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Arithmetic properties of positive
integers with fixed digit sum

Florian Luca

Abstract

In this paper, we look at various arithmetic properties of the set
of those positive integers n whose sum of digits in a fixed base b > 1 is
a fixed positive integers s. For example, we prove that such integers
can have many prime factors, that they are not very smooth, and
that most such integers have a large prime factor dividing the value
of their Euler φ function.

1. Introduction

Let b > 1 and s > 1 be fixed integers. Let Ab,s be the set of all positive
integers n which are not multiples of b and whose sum of digits in base b is
precisely s. That is, Ab,s consists of all the positive integers which can be
written under the form

n = a0 + a1b + · · · + atb
t

with a0at �= 0, ai ∈ {0, 1, . . . , b − 1} for i = 1, . . . , t and
∑t

i=0 ai = s.

In this paper, we study the arithmetic properties of the positive integers n
belonging to Ab,s. Notice that the arithmetic properties of these integers
reflect the arithmetic properties of all the positive integers n (multiples of b
or not) whose sum of digits in base b is precisely s, because every such
positive integer n can be written in a unique way as n = bum with u ≥ 0
and m ∈ Ab,s.

A result of Senge and Strauss (see [21]) says that if b, s, b1, and s1 are
positive integers (larger than 1) with b and b1 multiplicatively independent,
then Ab,s ∩ Ab1,s1 is finite. An effective version of this result was given by
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Stewart (see [23]). That is, Stewart used Baker’s theory of lower bounds for
linear forms in logarithms to show that there exists an effectively computable
constant c1 = c1(b, s, b1, s1) depending on b, s, b1, and s1, such that if
n ∈ Ab,s∩Ab1,s1, then n < c1. Throughout this paper, we shall use c1, c2, . . .
for computable positive constants which are either absolute or depend on
our initial data (usually b and s). We also use the Vinogradov symbols �
and � as well as the Landau symbols O and o with their usual meanings.

There are many papers in the literature dealing with arithmetic prop-
erties of the set of positive integers characterized by some digital property
(see, for example, [3], [7], [10], [11], [12], [15], [16]). In fact, the paper [16]
whose title is very similar to the title of our present paper deals indeed with
the arithmetic properties of the set of positive integers n whose sum in base
b is s, but for the purpose of the results of [16] the number s is not fixed
(uniformly in n) but is taken to tend to infinity is a rather special way with
respect to the number n (either a lot slower than log n or is taken to be

precisely s =
⌊ (b−1) log n

2 log b

⌋
which is, roughly speaking, the expected value of s

for an arbitrary positive integer n).
The type of questions which are addressed in the above papers is the

following. Let P be some digital property related to the base b (such as
the fact that the sum of digits is a fixed number s, or the fact that all the
digits are allowed to belong to some fixed proper subset of all the possible
digits {0, 1, . . . , b − 1} satisfying some mild technical assumptions which
are meant to avoid trivialities, etc.). Then in the above papers, the authors
investigate the average value of the functions ω(n) and Ω(n) over the set of
positive integers n characterized by the property P . They also show that
there exist such n which have many prime factors, or few, or that such
sets contain smooth numbers, etc. A key tool that has been used in every
single one of the above papers is an appropriate extension of a Theorem
of Gelfond asserting the fact that such numbers are uniformly distributed
in residue classes modulo a fixed number m. That is, let x be a large real
number and let WP(x) denote the set of all positive integers n < x having
the digital property P . Then there exists a function f(x) defined on the set
of positive real numbers x and which tends to infinity with x (and which is
made explicit in the above papers for every one of the digital properties P)
such that for every positive integer m which is, say coprime to b(b − 1) and

every non negative integer a ≤ m there are roughly about |WP (x)|
m

numbers
n < x having the property P and n ≡ a (mod m) and this property holds
uniformly in m and a when m < f(x).

We start with an elementary result which, in particular, shows that such
an argument cannot be applied in order to investigate the arithmetic prop-
erties of the sets Ab,s.
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Proposition 1.1. Let k > 1 be any fixed integer. There exists an infinite
set of positive integers S having the following properties:

(1) If m ∈ S, then m is coprime to b.

(2) If m1 �= m2 are distinct members of S, then m1 and m2 are coprime.

(3) If m ∈ S and n is any non zero multiple of m, then n has at least k
non zero digits when written in base b.

The set S appearing in the statement of the above Proposition 1.1 will
be chosen to be a subset of all numbers of the form (bn−1)/(b−1) for n ≥ 1.

Taking k = s+1 in the above Proposition 1.1, it follows that there exists
an infinite set of positive integers m which are coprime to b and for which
the equation x ≡ 0 (mod m) has no positive integer solution x ∈ Ab,s and
moreover this infinite set of positive integers can be chosen in such a way
that any two members of it are coprime (this is in order to avoid trivialities;
in fact, if the equation x ≡ 0 (mod m) has no positive integer solution
x ∈ Ab,s, then obviously the equation x ≡ 0 (mod m1) will have no positive
integer solution x ∈ Ab,s either with m1 being any non zero multiple of m).
The proof of the above Proposition 1.1 is elementary and is based on an idea
employed previously in [13].

We now address the question of smooth numbers. For a positive integer n
we write P (n) for the largest prime factor of n with the convention that
P (1) = 1 and we recall that a number n is called smooth is P (n) < nε.

Proposition 1.2. For every ε > 0 there exist infinitely many positive inte-
gers n ∈ Ab,s with P (n) < nε.

Once one knows that a certain infinite set of positive integers contains
infinitely many smooth numbers one can ask two types of questions. One of
them is, say how many smooth numbers are there in our infinite set? Here,
we can show that for a fixed ε there exists a subset of n ∈ Ab,s of positive
lower logarithmic density such that the inequality P (n) < nε holds for n in
this subset. Unlike other authors, by positive lower logarithmic density here
we mean that there exists a number δ > 0, which can be computed in terms
of s alone and another computable constant c2 depending on b, s and ε,
such that for every large positive real number x the set of numbers n < x
in Ab,s for which P (n) < nε holds is of cardinality at least c2|Ab,s(x)|δ. Here
and in what follows, we use Ab,s(x) to denote the set of all n < x which
belong to Ab,s. If one wants very smooth numbers in Ab,s, then we can show
that there exists a computable constant c3 depending only on b and s such
that the inequality P (n) < nε(n) holds for infinitely many positive integers
n ∈ Ab,s with ε(n) = c3

log3 n
. Here and in what follows, for any positive
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integer k and any positive real number x we define recursively the function
logk x as being max{log(logk−1 x), 1}, where log1(x) = max{log x, 1} and
log denotes the natural logarithm function. Clearly, if x is large with respect
to k, then logk x is nothing else but the composition of the natural logarithm
function log with itself k-times evaluated in x.

The proof of Proposition 1.2 above is elementary in nature and is based
on the properties of the cyclotomic polynomials. This idea has been em-
ployed previously in [2] and [9] in the context of constructing long strings of
smooth consecutive integers.

While Proposition 1.2 and the remarks following it assert that one can
find infinitely many smooth numbers in Ab,s the next proposition points out
that there is a limit to how smooth one can make the numbers from Ab,s.

Proposition 1.3. There exists a positive computable constant c4 depending
only on b and s such that the inequality

(1.1) P (n) >
c4 log2 n log3 n

log4 n

holds for all n ∈ Ab,s.

The proof of the above Proposition 1.3 uses Baker’s method of lower
bounds for linear forms in logarithms.

We now turn our attention to the functions ω(n) and Ω(n) when n ∈ Ab,s.
The next two propositions show that there exist integers n ∈ Ab,s having
many distinct prime factors but that there are not too many positive integers
n ∈ Ab,s having a very large Ω(n).

Proposition 1.4. There exists a computable constant c5 depending only on
s and b such that there exist infinitely many positive integers n ∈ Ab,s having

(1.2) ω(n) > exp

(
c5 log2 n

log3 n

)
.

We point out that the inequality

ω

( ∏
n∈Ab,s(x)

n

)
� log2−α x

log2 x

has been proved to hold for large values of the positive real number x in
the recent paper [22] provided that s > 4, where α is any constant in the
interval (0, 2) such that the inequality s > 4α−1 − 3 holds.
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Proposition 1.5. The estimate

(1.3) Ω(n) = o(log n)

holds when n tends to infinity through positive integers in the set Ab,s.

Proposition 1.5 tells us something very interesting about the numbers
n ∈ Ab,s. Indeed, without any digital restrictions we know that the inequality
Ω(n) � log n holds infinitely often and in [16] it is shown that a similar
type of inequality holds infinitely often when n is allowed to run only over
all the integers which are not multiples of b and whose sum of digits lies
in a fixed congruence class r modulo a fixed positive integer m. So, we see
that Proposition 1.5 tells us that such an inequality cannot happen infinitely
often when n ∈ Ab,s. The proof of this result uses the Subspace Theorem
of W. M. Schmidt. While Proposition 1.4 above tells us that Ab,s contains
numbers with many prime factors, what is in doubt is the maximal order
of ω(n) when n ∈ Ab,s. That is, without any digital restrictions we know
that the inequality

ω(n) � log n

log2 n

holds for infinitely many n but our inequality (1.2) is only a logarithmic
version of the above inequality. So, we would like to propose the following
problem:

Problem 1. Prove or disprove that

(1.4) lim
n→∞
n∈Ab,s

ω(n) log2 n

log n
= 0.

We conjecture that formula (1.4) does hold but have no idea how to
attack this problem.

Another question that is usually of interest for thin subsets of positive
integers is to ask how many of them are powers.

Proposition 1.6. Let x be a large positive real number. Then the number of
positive integers n < x with n ∈ Ab,s which are perfect powers is o(|Ab,s(x)|).

Notice that there is no reason why Ab,s should not contain infinitely
many perfect powers if s ≥ 4. Indeed, b2t + 2bt + 1 is a perfect square for
all t and the sum of its digits is precisely 4 for all t > 0 and b > 2. It
would be interesting to encounter a sharp (close to the truth) estimate for
the dependence o(|Ab,s(x)|) appearing in Proposition 1.6. In fact, it is very
likely that the intersection between Ab,s and the set of all perfect powers
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consists of a union between finitely many positive integers n and finitely
many parametric families of integers of the form yk where y = a0 + a1b

i1 +
· · · + atb

it with k, t, a0, a1, . . . , at fixed and i1, . . . , it variables in such a
way that the number yk = (a0+a1b

i1 +· · ·+atb
it)k has, in a “canonical way”,

the sum of its digits s in base b. For a fixed exponent k proving this might be
even doable using the technique employed by Corvaja and Zannier in [6] and
particular manifestations of this are already known (see, for example, the
recent paper [24] of Szalay, where it is shown, among other things, that the
equation 2m + 2n + 1 = x2 has only finitely many positive integer solutions
(m,n, x) aside from the infinite family n = t and m = 2t − 2 for which
2m + 2n + 1 = 22(t−1) + 2t + 1 = (2t−1 + 1)2), but it seems hard to get an
absolute bound on k (depending only on b and s) although the existence of
such a bound k is implied by a Generalized ABC Conjecture. Note also that
for fixed k, b and s there are some simple congruence conditions which, if not
fulfilled, guarantee that there are no perfect kth powers in Ab,s. For example,
if s ≡ 2 (mod 3), then an immediate congruence modulo 3 shows that A10,s

contains no perfect squares. On the other hand, if say k > 1 is fixed and
s = sk

0 holds with some positive integer s0, then it is not hard to show that
there exists a positive constant δ (depending on s and k) such that for large
values of the positive real number x the set Ab,s(x) contains at least |Ab,s(x)|δ
positive integers n which are kth powers.

Finally, we look at the numbers φ(n) when n ∈ Ab,s where φ(n) is the
Euler function of n and we show that most of these are not very smooth.

Proposition 1.7. There exists a positive computable constant c6 depending
on b and s such that the inequality

(1.5) P (φ(n)) > c6 log
1/6
2 n log

1/3
3 n

holds for almost all positive integers n ∈ As,b.

By “almost all” in the statement of the above Proposition 1.7 we mean
that for a large positive real number x the number of numbers n < x in
Ab,s for which inequality (1.5) fails is o(|Ab,s(x)|). Notice that it is prob-
ably impossible to replace “almost all” by “all but finitely many” in the
above statement. Indeed, there is no reason why there shouldn’t be infi-
nitely many primes of the form n = 3 · 2t + 1 = 2t+1 + 2t + 1 and if there
are infinitely such, then P (φ(n)) = 3 will hold for all such integers n and in
particular an inequality like (1.5) will fail for infinitely many positive inte-
gers n ∈ A2,3. The proof of the above Proposition 1.7 is rather technical and
uses, among other things, Baker’s theory of lower bounds for linear forms in
logarithms of algebraic numbers as well as Schlickewei’s quantitative version



Arithmetic properties of positive integers with fixed digit sum 375

of W. M. Schmidt’s Subspace Theorem (see [20]). This idea has been em-
ployed before in the context of giving a lower bound for P (φ(|un|)) which is
valid for almost all positive integers n, where (un)n≥0 is a binary recurrent
sequence of integers satisfying certain technical conditions.

Acknowledgments. I thank the referee for valuable suggestions and Eu-
genio Balanzario for an enlightening discussion concerning the behavior of
the tail of the series (8.30).

2. The Proof of Proposition 1.1

We fix k and b and let � be a large positive integer. Take the number

n� = b�−1 + b�−2 + · · · + b + 1 =
b� − 1

b − 1
.

Observe that n� is coprime to b. Now assume that

m = a0 +a1b
i1 + · · ·+atb

it , a0at �= 0, t ≤ k−1 and ai ∈ {0, 1, . . . , b−1}
is a non zero multiple of n� which is not a multiple of b and which has at
most k non zero digits in base b. For every exponent ij with j = 1, . . . , t
we let αj ∈ {0, 1, . . . , � − 1} be such that ij ≡ αj (mod �). Since b� ≡ 1
(mod n�) and n� | m, we get that n� | m′ where

m′ = a0 + a1b
α1 + · · · + atb

αt .

Thus, m′ = cn� and since 0 < m′ < (b − 1)(t + 1)b�−1 ≤ (b − 1)kb�−1 and
n� > b�−1, we get that c < c7 where c7 = (b − 1)k is independent on �.
We may now assume that c is any fixed positive integer below c7 and rewrite
the equation m′ = cn� as

(b − 1)m′ = a0(b − 1) + a1(b − 1)bα1 + · · · + at(b − 1)bαt(2.1)

= c(b − 1)n� = c(b� − 1).

By looking at the number appearing in the left hand side of equation (2.1),
we see immediately that the number of its non zero digits in base b is at
most 2(t + 1) ≤ 2k. However, by looking at the number appearing in the
right hand side of (2.1) and writing it as

c(b� − 1) = cb� − c = c(b − 1)b�−1 + (b�−1 − c),

we recognize that this number has at least � − c8 non zero digits in base b
where one can choose c8 =

⌊
c7

log b

⌋
+ 1. Thus, if � > c9 where c9 = 2k + c8,

then equation (2.1) is impossible.
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The set S claimed by Proposition 1.1 can be chosen to be simply S =
{np | p > c9 and prime} and it is clear from what we have said that all the
numbers n ∈ S satisfy 1 and 3 of Proposition 1.1. The fact that they also
satisfy 2 follows from the well known fact that the relation

gcd(bu − 1, bv − 1) = bgcd(u,v) − 1

holds for all positive integers u and v. In particular, when p and q are
distinct primes, we then have

gcd(np, nq) = gcd

(
bp − 1

b − 1
,
bq − 1

b − 1

)
= 1.

�

3. The Proof of Proposition 1.2

Let z be a large positive parameter to be fixed later and let p1 < p2 < · · · <
pt ≤ z be all the prime numbers less then or equal to z. Clearly, t = π(z).
Let λ be any positive integer. Write µ = λp1 . . . pt and consider the number

n = 1 + bµ + b2µ + · · · + b(s−1)µ =
bsµ − 1

bµ − 1
.

It is clear that n ∈ Ab,s. For any positive integer d let

Φd(X) =
∏

1≤k≤d
gcd(k,d)=1

(
X − e

2iπk
d

)
∈ Z[X]

be the dth cyclotomic polynomial. Since

Xm − 1 =
∏
d|m

Φd(X),

we get that

(3.1) n =
bsµ − 1

bµ − 1
=
∏
d|sµ
d � |µ

Φd(b).

From (3.1), we get immediately that for all d ≥ 1 we have

(3.2) Φd(b) =
∏

1≤k≤d
gcd(k,d)=1

∣∣∣b − e
2iπk

d

∣∣∣ ≤ (b + 1)φ(d).
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From (3.1) and (3.2), we certainly get that

(3.3) P (n) ≤ maxd|sµ
d � |µ

P (Φd(b)) ≤ (b + 1)φ(sµ).

The above inequality (3.3) is the key in order to get smooth numbers n ∈
Ab,s. To get very smooth such numbers n, set λ = 1 and take a large z (for
example, such that z > P (s)). Then obviously

(3.4)
φ(sµ)

sµ
=

φ(µ)

µ
<

c10

log2 µ

and the right most inequality (3.4) holds with any constant c10 strictly larger
than c11 = eγ provided that z is large (see [17]) where γ is the Euler constant.
In particular, we get that the inequality

(3.5) φ(sµ) <
c10sµ

log2 µ
<

c12sµ

log2(sµ)

holds with any constant c12 strictly larger than c10 provided that z is large.
Since

b(s−1)µ < 1 + bµ + · · · + b(s−1)µ < n,

we get that

(s − 1)µ <
log n

log b
,

therefore

(3.6) sµ < c13 log n

where we can take c13 = s
(s−1) log b

.

Since the function y → y
log2 y

is increasing for y > ee, it follows, by (3.5)

and (3.6), that the inequality

(3.7) φ(sµ) <
c10sµ

log2 sµ
<

c14 log n

log3 n

holds where one can take c14 to be any constant larger than c10c13 provided
that z is large. Finally, from (3.3) and (3.7), we get

P (n) < (b + 1)
c14 log n
log3 n = nε(n)

where
ε(n) =

c15

log3 n

with c15 = c14 log(b + 1).
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This is what concerns very smooth numbers. To see that for a fixed
value of ε we can get a set of positive lower logarithmic density of numbers
n ∈ Ab,s we argue as follows. Write µ1 = p1 . . . pt and choose a value of z
large enough such that the inequality

φ(sµ1) < (s − 1)µ1ε
log b

log(b + 1)

holds for this value of z. The reason that such a value of z exists for a fixed
value of ε is a consequence of inequality (3.5). We now get that

(3.8) φ(sµ) = φ(sλµ1) ≤ λφ(sµ1) ≤ λ(s − 1)µ1ε
log b

log(b + 1)
< ε

log n

log(b + 1)

where the last inequality in (3.8) is an immediate consequence of the fact
that

b(s−1)µ = bλ(s−1)µ1 < n.

With (3.3) and (3.8) we get

(3.9) P (n) < (b + 1)φ(sµ) < nε

and the above inequality (3.9) holds uniformly in λ.

All is left is to do the count. Let x be a large positive real number.
It is not important for our purposes to understand the exact value of |Ab,s(x)|
but only the precise order of magnitude. We claim that there exist two
computable constants c16 and c17 such that the inequality

(3.10) c16 logs−1 x < |Ab,s(x)| < c17 logs−1 x

holds. This is almost obvious. Indeed, let us get an upper bound on the
number of numbers

n = a0 + a1b
i1 + · · · + atb

it < x

such that ai ∈ {1, . . . , b − 1} for i = 0, 1, . . . , t, 0 < i1 < · · · < it and for
which

∑t
i=0 ai = s. Clearly, t ≤ s−1 and there are only finitely many choices

for the number t ≤ s−1 and the t+1-uples (a0, a1, . . . , at) of positive integers
less than b for which

∑t
i=0 ai = s. For each one of these fixed choices, we get

that 0 < i1 < · · · < it and it < log x
log b

. Hence, there are only O(logt x) choices

for the t-uple of exponents (i1, . . . , it) and since t ≤ s − 1, we get the right
half of (3.10). To prove the other half of (3.10), notice that Ab,s contains all
the numbers

n = 1 + bi1 + · · · + bis−1
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where

(3.11) 0 < i1 < i2 < · · · < is−1 <

⌊
log x

log b

⌋
− 1

and the number of s − 1-uples of positive integers satisfying (3.11) is(⌊ log x
log b

⌋− 1

s − 1

)
� logs−1 x

which proves the other half of (3.10).

We now get a lower bound on the number of positive integers n < x in
Ab,s satisfying (3.9). From the above arguments, it follows that if z is a fixed
number which is sufficiently large such that inequality (3.8) holds, then any
number of the form

(3.12) 1 + bλµ1 + b2λµ1 + · · · + b(s−1)λµ1

where λ is an arbitrary positive integer satisfies (3.9). But there are at least

(3.13)

⌊
log x

(s − 1)µ1 log b

⌋
− 1

such numbers λ for which the number shown at (3.12) is < x and it is clear
that the number shown at (3.13) is � log x � |Ab,s(x)|δ where δ = 1

s−1

(see (3.10)). �

Remarks In the above proof, we have showed that if ε is fixed, then there
are a number � |Ab,s(x)|1/(s−1) numbers n < x in Ab,s having P (n) < nε

where the constant understood in the symbol � above depends on ε. When s
is not prime, we can do slightly better by a similar argument. Namely, we
can show that the number of numbers n < x in Ab,s satisfying P (n) < nε

is at least � |Ab,s|(Ω(s)−1)/(s−1) where the constant understood in � above
depends again on ε. Of course, this is better than the previous argument
only when s is not a prime. To get such a better inequality, notice that the
number u = Ω(s) − 1 is the maximum positive integer k for which there
exists a representation s = d1d2 . . . dk with integers di > 1. Pick such a
representation s = d1d2 . . . du and for i ∈ {1, . . . , u} let

ni = 1 + bλiµ + b2λiµ + · · · + b(di−1)λiµ

where λi are some arbitrary positive integers and µ is again of the form
µ =

∏
p<z p. With fixed ε we can find again a value of z such that the

inequality P (ni) < nε
i holds independently on λi. Finally, set

(3.14) n =
u∏

i=1

ni.
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It is clear that, generically, the sum of digits of n in base b is precisely∏u
i=1 di and that all its non zero digits are 1. Indeed, the only case when

this might not be so is when there exist two disjoint non empty subsets J1

and J2 of {1, . . . , u} and two functions j1 : J1 → N and j2 : J2 → N such
that j1(i) ∈ {1, . . . , di − 1} and j2(i) ∈ {1, . . . , di − 1} hold for all i ∈ J1 or
i ∈ J2, respectively, and such that furthermore

(3.15)
∑
i∈J1

j1(i)λi =
∑
i∈J2

j2(i)λi.

It is now easy to see, by arguments similar to the previous ones, that the
number of u-uples (λ1, . . . , λu) of positive integers for which the number n
given by (3.14) is < x is

� logu x = logΩ(s)−1 x � |Ab,s(x)|Ω(s)−1
s−1

and it is also easy to see that most such u-uples of positive integers do not
satisfy any one of the finitely many linear relations (3.15) (mainly because
anyone of the finitely many linear relations (3.15) will “cut down” on the
degree of freedom u of the generic u-uple (λ1, . . . , λu)), which finishes the
argument.

4. The Proof of Proposition 1.3

Let p1 < p2 < · · · < pk be the first k prime numbers and assume that

n = pα1
1 . . . pαk

k

holds with some αi ≥ 0 for i = 1, . . . , t where

n = a0 + a1b
i1 + · · · + atb

it

is such that ai ∈ {1, . . . , b−1} for i = 1, . . . , t and
∑t

i=0 ai = s. We assume
that i1 < i2 < · · · < it and we write

X = it and Y = max{e, αi | i = 1, . . . , k}.
It is easy to see that the inequality

bX+1 > n ≥ 2Y

holds, therefore Y < c18X holds for large X with c18 = 2 log b (notice
that 2 > log 2). In what follows, we shall assume that X is large enough.
We use the following lower bound for linear forms in p-adic logarithms due
to K. Yu (see [25]).
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Lemma 4.1. Let p be a prime number, r1, . . . , rk be rational numbers
having both numerators and denominators coprime to p and n1, . . . , nk

be positive integers. Write Ai ≥ e for the maximum between the height of
the rational number ri (i.e., the maximum between the absolute values of its
numerator and denominator when written in reduced form) and e. Write
also N = max{e, |ni| | i = 1, . . . , k}. Then there exists an effectively
computable constant c19 which is absolute such that if the rational number

rn1
1 . . . rnk

k − 1

is non zero, then

ordp (rn1
1 . . . rnk

k − 1) < ck
19 log A1 . . . log Ak log N

where for a rational number r we write ordp(r) for the exponent at which
the prime number p divides the numerator of r.

We use the above Lemma 4.1 to bound recursively i1, i2, . . . , it in terms
of t and X. Write

bi1(a1 + a2b
i2−i1 + · · · + atb

it−i1) = pα1
1 . . . pαk

k − a0(4.1)

= a0(a
−1
0 pα1

1 . . . pαk

k − 1).

Let p be an arbitrary prime number dividing b. The above equation (4.1)
implies

(4.2) i1 ≤ ordp(b
i1) = ordp(a0) + ordp

(
a−1

0 pα1
1 . . . pαk

k − 1
)
.

Let c20 be such that c20 > ordp(a0). We use Lemma 4.1 to bound the second
term appearing in (4.2). Clearly,

(4.3) ordp

(
a−1

0 pα1
1 . . . pαk

k − 1
)

< ck
19 log A0 log A1 log p2 . . . log pk log Y

where A0 = max{|a0|, e} and A1 = e = max{p1, e}. Notice that we are
entitled to apply Lemma 4.1 because with the index j such that pj = p
we may replace a−1

0 by a−1
0 p

αj

j and if this rational number does not have
both its denominator and numerator coprime to p, then inequality (4.2) is
simply i1 ≤ c20 (i.e., the second term in the right hand side of (4.2) is zero)
while if a−1

0 pαj has both its numerator and denominator coprime to p, then
αj = ordp(a0) and the height of a−1

0 pαj is less than or equal to the height
of a0 (and in this case the factor depending on pj shouldn’t even appear in
the right hand side of (4.3)). Set

Ω = log A1 . . . log pk < exp

( k∑
i=1

log2 pk

)
< exp (c21k log2 k)

where c21 some absolute constant.
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Inequality (4.2) becomes

(4.4) i1 < c20 + ck
19 log A0exp (c21k log2 k) log Y < exp (c22k log2 k) log Y

where c22 can be chosen to be such that

c22 > 4max{log c20, log c19, log2 A0, c21}.

We now use induction on the parameter j to show that the inequality

(4.5) ij + 1 < 3jexp (c22jk log2 k) (log B log Y )j

holds for all j = 1, . . . , t where B = max{b, e}. The step j = 1 follows
immediately from inequality (4.4). Assume that inequality (4.5) holds for
some j < t with j ≥ 1 and write

cj = a0 + a1b
i1 + · · · + ajb

ij .

Obviously,
cj < bij+1,

therefore

(4.6) log cj < (ij + 1) log B.

Notice also that since j ≥ 1 we have cj ≥ b + 1 > e. Write

bij+1
(
aj+1 + aj+2b

ij+2−ij+1 + · · · + atb
it−ij+1

)
= pα1

1 . . . pαk
k − cj

= cj

(
c−1
j pα1

1 . . . pαk

k − 1
)
.

We get

ij+1 + 1 ≤ ordp

(
bij+1

)
+ 1 = 1 + ordp(cj) + ordp

(
c−1
j pα1

1 . . . pαk

k − 1
)
.

Clearly,

ordp(cj) ≤ log cj

log p

and by Lemma 4.1 we also get

ordp

(
c−1
j pα1

1 . . . pαk
k − 1

)
< ck

19Ω(log cj) log Y,

therefore

(4.7) ij+1 + 1 < 1 + (log cj)

(
1

log p
+ ck

19Ω log Y

)
.
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So, with (4.6), (4.7) and the induction hypothesis, we get

ij+1 + 1 < 1 + (ij + 1) log B

(
1

log p
+ ck

19Ω log Y

)

< 1 + 3j(log B)j+1(log Y )jexp (c22jk log2 k)

(
1

log p
+ ck

19Ω log Y

)
< 3j+1 (log B log Y )j+1 exp (c22(j + 1)k log2 k)

where the last inequality above is obvious. This finishes the induction step.
Evaluating (4.5) at j = t we get

X < it + 1 < 3texp (c22tk log2 k) (log B log Y )t ,

therefore
log X < c23 + c24k log2 k + c25 log2 Y

where c23 = t(log 3 + log2 B), c24 = tc22 and c25 = t (recall that t ≤ s − 1).
Since Y < c18X we get that the inequality

c24k log2 k > log X − c23 − c25 log2(c18X) >
log X

2

holds when X > c26 where c26 is computable and depends on b and s. Thus,
for X > c26 we get

k log2 k > c27 log X

with c27 =
1

2c24
, therefore the inequality

k > c28
log X

log3 X

holds with some computable constant c28 provided that X > c26. Since for
large k we also have pk > k log k (see [18]), we get that the inequality

(4.8) pk > k log k > c29
log X log2 X

log3 X

holds for all large enough values of X. All it remains to notice is that
X > c30 log n holds for all large enough values of n where c30 can be taken
to be any constant slightly smaller than 1

log b
provided that n is large enough,

and now inequality (4.8) tells us that the inequality

P (n) > c31
log2 n log3 n

log4 n

holds for all n > c32. We may now replace the constant c31 by a smaller
constant and conclude that indeed an inequality like the one asserted at (1.1)
holds for all n ∈ Ab,s. �
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5. The Proof of Proposition 1.4

Here, we use the argument employed in the proof of Proposition 1.2. Let z be
a large real parameter and let s < p1 < · · · < pt ≤ z be all the prime numbers
larger than s and smaller than or equal to z. Take µ = p1 . . . pt and look at
the number

(5.1) nz = 1 + bµ + b2µ + · · · + b(s−1)µ =
bsµ − 1

bµ − 1
=
∏
d|sµ
d � |µ

Φd(b).

It is clear that the number of divisors d | sµ such that d � | µ is equal to τ(sµ)−
τ(µ) = (τ(s)−1)τ(µ) ≥ τ(µ) = 2t. Here, for a positive integer k we use τ(k)
for the number of divisors of k and we also made use of the multiplicativity of
the function τ ; i.e., the fact that the formula τ(sµ) = τ(s)τ(µ) holds because
s and µ are coprime. In particular, there are at least 2t factors of the form
Φd(b) appearing in the right hand side of formula (5.1). We now use the fact
well known fact that for k > 12 the number bk − 1 has a primitive divisor;
i.e., the above number is divisible by a prime number p such that p does not
divide anyone of the numbers b� − 1 for any positive integer � < k (see [5]).
It is also well known that the existence of a primitive divisor for the number
bk − 1 is equivalent to the existence of a prime divisor p of Φk(b) such that p
does not divide Φ�(b) for any positive integer � < k. This argument together
with (5.1) tells us that ω(nz) ≥ 2t − 12. It remains to get a lower bound
on t in terms of nz. But this is easy. Clearly, the inequality

sµ < exp(2t log t)

holds for all sufficiently large values of z and since nz < bsµ we get, by
applying the double logarithm in the above inequality, that

log2 nz < log(sµ) + log2 b < 2t log t + log2 b,

therefore the inequality
c33 log2 nz < t log t

holds for large values of z where c33 can be taken to be 1/3. The above
inequality implies that the inequality

c34
log2 nz

log3 nz

< t

holds with some absolute constant c34 provided that z is large enough, there-
fore the inequality

ω(nz) > 2t − 12 > (
√

2)t = exp

(
log 2

2
t

)
> exp

(
c35

log2 nz

log3 nz

)

holds for all sufficiently large values of z with c35 = c34 log 2
2

which finishes
the argument. �
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6. The Proof of Proposition 1.5

We start with the following presumably well known lemma concerning the
structure of positive integers n with a large Ω(n).

Lemma 6.1. (1)The inequality

Ω(n) ≤ log n

log 2

holds for all positive integers n.

(2) Let K be any positive real number in the interval
(
0, 1

log 2

)
and let AK

be the set of all positive integers n such that Ω(n) ≥ K log n. Then AK

is infinite and there exist two computable positive constants L and δ
with δ < 1 depending only on K such that if n ∈ AK , then there
exists a prime number p < L such that if we write n = pαpm where
gcd(p,m) = 1, then log m < δ log n.

Proof. Part 1 is well known. Notice that the inequality asserted at 1 is
sharp and equality is obtained for all positive integers n which are powers
of 2. We shall now prove part 2. Write

n =
∏
p|n

pαp.

If n ∈ AK , then

(6.1)
∑
p|n

αp = Ω(n) > K log n = K
∑
p|n

αp log p =
∑
p|n

αp(K log p).

Let 2 = p1 < p2 < . . . be all the prime numbers and let k be the maximal
positive integer such that the inequality K log pk ≤ 1 holds. Notice that k
exists and k ≥ 1 because K < 1

log 2
. Write q = pk and rewrite (6.1) as

(6.2)
∑
p|n
p≤q

(1 − K log p)αp >
∑
p|n
p>q

αp(K log p − 1).

Set

α = max {αp | p | n and p ≤ q} ,

K1 =
∑
p≤q

(1 − K log p) > 0.
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Inequality (6.2) implies

(6.3) αK1 ≥
∑
p|n
p≤q

αp(1 − K log p) >
∑
p|n
p>q

αp(K log p − 1).

Set

K2 = K − 1

log pk+1

and notice that K2 > 0. Moreover,

K2 ≤ K − 1

log p
holds for all p > q,

therefore

(6.4) K log p − 1 > K2 log p holds for all p > q.

With (6.3) and (6.4) we get

(6.5) K1α > K2

∑
p|n
p>q

αp log p.

Finally, set

K3 =
∑
p≤q

log p

and notice that (6.5) implies

(K1 + K2K3)α = K1α + K2(K3α) ≥K2

∑
p|n
p≤q

α log p + K2

∑
p|n
p>q

αp log p

≥K2

∑
p|n

αp log p = K2 log n.

Hence, the inequality
α > K4 log n

holds with K4 = K2

K1+K2K3
. Now let n ∈ AK and let p ≤ q be the prime

number p | n for which αp = α. We then have

n = pαm

where
log m = log n − α log p < log n − K4 log p log n

= (1 − K4 log p) log n ≤ (1 − K4 log 2) log n

which proves part 2 of the above Lemma 6.1 with L = q and δ = 1−K4 log 2
(it is clear that δ is positive because K3 ≥ log 2, therefore K1 + K2K3 >
K2 log 2 which is equivalent to the fact that K4 log 2 is smaller than 1).
Lemma 6.1 is therefore proved. �
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We can now embark in the proof of Proposition 1.5. Assuming that (1.3)
does not hold we deduce the existence of a positive constant K such that the
inequality Ω(n) > K log n holds for infinitely n ∈ Ab,s. We may, of course,
assume that K is as small as we want and so we take it such as K < 1

log 2
.

We now use Lemma 6.1 to conclude that there exist two positive constants
L and δ such that for every n ∈ Ab,s for which Ω(n) > K log n we have
n = pαm with gcd(p,m) = 1 and log m < δ log n. In particular, for every
such n we get a relation of the type

(6.6) n = a0 + a1b
i1 + · · · + atb

it = pαm

where ai ∈ {1, . . . , b − 1}, ∑t
i=1 ai = s, p < L, p � | m and the inequality

log m < δ log n holds with some fixed value of δ < 1. There are only finitely
many possibilities of choosing t ≤ s−1 and the t+2-uple of positive integers
(a0, a1, . . . , at, p) such that ai ∈ {1, . . . , b− 1} with

∑t
i=0 ai = s and p < L

is a prime number and since we are assuming that we have infinitely many
values of n satisfying a relation of the type (6.6), we may assume that
t, a0, . . . , at, p are fixed and that (6.6) holds for infinitely many values
of the t + 2-uple of positive integers (i1, . . . , it, α,m). In order to get a
contradiction, we shall show that an equation like (6.6) has only finitely
many solutions (i1, . . . , it, α,m). To achieve this, we shall prove something
slightly more general, namely the following.

Let b > 1 be a fixed positive integer. Let t ≥ 1 and A0, A1, . . . , At be
fixed non zero integers and p be a fixed prime. Let δ < 1 be a fixed real
number and consider the Diophantine equation

(6.7) A0 + A1b
i1 + · · · + Atb

it = pαm

in integer unknowns (i1, . . . , it, α) with ij ≥ 0 for j = {1, . . . , t}, α ≥ 0,
m �= 0, p and m coprime and log |m| < δ log |n| where we use n to denote
the common value of the integer appearing in either side of equality (6.7).
A solution (i1, . . . , it, α,m) will be called non degenerate if∑

j∈I

Aj bij �= 0

holds for all proper non empty subsets I ⊂ {0, 1, . . . , t} where we use i0 = 0.
It suffices to show that an equation of the type (6.7) has only finitely many
non degenerate solutions (i1, . . . , it, α,m). Notice that our equation (6.6) is
a particular type of an equation of the type (6.7) and it is non degenerate
because all the coefficients ai for i = {0, 1, . . . , t} in (6.6) are positive.
Notice that what we are about to prove is a slight generalization of the
well known result concerning the finiteness of the number of non degenerate
solutions of a linear S-unit equation.
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To prove this, we shall apply the following particular case of the Subspace
Theorem which we recall as a lemma (for a proof see [20]).

Lemma 6.2. Let S be a finite set of absolute values of Q including ∞
(and normalized such that |p|p = p−1 holds for every prime number p) and
let N ∈ N. For v ∈ S let L1,v, . . . , LN,v be linearly independent forms in
N variables with rational coefficients and let µ > 0. Then the solutions
x = (x1, . . . , xN ) ∈ (Z∗)N of the inequality

∏
v∈S

N∏
i=1

|Li,v(x)|v < (max {|xi| | i = 1, . . . , N})−µ

are contained in finitely many proper subspaces of QN .

To prove the statement about the finiteness of the number of non degen-
erate solutions of (6.7) we use induction over the parameter t ≥ 1 and the
above Lemma 6.2. To see how this works let t = 2. Then (6.7) reduces to

(6.8) A1b
i1 + A0 = pαm.

Since α log p > (1− δ) log |n| and A0 �= 0, it follows that the only interesting
case to consider is when p does not divide b (otherwise, we obviously have
only finitely many solutions (i1, α,m) of (6.8)). We apply Lemma 6.2 with
S = {p, ∞, q | for all prime divisors q of b}, N = 2, x = (x1, x2) and the
linear forms L1,v(x) = x1 for all v ∈ S, L2,v = A1x1 − x2 for v ∈ S\{p} and
L2,v(x) = x2 when v = p. It is clear that L1,v(x) and L2,v(x) are linearly
independent for all v ∈ S. We assume that x1 = bi1 and x2 = pαm is a
solution of

(6.9) A1x1 − x2 = −A0.

Let us compute the double product

∏
v∈S

2∏
i=1

|Li,v(x)|v

for our particular problem. Clearly,∏
v∈S

|L1,v(x)|v =
∏
v∈S

|x1|v = 1

and ∏
v∈S\{p}

|L2,v(x)|v =
∏

v∈S\{p}
| − A0|v = A
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where A is a constant. Finally,

|L2,p|p = |x2|p =
1

pα
< |n|−(1−δ) = |A1x1 + A0|−(1−δ).

Thus, the inequality

∏
v∈S

2∏
i=1

|Li,v(x)|v < A|A1x1 + A0|−(1−δ) < max{|x1|, |x2|}−µ

holds with µ = (1−δ)
2

> 0 provided that max{|x1|, |x2|} is large enough. By
Lemma 6.2 it follows that all but finitely many solutions of equation (6.9)
are contained in finitely many proper subspaces of Q2. In particular, there
exist finitely many pairs of rational numbers (B1, B2) not both zero so that
B1x1 +B2x2 = 0. Thus, B1b

i1 +B2p
αm = 0 which means that α is bounded

and since α log p > (1 − δ) log |n|, we get that n is bounded as well. This
takes care of the case in which t = 1.

We now treat the general case. Assume that t > 1 and that equation (6.7)
does have only finitely many non degenerate solutions for any t′ < t and any
choice of the non zero coefficients A0, . . . , At′ . We may assume that ij are
distinct because if two of them are equal, say i1 = i2, we can then group
them and rewrite equation (6.7) as

A0 + (A1 + A2)b
i2 + · · · + Atb

it = pαm

which is an equation like (6.7) but with fewer (i.e., t − 1) terms in the
left hand side and it is still non degenerate (notice that A1 + A2 �= 0 if
i1 = i2 because we are treating only the case of the non degenerate solutions
of (6.7)). The same argument shows that we may assume that ij > 0 for all
j ∈ {1, . . . , t} and we may now order them in such a way that 0 < i1 < i2 <
· · · < it. We may also assume that i1 is as large as we want for if not, i.e., if i1
remains bounded, we may then assume that i1 is fixed and replace A0+A1b

i1

by A′
0 and obtain again an equation like (6.7) but with fewer terms in the

left hand side. Since we are assuming that i1 can be large, it follows that the
only interesting case is again when p does not divide b. We apply Lemma 6.2
with S = {p, ∞, q | for all prime divisors q of b}, N = t+1, Li,v(x) = xi for
all i = 1, . . . , t and all v ∈ S, Lt+1,v(x) = A1x1+A2x2+ · · ·+Atxt−xt+1 for
all v ∈ S\{p} and Lt+1,p(x) = xt+1. It is clear that Li,v for i = 1, . . . , N are
linearly independent for all v ∈ S. We look at the solutions of the equation

(6.10) A1x1 + A2x2 + · · · + Atxt − xt+1 = −A0

with xj = bij for j = 1, . . . , t and xt+1 = pαm where

log |m| < δ log |n| = δ log |A0 + A1x1 + · · · + Atxt|.
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We now compute again the double product

∏
v∈S

N∏
i=1

|Li,v(x)|v.

Let j ≤ t. Then

(6.11)
∏
v∈S

|Lj(x)|v =
∏
v∈S

|xj|v =
∏
v∈S

|bij |v = 1.

Let now j = t + 1 and notice that

(6.12)
∏

v∈S\{p}
|Lt+1,v(x)|v =

∏
v∈S\{p}

| − c0|v = A′

where A′ is a constant while

(6.13) |Lt+1,p(x)|p = |xt+1|p = |pαm|p =
1

pα
< |A1x1 + · · · + Atxt|−(1−δ).

Multiplying (6.11)–(6.13) we get that the inequality

∏
i∈S

N∏
i=1

|Li,v(x)|v < A′|A1x1 + · · · + Atxt|−(1−δ)

< max { |xj | | j = 1, . . . , t + 1}−µ

holds with µ = (1−δ)
2

provided that it − it−1 is large enough (we may assume
that this is so for otherwise, if it − it−1 is bounded, we may then assume
that it − it−1 is fixed and then equation (6.7) becomes again an equation
with fewer unknowns in the left hand side of it which has only finitely many
non degenerate solutions by the induction hypothesis). With Lemma 6.2
it follows that there exist finitely many non zero vectors (B1, . . . , Bt+1)
in Qt+1 such that every solution of (6.10) satisfies

(6.14) B1x1 + · · · + Btxt + Bt+1xt+1 = 0.

Assume first that Bt+1 = 0 and let j be the maximal index ≤ t for which
Bj �= 0. Then equation (6.14) implies that

xj = B′
1x1 + · · · + B′

j−1xj−1

where B′
i = −Bi

Bj
and the above equation is a pure S-unit equation. It is

then known that ij − ij−1 is bounded and so we may assume that ij − ij−1

is fixed and now equation (6.7) becomes an equation with fewer than t
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unknowns in the left hand side of it which by the induction hypothesis has
only finitely many solutions. Assume now that Bt+1 �= 0. Expressing xt+1

versus x1, . . . , xt both from (6.14) and from (6.10) we get an equation of
the form

(6.15) A1x1 + · · · + Atxt + A0 = B′
1x1 + · · · + B′

txt

where B′
i = − Bi

Bt+1
for i = 1, . . . , t. The above equation (6.15) is an equation

of the form

(6.16) C1x1 + · · · + Ctxt + C0 = 0

with Ci = Ai − B′
i for all i = 1, . . . , t. If (6.16) is non degenerate, then it

has only finitely many solutions with xj = bij for j = 1, . . . , t (notice that
A0 �= 0 is fixed). If it is degenerate, let I be a set of minimal cardinality of
{1, . . . , t} for which

(6.17) A0 +
∑
i∈I

Cixi = 0.

Then equation (6.17) is non degenerate and as such it has only finitely many
solutions xj = bij for which j ∈ I. In particular, since I is non empty, every
one of the exponents ij for j ∈ I is bounded which means that we can reduce
equation (6.7) again to an equation with fewer unknown terms in the left
hand side of it. The induction is therefore complete which finishes the proof
of Proposition 1.5. �

Remarks With a known value of δ it is an immediate application of lower
bounds for p-adic logarithms that an equation like (6.7) with t = 1 has even
finitely many effectively computable solutions (i1, α,m) and these may be
computed from knowledge of c0, c1, b, δ and p. However, the value of δ
comes from the Lemma 6.1 and it is computable only if we assume that we
do know a constant K such that Ω(n) > K log n holds with some n ∈ Ab,s

which has exactly two non zero digits in base b. We have avoided to mention
the words lower bounds for linear forms in logarithms at this stage mainly
because we wanted only to prove an estimate of the type (1.3) which means
that we wanted to show that for every K > 0 the inequality Ω(n) > K log n
can hold only for finitely many positive integers n ∈ Ab,s. However, with our
method one can employ a lower bound for a linear form in p-adic logarithms
to find an effective upper bound on Ω(n)

log n
which tends to zero with n when n

tends to infinity in the set of all positive integers which are not multiples of
b and which have only two non zero digits when written in base b.
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7. The Proof of Proposition 1.6

By the arguments used in the proof of Proposition 1.2, it follows that for a
large positive real number x we have c16 logs−1 x < |Ab,s(x)| < c17 logs−1 x.
We thus find it easier to measure the cardinality of |Ab,s(x)| in the logarithmic
scale. That is, for a large positive real number x we shall count the number
of numbers n ∈ Ab,s of the form

(7.1) n = a0 + a1b
i1 + · · · + atb

it

where ai ∈ {1, . . . , b − 1}, ∑t
i=0 ai = s and 0 < i1 < · · · < it < x. This

is “almost” Ab,s(b
x) and therefore the number of such numbers n is 
 xs−1.

We have to show that the number of such numbers n which are also per-
fect powers is o(xs−1). First of all let us notice that most numbers of the
form (7.1) have t = s − 1 and ai = 1 for all i = 0, . . . , t. Indeed, suppose
that t < s − 1. For each such t there are only finitely many choices for the
coefficients ai ∈ {1, . . . , b − 1} such that

∑t
i=0 ai = s and for each one of

these choices of the coefficients the exponents i1 < i2 < · · · < it < x can be
chosen in at most xt ≤ xs−2 ways. In particular, the number of numbers n
given by (7.1) with t < s − 1 is O(xs−2) = o(xs−1). Thus, most numbers
shown at (7.1) have t = s − 1 and therefore ai = 1 for all i = 0, . . . , t. Let
us assume now that

(7.2) 1 + bi1 + · · · + bis−1 = my

holds for some positive integers m > 1 and y > 1. We may assume that y
is prime and since m ≥ 2, we get that y ≤ c36x. Thus, the number of ways
of choosing y is π(c36x) < c37

x
log x

. Since 0 < i1 < · · · < is−1, we also observe
that we may assume that i1 > x

log x
for if not, then the number of numbers

n of the form (7.1) with i1 ≤ x
log x

and i2 < i3 < · · · < is−1 < x is, of course,

O
(

xs−1

log x

)
= o(xs−1). In particular, since i1 > 0, we read that the number

shown at (7.2) is coprime to b, therefore m is coprime to b. We now fix the
exponents i1 < i2 · · · < is−2 < x. The number of such choices is, of course,
O(xs−2). We write

c = 1 + bi1 + · · · + bis−1.

And it thus suffices to count the number of exponents j = is−1 < x with
j > x

log x
and j = is−1 �∈ {i1, . . . , is−2} and for which the relation

(7.3) bj + c = my

holds with some positive integer m > 1 coprime to b and some prime number
y > 1. We need to show that the number of such exponents j is o(x). For this
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we start with the exponent y. Since y is prime, we write it as y = p. For any
fixed p < c36x equation (7.3) can have no solutions (j,m) with j < x or
one such solution or more than one such solution. Thus, the total number
of solutions (j,m, y) of equation (7.3) over all those values of y = p < c36x
for which equation (7.3) has at most one solution (j,m) when p is fixed is
at most π(c36x) = O

(
x

log x

)
= o(x). We now fix a value of p < c36x and we

assume that equation (7.3) has more than one solution (j,m) with this fixed
value of y = p.

We distinguish three instances.

Case 1. p > max{b, 3}.
Let (j,m) and (j′,m′) be two solutions of equation (7.3) with j′ > j

corresponding to the same value y = p. Taking the difference between these
two equations (7.3) we get

(7.4) bj(bj′−j − 1) = m′y − my = (m′ − m)
m′p − mp

m′ − m
.

Let d = gcd(m′,m). Notice that d is coprime to b. Write m′ = dm′
1 and

m = dm1 with coprime positive integers m1 and m′
1. Equation (7.4) is of

the form

(7.5) bj(bj′−j − 1) = dp(m′
1 − m1)

m′p
1 − mp

1

m′
1 − m1

.

It is now clear that every prime divisor of
m′p

1 −mp

m′
1−m1

is either p (and this happens

if p | (m′
1 − m1)), or is congruent to 1 modulo p. Since p > b, we get that

m′p
1 −mp

1

m′
1−m1

is coprime to bj and therefore

m′p
1 − mp

1

m′
1 − m1

≤ bj′−j − 1.

If d > 1, then d is also coprime to b and therefore dp divides bj′−j −1. In this
case, it follows, by (7.5) and the above remarks, that m′

1 − m1 must be a
multiple of bj and therefore

m′
1 − m1 ≥ bj.

We thus get

bj(p−1) ≤ (m′
1 − m1)

p−1 ≤ m′p
1 − mp

1

m′
1 − m1

≤ bj′−j − 1 < bj′−j,

therefore

(7.6) j′ ≥ jp.
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Since j > x
log x

and j′ < x, we first read that p < log x. Secondly, assume

that j1 < j2 < · · · < jk are all the possible indices j ∈ ( x
log x

, x
)

for which

bj + c is a pth power. Inequality (7.6) tells us that j2 > pj1, then that
j3 > pj2 > p2j1, etc., therefore

jk > pkj1.

Since jk < x and j1 > x
log x

, we read that pk < log x, therefore k ≤ c38 log2 x

where c38 = 1
log 2

. Thus, the number of numbers y = p is at most O(log x)
and for each such fixed prime number p the number of indices j for which
bj + c can be a pth power is O(log2 x). The totality of all these instances is
O(log x log2 x) = o(x) which settles this case.

Case 2. 3 ≤ p ≤ max{3, b}.
In this case, we have only finitely many prime numbers p under consideration
so we may assume that p is fixed. Let again (j,m) and (j′,m′) be two
solutions of equation (7.3) with j′ > j corresponding to the same exponent
y = p. With d = gcd(m′,m), m′ = dm′

1 and m = dm1 we arrive again at
equation (7.5), namely

(7.7) bj(bj′−j − 1) = dp(m′
1 − m1)

m′p
1 − mp

1

m′
1 − m1

.

Since both m′ and m are coprime to b, it follows that d is coprime to b and
so bj divides m′p

1 − mp
1. In particular,

m′p
1 > m′p

1 − mp
1 ≥ bj > bx/log x,

therefore

(7.8) m′
1 > exp

(
c39

x

log x

)

with c39 = log b
max{b,3} . Since p ≥ 3 is fixed and m′

1 > m1 are coprime, it follows

by a result of Bugeaud (see [4]) that the inequality

(7.9) P (m′p
1 − mp

1) > c40 log2 m′
1

holds with some computable constant c40. It then follows, from the above
estimates (7.8) and (7.9), that the inequality

(7.10) P (m′p
1 − mp

1) > c40 log

(
c39

x

log x

)
> c41 log x

holds with c41 = c40
2

provided that x is large enough.
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If x is so large such that c41 log x > b holds, we then get, by (7.7)
and (7.10), that the largest prime divisor of m′p

1 − mp
1 must divide bj′−j − 1

and therefore

bj′−j > bj′−j − 1 ≥ P (m′p
1 − mp

1) > c41 log x.

Thus, the inequality

j′ − j > c42 log2 x

must hold with c42 = 1
2 log b

provided that x is large enough. The above
gap principle tells us that if p is fixed and x

log x
< j1 < j2 < · · · < jk < x

are all the possible exponents in the interval
(

x
log x

, x
)

for which bj + c is a

pth power, then k = O
(

x
log2 x

)
= o(x). Since p can take only finitely many

values, it follows that the total number of exponents j < x for which bj + c
can be a pth power is again o(x) which takes care of this case.

Case 3. p = 2.

None of the above techniques can deal with the case p = 2 so here we
will employ a different argument. We let x be large and write z =

⌊
x

log x

⌋
.

With j > x
log x

every positive integer solution (j,m) of the equation

bj + c = m2

leads to a solution of the congruence

(7.11) m2 ≡ c (mod bz).

Let b =
∏

q|b qαq . Equation (7.11) implies that

(7.12) m2 ≡ c (mod qαqz)

and for every fixed q|b the above equation (7.12) has precisely two solutions
m (mod qαqz) (when q = 2 the above equation has only two solutions mod-
ulo 2α2z−1 and so that it has at most 4 solutions modulo 2α2z). Here, we
implicitly used the fact that c is coprime to b. The above argument shows
that the system of congruences (7.12) has, with varying q and by the Chi-
nese Remainder Lemma, at most c43 = 2ω(b)+1 integer solutions m in the
interval (0, bz). So, it suffices to count the number of exponents j such that
bj + c = m2 holds with m in a fixed congruence class modulo bz. Assume
that this fixed congruence class is c′, where c′ is an integer in the interval
(0, bz) which is coprime to b and suppose that (j,m) and (j′,m) are both
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solutions of equation (7.3) with y = 2 and m′ ≡ m ≡ c′ (mod bz). We write
m = ubz + c′, m′ = vbz + c′ with v > u ≥ 0. We now get

bj(bj′−j − 1) = m′2 − m2 = (m′ − m)(m′ + m)

= bz(v − u)(bz(v + u) + 2c′) ,

therefore
bj−z(bj′−j − 1) = (v − u)(bz(v + u) + 2c′).

It is now clear that gcd(b, bz(v + u) + 2c′) | 2 and therefore

bj′−j − 1 ≥ bz(v + u) + 2c′

2
>

bz

2
.

We thus get

j′ − j >
1

log b
(z log b − log 2) > c44

x

log x

where we can take c44 = 1
2

provided that x is large enough. The above ar-
gument shows again that equation (7.3) can have at most O(log x) solutions
(j,m) with p = 2 and j < x such that m is in a fixed congruence class mod-
ulo bz and since we have only finitely many such congruence classes, we get
that the number of numbers j < x for which bj +c can be a perfect square is
O(log x) = o(x). This case is therefore settled as well which completes the
proof of Proposition 1.6. �

8. The Proof of Proposition 1.7

The proof of this proposition follows closely the proof of the main result
in [14] although some of the details of the argument in [14] must be slightly
modified for our present purposes. We work again in the logarithmic scale as
in the proof of Proposition 1.6. That is, we assume that x is a large positive
real number and that n is a number of the form

n = a0 + a1b
i1 + · · · + atb

it

where ai ∈ {1, . . . , b− 1} for i = 0, . . . , t,
∑t

i=0 ai = s and 0 < i1 < · · · <
it < x. We want to show that but for a set of such positive integers n of
cardinality o(xs−1) the inequality asserted at (1.5) holds. As we have seen in
the proof of Proposition 1.6 most such positive integers n have t = s−1 and
ai = 1 for all i = 0, . . . , t and therefore we may assume that the numbers n
that we will work with are of this type. We may also assume that the
inequality is−1 − is > c45

x
log4 x

holds where c45 is a computable positive

constant which we will fix later. Indeed, the reason is that the number of
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s−1-uples of positive integers (i1, . . . , is−1) for which i1 < · · · < is−1 < x but
is−1 − is−2 ≤ c45

x
log4 x

where c45 is some fixed constant is O
(

xs−1

log4 x

)
= o(xs−1)

and the total number of numbers n under consideration is ∼ xs−1. As in the
proof of Proposition 1.2 we shall assume that i1 < · · · < is−2 are fixed and
we write

c = 1 + bi1 + · · · + bis−2.

We will again assume that i1 > x
log x

. Thus, the number n we are looking at
is of the form

(8.1) n = bj + c

where

(8.2) log

(
bj

c

)
� x

log4 x

and where x
log x

< j < x and we want to show that with fixed c and vari-

able j in the above interval such that inequality (8.2) holds, inequality (1.5)
also holds for all such j except, eventually, for a number of o(x) of such j.
From now on, we shall always use j and n with the meaning that they are
related via formula (8.1). We use f(x) to denote some function of x which
is increasing for large values of x and tends to infinity with x. We shall
try to find the best (i.e., “largest”) such function f which comes out of our
arguments and for which the inequality

P (φ(n)) < f(x)

holds only on a set of positive integers j belonging to the interval
(

x
log x

, x
)

of cardinality o(x). As the conclusion of the Proposition 1.7 suggests our

best f is a constant multiple of log1/6 x log
1/3
2 x. In fact, up to modifying

the lower bound on bj/c suggested by formula (8.2), we can prove that a
stronger inequality than (1.5) holds for almost all positive integers n ∈ Ab,s,
namely that the inequality

P (φ(n)) > ε(n) log
1/6
2 n log

5/6
3 n

holds for almost all n ∈ Ab,s where ε(n) is any function defined on the set of
positive integers and which tends to zero arbitrarily slowly when n tends to
infinity. We shall resume ourselves to give the proof of (1.5).

We also notice that we may assume right away that s > 2. Indeed, for if
s = 2, then the numbers n we are looking at are of the form

n = bj + 1.



398 F. Luca

It is well known that for j > 12 the number bj + 1 has a primitive divisor;
i.e., there exists a prime number p | bj +1 such that p does not divide b� +1
for any positive integer � < j. It is known that such a prime satisfies the
congruence p ≡ 1 (mod j). In particular, for all but finitely many values of
j the inequality P (n) = P (bj +1) ≥ P (j) holds and we may now use a result
of de Bruijn (see [8]) which asserts that the inequality P (j) > xη(x) holds
for all positive integers j < x except for a set of cardinality O

(
x

log2.5 x

)
where

we can take η(x) = log4 x
3 log3 x

. We thus get an even better inequality than the

one asserted at (1.5) for P (φ(n)) which holds for almost all positive integers
n ∈ Ab,s when s = 2. From now on we assume that s > 2.

For the moment, we shall work with an unknown function f . Pick a large
positive real number x0 such that f(x0) > bc(b − 1)(c + 1), let x > x0 be
a large positive real number and let j be a positive integer in the interval

x
log x

< j < x for which the inequality P (φ(n)) ≤ f(x) holds. Assume that

p1 < p2 < · · · < pt ≤ f(x) are all the prime numbers less that f(x) and
set S = {pα1

1 . . . pαt
t | αi ≥ 0} to be the set of all positive integers m with

P (m) ≤ f(x). Notice that for large x we have t = π(f(x)) ≤ 2f(x)
log(f(x))

. Since

φ(n) ∈ S, we may write

n =
∏
pα||n

pα = AB

where
A =

∏
pα||n
α>1

pα and B =
∏
p||n

p.

Clearly,

φ(n) =
A

rad(A)
φ(rad(A))φ(B)

where for a positive integer k we write rad(k) =
∏

p|k p. Since p|φ(n) when-

ever p|A, it follows that A ∈ S. We now bound the size of A. We claim that
with any function f(x) such that f(x) = O(log2 x) the inequality

(8.3) αp ≤ p log x

holds for all p < f(x) and for all j < x except for a subset of j of cardinality
o(x). To see why this is so notice first of all that since i1 > x

log x
> 0, it follows

that n is coprime to b. Hence, it suffices to prove that inequality (8.3) holds
for most values of j < x and for all p < f(x) such that p is coprime to b.
For every such prime p let u(p) be the order of apparition of p2 in the
Lucas sequence of general term (bm − 1)m≥0. That is, u(p) is the smallest
positive integer m such that bm − 1 ≡ 0 (mod p2). This number u(p) exists
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because p is coprime to b and by Euler’s Theorem it is a divisor of p(p− 1).
Let v(p) = ordp(b

u(p) − 1); that is, v(p) is the order at which p appears in
the prime factorization of bu(p) − 1. Clearly, v(p) ≥ 2 and v(p) � p(p− 1) ≤
f(x)2. Suppose now that j < x is such that there exists some prime number
p < f(x) for which inequality (8.3) fails. Fix such a number p and let j0 < x
be minimal such that with n0 = bj0 +c we have pαp|n0 where αp is larger than
p log x. If for every prime number p there exists at most one such positive
integer j0, then the number of such numbers is ≤ t = π(f(x)) = o(x) and we
are done. So, we now fix p and we assume that there is more than one index
j < x for which pαp|n with αp > p log x. In this case, with βp = �p log x�
we get that pβp | bj − bj0. Since j > j0 and p is coprime to b, we get that
pβp | bj−j0 − 1. Let us notice that p log x > f(x)2 ≥ p(p − 1) > v(p) ≥ 2
and this inequality holds uniformly in p < f(x) and for large x when f(x) =
O(log2 x). Moreover, let us also notice that

(8.4) βp − v(p) > p log x − 1 − f(x)2 ≥ 2 log x − 1 − f(x)2 ≥ log x.

From the well known divisibility properties of the Lucas sequence (bm−1)m≥0

it follows that

(8.5) j ≡ j0 (mod u(p)pβp−v(p)).

Congruence (8.5) together with inequality (8.4) puts j into an arithmetic
progression modulo u(p)pβp−v(p) and the number of such numbers up to x is
at most

(8.6)

⌊
x

u(p)pβp−v(p)

⌋
+ 1 ≤ x

2log x
+ 1 < 2xc46

where c46 = 1 − log 2. Summing up the above inequality (8.6) over all
the values of p < f(x) we get that the number of numbers j < x for which
inequality (8.3) fails for at least one prime number p < f(x) is O(xc46f(x)) =
o(x). Thus, from now on we shall assume that all inequalities (8.3) hold for
all p < f(x). Hence,

log A =
∑

p<f(x)
pαp ||n

αp log p � log x
∑

p≤f(x)

p � f(x)2 log x.

Since certainly

log n � x

log x

it follows that the inequality

(8.7) log B = log n − log A � x

log x
− f(x)2 log x ≥ x

2 log x
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holds for any large enough positive real number x provided again that our
function f(x) satisfies f(x) = O(log2 x). Since our function f(x) will ulti-
mately be given by what is shown in the right hand side of formula (1.5),
we may assume that inequality (8.7) does hold. In particular, B > 1.

From now on, we write uj = bj + c for all j ≥ 0. Notice that (uj)j≥0

is simply a non degenerate binary recurrent sequence whose characteristic
equation has roots b and 1 and the numbers n under consideration are simply
the numbers which can be members uj of the sequence (uj)j≥0 with some
j < x. Now let p > f(x) be any prime number which divides some member
of the sequence (uk)k≥0. For this p we set r = r(p) to be the minimal non
negative integer k for which p|uk and set d = d(p) to be the minimal positive
integer k for which p divides the kth term of the Lucas sequence (Lm)m≥0

of general term

Lm =
bm − 1

b − 1
for m ≥ 0.

We claim that d exists, that r < d and that p|uj if and only if j ≡ r (mod d).
To see this, notice that since (uj)j≥0 is periodic modulo p, it follows that
infinitely many positive integers j exist such that p|uj. Pick j2 > j1 to be
such that p|uj2 , p|uj1 and the difference j2−j1 = k is minimal. In particular,

uj2 = uj1+k = bj1(b − 1)
bk − 1

b − 1
+ (bj1 + c) = bj1(b − 1)Lk + uj1

and since p divides both uj2 and uj1 and p > bc(b − 1)(c + 1), we read
that p|Lk. From the well known divisibility properties of Lucas sequence
(Lm)m≥0, it follows that d|k and now the same argument as above shows
that if p|uj , then p|uj+d as well. Hence, by the minimality of k, we get
d = k. Further, by the minimality of r, we get that the number r is less
than d, that it is the unique number l < d for which p|ul and finally that
any positive integer j for which p|uj must be congruent to r modulo d and
conversely, if j ≡ r (mod d), then p|uj. The fact that r > 0 follows from
the fact that p > c + 1 = u0.

We now pick q to be the smallest divisor of B for which d(q) > x1/t2.
We show that this q exists and we find an upper bound on it. To show that q
exists, let

C(x) =
∏

p, d(p)≤x1/t2

p.

Certainly,

C(x) |
∏

1≤d≤x1/t2

Ld,
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therefore

(8.8) log C(x) ≤ log

( ∏
1≤d≤x1/t2

Ld

)
=
∑

1≤d≤x1/t2

log Ld �
∑

1≤d≤x1/t2

d=O(x2/t2).

Set
D = gcd(B,C(x))

and write
B = DE

where obviously

E =
∏

p>f(x), p|n
d(p)>x1/t2

p.

By (8.8), we get

(8.9) log D ≤ log C(x) ≤ c47x
2/t2

with some constant c47 and by (8.7) and (8.9), we get that the inequality

log E = log B − log D ≥ x

2 log x
− c47x

2/t2 >
x

3 log x

holds for sufficiently large x. In particular, such a prime number q exists
and we write it as q = q(j) and set d(j) = d(q(j)). To get an upper bound
on q, write

E = q1q2 . . . qk

where q = q1 < q2 < · · · < qk are distinct primes. Certainly, E ≤ φ(n) < n
and therefore

2k ≤ E ≤ n.

Thus,
k log 2 � log n < x

and hence,

(8.10) k � x.

In fact, using the fact that E is square free one can even infer that the
inequality k � x

log x
holds, but inequality (8.10) suffices for our purposes.

Now write F = AD, therefore n = EF with E and F coprime. Hence,

φ(n)

n
=

φ(F )

F

φ(E)

E
or

(8.11) 1 − φ(E)

E
= 1 − F

φ(F )

φ(n)

n
=

n − F
φ(F )

φ(n)

n
=

(bj − F
φ(F )

φ(n)) + c

bj + c
.
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To get an upper bound on q, we use a lower bound depending on q on the
left hand side of (8.11) and an upper bound depending only on x (and f(x))
on the right hand side of (8.11). For the left hand side of (8.11) we write

(8.12) 1 − φ(E)

E
= 1 −

k∏
i=1

(
1 − 1

qi

)
.

In light of the inequality

(8.13) 1 −
k∏

i=1

(1 − xi) ≤
k∑

i=1

xi

which holds for all k ≥ 1 and all real numbers xi ∈ (0, 1) for i = 1, . . . , k and
which can be immediately proved by induction on k we get, from (8.12), (8.13)
and (8.10) that

(8.14) 1 − φ(E)

E
= 1 −

k∏
i=1

(
1 − 1

qi

)
≤

k∑
i=1

1

qi

� x

q
.

We now need a lower bound for the right hand side of (8.11). We look at
the expression

(8.15) bj − F

φ(F )
φ(n).

Assume first that the expression appearing at (8.15) is zero. In this case,
we get

bj =
F

φ(F )
φ(n) = Fφ(E)

therefore F |c. Since F |(bj + c), we read that F |bj and since gcd(bj, c) = 1,
we get F = 1. Thus, equation (8.15) becomes

c = φ(E)

and formula (8.11) becomes

1 − φ(E)

E
=

bj

n
� c

bj
.

On the other hand, since

1 − φ(E)

E
= 1 −

k∏
i=1

(
1 − 1

qi

)
≥ 1

q1
,

we get
1

q1

� c

bj
.
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Using (8.2), we get that the inequality

q1 > exp

(
c48x

log4 x

)

holds for all x sufficiently large where the constant c48 can be chosen to
be c45

2
. So,

2bx > n = E ≥ qk
1 > exp

(
kc48x

log4 x

)
which implies that k < c49 log4 x. We now write

c = E − φ(E) = q1q2 . . . qk − φ(E),

or

(8.16) c =
k∏

i=1

((qi − 1) + 1) − φ(E) =
∑

I⊂{1,2,...,k}
I �={1,2,...,k}

∏
i∈I

(qi − 1).

Assume that k = 1. In this case, equation (8.16) becomes c = 1 meaning
s = 2 which is a case already treated.

Assume now that k > 1. We fix k such that k < c49 log4 x. Recalling
that qi − 1 ∈ S, equation (8.16) is a particular case of an equation of the
type

c =
∑

I⊂{1,2,...,k}
I �={1,2,...,k}

xI

in 2k − 1 ≥ 3 indeterminates xI =
∏

i∈I(qi − 1) for a proper subset I of
{1, 2, . . . , k} (including the subset I = ∅ for which x∅ = 1). Since xI > 0 for
all I, it follows that the above equation is non degenerate in the sense that
no proper sub sum of the form xI1 + · · ·+ xIj

vanishes. We now use a result
of Schlickewei (see [19]) on the number of non degenerate solutions of S-unit
equations. That is, if γ1, . . . , γm are fixed non zero rational numbers, then
there exists at number of at most

(8.17) � ≤ exp
(
237mt6 log(8t)

)
non degenerate solutions (x

(j)
1 , . . . , x

(j)
n ) with j = 1, 2, . . . , � of the equation

(8.18)
m∑

i=1

γixi = 0 with xi ∈ S for i = 1, . . . , m
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such that for any other non degenerate solution (x1, . . . , xm) of equa-
tion (8.18) there exists a number ρ ∈ S and a number λ ≤ � such that

(x1, . . . , xm) = ρ(x
(λ)
1 , . . . , x

(λ)
n ). Let us notice that from the above re-

sult it follows that equation (8.16) can have at most � solutions j where � is
bounded above as in (8.17) with m = 2k ≤ 2c49 log4 x. Indeed, we can label the
indeterminates xI for I ⊂ {1, . . . , k} such that 1 = x∅ = x1, so that if equa-
tion (8.16) has more than � solutions, then there must exist two solutions
(x1, . . . , x2k) and (x′

1, . . . , x′
2k) and a rational number ρ �= 1 composed

only from the primes p1, . . . , pt such that (x′
1, . . . , x′

2k) = ρ(x1, . . . , x2k).
In particular, 1 = x′

1 = ρx1 = ρ forcing ρ = 1 which is a contradiction. This
is for a fixed k and now letting k run from 2 to c49 log4 x we get that the
number of solutions of (8.16) with j < x is at most

(8.19) c49(log4 x) exp
(
g(x)t6 log(8t)

)
with g(x) = 237·2c49 log4 x

and it is enough for our purposes to check that the
number appearing at (8.19) is smaller than x

log x
. But this will be so provided

that
g(x)t6 log(8t) < log x − log2 x − log5 x − log c49

holds and this last inequality will hold provided that

(8.20) t6 log(8t) <
log x

2g(x)
<

log x

log2 x
.

The right most inequality asserted at (8.20) will hold provided that c49 (i.e.,
c45) is chosen in such a way that

237·2c49 log4 x

< log2 x

which will hold provided that c49 (i.e., c45) is chosen to be small enough.
Now the remaining inequality (8.20) is fulfilled provided that

(8.21) t < c50

( log x

log2
2 x

)1/6

and in order for (8.21) to hold for large x it suffices that the inequality

(8.22)
f(x)

log f(x)
< c51

(
log x

log2
2 x

)1/6

holds with, say c51 = c50/2. Clearly, inequality (8.22) holds provided that
one chooses

(8.23) f(x) = c52 log1/6 x log
1/3
2 x

as stated in the conclusion of Proposition 1.7.
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From now on, we may therefore assume that the expression (8.15) is non
zero. In this case, we can find a lower bound on the expression appearing
at (8.15) by using a linear form in logarithms (see [1]). That is, write

φ(uj) = pβ1

1 . . . pβt
t

and ∣∣∣∣ bj − F

φ(F )
φ(n)

∣∣∣∣ = bj

∣∣∣∣ 1 −
(

F

φ(F )

)
pβ1

1 . . . pβt
t b−j

∣∣∣∣ .
Since

φ(n) < n � bx,

we get that
maxt

i=1{βi} � x.

For any rational number w let H(w) be the maximum of the absolute values
of its numerator and denominator when written in reduced form. Since
F/φ(F ) is a rational number which written in reduced form has its numerator
greater than its denominator and the numerator is square free and composed
of primes less than x1/t2, we get that

(8.24) log

(
H

(
F

φ(F )

))
�

∑
p<x1/t2

log p � x1/t2.

Let

Ω =
t∏

i=1

log pi

and notice the following upper bound

(8.25) Ω ≤ logt f(x) = exp(t log2(f(x)) < exp(2t log2 t)

which is valid for large values of x.

With the estimates (8.24), (8.25) and a classical lower bound for lin-
ear forms in complex logarithms (like in [1]), we deduce the existence of a
constant c53 > 1 such that∣∣∣∣ 1 −

(
F

φ(F )

)
pβ1

1 . . . pβt
t b−j

∣∣∣∣ > exp

(
−tc53t log

(
H

(
F

φ(F )

))
Ω log j

)

> exp
(
−x1/t2(log j) exp (c53t log t + 2t log2 t)

)
holds for large enough values of j. Let us observe that

(8.26) exp (c53t log t + 2t log2 t) < x1/t2

holds for large enough values of x.
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Indeed, inequality (8.26) is implied by

(8.27) c53t
2 (t log t + 2t log2 t) < log x

which obviously holds for large values of x because t = π(f(x)) < f(x) and
f(x) is given by (8.23). Thus, with (8.26) and (8.27) we get that∣∣∣∣1 −

(
F

φ(F )

)
pβ1

1 . . . pβt
t b−j

∣∣∣∣ > exp(−x2/t2 log j).

We now show that the expression appearing at (8.15) is positive. Indeed,
assuming that the expression appearing at (8.15) is negative, then from
formula (8.11) and the fact that the left hand side of (8.11) is positive we
get that

c >

∣∣∣∣bj − F

φ(F )
φ(n)

∣∣∣∣ > bj exp(−x2/t2 log j).

The above inequality implies, after rearranging it, taking logarithms and
recalling (8.2) that

x2/t2 log x � log

(
bj

c

)
� x

log4 x

which is impossible for large enough values of x. This shows that for large
enough values of x the expression appearing at (8.15) is positive. In par-
ticular, the numerator of the expression appearing in the right hand side
of (8.11) is at least as large as

bj exp(−x2/t2 log j) + c > bj exp(−x2/t2 log j).

Since uj � bj, it follows that

(8.28)

(
bj − F

φ(F )
φ(n)

)
+ c

bj + c
� exp(−x2/t2 log j).

Combining estimate (8.28) with (8.14) we get q = q1 � x exp(x2/t2 log x), so
the inequality

(8.29) q = q1 < exp(x3/t2)

holds for large enough values of x. Since q − 1 ∈ S, it follows the number of
numbers q that can fulfill (8.29) is certainly no more than

O(x3/t) = o(x).
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We now return to the values of j. From what we have said but for o(x) pos-
itive integers j in the interval

(
x

log x
, x
)

for which φ(n) ∈ S a prime number

q = q(j) exists such that q > f(x), d(j) = d(q(j)) > x1/t2 and q is mini-
mal with this property. Moreover, this number q satisfies inequality (8.29)
and the number of such numbers q is o(x). Fix such a number q. Since
q|uj, this means that j is in the arithmetical progression r(q) (mod d(q))).
The number of such numbers j < x is certainly at most x

d(q)
+1 . So the total

contributions when d(q) > x are at most twice the number of such numbers q
which as we have seen is o(x). Thus, it remains to find an upper bound for

x
∑

q−1∈S
x1/t2<d(q)<x

1

d(q)
.

In particular, Proposition 1.7 will be proved provided that we can show that

(8.30)
∑

q−1∈S
x1/t2<d(q)<x

1

d(q)
= o(1).

Set
D = {d | d = d(q) for some q with q − 1 ∈ S}.

In order to prove (8.30), we first need to understand an upper bound for the
multiplicity of an element d ∈ D. That is, given d ∈ D how many primes q
with q − 1 ∈ S are there such that d = d(q)? Denote this number by T (d).
We shall later show that the inequality

(8.31) T (d) � (3t)!d1−1/(t+1)

holds for large enough values of x and uniformly in d. Assume, for the
moment, that we have proved (8.31). Then we can bound the expression
appearing in the left hand side of (8.30) by saying that

∑
q−1∈S

x1/t2<d(q)<x

1

d(q)
� (3t)!

∑
d∈D

x1/t2<d

1

d1/(t+1)
.

Finally, let us notice that from the way d = d(q) was defined we get that
for every prime number q which divides uj for some j the number q is a
primitive divisor of Ld(q). That is, q|Ld(q) but q does not divide Lm for any
positive integer m < q. From the well known properties of the primitive
divisors we get that d(q) | q − 1. So, in particular, when q − 1 ∈ S, we get
that d(q) ∈ S.
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We thus have ∑
q−1∈S

x1/t2<d(q)<x

1

d(q)
�

∑
d∈S

x1/t2<d

1

d1/(t+1)
.

It remains to show that

(8.32)
∑
d∈S

x1/t2<d

1

d1/(t+1)
= o

(
1

(3t)!

)
.

But obviously the series

(8.33)
∑
d∈S

1

d1/(t+1)

is convergent and the sum of the above series is precisely

h(t) =
t∏

i=1

(
1 − 1

p
1/(t+1)
i

)−1

.

We now find an upper bound on h(t). Notice that with fixed p we have(
1 − 1

p1/(t+1)

)−1

=
∑
i≥0

1

pi/(t+1)

=

( t∑
i=0

1

pi/(t+1)

)(∑
j≥0

1

pj

)
≤ (t + 1)

(
1 − 1

p

)−1

,

so that the inequality

h(t) ≤ (t + 1)t

t∏
i=1

(
1 − 1

p

)
(8.34)

< exp (t log(t + 1) + c54 log2 t) < exp(2t log t)

holds for large enough values of x. To estimate the tail of the series (8.33)
appearing in left hand side of formula (8.32) we let d ∈ S be such that
d > x1/t2 and assume that α denotes the maximum of the exponents at which
the prime numbers dividing d can appear in the prime factor factorization
of d. Then obviously

t log f(x)α ≥ log d ≥ log x

t2
,

so that the inequality

(8.35) α ≥ log x

t3 log f(x)
≥ log x

2t3 log t

holds for all large enough values of x.
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By separating the prime power of maximal exponent α from d and then
summing up over all the primes p ∈ S and over all the powers α which are
at least as large as shown in (8.35) we get that the sum appearing in the left
hand side of (8.32) is bounded above by

t∑
i=1

∑
j≥ log x

2t3 log t

1

pj/(t+1)

∑
d∈S

1

d1/(t+1)
≤ h(t)

t∑
i=1

∑
j≥ log x

2t3 log t

1

pj/(t+1)

(8.36)

≤ h(t)
t∑

i=1

exp

(
− log x log pi

2t3(t + 1) log t

)(
1 − 1

p
1/(t+1)
i

)−1

� h(t)t
t∑

i=1

exp

(
− log x log pi

2t3(t + 1) log t

)
≤ h(t)t2 exp

(
− log x log 2

2t3(t + 1) log t

)

< exp

(
2t log t + 2 log t − log x

2t3(t + 1) log t

)
.

Since 1/(3t)3t = o(1/(3t)!), it follows, with (8.36) that in order for (8.32) to
hold it suffices that

exp

(
2t log t + 2 log t − log x

2t3(t + 1) log t

)
<

1

(3t)3t

which is implied by

6t log(3t) <
log x

2t3(t + 1) log t

which is fulfilled provided that

(8.37) 12t4(t + 1) log2(3t) < log x

and (8.37) obviously holds for large values of x because t = π(f(x) < f(x)
and f(x) is given by formula (8.23).

Thus, Proposition 1.7 is proved once we are able to show that inequal-
ity (8.31) holds. To prove (8.31) assume that t is large, pick a number d ∈ S,
set T = T (d) and write

bd � Ld =

T∏
i=1

qi

where q1 < q2 < · · · < qT are distinct primes with qi−1 ∈ S. Then certainly

(8.38) bd �
T∏

i=1

(qi − 1).
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To get a large T we have to assume that all the qi’s are as small as possible.
But how small can we make the product on the left? Well, discarding the
fact that qi have to be primes we will certainly want to first put q − 1 = pi

for i = 1, 2, . . . , t, then for the next numbers we will want to put q−1 = pipj

for 1 ≤ i ≤ j ≤ t and so on. The above argument shows that in order to get
an upper bound on T we should write

T =

(
t

t − 1

)
+

(
t + 1

t − 1

)
+ · · · +

(
t + u

t − 1

)
+ N

where u is the unique positive integer such that 0 ≤ N <
(

t+u+1
t−1

)
and

by (8.38) the maximal value of T will certainly be bounded above by those
u and N for which the inequality

(8.39)

(
t

1

)
+ 2

(
t + 1

2

)
+ · · · + (u + 1)

(
t + u

t − 1

)
+ (u + 2)N � d

holds. Inequality (8.39) together with the obvious lower bound(
t + i

t − 1

)
≥ (i + 1)t−1

(t − 1)!

uniformly in i, shows that

u+1∑
i=1

it ≤ (t − 1)!d

and since
u+1∑
i=1

it � ut+1

t + 1

holds uniformly in i and u, we get

u � (t + 1)!1/t+1d1/(t+1).

In particular, using now the fact that the inequality(
t + i

t − 1

)
≤ (i + 1)t−1

holds uniformly in i, we get

T ≤
u+1∑
i=0

(
t + i

t − 1

)
≤

u+2∑
i=1

it−1 ≤ t(u + 2)t−1

� t(t + 1)!(t−1)/(t+1)dt/(t+1)

(
1 +

2

u

)t−1

< (3t)!d1− 1
(t+1) ,(8.40)
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where in the last step of (8.40) we used the fact that

t((t + 1)!)(t−1)/(t+1)

(
1 +

2

u

)t−1

≤ t((t + 1)!)(t−1)/(t+1)3t−1 = o((3t)!)

which holds for large t (by Stirling’s formula, for example).

Proposition 1.7 is therefore proved. �
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[1] Baker, A. and Wüstholz, G.: Logarithmic forms and group varieties.
J. Reine Angew. Math. 442 (1993), 19–62.

[2] Balog, A. and Wooley, T.: On strings of consecutive integers with no
large prime factors. J. Austral Math. Soc. Ser. A 64 (1998), 266–276.

[3] Banks, W. and Shparlinski, I. E.: Arithmetic properties of numbers
with restricted digits. Acta Arith. 112 (2004), 313–332.

[4] Bugeaud, Y.: Lower bounds for the greatest prime factor of axm + byn.
Acta. Math. Inform. Univ. Ostraviensis 6 (1998), 53–57.

[5] Carmichael, R.D.: On the numerical factors of the arithmetic forms
αn ± βn. Ann. of Math. (2) 15 (1913), 30–70.

[6] Corvaja, P. and Zannier, U.: Diophantine equations with power sums
and universal Hilbert sets. Indag. Math. (N.S.) 9 (1998), 317–332.

[7] Dartyge, C. and Mauduit, C.: Nombres presque premiers dont
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