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On Hilbert modular forms modulo p:

explicit ring structure

Shoyu Nagaoka

Abstract
H.P.F. Swinnerton-Dyer determined the structure of the ring of
modular forms modulo p in the elliptic modular case. In this paper,
the structure of the ring of Hilbert modular forms modulo p is studied.
In the case where the discriminant of corresponding quadratic field
is 8 (or 5), the explicit structure is determined.

1. Introduction

In [9] Swinnerton-Dyer determined the structure of the ring of modular forms
modulo p in the elliptic modular case. The result has been applied in several
fields in the theory of modular forms, for example, the p—adic theory of
modular forms (e.g. cf. Serre [8]). In this note, we try to generalize the result
to the case of symmetric Hilbert modular forms for real quadratic fields of
small discriminant. We have already developed a generalization in the Siegel
modular case of degree 2, which is important in our proof (cf. Theorem 4.1).
A geometric approach has been developed in recent studies by E. Goren (for
example, [3] and [4]).

2. Hilbert modular forms for a real quadratic field

Let K be a real quadratic field with the discriminant dkx and the ring of
integers Og. We denote by H the upper-half plane in C. The Hilbert
modular group I'k := SL(2, Ok) acts on H> = H x H by

ab O(Z Z)— a21+b C_L22+l_)
cd b =2/ CZl—i‘d’EZQ—l—d_ ’

where Z denotes the conjugation of x € K over Q.
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Let Ac(T'x)x be the complex vector space of symmetric Hilbert modular
forms of parallel weight k for I'x. Each element f(7) of Ac(I'x)x admits a
Fourier expansion of the form

f(r) = Z ar(T)exp [27r\/—_1tr(1/7')] ,

o<re o’

where 7 = (21, 29) € H?, tr(v7) = vz; + /25 and the summation is extended
over the elements v in the inverse different 95" which are semi-totally posi-
tive.

From now on, we restrict ourselves to the case

K = Q(V?2).

(There is another case K = Q(v/5) where our discussion leads to similar
results: cf. section 5, Remark (2)).

In this case, we have dx = 8 and dx = 2v/20k. We fix an integral basis
{1, v/2} and introduce new variables:

T =: exp [71’\/—_1(21 — 2’2)/\/5] , ¢ = exp [71’\/—_1(21 + 29)] .

Then, the above Fourier expansion is rewritten as

f(r)= > ay(v)a®q’

v=(a+Bv?2)/2v2>0

=as(0) + ap((=1+ v2)/2v2)a7 g + a;(1/2)g + as (1 + v2)/2v2)q
+ap((=2+2v2)/2v2) 272 + ap (=1 + 2v2) /2v2)a 7 ¢+ ap(1)¢?
+ap((142V2)/2V2)2¢* + a;((2 + 2v2) )2V 2) 2% + - - -

By semi-positivity of v, we may regard f as an element of formal power
series ring C[z7!, z] [¢]. For a subring R in C,

Ap(Tk)i := {f € Ac(Tx)x | as(v) € Rfor all v} C R [z, 2] [q]

and

AU(ry) - =P Ar(Ck)im

k>0

For an even positive integer k, we can define the normalized Eisenstein series
of weight k for I'x whose Fourier expansion is

(2.1) Gr(T) =14 kg Z or—1(v)exp [QW\/_tr(VT)]

VEDK
04£1>>0
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where
= Ge(R) ™ (2m)2 - [(k = 1)1 77 d P,
oro1(v) == Y IN(b)[F.
(v)oxCb

Since ki € Q, we have G € Ag(I'k ).
Let Ej(z) be the normalized Eisenstein series of weight k for SL(2,7Z),
and let A(z) be a cusp form defined by

Alz) =27 37 (Ej(2) — Eg(2)).
It is well-known that
Ep € Ag(SL(2,Z)), and A€ Az(SL(2,Z))19
For a function f((21,22)) on H?, we define a function on H by
D(f)(2) := f((2,2)).

By the definiton of Hilbert modular form, we see that the map D induces
an R—linear map

D AR(F]K)k — AR(SL(z,Z))Qk

In fact, if

Zaf V) exp 27T\/_tr(1/7)}

in Ar(I'k)g, then the Fourier expansion of D(f) is

Zcf n)exp [2mvV—1nz], cs(n) = Z ag(v).

tr(v)=n
Put
H2 = G2
= 14+2*-3{(z7' +3+x)q+
+(Tz72 4+ 8z '+ 15+ 8z + Ta*)¢* + - - - },
Hy:= 27%.372.11(G2 -G
2.2) (G2 = Ga)

(x7' =2+ 2)qg+ (=472 — 8z~ + 24 — 8z — 4x?)¢? - - - |

Hg:= —278.373.1371.5.7°G3 —277.373.571.137119%G,
+278.372.571. 1371 . 11 - 59G,Gy
= ¢+ (2272 = 16271 +12 — 160 — 22?)¢* + - - - .
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Proposition 2.1 Let Zy,) be the local ring at p (p : prime).
(1) Hy € Az(T'r)r C Az, (T')x (k=2 4, 6) and

D(Hs) = Ey, D(H,) = 0, D(Hg) = A.

(2) If f€ Az, (I'x)k, (k:even), then there exists a polynomial
P(Xl,Xg,Xg) c Z(p) [Xl,XQ,Xg] satzsfymg

f - P(HQ, H4, Hﬁ)

Namely,

A(Q)

Z(p) (FK) = Z(p) [HQa H4a HG] .

Proposition 2.2 ([6, Propositions 3.1, 3.2])
(1) There exists an odd weight form Hg with integral Fourier coefficients:

Hy = q— (96~ + 336 + 962)¢” + - - - € Az(I'x)e C Az, (T'k)o-

(2) ]f k is Odd, then AZ<p)<PK)k = Hg : AZ(p) (FK)k_g.
(3) HZ has a polynomial expression in Hy,Hy, and Hg:

(2.3) HE = HyHZ +2*°H3H]Hg — 2° - 3*HoH HE — 2" H Hg — 2° - 3° H.

3. Siegel modular form and modular embedding

Let Ac(I'k)x be the complex vector space of Siegel modular forms of weight
k for T, := Sp(n,Z). As is well known, each element F'(Z) in Ac(I',)k
admits a Fourier expansion of the form

F(Z) =) ap(T)exp 2rV~1tx(TZ)] , Z € H,,

T>0

where H,, is the Siegel upper-half space of degree n and the summation is
extended over all half-integral, positive semi-definite, symmetric matrices of
degree n. As in the previous case, we can define an R—module Ag(T,);.
We now introduce a modular embedding from Ac(T'k)x (K = Q(v/2)) to
Ac(T2)g-
We fix a fundamental unit e = 1 + v/2 in Ok and define a matrix A by

A= (Z _aa),oz:\/m,@:\/—é/%/i.
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First, we define a mapping @ : H? = H x H — H, by

(3.1) B(r) = B((21, 2)) == A (201 0) A

zZ9

_ (tr((s/Qﬂ)r) tr((1/2v/2)7) )
tr((1/2v2)7) tr((—=&/2v2)7) )"

Secondly, we define a mapping ¥ : I'x = SL(2,0k) — I's = Sp(2,Z) by

oo ()= )

a1 + as a9 bl + b2 b2

a9 a; — as b2 bl - b2
B Co dy + ds dy
Co C1 — Cy d2 dl - d2

Proposition 3.1 (/6, Proposition 2.1]) If F' is a Siegel modular form in
Ac(T9)g, then @(F) = Fod is a symmetric Hilbert modular form in Ac(T'k).

We calculate the Fourier coefficient of @(F'). Set

F(Z) =Y ap(T)exp 2rV~1tx(TZ)] .

T>0

We take a half-integral, positive semi-definite matrix

T = (;72 lf), (m, n, | € 7).

exp [2mV—=1tr(T9(7))] = a™ g™,

(33) o)=Y 3 aF(G;;f)) .

(a+6v2)/2v/20 \ m—nti=a
m+n=0

Corollary 3.1 Let R be a subring of C. If F' € Ag(['y)k, then
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4. Hilbert modular form modulo p

As before, p be a prime number, and let Z,) be the local ring at p. We set

Ap,(Tk)i = {f =) _a;(n)z"¢°|f € Az, (Tx)r}
CF, 27" 2] [d],
where the tilde denotes the reduction modulo p. Let A]%T)(FK) denote the

subring of F,, [z7', z] [¢] generated by A (') for k = 0, m, 2m, 3m,---.
The first theorem is as follows.

Theorem 4.1 (Existence Theorem) Assume that K = Q(v/2) andp > 3.
Then, there exists a Hilbert modular form f,-1 € Az, (I'c)p-1 satisfying

fp—l = 1 (mOd p)7
where the congruence is the Fourier coefficientwise congruence.

Proof. First assume that p > 5. By [7, Theorem A] there exists a Siegel
modular form F, | € Az(p)(Fg)p,l satisfying

F,.1=1 (mod p).
If we set

fpfl = dj(FP*l)a
then, by (3.3), we see that

fp—l < AZ(p)<PK>p—1

has the desired property. When p = 3, we can take f,_; = fo = Ga. [ |

Remark. In the original (elliptic modular) case, it is easy to find such
modular form: the weight p — 1 Eisenstein series £, ; satisfies E,_1 = 1
(mod p). However, the Hilbert-Eisenstein series G,_; does not satisfy the
congruence G,_; = 1 (mod p) in general. In fact, Gi2 # 1 (mod 13) (for
example, [3, p.373]).

In the following we shall determine the structure of A]%ZP) (T'k) under the
condition

p=3 (mod 4).
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Theorem 4.2 Assume that K = Q(v/2).
(1) If p > 5 is a prime number such that p =3 (mod 4), then

AZ)(Tx) = F, [Hy, H, H] /(A,(Ho, Hy, Hy) — 1)
where Hy, Hy, and Hg are generators of A(ZQ&)(FK) (cf. Proposition 2.1) and
Ap(X1, Xo, X3) € Zyy [ X1, Xa, X3] is a polynomial defined by

fo—1 = Ap(Ha, Hy, H).
(2) If p=2 or 3, then
AP (Tx) = F,[Hy, He).
Proof. (1) We recall the identities
D(Hy) = Ey, D(Hy) =0, D(Hs)=A
and consider the following diagram:
Zip (X1, Xa, Xs5] —— F[X1, Xo, X3] —2—  AD(Ig)
d | 5|

ZpVi,Ys] ——  FNY)] —2— AY(SL(2,Z))

(@
D' D(P(X1, Xy, X3)) = P(Y7, 0,279 373(Y* — Y2)).
'( ) := P(Y1, 0, a(Y —Y3), a=27"%3"%modp.

D(f) = F=3"ar(v)aq® € A, () C Byl 2][d].

By Proposition 2.1,(2), the map ¢ is surjective. For the Hilbert modular
form f,_;, we represent it as a polynomial in Hy, Hy, and Hg

fpfl = Ap<H27 H47 H6)7 Ap(X17X27X3) S Z(p) [X17X27X3] .
The congruence f,_; = 1 (mod p) implies flp — 1€ Kerp. Therefore it
suffices to show that

Kergp = (A, — 1) (principal ideal).
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To prove this, we first note that
mD = AL (SL(2,2)) € AP (SL(2,Z))

and
Krull dimAY(SL(2,Z)) = Krull dimAf) (SL(2,Z)) = 1.

The first identity in the second formula comes from the fact that Eg is
integral over A]%i)(SL(Z, 7). Since KerD # 0 (for example, 0 # H, € KerD),
we have

Krull dimAI(Fi)(FK) =2

Hence, the irreducibility of flp — 1 implies our statement:
A]%i) (PK) = ]Fp [g% gﬁl) g6:| /(Ap([j[% F[4, FIG) - ].)

We shall show the irreducibility under the condition p = 3 (mod 4). For
this purpose, we recall the corresponding fact in the elliptic modular case.
The normalized Eisenstein series E,_; satisfies £,_1 = 1 (mod p). Moreover,
if we represent F,_; as

E, 1 = B,(Ey4, Eg) with B, (Y1,Ys) € Zg,) [Y1,Y3],

then B,(Y1,Ys) — 1 is irreducible in F, [Y3,Y5] (cf. [9]). From this fact, we
get the decomposition

(41) DA (X0 Xa Xs) — 1) = (B,(V1.,Y2) + D)(B,(Yi,Ya) — 1),

Here, we note that both factors Bp + 1 and Bp — 1 are irreducible. Now
we assume that A, — 1 is reducible. Then, the shape of the decomposition
must be

(42) A —1=(G® 4G L. £ GOVE® 4 FD 4 ... 4 FO),
where GV (also H")) is a polynomial consisting of terms such as
Gy X7 X5 X3

with 2« + 43 4+ 6y = j, namely, terms of isobaric degree j. Combining (4.1)
and (4.2), we have 2a = p—1. Since a is even, the prime p must be congruent
to one modulo 4. This contradicts our assumption. (2) If p = 2 or 3,
then Hy = 1. Moreover, H, and Hy are algebraically independent because
the Fourier expansion of H, (resp. Hg) starts at the term (z7! — 2 + x)q

(resp. q). [
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From the above result and Proposition 2.2, we can easily determine the
structure of the whole ring Ag, (I'x) = A](Flp)(FK).

Set

C(X1, X2, X3, Xy) = XPX2 4+ 22X2X2X5 — 2° - 32X 1 X X2 — 219X X,
—20.3°X3 — X7 € Z[ X1, Xo, X3, X4
It should be noted that the polynomial is chosen as
C(HQ,H4,H6,H9) = O, (Cf (23))

Let C’p(Xl,Xg,Xg,X4) € F, [ X1, X2, X3, X4] be the reduction modulo p.

Combining this and Theorem 4.2, we obtain the following:
Theorem 4.3 Assume that K = Q(v/2).
(1) If p>5 and p =3 (mod 4), then
Ar,(Tx) = F,[H,, Hy, He, Ho| /(A (Hsy, Hy, Hg) — 1, Cy(Hy, Hy, He, Hy)).
(2) If p=2 or3,

Ag, (Tg) = F,[Hy, He, Hy) /(Cy),

that is
Agy(Tc) = By [Hy, Hy, o) /(2 + F2Hy + 2, + 2012),
Ap,(T'x) = Fy [Iﬂ, Flﬁ] =T [ﬁf4, ﬁfg}-

5. Remark

(1) Case p=1 (mod 4):

In the above discussion, the result was restricted to the case p = 3
(mod 4). What about the case p = 1 (mod 4)7 In this case also, the
irreducibility of flp — 1 produces similar results. The first few examples
show the irreducibility.

[p=5:|A;—1=X{+4X, -1, D'(A;—1) =Y -1, Bs—1=Y;—1.
p=T: A —1=X} 43X X0+ Xz — 1, D'(A; —1) =Y~ 1,
Br—1=Y,—1.
p=11: Ay — 1= X 4+ 2X3 X, + 10X7 X5 + X, X2+ Xo X5 — 1,
D'(Ay —1)=Y2Y2 -1, By-1=YYV,—1
Az — 1= X8 11X} X5 + 3X3 X5 + 11X2X2 + 2X, X, X5 + 10X3
+12X2 1,
D' (Aj3—1) = 10YS 4+ 5Y2Y2 + 12V, =1, Bis—1=6Y; +8Y7—1.
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(2) Case for K = Q(v/5):
The proposed method is applicable for the case K = Q(v/5). In this
paper, we present the statement without proof.

Let Gy, be the normalized Eisenstein series of weight k for 'y 5. We
define four modular forms Ji(k = 2, 6, 1012) as follows:

:]2 Z:GQ
=142 3-5{(a ' +2)g+ (z* + 522+ 6+ 522 +aV)g* + -},

Jo =277 370572 67(Gy — Go)
= (27" +@)q+ (27" + 2027 = 90 + 202° + 2t)g - - -,

Jio :=2710.370. 570 771 (412751G g — 5 - 67 - 2293G5Ge + 2° - 3 - 7 - 4231G5)
=@t -2’ -2 — o) (@t + 10272 — 1027 — 2M)g® + -+,

J12 = 272(']62 — JQJl())
=>4 (7% = 15272 — 10271 — 10z — 152° + 2°)¢® + - -,

where z = exp [mv/—1(21 — 22)/V5], ¢ = exp [1vV/=1(z1 + 22)].

Theorem 5.1 (Existence Theorem) Assume that K = Q(+v/5) andp > 3.
Then, there exists a Hilbert modular form f,-1 € Az, (I'c)p-1 satisfying

fr-1 =1 (mod p).

Theorem 5.2 Assume that K = Q(V/5).
(1) If p > 5 is a prime number such that p =3 (mod 4), then

AP (Tx) 2 Fy[ o, Jo, Jio) /(Ap(Ja, Js, Juo) — 1)
where Jo, Jg, Jig are generators of A(Zz(l) (I'x) and
Ap(Xy, Xo, X3) € Zpy [ X1, Xo, X3
1 a polynomial defined by
fo—1 = Ap(J2, Js, J10).
(2)

AR (Tg) = Fy [ Js, Juo) -
A](Fzz (') = F, [je’, Jio, j12]/(j62 + jfo)-
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Proposition 5.1 (/6, Theorem 3.1 and Proposition 3.5])

(1) There exists an odd weight form Jys with integral Fourier coefficients:
J15 = (]2 — (l’_5 + 275ZE_1 + 275x + l’s)qg + € Az(FK)15 C AZ(p) (FK)15.

(2) ]fk 18 Odd, then AZ<p)<FK)k == J15 . AZ(p) (F]K)k—15-

(3) JZ has the following polynomial expressions:
JA =503 —2-33J0 + 25210 J3 Jig + 2 - 53y s Jro1e + T3 TR

=50, =233+ 2713252y g Ty — 271 - 5P IS I I,
+ 27 I3 T — 273y T2 o + 27 I3 T,

Set

C(X1, X2, X3, Xy) 1 = X7 —5°X5+2-3X) —271. 3% 5° X, X5 X3
+ 27 B XX, XD — 27X Xy 4+ 273X X X
— 271X X2 € Q[X1, Xo, X3, X4

If P 7é 2, then C(Xl,Xz,Xg,X4) € Z(p) [Xl,XQ,Xg,X4]. Denote by
é'p(Xl,Xg,Xg,X4) € F, [Xi, X5, X3, X, the reduction modulo p (p # 2).

Theorem 5.3 Assume that K = Q(\/5).
(1) If p > 5 is a prime number such that p = 3 (mod 4), then

AIFp(FK) = ]Fp [j27 j67 lea j15:| /(Ap<j27 j67 le) - 17 ép<j27 j67 j107 j15))

(2) o
Ap,(I'x) = Fy |:J67 J10, J15:|/<CP)

Ag, (Tk) = Fy[Js, Jio, Ji2, Jis] /(G + Jio, Jis + T + 1)
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