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Oscillations of Hecke eigenvalues
at shifted primes

Liangyi Zhao

Abstract

In this paper, we are interested in exploring the cancellation of
Hecke eigenvalues twisted with an exponential sums whose amplitude
is

√
n at prime arguments.

1. History and Introduction

In this paper, we are interested in estimating an exponential sum over primes
with square root amplitude twisted with Hecke eigenvalues. More precisely,
we want to have an estimate for the following sum

(1.1) S(N)
def
=
∑
n≤N

λ(n)Λ(n)e(α
√
n), with α > 0.

λ(n) henceforth denotes the normalized Fourier coefficients of a cusp form
f(z) of weight k ≥ 12 for the full modular group, and f(z) is an eigenform
of all the Hecke operators. Id est,

f(z) = (cz + d)kf

(
az + b

cz + d

)
for all

(
a b
c d

)
∈ SL2(Z),

and Tnf = λ(n)f for all n ≥ 1, where Tn is the n-th Hecke operator. These
Hecke eigenvalues, λ(n)’s, agree with the coefficients in the Fourier series
expansion of f(z)

f(z) =
∞∑

n=1

λ(n)n
k−1

2 e(nz).

Λ(n), as usual, denotes the von Mangoldt function and α > 0. References
on the subject of Hecke eigenvalues are abundant. See [6], [12] and [13].
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Estimation of S(N) is of interest from two points of view. First the sum∑
n≤N

Λ(n)e(α
√
n)

has been an object of interest ever since the method of I. M. Vinogradov
was first developed. It was Vinogradov himself [16] who showed the afore-

mentioned sum is O(N
7
8
+ε) with the implied constant depending on α and ε.

Second, the size and oscillations of the Hecke eigenvalues themselves
are objects of great interest. By Rankin-Selberg method, one achieves the
asymptotics ∑

n≤N

|λ(n)|2 ∼ cN,

as N tends to ∞ and c here is a positive constant that depends on f(z). Of
course, we also have the following.

Theorem 1 (Ramanujan Conjecture) With λ(n) denoting the n-th Hecke
eigenvalue of a cusp form, f(z), for the full modular group, we have

|λ(n)| ≤ τ(n) � nε,

where τ(n) is the divisor function.

Proof. This famous result was of course, proved by P. Deligne [2] in 1974,
and we shall appeal to this theorem in later sections. �

Regarding the sign changes of the Hecke eigenvalues, it was due to Hardy
and Ramanujan, and A. Good [4], respectively that∑

n≤N

λ(n)e(αn) � N
1
2 log(2N), and

∑
n≤N

λ(n) � N
1
3
+ε.

Moreover, M. R. Murty [11] conjectured Ω result that

∑
p≤N

λ(p) = Ω±

(√
N log log logN

logN

)
.

and succeeded in proving it provided some L-function has no real zero be-
tween 1/2 and 1. Also, S. D. Adhikari [1] proved essentially the same result
for cusp forms for the group Γ0(N).

The method that we employ in estimating S(N) is that developed by
Vinogradov [16]. As one familiar with the method knows, the best possible
results that technology can prove is S(N) = O

(
NΘ+ε

)
, with Θ = 3

4
. How-

ever, by the so-called “principle of square-rooting,” then one may be led to
believe that S(N) = O

(
N

1
2
+ε
)
.
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Surprisingly, Iwaniec, Luo and Sarnak [8] gave conditional heuristics
that Θ = 3

4
is where truth actually lies. They have the asymptotic for-

mula, under the assumption of some extremely strong hypotheses,

(1.2) S(N) = ZN
3
4 +O(N

5
8
+ε),

where Z is a non-zero constant that depends on the cusp form. In this paper,
we prove the following.

Theorem 2 With S(N) defined as in (1.1), we have

S(N) � N
5
6 [log(3N)]21,

where the implied constant depends effectively on α in (1.1) and the cusp
form f(z).

The author wishes to thank his thesis advisor, Professor Henryk Iwaniec,
for suggesting this problem and who, with his advise and support, has been
most generous. Moreover, the author also thanks the referee for his many
comments on the original manuscript.

The following notations and conventions are used throughout paper.

• e(z) = exp(2πiz) = e2πiz.

• f = O(g) means |f | ≤ cg for some unspecified positive constant c.

• f � g means f = O(g). Unless otherwise stated, all implied constants
in � and O are absolute.

• L(s, f) =
∑∞

n=1 λ(n)n−s is the automorphic L function for a cusp
form f , with λ(n) being the same as those in (1.1).

• � denotes the end of a proof or the proof is easy and standard.

2. Preliminary lemmas

In this section, we quote the results needed later. First, we have the multi-
plicative property of Hecke eigenvalues.

Lemma 1 Hecke eigenvalues are multiplicative and they satisfy the follow-
ing relation.

λ(mn) =
∑

d| gcd(m,n)

µ(d)λ
(m
d

)
λ
(n
d

)
.

Proof. This Lemma follows by applying the Möbius inversion formula to
the product formula for the Hecke eigenvalues. See, for example, Proposi-
tion 14.9 of [7]. �
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We shall also need to estimate the average of the divisor functions.

Lemma 2 With k, l ∈ N and with τk(n) denoting the number of ways n can
be written as product of k integers, then∑

n≤x

[τk(n)]l � x[log(2x)]k
l−1,

where the implied constant depends on k.

Proof. The proof is easy and standard. See [7, (1.80)]. �
We shall need the mean value theorem of the square of automorphic

L-functions on the critical line.

Lemma 3 We have ∫ T

0

∣∣∣∣L
(

1

2
+ it, f

)∣∣∣∣
2

dt� T 1+ε,

where the implied constant depends on ε alone.

Proof. The result arrives via similar means as the analogous result for the
Riemann Zeta-function. One can, of course, prove stronger results, as in [5],
but the above suffices. Similar result also holds for L′ (1

2
+ it, f

)
. �

In our proof, we shall need to estimate certain exponential sums. The
following lemmas suffice for our enterprise.

Lemma 4 Let f(x) be a real-valued function with |f ′(x)| ≤ 1 − θ and
f ′′(x) �= 0 on [a, b]. We have

∑
a<n<b

e[f(n)] =

∫ b

a

e[f(x)]dx +O(θ−1),

where the implied constant is absolute.

Proof. This is a special case of the Truncated Poisson Summation Formula
in [14] and [10]. �

Next we have these estimates for exponential integrals.

Lemma 5 Let f(x) be a real-valued function with two continuous deriva-
tives on [a, b] and that f ′(x)f ′′(x) �= 0 on [a, b], then we have∣∣∣∣

∫ b

a

e[f(x)]dx

∣∣∣∣ ≤ π−1 (|f ′(a)| + |f ′(b)|) .

Proof. This result arrives easily from partial integration. See Lemma 8.9
of [7]. �
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We need a result known as stationary phase which we get to through

Lemma 6 Let h(x) be a real function with two continuous derivatives on
[0, X] such that

(2.1) h(0) = 1, h(x) 	 1, [xh(x)]′ 	 1, h′(x) � 1

X
, and h′′(x) � 1

X2
.

Then for α > 0, we have

(2.2)

∫ X

0

e[αx2h(x)]dx =
8√
α
e

(
1

8

)
+O

(
1

αX

)
,

where the implied constant in (2.2) depends on those in (2.1).

Proof. This lemma is proved by standard means. See [7, Lemma 8.14]. �

With the previous lemma at our disposal, we have the following.

Lemma 7 (Stationary Phase) Let f(x) be a real valued function with
four continuous derivatives on [a, b] with

f ′′(x) ≥ Λ, |f ′′′(x)| ≤ ΛX−1, and |f (4)(x)| ≤ ΛX−2,

for some Λ > 0 and X > 0. Also suppose f ′(c) = 0 with c ∈ (a, b). Then∫ b

a

e[f(x)]dx = e

[
f(c) +

1

8

]
f ′′(c)−

1
2 +O

[
1

Λ

(
1

b− c
+

1

c− a
+

1

X

)]
,

where the implied constant is absolute.

Proof. This lemma follows by Lemma 6 and the second degree Taylor
approximation of f(x). This is Corollary 8.15 in [7]. �

We shall also need the following Perron-type formula which approximates
Dirichlet polynomials.

Lemma 8 (Perron’s Formula) Let f(s) be defined by the Dirichlet series

f(s) =
∞∑

n=1

an

ns
, for 
s > 1.

where an � ψ(n) for some non-decreasing function ψ(n), and

∞∑
n=1

an

ns
= O

[
1

(σ − 1)α

]
,

as σ tends to 1.
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Then if c > 0, σ + c > 1, and x /∈ N, we have

∑
n<x

an

ns
=

1

2πi

∫ c+iT

c−iT

f(s+ w)
xw

w
dw +O

[
ψ(x)x1−σ

T‖x‖
]

+O

[
xc

T (σ + c− 1)α
+
ψ(2x)x1−σ log x

T

]
;

where ‖x‖ = mink∈Z |x− k|, and if x ∈ N, then

x−1∑
n=1

an

ns
+

ax

2xs
=

1

2πi

∫ c+iT

c−iT

f(s+ w)
xw

w
dw +O

[
xc

T (σ + c− 1)α

]

+O

[
ψ(2x)x1−σ log x

T
+
ψ(x)x−σ

T

]
.

Proof. This is quoted from [14]. �

Finally, we need an integral form of the large sieve inequality in the
estimation of the mean values of Dirichlet polynomials.

Theorem 3 (Large Sieve) Suppose that λ1, . . . , λN are distinct real num-
bers, and supposed that δ > 0 is chosen so that |λm − λn| ≥ δ, for m �= n.
Then for any complex coefficients an, and any T > 0, we have

∫ T

0

∣∣∣∣∣
N∑

n=1

ane(λnt)

∣∣∣∣∣
2

dt =

(
T +

θ

δ

) N∑
n=1

|an|2

for some θ with −1 ≤ θ ≤ 1.

Proof. This is quoted from [10] and derived using Selberg’s majorant and
minorant. �

Theorem 3 is applicable to Dirichlet polynomials by the mean value the-
orem of differential calculus. We have

∫ T

0

∣∣∣∣∣
N∑

n=1

ann
−it

∣∣∣∣∣
2

dt = [T +O(N)]
N∑

n=1

|an|2,

where the implied constant is absolute.



Oscillations of Hecke eigenvalues at shifted primes 329

3. Partition of the Von Mangoldt function

We begin with the following identity.

Lemma 9 (Vaughan) Suppose y ≥ 2 is a real positive number, then if
n > y, we have

(3.1) Λ(n) =
∑
ab=n
b≤y

µ(b) log a−
∑

abc=n
b,c≤y

µ(b)Λ(c) +
∑

abc=n
b,c>y

µ(b)Λ(c).

Proof. This is the identity in [15]. �

We shall use a variant of the above identity. More precisely, we have

Lemma 10 For N < n ≤ 2N , n ≥ y = N
1
3 and z =

√
2N , we have

Λ(n) = Λ1(n) + Λ2(n) + Λ3(n) + Λ4(n) + Λ5(n),

where

Λ1(n) =
∑
ab=n
b≤y

µ(b) log a, Λ2(n) = −
∑

abc=n
b,c≤y
a≥z

µ(b)Λ(c), Λ3(n) = −
∑

abc=n
b,c≤y

y<a<z

µ(b)Λ(c),

Λ4(n) =
∑

abc=n
c>y

y<b<z

µ(b)Λ(c), and Λ5(n) =
∑

abc=n
b≥z

y<c≤z

µ(b)Λ(c).

Proof. We decompose the right-hand side of (3.1) further. Take N < n ≤
2N in dyadic intervals, y = N

1
3 and z =

√
2N . We have

(3.2)
∑

abc=n
b,c≤y

µ(b)Λ(c) =
∑

abc=n
b,c≤y
a≥z

µ(b)Λ(c) +
∑

abc=n
b,c≤y

y<a<z

µ(b)Λ(c).

The partition according to the dichotomy of either a ≥ z or a < z is
obvious. The extra condition in the second term of the right-hand side
of (3.2) that y < a is due to b, c ≤ y =⇒ bc ≤ y2 = N

2
3 , together with

abc = n ≤ 2N , we have a > N
1
3 = y.

The third sum in (3.1) is similarly decomposed. We have

(3.3)
∑

abc=n
b,c>y

µ(b)Λ(c) =
∑

abc=n
c>y

y<b<z

µ(b)Λ(c) +
∑

abc=n
b≥z

y<c≤z

µ(b)Λ(c).
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Again, the dichotomy of b < z or b ≥ z in the right-hand side of (3.3) is
obvious. Furthermore, the extra condition in the second sum of the right-
hand side of (3.3) is apparent as

abc = n < N and b ≥ z =
√

2N =⇒ ac ≤
√

2N = z =⇒ c ≤ z.

Therefore, combining Lemma 3.1 and (3.2) and (3.3), we have the desired
result. �

Thus the sum of our interest in (1.1) is decomposed and it suffices to
estimate each individual component. We have

(3.4)

∣∣∣∣∣
∑

N<n≤2N

Λ(n)λ(n)e(α
√
n)

∣∣∣∣∣ ≤
5∑

i=1

|Si(N)| ,

where, Si(N) =
∑

N<n≤2N Λi(n)λ(n)e(α
√
n), and Λi(n)’s are defined in

Lemma 10.

4. Bilinear forms treatment

The last three sums of (3.4) are similar and can be disposed using similar
means. Toward that end, we have

Lemma 11 With Si(N) defined as before, we have

|S3(N)| + |S4(N)| + |S5(N)| � N
5
6 (log 3N)20,

where the implied constant depends on α and the cusp form f(z).

Proof. Breaking the summations into dyadic intervals, it suffices to esti-
mate, for arithmetic functions β(m) and γ(l), sums of the following shape,

(4.1)
∑

M<m≤2M

β(m)

∣∣∣∣∣
∑

L<l≤2L

γ(l)λ(lm)e(α
√
lm)

∣∣∣∣∣ ,
with N

1
2 ≤M ≤ N

2
3 , N

1
3 ≤ L ≤ N

1
2 , ML = N .

Applying the multiplicative properties of Hecke eigenvalues, Lemma 1,
(4.1) becomes

∑
M<m≤2M

β(m)

∣∣∣∣∣
∑
s|m

µ(s)λ
(m
s

) ∑
L
s

<t≤ 2L
s

γ(st)λ(t)e(α
√
stm)

∣∣∣∣∣
≤

∑
M<m≤2M

β(m)
∑
s|m

∣∣∣λ(m
s

)∣∣∣
∣∣∣∣∣
∑

L
s

<t≤ 2L
s

γ(st)λ(t)e(α
√
stm)

∣∣∣∣∣.
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We divide the range of summation of the inner-most sum of the above
further and estimate sums of the shape

(4.2)
∑

M<m≤2M

β(m)
∑
s|m

∣∣∣λ(m
s

)∣∣∣
∣∣∣∣∣

∑
L
s

<t≤L+L0
s

γ(st)λ(t)e(α
√
stm)

∣∣∣∣∣,
where L0 ≤ L will be chosen later. We note that the number of sums like
the above is O

[
L
L0

(logN)2 ]. We apply the Cauchy-Schwarz inequality and

majorize
∑

s|m
∣∣λ (m

s

) ∣∣2 by τ(m)3, we see that the square of the sum in (4.2)
is majorized by( ∑

M<m<2M

τ(m)3 |β(m)|2
)( ∑

s≤2M

∑
M
s

<m≤ 2M
s

∣∣∣∣∣
∑

L
s

<t≤L+L0
s

γ(st)λ(t)e(αs
√
tm)

∣∣∣∣∣
2)
.

Opening up the complex modulus square in the second factor and swapping
the order of summations, it becomes

(4.3)
∑

s≤2M

∑∑
L
s

<t,t′≤L+L0
s

γ(st)γ(st′)λ(st)λ(st′)
∑

M
s

<m≤ 2M
s

e[αs(
√
t−

√
t′)
√
m].

The contribution of the diagonal terms in (4.3) is

�M
∑

s≤2M

s−1
∑

L
s

<t≤L+L0
s

|γ(st)λ(st)|2 .

For the terms with t �= t′, we note that if f(m) = αs(
√
t−√

t′)
√
m, then

f ′(m) =
αs(

√
t−√

t′)
2
√
m

=
αs(t− t′)

2
√
m(

√
t+

√
t′)

≤ αsL0

2
√
N
.

Therefore, by choosing L0 = 7L
8αs

if α ≥ 1 or L0 = 7L
8s

if 0 < α < 1 and

recalling that L0 ≤ L ≤ √
N , we can ensure that f ′(m) ≤ 7

16
for all m’s of

interest. The inner-most sum of (4.3) is well-approximated by that of its
corresponding integral by Lemma 4. The modulus in question is

=

∫ 2M
s

M
s

e
[
αs(

√
t−

√
t′)
√
x
]
dx+O(1) �

√
M

s
3
2 (
√
t−√

t′)
+ 1,

where the last implied constant depends on α and the last inequality arrives
by the virtue of Lemma 5. Observe that β(m) is

(4.4)
∑
bc=m
b,c≤y

µ(b)Λ(c),
∑
c|m
c>y

Λ(c) and
∑
b|m
b≥z

µ(b)

for S3(N), S4(N) and S5(N) respectively.
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The moduli of three sums in (4.4) are majorized by log(2m), log(2m)
and the divisor function τ(m), respectively. In all three cases, we have,∑

M<m≤2M

τ 3(m) |β(m)|2 �M [log(3M)]31,

with implied constant absolute, by the virtue of Lemma 2.
Similarly, γ(l) is 1, µ(l) and Λ(l) for S3(N), S4(N) and S5(N) respec-

tively. In all three cases, |γ(l)| ≤ log(3l). Consequently, (4.3) is majorized by

�M 2[log(3N)]31
∑

s≤2M

s−1
∑

L
s

<t≤L+L0
s

|λ(st)|2

+M [log(3N)]31
∑

s≤2M

∑∑
L
s

<t,t′≤L+L0
s

t�=t′

[ √
M

s
3
2 |√t−√

t′| + 1

]
.

(4.5)

Using the Ramanujan conjecture, Theorem 1, (4.5) is majorized by

�
[
M 2L+M

3
2L

3
2 +ML2

]
(log 3N)35 � N2

[
1

L
+

1

N
1
2

+
1

M

]
(log 3N)35.

Recall that N
1
2 ≤M ≤ N

2
3 , N

1
3 ≤ L ≤ N

1
2 and ML = N . After taking the

square root and then add up the sums over all the dyadic intervals, we have
the desired result. �

5. Type I sums

It still remains to estimate the other terms in (3.4) which are similar. We
take f(t) = t

2π
log
(

t
ex

)
. f(t) satisfies the conditions of Lemma 7 with Λ =

(2πT )−1 and c = x. Therefore, by the virtue of the said lemma,

∫ 4T

T

e[f(t)]dt = e

(−x
2π

+
1

8

)√
2πx+O

[
T

(
1

4T − x
+

1

x− T
+

1

T

)]
,

where T = πα
√
N and x = 2πα

√
n, with N < n ≤ 2N . Note 2T ≤ x ≤ 3T .

The above expression yields

(5.1) e(−α√n) = e

(
−1

8

)
(2π

√
α)−1n− 1

4

∫ 4T

T

e[f(t)]dt+O
(
N− 1

4

)
.

We dispose of S1(N) with the following Lemma.
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Lemma 12 With S1(N) defined as before and for any ε > 0 given, we have

S1(N) � N
3
4
+ε,

where the implied constant depends on α, the cusp form f(z) and ε.

Proof. By the virtue of (5.1), it suffices to estimate

e

(
−1

8

)
(2π

√
α)−1

∫ 4T

T

∑
N<n≤2N

Λ1(n)λ(n)n− 1
4

(
t

2πeα
√
n

)it

dt

+O
[
N

3
4 (log 2N)4

]
.

(5.2)

After applying partial summation to integrand of (5.2), it suffices to esti-
mate, for N < M ≤ 2N ,

N− 1
4

∫ 4T

T

∣∣∣∣∣
∑

N<n≤M

Λ1(n)λ(n)n− it
2

∣∣∣∣∣dt
= 2N− 1

4

∫ 2T

T
2

∣∣∣∣∣
∑

N<n≤M

∑
ab=n
b≤y

µ(b) log aλ(ab)(ab)−it

∣∣∣∣∣dt.(5.3)

Applying Lemma 1 and swapping the order of summations of the inte-
grand of (5.3), it becomes

(5.4)

∣∣∣∣∣
∑
d≤y

µ(d)

d2it

∑
l≤ y

d

λ(l)µ(ld)

lit

∑
N

ld2 <h≤ M
ld2

λ(h)(log h+ log d)

hit

∣∣∣∣∣.
Therefore, the Dirichlet series we must consider is that of

[log dL(s, f) − L′(s, f)]
∑
l≤ y

d

µ(ld)λ(l)

ls
,

where L(s, f) is the L-function for the cusp form f(z). We first consider the
sum with L′(s, f) and the sum with L(s, f) is treated similarly and yields
the same majorant. By the virtue of Perron’s formula, Lemma 8, we have

∑
l≤ y

d

µ(ld)λ(l)

lit

∑
N
ld2 <h≤ M

ld2

λ(h) log h

hit

=
−1

2πi

∫ σ+iT

σ−iT

L′(w + it, f)


∑

l≤ y
d

µ(ld)λ(l)

lw+it


Mw −Nw

d2ww
dw +O

(
N1+ε

T

)
,
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where, in the notations of Lemma 8, we take σ = 1 + 1
log N

, s = it and

ψ(x) � xε can be chosen. Insert the above into (5.4), the part corresponding
to L′(s, f) is

1

2πi

∑
d≤y

µ(d)

d2it

∫ 1+ 1
log N

+iT

1+ 1
log N

−iT

L′(w + it, f)

(∑
l≤ y

d

µ(ld)λ(l)

lw+it

)
Mw−Nw

d2ww
dw

+ O

(
N1+ε

T

)
.

Consider the contour given by the rectangle whose vertices are 1
2
± iT and

1 + 1
log N

± iT . The above expression is well-approximated by

1

2πi

∑
d≤y

µ(d)

d2it

∫ 1
2
+iT

1
2
−iT

L′(w + it, f)

(∑
l≤ y

d

µ(ld)λ(l)

lw+it

)
Mw −Nw

d2ww
dw

+O

(√
N

T
y

1
2
+ε

)
,

(5.5)

where the second term in (5.5) is to majorize the contribution of the contour
integral on the horizontal line segments of the rectangle and comes from
convexity bound of L′(s, f) on the critical line, L′ (1

2
+ it, f

) � t
1
2
+ε and

trivial bounds over the other factors. Subconvexity bounds are known for
these L-functions, see [5], [3], but the trivial bound suffices for our purpose.

Inserting everything into (5.3), applying Hölder’s inequality, S1(N) is
majorized

� N
1
4

∑
d≤y

1

d

∫ iT

−iT

[∫ 2T

T
2

∣∣∣∣L′(
1

2
+ it, f)

∣∣∣∣
2

dt

] 1
2

×
[∫ 2T

T
2

∣∣∣∣∣
∑
l≤ y

d

µ(ld)λ(l)

l
1
2
+it

∣∣∣∣∣
2

dt

] 1
2

dw

1 + 2|w| +N
3
4
+ε.

We apply Theorem 3 to the second inner integral and it is

O
[(
T +

y

d

)(y
d

)ε]
.

We utilize the mean value theorem for automorphic L-functions for the first
inner integral and it is O(T 1+ε). Recall that T = πα

√
N and y = N

1
3 .

The contribution in (5.4) of L(s, f) is treated precisely the same way as the
treatment of L′(s, f). Inserting those bounds, Lemma 12 follows. �
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To estimate the size of S2(N), we have

Lemma 13 With S2(N) defined as before and for ε > 0 given, we have

S2(N) � N
3
4
+ε,

where the implied constant depends on α, the cusp form f(z) and ε.

Proof. Consider a type of truncated Möbius convolution as follows.

ν(d) =
∑
bc=d
b,c≤y

µ(b)Λ(c).

It is elementary that |ν(d)| ≤ log 2d. |S2(N)| can be re-written as∣∣∣∣∣
∑

N<n≤2N

∑
ad=n
a≥z

ν(d)λ(ad)e(α
√
ad)

∣∣∣∣∣.
Inserting (5.1) into the above expression and applying partial summation

to the resulting integrand, it suffices to estimate the following

(5.6) N− 1
4

∫ 2T

T
2

∣∣∣∣∣
∑

N<n≤M

∑
ad=n
a≥z

ν(d)λ(ad)(ad)−it

∣∣∣∣∣dt+N
3
4
+ε,

with N < M ≤ 2N . We now apply the multiplicative property of Hecke
eigenvalues, Lemma 1, and the integrand in (5.6) becomes

(5.7)
∑

N<n≤M

∑
m

∑
lkm2=n
mk≥z

ν(ml)
µ(m)

m2it

λ(l)

lit
λ(k)

kit
.

Upon further re-arrangement of the (5.7), it becomes

(5.8)
∑
m

µ(m)

m2it

∑
l

ν(ml)
λ(l)

lit

∑
N

lm2 <k≤ M
lm2 , z

m
≤k

λ(k)

kit
.

Now our proof goes the same as that of Lemma 12, save for the fact
that the role of the Möbius function µ(ld) is now played that ν(lm) and
the L-function involved here is only L(s, f) without L′(s, f). We first insert
Perron’s formula, Lemma 8, into (5.8), and then move the lines of integration
to the critical line and then apply the large sieve and mean value theorems
of automorphic L-functions. Lemma 13 follows. �

Combining the lemmas of Sections 4 and 5 and sum up all the dyadic
intervals, we have proved Theorem 2.
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6. Notes

We could have also applied a result of M. Jutila [9, Theorem 4.6]. In brief,
Jutila’s result gives that

S1(N) + S2(N) � N
5
6
+ε.

This will not essentially affect our final result of Theorem 2, but our results
of the previous section give better estimates.

Moreover, we can now see that where the obstacle lies in trying to attain
the majorant of N

3
4 . It comes from the want of better means to estimate

the bilinear forms in Section 4. We could, in principle, do the similar thing
that we did in Section 5, use the mean value theorems of L-function and
Dirichlet series to estimate the sums of our interest. However, the known
results do not yield better estimates.

We further note that if one assumes the truth of the Montgomery con-
jecture [10] or the Lindelöf hypothesis, then we get better estimates for the
bilinear forms and obtain the expected majorant implied by (1.2). Finally,
results similar to Theorem 2 can be obtained for cusp forms for congruence
subgroups via analogous means. The corresponding majorant for the Type
I sums weakens as the level increases.
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