever 2@}1 N QQi, £ .

Remark 2.3 allows us to apply Proposition A.2, so that the metric

2
/r] [¢]

(23) o) =l + 1 (@6 € G

n

can be extended to a Hormander metric g’. As a consequence of Theo-
rem A.5 and of Lemma 2.2 we can finally reduce the proof of Theorem 1.2
to the proof of the following theorem which can be considered as its microlo-
cal version.

Theorem 2.4 With the same hypotheses of Theorem 1.2, let {1, }en,
{@u}uen be the partition of unity associated with the covering {Q,} en in
the sense of Proposition A.4. Then?

(24) [[(pv)"epulls 2 Iavn) epullg—(rpu, w)zz, V€N, Vu € S(R?),

with p as in Definition 2.1 and Zrﬁ’ € L(L*(R?), L*(R?)).
neN

In what follows, given a rectangle @ in R* and k € R, we denote by kQ the dilated
of @ by the factor k keeping its center fixed

2From now on, for two non negative functions f, g on R™ we write f < g (resp., f = g)
when there exists a constant ¢ > 0 such that f(z,£) < c g(z, &) (resp., f(z,&) > ¢ g(x,§)).
We simply write f ~ g when f < g and f 2 g. For function families {f}r, {gx}r and
{hi} we write fr < gr (resp., fr = gr) whenever the constants in the inequalities don’t
depend on k; fi 2 gr — hi whenever fi, + hy 2 g.
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The proof of Theorem 2.4 requires a second microlocalization. Let {Q},}uen
be the partition of R* just described, we refer to the QL as “rectangles of first
generation”. Among them, we retain those that satisfy one of the following
conditions:

cither there exists (z,€) € @}, such that 1 < 2[R/(R + |¢])]"/" D
or p(z,€) > 0 for every (z,€) € 4Q,.

If both these conditions fail we divide @}, into 22(h+1) subrectangles Qn
(rectangles of second generation) by partitioning I;(x,) into four congru-
ent rectangles and Iy, (&) into 4" congruent rectangles. We denote by
diam,Q?,, diam¢Q?, respectively their z-diameter and {-diameter, and re-
tain those satisfying one of the following conditions, for j = 2,

Rl/ (h+1)
“ = R+ Do

(2.6) p(z,€) >0, V(z,§) € 4@;,.

(2.5) A(z,§) € QJ, such that diam,Q’,

We again divide the rectangles that were not retained into 22(**1) subrect-

angles, Qi,, as described above and retain those satisfying one of condi-
tions (2.5), (2.6) for j = 3. We continue this process and after a finite
number of steps (because of the condition (2.5)) we obtain a partition of R?.

Lemma 2.5 Let Q{L be a rectangle, either retained or not, of the j-th gen-
eration, we then have

(27) 274 R+|¢)) (diam,Q))" < diameQ), < 273(R + |¢]) (diam, Q)"
V(z,&) € Q), and
(28) 22U RN <R+ <2ARTED. (5.6, (5) € 4Q0.
Proof. When j =1, (2.7) is trivial. When 7 > 2, since

diamei = (1/2)diameifl and diamgQi = (1/2h)diam§Qf[1,

(2.7) follows by induction.

Consider now (z,§) € 4Q', j > 1. From (2.7), taking into account
that diam,@?, < 1, it follows, on denoting by (Z, €) the center of QJ,, that
€ — €| < 2d1am5Q] <2 (R—I— €]). Thus

R+§) < R+l +16— € <5/4R+¢l) and R+ €] > 3/4(R+[¢]).

This concludes the proof. [
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Definition 2.6 Let {Q,} (1 € N, v =1,...,N(u)) be the partition of R*
obtained by means of conditions (2.5) and (2.6). The first index, u, indicates
the rectangle of the first generation Qi whose decomposition gives Q. We
denote by (T, &) the center of Quu, by 6., and €, respectively its x-
diameter and the -diameter and, finally, we write hy, = (8,,€,u,) 7" .

The following propositions describe the basic properties of the partition.

Proposition 2.7 If (z,¢) € Q,., then

(2.9) 2R+ €8], < € < 273(R+ [E)0L,;
RY/(h+1)
(2.11) 2R+ €))7 0,0 " < by <2YRA+(E))716,0 " < 16/R.
Moreover, if Q) is retained by virtue of (2.5) one has
(2.12) 227PRT < Dy
RU/(+D)

(213) 5MV < 2(h+2)/(h+1)

w8 €40

Proof. Inequality (2.9) is simply (2.7) written in this case. Inequality (2.10)
is trivial if 0, = 1. If @, is obtained by dividing some Qfﬁ this means, in
particular, that Qfl does not satisfy (2.5). Hence, taking into account that
20, = diam,QJ, one proves (2.10) also in this case. Inequality (2.11) is
obtained by multiplying (2.9) by ¢,, and by using (2.10).
Let us suppose now that @), is retained because of (2.5). From (2.11)
we get (2.12). Finally, (2.13) is deduced from (2.5) and (2.8). |
Same arguments used in Proposition 1.4 of [7] prove the following Propo-
sition.
Proposition 2.8 If 2Q,, N 2Q, # 0 then
(2.14) 2785 < 0y <296, 27O, <6, <2603

In view of the results above we can apply Proposition A.2 and obtain
that the metric

(215) g(laf,f)(:% 77) = 5/;3|y|2 + €;3|77|2> (ZIZ’, 6) € Q;W

can be extended to a Hormander metric ¢’ with Planck function h;; given by

hU(cT,f) = h,uw (.T,f) € Qc;w-
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Remark 2.9
1) If Q. is obtained by partitioning a cube Qi of generation 7 > 1, then
one has 4Qﬂ N # 0 and it easily follows

’51’ S 22+h6uu7 ‘33'1‘ S 235#1/7 v(£17£27£1752) € 2Quy'
2) If Q. is retained by means of (2.6) then
)

2 or >€“—V, V(x1,29,&1,&) € 2Q 1.

NG |€1] NG (71, 22,&1,&2) € 2Q,

In fact, if by contradiction we suppose that there exists (Z1, T2, &1,&) € 2Qu
such that |T,| < 6,,/vV2 and |&| < €.,/V/2, this implies (0,%2,0,&) €
4Q,, N X, In particular, if Q. is retained by means of (2.6) then p(z, &) +
R* Z e, for every (z,€) € 2Quu,.

It is also convenient to compare the metric g’/ with the metric G of Defini-
tion 1.1.

either |zq| >

Lemma 2.10 For every p € N and v =1,...,N(u) the following relations
hold

Ds(,6) ~ 0y, (B + €)Y Ds(2.€) ~ ey ¥(2.6) € Q.

Proof. By (2.9) it is enough to prove only one of the relations.

If Q. is obtained by partition from a rectangle Qfﬁ of generation 7 > 1
then, by Remark 2.9, (2.9) and (2.10), Dg(x,§) < 6, on that rectangle.
If it is a first generation rectangle the same holds because of ¢,, = 1 and
Dy, (ZL‘, f) S L.

The inequality 6", < Dx(z, &) follows from (2.13) when @, is retained

Hy o

by means of (2.5) and by Remark 2.9 and (2.9) in the other case. |

As an immediate consequence of Lemma 2.10 and of Remark A.1 we
get that G is equivalent to g’/. Moreover, since the radius r of the balls
B(ijéj)(r) ={(y,n) € R : Gu, ¢, (y—1;,n—&;) < r?} satisfies the condition
r < csy (see (1.5)), Lemma 2.10 allows us to compare these balls with the
rectangles Q..

Corollary 2.11
1) The metric G of Definition 1.1 is equivalent to the metric g'l.

2) There exists a positive constant k, independent of p,v, such that

Quw S |J BE (1) CkQu, YueNv=1_. N(u),

jGJ;u/

where J,, = {j € N: B((:;cj,gj)(r) NQu # 0}.
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Definition 2.12 For every p € N we define

R 1/(h+1)
2.1 _ (—) .
( 6) p# 24M,LL

Note that from (2.2) and (2.10) one has

RV/(h+1)
= (Rt gD

(2.17)  py <O, (,§) € Qu, pEN, v=1,...,N(u).

Proposition 2.13 Let p € S*(R?) be the symbol defined in Definition 2.1
and {,} ., {¢u}u be the partition of unity associated to the covering {Q/ﬂ}
in the sense of Proposition A.4 then pipwu € S(hl_lz, gl uniformly in p.

Proof. Let us recall that, by construction, supp v, C 2QL and
1050 V(2. €)1 S MV Vo, B € Z3.

We have to evaluate the seminorms of pipwu only on rectangles @),/,» such
that Q. N 2@; # (0. Hence, by Remark 2.3, M,, ~ M, and p,, ~ p,s. Thus

~18] 5~lal+(hll+lal) <

-6 B
‘agagw#(x7€)’ S MH" | < EH v U plv H‘I/"(Sp, ‘y"? ('T7€) S QH/,I/-

We now have to show that
(2.18) 020 (pip) (2. )| S €0y, (2.6) € Q.
Note that, for (z,¢) € Qv and |a| + 3| > 2h,
oo 2—|8| —h \2—|B)| 52 2—|B] 52—|al
10200 () (2, )| < Pl My < (eub ) > 5%, S e o .

If @,/ is a retained rectangle of first generation, it must be d,/,» = 1
and €,y = M, so that on ),s,» one gets

pup<x 5) S p,uMi ~ 6}1 V/EZV

If @, is obtained by partition from Q*L,, Remark 2.9 and (2.9) give, for
every (x7€> < 2@;1’1/’7

(219) ‘ (fﬂ 5)’N MV’+5/LV’(R+’§D ~ MV"

and this means that estimate (2.18) holds with |«|+ |#| = 0. The remaining
cases in (2.18) are recovered by interpolation. Finally, by using the Leibniz
Formula we complete the proof. [ |
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Proposition 2.14 If ¢ € S%(R?) satisfies hypotheses of Theorem 2.4 then,
with the same notation of Proposition 2.13, plqi, € S(hi2, ") uniformly

m .

Proof. Since ¢ € S*(R?), the same arguments used in the proof of Propo-
sition 2.13 show that, when || + | 5] is large enough,

(2.20) 1020 (P2q0,) (. &) S €180 1 (2,€) € Q.

Thus, it is enough to prove the estimate for |a| + || = 0 to complete the
proof as we did before. If ),/ is a retained rectangle of first generation, we
have 0,/ = 1 and €,,,, = M, so that, on Q./,

P,A(q?ﬂu)(m 5)’ S pu’Mi ~ 5u I/’eill

Assume now that ).,/ is obtained by partitioning some Qi, and denote
by B; the ball

B(x] () ={(y,n) € R*: Gay ) (y — zj,m — &) < 1?}
with 7 € N. By Corollary 2.11 and by (1.6) we get

max |¢| < sup (max|g|) < sup (maxL) < max L,
QWH S (max]ql) 5 JEJW( ax L) 3 fhax

with Jy = {j € N: B; N Qs # 0}. Therefore the proof is complete if we
show that

max L < /.
kQM/V/ M v

To this purpose, denote by (Z1, T2, &1, &) € R* the center of kQ,,,. From 1)
of Remark 2.9 it follows, for every (z1,z2,&, &) € kQuw,

21| < (@1 |+ =71 ] < (2°4+k)0u and (6] < 6]+ & ] < (25T k) e
Moreover, by virtue of (2.9),

&P < (RP+¢P) <216 - +2(R*+ |E|2)
2

2
€
< 2k%e,, +2° 5*;,; (2k* + 29)

— Y
o 52h

whence, for every (z,&) € kQ,s./, one gets

L(x,¢) 251 +x1 52 S ;2“/
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3. Proof of Theorem 2.4

The proof of Theorem 2.4 requires some preliminary results whose aim is to
microlocalize estimate (2.4) on the rectangles @), we constructed. The first
step is a subelliptic estimate for p* that we exploit in the sequel.

Theorem 3.1 Let p € S?(R?) be the symbol introduced in Definition 2.1
and let {p,}uen, {¥u}uen the partition of unity associated to the covering
{Q,ﬂ} in the sense of Proposition A.j. Let us consider a bounded family

{dutuen in S(1,9") with ¢, =1 on (9/8)Q,, and supp ¢, € (5/4)Q,,. Then
the following estimates hold

B1) ) epulls 2 My WD lgrall§ = 11 = ) (Mo ull
— 11 = @) (Mg )ulls — llepulls, v e S(R?).
Proof. Let us denote by U; the set of u € N such that the center

(ml,m T2, 115 gl,ua 52,u) = (xu: gu)

of @, satisfies the following condition: either |z1,| > 2 or [&,] > 2(&,].
By U, we denote the set N\ U;. The following relations hold for every
(z,€) €20,

(3.2) I > 0 such that p(z,§) + R* > M7, V€ Us;
(3.3) 312 > 0 such that p(z, &) + R* > 1(&§ + 2" M7), Vu e U,

The ellipticity property (3.2) gives

(34) ) epulls 2 Mulleyulls — 111 = v)" Miepullg — lepulls,

u € S(R?), Vu € U;. We now prove

(3:5) 1) eprully 2 M/ " lliulld — 11 = ¢,)" Magpulls — lepulls,

u € S(R?), Vu € Us. Note that in view of (3.3), for u € U, one has
P+ R = (p+ R+ (1= ) B 2 (& + 21" M),

and that py, + R* — 7,(&F + 2" M), € S(h;z,gl). This allows an appli-
cation of the Fefferman-Phong inequality (see [10, Lemma 18.6.10]). Tak-

ing into account that the lowest eigenvalue of the anharmonic oscillator
D2 + M2zt is A ~ MY we get for every u € S(R?)

(3.6)  |l(pvou) duull§ 2 My gul|3
— (& + M2 (1 = 9,)) “orulls — lovull.
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In order to estimate the term ||((¢7 + M223")(1 — 1,)) " ¢%ul|3, let us now
consider the Hérmander metric G, defined by

G (ysn) = v + nf (z,€) € R

S (z —x,)? M3+|§_5u|27 ’
Note that G, ~ ¢" on 2Q,,. Moreover & +21"M? € S(m,G,,), with (admis-
sible) weight m(x ) = (x )M (M2 46—, ) and 1—1,, ¢, € S(1,G,)
with seminorms independent of . Thus (£ +M?23")(1—v,)t ¢, € S(1,G,)
(if a € S(my,g) and b € S(ma,g), afb € S(mlmg,g) denotes the sym-
bol of the composition a*b*) with seminorms not depending on u. Hence,
from (3.6), we get

1) by eiully 2 o en My " Dull§ — [lepullg
2 MY gl = M TN = g epulls = llepull,

for u € S(R?). From this the conclusion follows once we observe that

sl < 1w el (5 oo siep | v e s

with py, /M2 € S(1,¢'") uniformly in g. The proof of the theorem readily
follows from (3.4) and (3.5). |

Theorem 3.1 is used to prove the following Proposition.

Proposition 3.2 Let p and q be as in Theorem 2.4. Then estimate (2.4)
holds provided one has

(3.7) 1(opp) ullg 2 1(phaws) ulls — ullg — (rjpyu, w)re
Vu € S(R?), Vu € N, where Zp“"‘@ﬁ rv ol € L(LP(R?), L*(R?)).
neN

Proof. We divide all terms in (3.7) by p; and write ¢u instead of wu.
From (2.16) we then have

I(pwn) epulls 2 avn) eyully = My T D llopully — (o ey epu, ure,

Vu € S(R?). The conclusion follows by applying estimate (3.1) to control the

term Mﬁ/(hH)Hap;qu% and by using (A.13) and Proposition A.9 to control
the remainder terms. |

Until now we reduced the proof of Theorem 2.4 to the proof of (3.7). We
now want to reduce the proof of (3.7) to the proof of suitable inequalities
on the rectangles of the partition {@),,} constructed in Section 2.
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Definition 3.3 Let fi be a fized arbitrary index in N. If {Qu }pen =1, .N(u)
1s the partition constructed in Section 2, we define

1) Iy = {(n0) - £ Qu 12Qs £ 0},

2) I = {(n,v) € I satisfying (2.6)};

3) I = I\ I = {(i,v) € I satisfying only(2.5)}.
Note that I¢ N I3 =0 and that I5 U T3 = I

Remark 3.4 One has p; ~ p, S 0 for every pv such that (p,v) € I.

~Y

In fact, from (13/8)Qu, N2Qx # 0 it follows 2Q), N 2Q; # O which in turn,
by Remark 2.3, gives M, ~ My. The conclusion then follows by (2.16)
and (2.17).

The next proposition clarifies the meaning of Definition 3.3. We, in fact, see
that I; describes the set of the indices that “count” when one microlocal-
izes (3.7) with u = 1 on the rectangles of the partition {Q,. }.

Proposition 3.5 Let p and q be as in Theorem 2.4. Then, for i € N, the
estimate

(3:8) [(papva) ullg 2 (oaavn) ullg — lullg — (riau, w)iz, VYu€ S(R?)

with Y en pi i y0l € L(L2(R?), L*(R?)) holds if both the following es-
timates hold:

e for any pv such that (p,v) € I and for every u € S(R?)
(3:9)  l(op pto)“epulls 2 1 (Phavpt) wpulls — lejulls
— 7 (1 = ¥a)tw) e ulls — llpfen (1 = ) epull.

o for any pv such that (u,v) € I and for every u € S(R?)

(3.10) 1(Papptn) epmulle 2 1(Phavatm) ey ulls = llep,ull:

Proof. By adding (3.9) to (3.10) and by using Theorem A.5, we see that it
suffices to prove the following relations:

(311 > Phavatu) ehulld 2 (g "ullg — ullf,  Vu € S(R);
(mv)Elpn
(312) > lpken, (1 =) obulls < llullg,  Vu € S(R?);

(mv)EIf
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and

(313) D 19} € (W (1 — 1)) b ully S (RMEYYPHD[(1 = ) ull3
(mv)Elf
+[|o2 (0 + B = ) "ullg + [[ull},  Yu € S(R?).

Relations (3.11) and (3.12) are an immediate consequence of (A.14) and
Proposition A.9. We proceed to prove (3.13). We first observe that

(3.14)
Z ||pp, % wwf (ip,u,l/uHO ~ Z ||p/4 uy(pp,y ww/(l_wﬂ))wu“g
(v)Elf (nv)€EIS
2
+ Z H |:10y, y,l/ wl“/(l - ¢H)) SOEJV]UHO
(mv)€elf

We now want to estimate the terms in the right hand side of (3.14). As
concerns the first one, we can apply Proposition A.9 (in view of Remark 3.4)
and get

Z pr W%w(wm/( _¢ )) U’H Z pr yygopl/(l_l/}ﬁ)wuug—i_ ||U’H3

(nw)elg (mv)€el

Moreover, piey, S (R/Mg)Y PO MG < (RMM)*/ "D then, applying (A.13),

1

Y loheep (L =) ulls S (RMEYY V(1 = ) ullg.

(wv)EIy
Thus
(3.15) Y lloren, e (W (1=tbp)) ully S (RME)M O (1)l 5+ |3
(mv)Elf

As for the second term in the right hand side of (3.14), we show that

2

~Y

0

316) Y ||l — v ¢

(wv)Elf

S (P2 + B =) "w)  + Ilul

Note that the family {©,,} is bounded in S(1,¢'’) and that the family
of posmve functions {pZe W@b,w( — 1py)} is bounded in S(h;7,g'!) with

Supp @y € (9/8)Qpu and supp preg, v (1 =) € (13/8)Qu € (T/4) Q-
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Thus (A.25) applies yielding

2
G170 ||t W =) ||
(wv)Ely
S Y (v vn = v vpnu) |+ lulf
(M,I/)EIE
Moreover, from (A.24) it follows
(318) Z w v pu ,W@b;w( - ,l7b ))w ZLUV =
(wv)Ely

= (X whed—v) +rh

(p,v) 6]6

with 7%, € L(L*(R?), L*(R?)) having norm bounded uniformly in fi. Let us
now define J; = {y/ € N : 3(p,v) € I, (13/8)Qu N (9/8)Q, # 0} and
observe that, since supp w?’ C (13/8)Q,., we have

(319) Z w,uyp,u uv 1_¢# Z w,uyp,u /,LI/ - 1%)( Z gpi’)
(wv)€Elf ()€l WeJn

From Remark 2.9 one has, for (u,v) € I,

,u,upp, ,u,l/(1 - wli) S pu(p+ R2)(1 - ¢M)
Hence by the finite overlapping properties and (3.19)
Z ¢3upu ;w 1 - w# Z p;zi(p + R2)(1 - qﬁﬂ)@i’
(mv)elg wedp

We can now apply the Fefferman-Phong inequality in the class S (hH g7
and get

(3200 (Y vheted,(1—v) wu) S

(wv)EIf
(X ehpbp+ B =) "w) + lulf
wedn
Finally, since (again by finite overlapping)
> b+ B =) S php + R)(1— ),
wedn

we can again apply the Fefferman-Phong inequality in the class S(h;?, g7)
and obtain the inequality (3.16) by (3.17), (3.18) and (3.20). An application
of (3.15) and (3.16) to (3.14) completes the proof. |
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Proof of Theorem 2.4. We use Propositions 3.2 and 3.5 and reduce the
proof of Theorem 2.4 to the proof of estimates (3.9) and (3.10).

In order to prove (3.9), let us first observe that, for every (u,v) € I, the
following inequality holds for u € S(R?)

(321) (02 0+ Bt + (L= b )piel,) ") >

2

> — (e, (w1 = ) “w)  + g2 ulld = Cllul.
If, in fact, we consider the family of constant metrics

> | Inl?
9wy, n) = 02, + o

,u,y

by (2.17), Proposition 2.13 and Remark 3.4 one has, for every (u,v) € I,
that

P%(PﬂLRQWn%mL(1—%1/)P,2;€ZW pfieiu and pM uuw,uu( w ) € S<h :guzx)

with seminorms independent of u, v, fi.
Moreover, from Remark 2.9 it follows that

p/%(p + Rz)%iww/ + (1 - w/“’)p;zie;zuz 2 p/QZE/u/ pueul/wll«l/(l - wﬂ)

Thus (3.21) follows by the Fefferman-Phong inequality.
If we observe that R*p2t51,,is in S(1, g,,) with seminorms independent
of fi, pu, v, we then get

(3:22) [(prptbuw) " ulls = €pppllulls — Cllully — llonen, (1 = va)tw) ullg
||pu ,LLI/(l - wHV> uHO? ( ) S IE’ Vu € S<]R2>

Proceeding as in the proof of Proposition 2.14 we also have
0 a0t € S(hifs g™
uniformly in i, pu, v and this yields
(3:23)  llpp(avatw) ulls S urpllulls,  V(u,v) € If, Yu € S(R?).

Finally, from (3.22) and (3.23), (3.9) readily follows.

For what concerns estimate (3.10), note that by (2.11) and (2.12) we
have 0,,€,, ~ 1 when (u,v) € I3, Hence (3.10) follows by L*-continuity and
this concludes the proof. [ |
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A. Appendix

Let us fix a sequence {(zx,&)}ren of points in the phase space T*R"™ ~
R} x RZ and two sequences {0k }ren, {€x }ren of real positive numbers. We
denote by Bj the rectangles defined by

(A.1)

XTI T (Sk €L .
By ={(z,§) € T"R" | |zj — x| < 5/ €5 — &kjl < SN 1,...,n}
and assume that { By }ren is a partition of T*R", i.e.

UBk:T*R" and ékﬂék,:(]) for every k, k' € N, k £ K.

keN

Consider the functions 0, € : Ri x Rf — R, defined by

0z, &) =0y, €(z,8) =¢ where v = min {k € N: (z,¢) € By}

and notice that 0(z,&) = O, €(x, &) = €, when (z,€) € ék

Remark A.1 If the partition is such that 0 ~ 0 and €, ~ € whenever
2B, N 2By # 0 then

(QT,S) € Bk = 5($a§) ~ 5k:7 6(1‘,5) ~ €k.

For any (z,£) € R? x R¢, we consider a positive definite quadratic form g, ¢)
of (t,7) € R* as follows

[t]? ks

(A.Q) 9(z,€) (tv T) = 5(x’ 5)2 e(x, 5)2

It is important to point out that the Riemannian metric g : (z,£) — g(u.¢)
is not, in general, continuous on the boundary of each By, but that causes
no problem as shown in [14].

In this setting, for any (z,£) € R} x Rf the dual metric g% of g (with
respect to the canonical symplectic form o on T*R™) is given by

9oy (t,7) = (@, &)t + 6(, )*I7]%,  V(t,T) € R™,
while the Planck function hy : T*R™ — R, is given by
he(2,8) = 0(z, &) e(a, )7

The following proposition establishes sufficient conditions under which g is
a Weyl-Hormander metric.
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Proposition A.2 Fix a positive integer h and a real positive number R > 1.
Suppose that, for the partition {By}ren defined in (A.1), the following con-
ditions hold:

(A.4) RYUED(R 4 [¢]) 70D <6 < 1, Y(x,€) € By;
(A5) [f 2B, N 2By, 7& ) = Op ~ O and €, ~ €.

Then g defined by (A.2) is a Weyl-Hérmander metric provided R is chosen
large enough, i.e. g is slowly varying and o-temperate (see [9]). More-
over, (A.5) determines an a priori bounded number K = K(n) of overlap-
pings among the rectangles 2By. Namely, one has |J| < K for every k € N,
where

Jk:{]{?/GN : QBk/ﬁsz#(z)}

and |Jg| denotes its cardinality.
Proof. We start off by proving that ¢ is a slowly varying metric. Suppose
that gy (r — vy, & —n) < 1/(4n) with (z,€) € By. Then (z,§) € 2B, with

v =min{w € N: (y,n) € B,}. This gives, in view of Remark A.1 and (A.5),
the existence of positive constants c;, ¢y such that

196 (6 T) < gy, 7) < g@e(t, 1), V(t,T) € R?",

for such (z,&). Hence, g is slowly varying.

From (A.3) and (A.4) it follows, if R is chosen large enough, h,(z,§) < 1
for any (z, &) € R*, whence g(,.¢)(t,7) < 93¢y (t, 7). It remains to show that
there exist a positive constant ¢ and a positive integer () for which

o Q
(A6) 9(z,8) (tv T) < CY(ym) (tv T)(l + g(x,f) (y — &, = é-)) )

whenever (z,€),(y,n) € R*. Actually we prove the following equivalent
inequality

o o o h+1
(A7) g(y,n) (t7 T) < Cg(a:,é) (ta T) (1 + g(m,é) (y — T, N - 5)) :

We first observe that, from Remark A.1 it follows

ga (t77-) 2/ 62/
(A8)  swp PP ~max {5 (w6 € B Yy) € By
(t,7)eR?" g(ac,f) » T €k k

therefore, if gy (z —y,§ —n) < 1/(4n), inequality (A.7) easily follows
from the slowly varying property just because the right hand side of (A.8)
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is bounded. When g, (z —y,{ —n) > 1/(4n), again by using Remark A.1,
we have two cases:
either |¢ — > > e, or |z —y|* 2> 67

Assuming € —n|* 2> €, we get

(A.9) (1 + Q?x,g)(y —T,n— 5))% 2 aoile —nl* Z €
If |€ —n| > [€]|/2, from (A.4) it follows
(Lt ey — o — )8 2 (1+5e)o2 = 0t (R + |¢])?

R2
1 RA/(h+1)
= R R G

(R+1¢)* 21262
Suppose now that | — n| < |£|/2, in view of (A.3) and (A.9) we have

(1+g&,g)(y—x7n—£))5i"2((1+92’x,§)(y z,n—E))e )(R+|£|)
> (R+ )" 2 a2

Inequality (A.7) follows in this case from (A.8). The case |z — y|* = 6% is
achieved similarly.

It remains to show the existence of an a priori bounded number of over-
lappings for the covering { By }ren. Suppose that 2By N2By, # (). Then there
exists (z,£) € 2By N 2By, and from (A.5) it follows, for a constant ¢ > 0
independent of k, k', 6x/c < 0 < ¢y, €x/c < e < ce. Upon denoting by
(g, &) the center of the rectangle By, one has, for every (y,n) € 2By,

Y — Tral <y — @ + |2 — Tpi] <200 + 0 < (142¢)0, i=1,...,n,

and, in a similar way, |1, — & < (14 2¢)eg, @ = 1,...,n. Therefore one
gets
U Bv € (1+20)2vn By,
k'eJy
whence
(A.10) > m(By) =m( | Bv) <m((1+2c)2v/nBy),
k'eJy k'eJy

where m(A) denotes the Lebesgue measure of a set A, and from this the con-
clusion follows since m(By) ~ €}d} for each k' € J, and m(By) ~ epoy. W
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In the sequel we assume that the hypotheses of Proposition A.2 hold for
the partition defined by (A.1). As a consequence, ¢ is slowly varying and
o—temperate, and an easy check shows that the Planck function h, is an
admissible weight for g.

We now define the class S(h;, g) (s € R) as follows.

Definition A.3 Let j be a non negative integer and (x,§) be a point of
R} x RE; define, for any smooth function b € C* (R} x RY),

Bl (2,€) = max 6(x, &) le(z, €)1 DI D{b(w, €)|.

lo+B|<j

We denote by S(hy,g) (s € R) the class of the functions b € C*(R" x R")
such that, for any integer [ > 0,

(A.11) 1bllang = sup Dy, )7l (x, ) < +o0.

(7»’75) c R2n

It turns out that S(h;, g) is a Fréchet space with the topology induced by the
seminorms defined in (A.11).

As a consequence of Remark A.1, we have

10l t.ns) ~ sup max 5Z+|a‘ez+|’3|\D§D§b(x,5)].
keN (2,8) € B
|+ 8] <1
By proceeding as in [2] we get a partition of unity related to the cover-
ing { By }ren.
Proposition A.4 There exist two families of smooth functions {pg}ren,
{¥r}ren defined in R} x RE, uniformly bounded in the space S(1,g), with
the following properties:

1) for every j =0,1,..., there exists a positive constant C; independent
of R, such that
(A.12) leellg + 1Wellgy <G5 VR eN;

2) for any k € N,

9 3 3
supp ¢ C éBka supp ¢, C gBk, V=1 on §Bk;

3) for every (r,§) € Ry x RE, one has Zapk(x,f)Q = 1.
keN

In what follows, we refer to the pair { ok }ren, {W¥k }ren as a partition of unity
associated with the covering { By} ren-
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The following theorem is the main result we use to reduce the proof of in-
equality (1.7) to microlocal estimates on suitable rectangles of the cotangent
space.

Theorem A.5 Let {pg}ren, {Ur}ren be a partition of unity associated with
{Bk}keN' Then

1) there exists a constant ¢; > 0 independent of R such that

(A.13) D llekully < elulls, Vu € SR

keN

2) for any p € S(h;z,g), there exist positive constants ca, ¢, such that
(A14) I ully < e ) lve) eiulls + Sllullg,  Vu e S(R™),
keN

with ¢y independent of R.

Furthermore, if p € S(h;?,g) is a real non-negative symbol, then, for
suitable positive constants cs, ¢y, we have

(A15)  esllpullf + cllully = Y Il(pvn) piulls,  Vu € SR
keN

Moreover, if 5;2+|a‘e;2+|ﬂ||8§8?p‘3k| are uniformly bounded in R, for
any rectangle By having center, (xx, &), satisfying |€x| > 2R, then cs
can be chosen not depending on R.

The proof of this proposition requires some preliminary results we give below.

Lemma A.6 Let {a;}ren be a sequence of symbols in S(h3, g) for any s € R

and assume that, for any j = 0,1,..., there exists a constant C; > 0 such
that
(A.16) D lanll(x,€) < Cihg(x,€)°,  V(x,€) € R} x R

keN

Then one has Yy ar € S(h;, g) and, for every u € S(R™),

Z agu = (Z ak)wu,

keN keN

where ),y ayu denotes the S(R™)—limit of {) <y afu}nen as N tends

to +o00. Furthermore, if s = 0 then (ZkeN ak)w gives rise to a linear
continuous operator from L*(R™) to L*(R™).
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Proof. As a consequence of (A.16), {)_,<y ax}nen is a bounded sequence
in C°°(R?"). In fact, for any compact set K of R*", K C U;]:[fl B,, and this
gives

5<$,£)NCK, 6(x7€>NCK for any (flf,f) € K.

From standard arguments we then get that {>, -\ ar}ven is a convergent
sequence in C™ if it converges pointwise. To this purpose, note that, by
Theorem 14.4 of [17], it has a subsequence converging to a smooth function
a(z,§) . By (A.16), choosing j = 0, we then have that {d, y ax}nen
converges pointwise to a. -

As a consequence, a is in S(hy, g) and {}, .y afu} is a bounded sequence
in S(R™). Again, if we prove that it converges to a"u pointwise we get
convergence in S(R™). Since the pointwise convergence is an immediate
consequence of the Lebesgue Theorem the proof is thus complete. [ |

The following lemma is proved in [9, Theorem 4.2, pages 390-391].

Lemma A.7 Suppose that q,, € C§°(1By) and gy € C§°(2B,)) with k, k' €N.
For N =0,1,..., set

1/1 J =z
TN(qk,qk/)(l',f) = Z ﬁ(Q_ZO-(Dm D§7 Dvan>) Qk(xvg)Qk’<y777)| 73;:5
Jj<N

where o is the standard symplectic 2-form, i.e.

o((x,€); (y,m) = (& y) —(x,m)  for every (x,€), (y,n) € R*".

Then, for any j, N = 0,1,..., for any s > 0 and any r,t, there exist positive
constants c; and | independent of R such that

|kt — T (qr, aw)15 (2, §) <
< cihg (2, )N (2 + di(2,€) + div (2,€)) " llarllang) law llwn)

where aff b is the Weyl symbol of the composition a*b" (i.e. (afb)* = a*b")
and dy 1s defined by

di(z,§) = inf g&,g)(l’ —y,§—n).

(ym) €22 By

The next lemma, due to Fujiwara (see [7, Proposition A2.4] or [9, Thm. 5.3]),
is used in the proof of Proposition A.9 which is the main tool we need to
prove Theorem A.5.
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Lemma A.8 Lets € R be such that s > (Q + 1)n (where Q is the constant
appearing in (A.6)) and let A be a positive number. Define

dye = inf  dg(x,§).

(z,£)eRB,

Then there exists a constant C' > 0 independent of R such that, for any
(z,£) € R*,

keN
(A.18) Z(2+A+duk)is < C@2+ A)@+In—s,
keN

Proposition A.9 Let {fy.}ren, {grfren be two bounded sequences in S(hy, g)
and in S(h,, g), respectively, for some r,t € R. Assume that

1) supp fr Nsupp gr, = O for every k € N;

2) one of the following conditions holds: either supp fr C %Bk for every
k € N or supp gr C EBk for every k € N.

Setting l, = frf gx, one has

szﬁlk €S(l,9) and Zl;”*l}fu = (szﬂlk)wu for all uw € S(R™).

keN keN keN

Furthermore, Y, .Y can be extended to a linear continuous operator
from L*(R™) to L*(R™).

Proof. We can assume that supp fr C (7/4) By for every k € N because the
arguments below work analogously in the other case. In view of Lemma A.6,
it is enough to show that

(A.19) S tlli(z,.0) <Cj V(w6 e R

keN

We start by proving that, for any real constant s > (@ + 1)n and any
integer j one has

1l9(2,6) < (2 + dy(2,€) Y V(@ 6) e R™,

where ) is the constant appearing in (A.6). This estimate follows from
Lemma A.7, but it is not straightforward since the symbols fi(z,&) and
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gr(z, &) are not both supported in the rectangle (7/4)By. In view of that,
we use the partition of unity given in Proposition A.4. Set

gkl/(xag) = g0y($,f)2gk($,§) for any k, v eN.

From Leibniz formula, we have, for any j € N,
(A.20) hg(x,8) " gr | (z,€) < Cj, Y,k €N, Y(z,€) € R™.

Since fr and g, have disjoint supports, one gets T ( fx, gr,) = 0 for every N.
Hence Lemma A.7 yields, on choosing N € N, N +r+t >0,

| it gl (2, €) < crhg (2, )N (2 + di(2, )+ du (2, €)) I fell ) 9w ll )
(A-21) <o2+d(r,0)+d(r,8) 7, V(@) eR™

In view of the finite overlapping property of {B,},en (see Proposition A.2)
and of (A.20), the sequence {)_,_y gr }nen is bounded in S(hf,g) and
converges in C®°(R™ x R™) to gx. Therefore, from the weak continuity of

the map 4§, it follows that the sequence {}_, _y fifl g} Nen converges in
C*(R"™ x R™) to frflgr as N tends to +00. Hence by (A.21) one has

[t grll(2.©) <D I gnll(@.8) < 2> (24 dil2,&) +dy(x,€)) .

veN veN

By (A.17) we finally get, for any s > (Q + 1)n,

(A22) |il¢(2,€) = |fut gnl(2.€) < (2 + di(@,€)) V"7 V() e R*™.

In order to prove (A.19), we want to apply Lemma A.7 to the symbols I, I,
thus we have to localize them in the rectangles {EB,,},,GN. From Leibniz
formula and from (A.22), it follows, for any j € N and any s > (@ + 1)n,

1)n—s - 1)n—s
Q2[9(2,€) < ea(2+ ) TV 2T, €) < s (24 d) T

An application of Lemma A.7 yields, for any s > (Q + 1)n,
(A23) [(ili)d (Pole) |9z, &) <
< C@(Q—f-dl,(x,f)—|—du<x,§))_s(2+dyk)(Q+1)n_s(2+duk>(Q+l)n_S.

Furthermore, an easy check shows that the sequences {, .y @olk}nen,
{>°,<n ¥alk}nen are bounded in S(1,g) and that

9 Coo(R2n) 97 COO(]R27’L) —
Zgoylk N — 400 lk’ Z@ulk N — +o0 lk’
v<N u<N
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whence the weak continuity of f gives
_ COO(RQTL) _
D @t o Wbl
v,u<N
This result and (A.23) finally yield
[0 8 Ll (2, €) < Z [(e2le) 8 (ele) 192, €)

v,neN

S C6 Z (2 + dl/(x7 5) + d/,l,(xy 5))_8 (2 + duk)(Q‘i‘l)n—s (2 + duk)(Q+l)n_S7

v,u€N

and a repeated application of Lemma A.8 gives then, choosing s > 2n(Q+1),

Zﬁkﬁlk\?(%f) <

keN
<o (2 (@) + 2. 8) 7| D2+ du) T2 4 ) T
vipel keN
Sead D 2Hdfe O+ ding) " <C
veN peN
This proves (A.19). -

The following Lemma is essentially due to D.Fujiwara [7] and to F.Hérau
(see [8, Lemma 1.11]).

Lemma A.10 Let {fi}ren, {9k tren be bounded sequences of real functions
in S(hf,g) and in S(1,q), respectively. Let J be an arbitrary (finite or
infinite) subset of N. The following holds:

1) if supp fr C (7/4)By, suppgr C (7/4)By for every k € N. Then
> wes Iifr € S(hy?, g) and

(A24) S grfrgiu= (D gif) ut Ry, Vue SERY),

keJ keJ

where Ry is a linear continuous operator from L*(R™) to L*(R™) with
norm independent of the subset J.

2) if fr > 0 with supp fr C (7/4)By and supp gr C (9/8)By for every
k € N, there exist positive constants C, C' independent of J such that
(A.25) Y gk, filulls < €Y (firvdw viu) +C"Jullg, Yu € S(R™),

keJ keJ

where {1 hren i the family of functions defined in Lemma A.4. More-
over, if the seminorms of the functions fr and g, don’t depend on R,
the constant C' can be chosen not depending on R.
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We complete this appendix by proving Theorem A.5.

Proof of Theorem A.5. Inequality (A.13) is an immediate consequence
of Lemma A.6 and Lemma A.7.

As for (A.14), set pi(x,&) = (pY)(z, §) for any k € N. Thus by (A.24)
there exists an operator R € L(L*(R"), L?*(R™)) such that

Z CLPE PR U= Z s&ip)wu + Ru = p“u + Ru, Vu € S(R™),

keN keN
whence
lp ulls = (pheru, eppu),, — (Ru,p"u),,,  Vue SR").
keN

By the Cauchy-Schwarz inequality and (A.13) one gets, for an arbitrary
constant € > 0,

W W c n
I ulls < =2 Z Ik ek ulls + (1 + 1) €*[lp™ulls + 6—2|IUH37 Vu € S(R").
keN

By choosing €% < (1 + ¢;)7}, (A.14) readily follows.
It remains to prove (A.15). We start by observing that

leipiulls < 2llerpulls + 2ok (1 —¢i)p) “ullp.
An application of Proposition A.9 with f; = ¢x and gx = (1 — ¥y )p yields
> lleipiully <23 lleip ully + Cullulls,  Vu € SR,
keN keN
Hence, from (A.13) it follows
S llgtptull < Collpull + Chllul},  vu e SE,
keN

with C5 independent of R.
Since pYe¥ = oipl + [pY, pi] one has, for every u € S(R"),

w, W 1 w, w w w
Z i piully > B Z i e ull — Z I i Jull5,
keN keN keN
so that (A.15) is proved if we show that
(A.26) D ek elulls < Csllpulls + Callull,  Vu € SR™).

keN



SAK PRINCIPLE FOR A CLASS OF GRUSHIN-TYPE OPERATORS 285

Let us now set N := {k € N : [§| > R} and note that pp € S(1,9),
uniformly in k, when k& ¢ N. Hence we can apply (A.25) with f; = px and
grx = ¢k (here we also use (A.12)) and get

> ek, eklulls < € (DR dru, iu) L + Chllullf,  Yu € S(R™).

keN keN

Observe that Cy is independent of R when 5;2+‘a|e;2+|5‘|8§‘8?p‘3k| are uni-
formly bounded in R. Therefore, by (A.24), one has

(A27) SNk eilull < Co(( 32 0dp) ) o+ Chllully, Vu € SR

kEN keN

An application of the Fefferman-Phong inequality gives

(Do wip) wu), < Colp u,u) + Cillul}, ¥u e SR,

keN

This estimate together with (A.27) yields (A.26). The proof of (A.15) is
complete. ]
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