On Hilbert modular forms modulo p: explicit ring structure

Shoyu Nagaoka

Abstract

H. P. F. Swinnerton-Dyer determined the structure of the ring of modular forms modulo p in the elliptic modular case. In this paper, the structure of the ring of Hilbert modular forms modulo p is studied. In the case where the discriminant of corresponding quadratic field is 8 (or 5), the explicit structure is determined.

1. Introduction

In [9] Swinnerton-Dyer determined the structure of the ring of modular forms modulo p in the elliptic modular case. The result has been applied in several fields in the theory of modular forms, for example, the p-adic theory of modular forms (e.g. cf. Serre [8]). In this note, we try to generalize the result to the case of symmetric Hilbert modular forms for real quadratic fields of small discriminant. We have already developed a generalization in the Siegel modular case of degree 2, which is important in our proof (cf. Theorem 4.1). A geometric approach has been developed in recent studies by E. Goren (for example, [3] and [4]).

2. Hilbert modular forms for a real quadratic field

Let \mathbb{K} be a real quadratic field with the discriminant $d_{\mathbb{K}}$ and the ring of integers $\mathcal{O}_{\mathbb{K}}$. We denote by \mathbb{H} the upper-half plane in \mathbb{C} . The Hilbert modular group $\Gamma_{\mathbb{K}} := SL(2, \mathcal{O}_{\mathbb{K}})$ acts on $\mathbb{H}^2 = \mathbb{H} \times \mathbb{H}$ by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \circ (z_1, z_2) := \left(\frac{az_1 + b}{cz_1 + d}, \frac{\bar{a}z_2 + \bar{b}}{\bar{c}z_2 + \bar{d}} \right),$$

where \bar{x} denotes the conjugation of $x \in \mathbb{K}$ over \mathbb{Q} .

2000 Mathematics Subject Classification: 11F41.

Keywords: Hilbert modular forms, modular forms mod p.

Let $A_{\mathbb{C}}(\Gamma_{\mathbb{K}})_k$ be the complex vector space of symmetric Hilbert modular forms of parallel weight k for $\Gamma_{\mathbb{K}}$. Each element $f(\tau)$ of $A_{\mathbb{C}}(\Gamma_{\mathbb{K}})_k$ admits a Fourier expansion of the form

$$f(\tau) = \sum_{0 \ll \nu \in \mathfrak{d}_{\mathbb{K}}^{-1}} a_f(\tau) \exp\left[2\pi \sqrt{-1} \mathrm{tr}(\nu \tau)\right],$$

where $\tau = (z_1, z_2) \in \mathbb{H}^2$, $\operatorname{tr}(\nu \tau) = \nu z_1 + \overline{\nu} z_2$ and the summation is extended over the elements ν in the inverse different $\mathfrak{d}_{\mathbb{K}}^{-1}$ which are semi-totally positive.

From now on, we restrict ourselves to the case

$$\mathbb{K} = \mathbb{Q}(\sqrt{2}).$$

(There is another case $\mathbb{K} = \mathbb{Q}(\sqrt{5})$ where our discussion leads to similar results: cf. section 5, Remark (2)).

In this case, we have $d_{\mathbb{K}} = 8$ and $\mathfrak{d}_{\mathbb{K}} = 2\sqrt{2}\mathcal{O}_{\mathbb{K}}$. We fix an integral basis $\{1, \sqrt{2}\}$ and introduce new variables:

$$x =: \exp\left[\pi\sqrt{-1}(z_1 - z_2)/\sqrt{2}\right], \ q = \exp\left[\pi\sqrt{-1}(z_1 + z_2)\right].$$

Then, the above Fourier expansion is rewritten as

$$\begin{split} f(\tau) &= \sum_{\nu = (\alpha + \beta\sqrt{2})/2\sqrt{2} \gg 0} a_f(\nu) x^{\alpha} q^{\beta} \\ &= a_f(0) + a_f((-1 + \sqrt{2})/2\sqrt{2}) x^{-1} q + a_f(1/2) q + a_f((1 + \sqrt{2})/2\sqrt{2}) x q \\ &\quad + a_f((-2 + 2\sqrt{2})/2\sqrt{2}) x^{-2} q^2 + a_f((-1 + 2\sqrt{2})/2\sqrt{2}) x^{-1} q^2 + a_f(1) q^2 \\ &\quad + a_f((1 + 2\sqrt{2})/2\sqrt{2}) x q^2 + a_f((2 + 2\sqrt{2})/2\sqrt{2}) x^2 q^2 + \cdots . \end{split}$$

By semi-positivity of ν , we may regard f as an element of formal power series ring $\mathbb{C}[x^{-1}, x][\![q]\!]$. For a subring R in \mathbb{C} ,

$$A_R(\Gamma_{\mathbb{K}})_k := \{ f \in A_{\mathbb{C}}(\Gamma_{\mathbb{K}})_k \, | \, a_f(\nu) \in R \text{ for all } \nu \} \subset R\left[x^{-1}, x\right] \llbracket q \rrbracket$$

and

$$A_R^{(m)}(\Gamma_{\mathbb{K}}) := \bigoplus_{k \ge 0} A_R(\Gamma_{\mathbb{K}})_{km}.$$

For an even positive integer k, we can define the normalized Eisenstein series of weight k for $\Gamma_{\mathbb{K}}$ whose Fourier expansion is

(2.1)
$$G_k(\tau) = 1 + \kappa_k \sum_{\substack{\nu \in \mathfrak{d}_{\mathbb{K}}^{-1} \\ 0 \neq \nu \gg 0}} \sigma_{k-1}(\nu) \exp\left[2\pi \sqrt{-1} \operatorname{tr}(\nu\tau)\right]$$

where

$$\kappa_k := \zeta_{\mathbb{K}}(k)^{-1} \cdot (2\pi)^{2k} \cdot [(k-1)!]^{-2} \cdot d_{\mathbb{K}}^{1/2-k},$$
$$\sigma_{k-1}(\nu) := \sum_{(\nu)\mathfrak{d}_{\mathbb{K}}\subset\mathfrak{b}} |N(\mathfrak{b})|^{k-1}.$$

Since $\kappa_k \in \mathbb{Q}$, we have $G_k \in A_{\mathbb{Q}}(\Gamma_{\mathbb{K}})_k$.

Let $E_k(z)$ be the normalized Eisenstein series of weight k for $SL(2,\mathbb{Z})$, and let $\Delta(z)$ be a cusp form defined by

$$\Delta(z) = 2^{-6} \cdot 3^{-3} \left(E_4^3(z) - E_6^2(z) \right).$$

It is well-known that

$$E_k \in A_{\mathbb{Q}}(SL(2,\mathbb{Z}))_k$$
 and $\Delta \in A_{\mathbb{Z}}(SL(2,\mathbb{Z}))_{12}$.

For a function $f((z_1, z_2))$ on \mathbb{H}^2 , we define a function on \mathbb{H} by

$$\mathbb{D}(f)(z) := f((z,z)).$$

By the definiton of Hilbert modular form, we see that the map $\mathbb D$ induces an R-linear map

$$\mathbb{D} : A_R(\Gamma_{\mathbb{K}})_k \longrightarrow A_R(SL(2,\mathbb{Z}))_{2k}.$$

In fact, if

$$f(\tau) = \sum a_f(\nu) \exp\left[2\pi\sqrt{-1}\operatorname{tr}(\nu\tau)\right]$$

in $A_R(\Gamma_{\mathbb{K}})_k$, then the Fourier expansion of $\mathbb{D}(f)$ is

$$\mathbb{D}(f)(z) = \sum_{n=0}^{\infty} c_f(n) \exp\left[2\pi\sqrt{-1}nz\right], \ c_f(n) = \sum_{\mathrm{tr}(\nu)=n} a_f(\nu)$$

Put

$$H_2 := G_2$$

= 1 + 2⁴ · 3{(x⁻¹ + 3 + x)q+
+(7x⁻² + 8x⁻¹ + 15 + 8x + 7x²)q² + ...},

$$(2.2) \quad \begin{array}{rcl} H_4 :=& 2^{-6} \cdot 3^{-2} \cdot 11(G_2^2 - G_4) \\ &=& (x^{-1} - 2 + x)q + (-4x^{-2} - 8x^{-1} + 24 - 8x - 4x^2)q^2 \cdots, \\ H_6 :=& -2^{-8} \cdot 3^{-3} \cdot 13^{-1} \cdot 5 \cdot 7^2 G_2^3 - 2^{-7} \cdot 3^{-3} \cdot 5^{-1} \cdot 13^{-1} 19^2 G_6 \\ &+ 2^{-8} \cdot 3^{-2} \cdot 5^{-1} \cdot 13^{-1} \cdot 11 \cdot 59 G_2 G_4 \\ &=& q + (-2x^{-2} - 16x^{-1} + 12 - 16x - 2x^2)q^2 + \cdots. \end{array}$$

Proposition 2.1 Let $\mathbb{Z}_{(p)}$ be the local ring at p (p : prime).

(1)
$$H_k \in A_{\mathbb{Z}}(\Gamma_{\mathbb{K}})_k \subset A_{\mathbb{Z}_{(p)}}(\Gamma_{\mathbb{K}})_k$$
 $(k=2, 4, 6)$ and
$$\mathbb{D}(H_2) = E_4, \ \mathbb{D}(H_4) = 0, \ \mathbb{D}(H_6) = \Delta.$$

(2) If $f \in A_{\mathbb{Z}_{(p)}}(\Gamma_{\mathbb{K}})_k$, (k : even), then there exists a polynomial $P(X_1, X_2, X_3) \in \mathbb{Z}_{(p)}[X_1, X_2, X_3]$ satisfying

$$f = P(H_2, H_4, H_6).$$

Namely,

$$A_{\mathbb{Z}_{(p)}}^{(2)}(\Gamma_{\mathbb{K}}) = \mathbb{Z}_{(p)}[H_2, H_4, H_6].$$

Proposition 2.2 (*[6, Propositions 3.1, 3.2]*)

(1) There exists an odd weight form H_9 with integral Fourier coefficients:

$$H_9 = q - (96^{-1}x + 336 + 96x)q^2 + \dots \in A_{\mathbb{Z}}(\Gamma_{\mathbb{K}})_9 \subset A_{\mathbb{Z}_{(p)}}(\Gamma_{\mathbb{K}})_9$$

(2) If k is odd, then $A_{\mathbb{Z}_{(p)}}(\Gamma_{\mathbb{K}})_k = H_9 \cdot A_{\mathbb{Z}_{(p)}}(\Gamma_{\mathbb{K}})_{k-9}$.

(3) H_9^2 has a polynomial expression in H_2, H_4 , and H_6 :

$$(2.3) \quad H_9^2 = H_2^3 H_6^2 + 2^2 H_2^2 H_4^2 H_6 - 2^5 \cdot 3^2 H_2 H_4 H_6^2 - 2^{10} H_4^3 H_6 - 2^6 \cdot 3^3 H_6^3.$$

3. Siegel modular form and modular embedding

Let $A_{\mathbb{C}}(\Gamma_{\mathbb{K}})_k$ be the complex vector space of Siegel modular forms of weight k for $\Gamma_n := Sp(n, \mathbb{Z})$. As is well known, each element F(Z) in $A_{\mathbb{C}}(\Gamma_n)_k$ admits a Fourier expansion of the form

$$F(Z) = \sum_{T \ge 0} a_F(T) \exp\left[2\pi\sqrt{-1}\operatorname{tr}(TZ)\right], \ Z \in \mathbb{H}_n,$$

where \mathbb{H}_n is the Siegel upper-half space of degree n and the summation is extended over all half-integral, positive semi-definite, symmetric matrices of degree n. As in the previous case, we can define an R-module $A_R(\Gamma_n)_k$.

We now introduce a modular embedding from $A_{\mathbb{C}}(\Gamma_{\mathbb{K}})_k (\mathbb{K} = \mathbb{Q}(\sqrt{2}))$ to $A_{\mathbb{C}}(\Gamma_2)_k$.

We fix a fundamental unit $\varepsilon = 1 + \sqrt{2}$ in $\mathcal{O}_{\mathbb{K}}$ and define a matrix A by

$$A = \begin{pmatrix} \alpha & \bar{\alpha} \\ \bar{\alpha} & -\alpha \end{pmatrix}, \ \alpha = \sqrt{\varepsilon/2\sqrt{2}}, \ \bar{\alpha} = \sqrt{-\bar{\varepsilon}/2\sqrt{2}}.$$

First, we define a mapping Φ : $\mathbb{H}^2 = \mathbb{H} \times \mathbb{H} \longrightarrow \mathbb{H}_2$ by

(3.1)
$$\Phi(\tau) = \Phi((z_1, z_2)) := A \begin{pmatrix} z_1 & 0 \\ 0 & z_2 \end{pmatrix} A$$
$$= \begin{pmatrix} \operatorname{tr}((\varepsilon/2\sqrt{2})\tau) & \operatorname{tr}((1/2\sqrt{2})\tau) \\ \operatorname{tr}((1/2\sqrt{2})\tau) & \operatorname{tr}((-\overline{\varepsilon}/2\sqrt{2})\tau) \end{pmatrix}.$$

Secondly, we define a mapping Ψ : $\Gamma_{\mathbb{K}} = SL(2, \mathcal{O}_{\mathbb{K}}) \longrightarrow \Gamma_2 = Sp(2, \mathbb{Z})$ by

(3.2)
$$\Psi\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = \Psi\left(\begin{pmatrix} a_1 + a_2\sqrt{2} & b_1 + b_2\sqrt{2} \\ c_1 + c_2\sqrt{2} & d_1 + d_2\sqrt{2} \end{pmatrix}\right)$$
$$= \begin{pmatrix} a_1 + a_2 & a_2 & b_1 + b_2 & b_2 \\ a_2 & a_1 - a_2 & b_2 & b_1 - b_2 \\ c_1 + c_2 & c_2 & d_1 + d_2 & d_2 \\ c_2 & c_1 - c_2 & d_2 & d_1 - d_2 \end{pmatrix}.$$

Proposition 3.1 ([6, Proposition 2.1]) If F is a Siegel modular form in $A_{\mathbb{C}}(\Gamma_2)_k$, then $\Phi(F) = F \circ \Phi$ is a symmetric Hilbert modular form in $A_{\mathbb{C}}(\Gamma_{\mathbb{K}})_k$.

We calculate the Fourier coefficient of $\Phi(F)$. Set

$$F(Z) = \sum_{T \ge 0} a_F(T) \exp\left[2\pi\sqrt{-1}\operatorname{tr}(TZ)\right].$$

We take a half-integral, positive semi-definite matrix

$$T = \begin{pmatrix} m & l/2 \\ l/2 & n \end{pmatrix}, \quad (m, n, l \in \mathbb{Z}).$$

Since

$$\exp\left[2\pi\sqrt{-1}\mathrm{tr}(T\Phi(\tau))\right] = x^{m-n+l}q^{m+n}$$

we have

(3.3)
$$\Phi(F)(\tau) = \sum_{(\alpha+\beta\sqrt{2})/2\sqrt{2}\gg0} \left(\sum_{\substack{m-n+l=\alpha\\m+n=\beta}} a_F\left(\begin{pmatrix} m & l/2\\ l/2 & n \end{pmatrix} \right) \right) x^{\alpha} q^{\beta}.$$

Corollary 3.1 Let R be a subring of \mathbb{C} . If $F \in A_R(\Gamma_2)_k$, then

 $\Phi(F) \in A_R(\Gamma_{\mathbb{K}})_k.$

4. Hilbert modular form modulo p

As before, p be a prime number, and let $\mathbb{Z}_{(p)}$ be the local ring at p. We set

$$A_{\mathbb{F}_p}(\Gamma_{\mathbb{K}})_k := \{ \tilde{f} = \sum_{\nu \in \mathcal{F}_p} \widetilde{a_f(\nu)} x^{\alpha} q^{\beta} | f \in A_{\mathbb{Z}_{(p)}}(\Gamma_{\mathbb{K}})_k \}$$
$$\subset \mathbb{F}_p \left[x^{-1}, x \right] \llbracket q \rrbracket,$$

where the tilde denotes the reduction modulo p. Let $A_{\mathbb{F}_p}^{(m)}(\Gamma_{\mathbb{K}})$ denote the subring of $\mathbb{F}_p[x^{-1}, x] \llbracket q \rrbracket$ generated by $A_{\mathbb{F}_p}(\Gamma_{\mathbb{K}})_k$ for $k = 0, m, 2m, 3m, \cdots$. The first theorem is as follows.

Theorem 4.1 (Existence Theorem) Assume that $\mathbb{K} = \mathbb{Q}(\sqrt{2})$ and $p \geq 3$. Then, there exists a Hilbert modular form $f_{p-1} \in A_{\mathbb{Z}(p)}(\Gamma_{\mathbb{K}})_{p-1}$ satisfying

$$f_{p-1} \equiv 1 \pmod{p},$$

where the congruence is the Fourier coefficientwise congruence.

Proof. First assume that $p \geq 5$. By [7, Theorem A] there exists a Siegel modular form $F_{p-1} \in A_{\mathbb{Z}_{(p)}}(\Gamma_2)_{p-1}$ satisfying

$$F_{p-1} \equiv 1 \pmod{p}.$$

If we set

$$f_{p-1} := \Phi(F_{p-1}),$$

then, by (3.3), we see that

$$f_{p-1} \in A_{\mathbb{Z}_{(p)}}(\Gamma_{\mathbb{K}})_{p-1}$$

has the desired property. When p = 3, we can take $f_{p-1} = f_2 = G_2$.

Remark. In the original (elliptic modular) case, it is easy to find such modular form: the weight p-1 Eisenstein series E_{p-1} satisfies $E_{p-1} \equiv 1 \pmod{p}$. However, the Hilbert-Eisenstein series G_{p-1} does not satisfy the congruence $G_{p-1} \equiv 1 \pmod{p}$ in general. In fact, $G_{12} \not\equiv 1 \pmod{13}$ (for example, [3, p. 373]).

In the following we shall determine the structure of $A_{\mathbb{F}_p}^{(2)}(\Gamma_{\mathbb{K}})$ under the condition

$$p \equiv 3 \pmod{4}$$
.

Theorem 4.2 Assume that $\mathbb{K} = \mathbb{Q}(\sqrt{2})$. (1) If $p \ge 5$ is a prime number such that $p \equiv 3 \pmod{4}$, then

$$A_{\mathbb{F}_p}^{(2)}(\Gamma_{\mathbb{K}}) \cong \mathbb{F}_p\big[\tilde{H}_2, \tilde{H}_4, \tilde{H}_6\big] / (\tilde{A}_p(\tilde{H}_2, \tilde{H}_4, \tilde{H}_6) - 1)$$

where H_2 , H_4 , and H_6 are generators of $A^{(2)}_{\mathbb{Z}_{(p)}}(\Gamma_{\mathbb{K}})$ (cf. Proposition 2.1) and $A_p(X_1, X_2, X_3) \in \mathbb{Z}_{(p)}[X_1, X_2, X_3]$ is a polynomial defined by

 $f_{p-1} = A_p(H_2, H_4, H_6).$

(2) If p = 2 or 3, then

$$A_{\mathbb{F}_p}^{(2)}(\Gamma_{\mathbb{K}}) \cong \mathbb{F}_p\big[\tilde{H}_4, \tilde{H}_6\big]$$

Proof. (1) We recall the identities

$$\mathbb{D}(H_2) = E_4, \quad \mathbb{D}(H_4) = 0, \quad \mathbb{D}(H_6) = \Delta$$

and consider the following diagram:

 $\langle \alpha \rangle$

where

$$\begin{split} \varphi : & \varphi(\tilde{P}(X_1, X_2, X_3)) := \tilde{P}(\tilde{H}_2, \tilde{H}_4, \tilde{H}_6). \\ \varphi' : & \varphi'(\tilde{Q}(Y_1, Y_2)) := \tilde{Q}(\tilde{E}_4, \tilde{E}_6). \\ \mathbb{D}' : & \mathbb{D}'(P(X_1, X_2, X_3)) := P(Y_1, 0, 2^{-6} \cdot 3^{-3}(Y_1^3 - Y_2^2)). \end{split}$$

$$\tilde{\mathbb{D}}': \quad \tilde{\mathbb{D}}'(\tilde{P}(X_1, X_2, X_3)) := \tilde{P}(Y_1, 0, \tilde{a}(Y_1^3 - Y_2^2)), \quad \tilde{a} = 2^{-6} \cdot 3^{-3} \mod p.$$

$$\tilde{\mathbb{D}}: \qquad \tilde{\mathbb{D}}(\tilde{f}) = \widetilde{\mathbb{D}(f)}, \quad \tilde{f} = \sum \widetilde{a_f(\nu)} x^{\alpha} q^{\beta} \in A_{\mathbb{F}_p}(\Gamma_{\mathbb{K}}) \subset \mathbb{F}_p[x^{-1}, x] \llbracket q \rrbracket.$$

By Proposition 2.1,(2), the map φ is surjective. For the Hilbert modular form f_{p-1} , we represent it as a polynomial in H_2 , H_4 , and H_6

$$f_{p-1} = A_p(H_2, H_4, H_6), A_p(X_1, X_2, X_3) \in \mathbb{Z}_{(p)}[X_1, X_2, X_3].$$

The congruence $f_{p-1} \equiv 1 \pmod{p}$ implies $\tilde{A}_p - 1 \in \text{Ker}\varphi$. Therefore it suffices to show that

$$\operatorname{Ker}\varphi = (A_p - 1)$$
 (principal ideal).

To prove this, we first note that

$$\mathrm{Im}\tilde{\mathbb{D}} = A_{\mathbb{F}_p}^{(4)}(SL(2,\mathbb{Z})) \subset A_{\mathbb{F}_p}^{(2)}(SL(2,\mathbb{Z}))$$

and

Krull dim
$$A^{(4)}_{\mathbb{F}_p}(SL(2,\mathbb{Z})) =$$
 Krull dim $A^{(2)}_{\mathbb{F}_p}(SL(2,\mathbb{Z})) = 1$

The first identity in the second formula comes from the fact that \tilde{E}_6 is integral over $A^{(4)}_{\mathbb{F}_p}(SL(2,\mathbb{Z}))$. Since $\operatorname{Ker} \tilde{\mathbb{D}} \neq 0$ (for example, $0 \neq \tilde{H}_4 \in \operatorname{Ker} \tilde{\mathbb{D}}$), we have

Krull dim
$$A_{\mathbb{F}_n}^{(2)}(\Gamma_{\mathbb{K}}) = 2$$

Hence, the irreducibility of $\tilde{A}_p - 1$ implies our statement:

$$A_{\mathbb{F}_p}^{(2)}(\Gamma_{\mathbb{K}}) \cong \mathbb{F}_p\big[\tilde{H}_2, \tilde{H}_4, \tilde{H}_6\big] / (\tilde{A}_p(\tilde{H}_2, \tilde{H}_4, \tilde{H}_6) - 1)$$

We shall show the *irreducibility* under the condition $p \equiv 3 \pmod{4}$. For this purpose, we recall the corresponding fact in the elliptic modular case. The normalized Eisenstein series E_{p-1} satisfies $E_{p-1} \equiv 1 \pmod{p}$. Moreover, if we represent E_{p-1} as

$$E_{p-1} = B_p(E_4, E_6)$$
 with $B_p(Y_1, Y_2) \in \mathbb{Z}_{(p)}[Y_1, Y_2]$,

then $B_p(Y_1, Y_2) - 1$ is irreducible in $\mathbb{F}_p[Y_1, Y_2]$ (cf. [9]). From this fact, we get the decomposition

(4.1)
$$\tilde{\mathbb{D}}'(\tilde{A}_p(X_1, X_2, X_3) - 1) = (\tilde{B}_p(Y_1, Y_2) + 1)(\tilde{B}_p(Y_1, Y_2) - 1).$$

Here, we note that both factors $\tilde{B}_p + 1$ and $\tilde{B}_p - 1$ are irreducible. Now we assume that $\tilde{A}_p - 1$ is reducible. Then, the shape of the decomposition must be

(4.2)
$$\tilde{A}_p - 1 = (\tilde{G}^{(a)} + \tilde{G}^{(a-1)} + \dots + \tilde{G}^{(0)})(\tilde{H}^{(a)} + \tilde{H}^{(a-1)} + \dots + \tilde{H}^{(0)}),$$

where $G^{(j)}$ (also $H^{(j)}$) is a polynomial consisting of terms such as

$$a_{\alpha\beta\gamma}X_1^{\alpha}X_2^{\beta}X_3^{\gamma}$$

with $2\alpha + 4\beta + 6\gamma = j$, namely, terms of isobaric degree j. Combining (4.1) and (4.2), we have 2a = p-1. Since a is even, the prime p must be congruent to one modulo 4. This contradicts our assumption. (2) If p = 2 or 3, then $\tilde{H}_2 = 1$. Moreover, \tilde{H}_4 and \tilde{H}_6 are algebraically independent because the Fourier expansion of H_4 (resp. H_6) starts at the term $(x^{-1} - 2 + x)q$ (resp. q).

From the above result and Proposition 2.2, we can easily determine the structure of the whole ring $A_{\mathbb{F}_p}(\Gamma_{\mathbb{K}}) = A_{\mathbb{F}_p}^{(1)}(\Gamma_{\mathbb{K}})$.

Set

$$C(X_1, X_2, X_3, X_4) := X_1^3 X_3^2 + 2^2 X_1^2 X_2^2 X_3 - 2^5 \cdot 3^2 X_1 X_2 X_3^2 - 2^{10} X_2^3 X_3 - 2^6 \cdot 3^3 X_3^3 - X_4^2 \in \mathbb{Z} [X_1, X_2, X_3, X_4]$$

It should be noted that the polynomial is chosen as

 $C(H_2, H_4, H_6, H_9) = 0,$ (cf. (2.3)).

Let $\tilde{C}_p(X_1, X_2, X_3, X_4) \in \mathbb{F}_p[X_1, X_2, X_3, X_4]$ be the reduction modulo p. Combining this and Theorem 4.2, we obtain the following:

Theorem 4.3 Assume that $\mathbb{K} = \mathbb{Q}(\sqrt{2})$. (1) If $p \ge 5$ and $p \equiv 3 \pmod{4}$, then $A_{\mathbb{F}_p}(\Gamma_{\mathbb{K}}) \cong \mathbb{F}_p[\tilde{H}_2, \tilde{H}_4, \tilde{H}_6, \tilde{H}_9] / (\tilde{A}_p(\tilde{H}_2, \tilde{H}_4, \tilde{H}_6) - 1, \tilde{C}_p(\tilde{H}_2, \tilde{H}_4, \tilde{H}_6, \tilde{H}_9)).$

(2) If p = 2 or 3,

$$A_{\mathbb{F}_p}(\Gamma_{\mathbb{K}}) \cong \mathbb{F}_p[\tilde{H}_4, \tilde{H}_6, \tilde{H}_9]/(\tilde{C}_p),$$

that is

$$A_{\mathbb{F}_3}(\Gamma_{\mathbb{K}}) \cong \mathbb{F}_3[\tilde{H}_4, \tilde{H}_6, \tilde{H}_9] / (\tilde{H}_6^2 + \tilde{H}_4^2 \tilde{H}_6 + 2\tilde{H}_6 + 2\tilde{H}_9^2), A_{\mathbb{F}_2}(\Gamma_{\mathbb{K}}) = \mathbb{F}_2[\tilde{H}_4, \tilde{H}_6] = \mathbb{F}_2[\tilde{H}_4, \tilde{H}_9].$$

5. Remark

(1) Case $p \equiv 1 \pmod{4}$:

In the above discussion, the result was restricted to the case $p \equiv 3 \pmod{4}$. What about the case $p \equiv 1 \pmod{4}$? In this case also, the irreducibility of $\tilde{A}_p - 1$ produces similar results. The first few examples show the irreducibility.

$$\begin{split} \hline p = 5: \quad &\tilde{A}_5 - 1 = X_1^2 + 4X_2 - 1, \quad \mathbb{D}'(\tilde{A}_5 - 1) = Y_1^2 - 1, \quad \tilde{B}_5 - 1 = Y_1 - 1. \\ &p = 7: \quad \tilde{A}_7 - 1 = X_1^3 + 3X_1X_2 + X_3 - 1, \quad \mathbb{D}'(\tilde{A}_7 - 1) = Y_2^2 - 1, \\ &\tilde{B}_7 - 1 = Y_2 - 1. \\ &p = 11: \quad \tilde{A}_{11} - 1 = X_1^5 + 2X_1^3X_2 + 10X_1^2X_3 + X_1X_2^2 + X_2X_3 - 1, \\ &\mathbb{D}'(\tilde{A}_{11} - 1) = Y_1^2Y_2^2 - 1, \quad \tilde{B}_{11} - 1 = Y_1Y_2 - 1. \\ \hline p = 13: \quad \tilde{A}_{13} - 1 = X_1^6 + 11X_1^4X_2 + 3X_1^3X_3 + 11X_1^2X_2^2 + 2X_1X_2X_3 + 10X_2^3 \\ &+ 12X_3^2 - 1, \\ &\mathbb{D}'(\tilde{A}_{13} - 1) = 10Y_1^6 + 5Y_1^3Y_2^2 + 12Y_2^4 - 1, \quad \tilde{B}_{13} - 1 = 6Y_1^3 + 8Y_2^2 - 1. \end{split}$$

(2) Case for $\mathbb{K} = \mathbb{Q}(\sqrt{5})$:

The proposed method is applicable for the case $\mathbb{K} = \mathbb{Q}(\sqrt{5})$. In this paper, we present the statement without proof.

Let G_k be the normalized Eisenstein series of weight k for $\Gamma_{\mathbb{Q}(\sqrt{5})}$. We define four modular forms $J_k(k = 2, 6, 1012)$ as follows:

$$\begin{split} J_2 &:= G_2 \\ &= 1 + 2^3 \cdot 3 \cdot 5\{(x^{-1} + x)q + (x^{-4} + 5x^{-2} + 6 + 5x^2 + x^4)q^2 + \cdots\}, \\ J_6 &:= 2^{-5} \cdot 3^{-3} \cdot 5^{-2} \cdot 67(G_2^3 - G_6) \\ &= (x^{-1} + x)q + (x^{-4} + 20x^{-2} - 90 + 20x^2 + x^4)q^2 \cdots, \\ J_{10} &:= 2^{-10} \cdot 3^{-5} \cdot 5^{-5} \cdot 7^{-1}(412751G_{10} - 5 \cdot 67 \cdot 2293G_2^2G_6 + 2^2 \cdot 3 \cdot 7 \cdot 4231G_2^5) \\ &= (x^{-1} - x)^2q^2 - 2(x^{-1} - x)(x^{-4} + 10x^{-2} - 10x^2 - x^4)q^3 + \cdots, \\ J_{12} &:= 2^{-2}(J_6^2 - J_2J_{10}) \\ &= q^2 + (x^{-5} - 15x^{-3} - 10x^{-1} - 10x - 15x^3 + x^5)q^3 + \cdots, \end{split}$$

where $x = \exp\left[\pi\sqrt{-1}(z_1 - z_2)/\sqrt{5}\right], q = \exp\left[\pi\sqrt{-1}(z_1 + z_2)\right].$

Theorem 5.1 (Existence Theorem) Assume that $\mathbb{K} = \mathbb{Q}(\sqrt{5})$ and $p \geq 3$. Then, there exists a Hilbert modular form $f_{p-1} \in A_{\mathbb{Z}_{(p)}}(\Gamma_{\mathbb{K}})_{p-1}$ satisfying

$$f_{p-1} \equiv 1 \pmod{p}.$$

Theorem 5.2 Assume that $\mathbb{K} = \mathbb{Q}(\sqrt{5})$. (1) If $p \ge 5$ is a prime number such that $p \equiv 3 \pmod{4}$, then

$$A_{\mathbb{F}_p}^{(2)}(\Gamma_{\mathbb{K}}) \cong \mathbb{F}_p\big[\tilde{J}_2, \tilde{J}_6, \tilde{J}_{10}\big] / (\tilde{A}_p(\tilde{J}_2, \tilde{J}_6, \tilde{J}_{10}) - 1)$$

where J_2 , J_6 , J_{10} are generators of $A^{(2)}_{\mathbb{Z}_{(p)}}(\Gamma_{\mathbb{K}})$ and

$$A_p(X_1, X_2, X_3) \in \mathbb{Z}_{(p)}[X_1, X_2, X_3]$$

is a polynomial defined by

$$f_{p-1} = A_p(J_2, J_6, J_{10}).$$

(2)

$$A_{\mathbb{F}_3}^{(2)}(\Gamma_{\mathbb{K}}) = \mathbb{F}_3 \big[\tilde{J}_6, \tilde{J}_{10} \big].$$

$$A_{\mathbb{F}_2}^{(2)}(\Gamma_{\mathbb{K}}) \cong \mathbb{F}_2 \big[\tilde{J}_6, \tilde{J}_{10}, \tilde{J}_{12} \big] / (\tilde{J}_6^2 + \tilde{J}_{10}^2).$$

Proposition 5.1 ([6, Theorem 3.1 and Proposition 3.3]) (1) There exists an odd weight form J_{15} with integral Fourier coefficients:

$$J_{15} = q^2 - (x^{-5} + 275x^{-1} + 275x + x^5)q^3 + \dots \in A_{\mathbb{Z}}(\Gamma_{\mathbb{K}})_{15} \subset A_{\mathbb{Z}_{(p)}}(\Gamma_{\mathbb{K}})_{15}.$$

(2) If k is odd, then $A_{\mathbb{Z}_{(p)}}(\Gamma_{\mathbb{K}})_k = J_{15} \cdot A_{\mathbb{Z}_{(p)}}(\Gamma_{\mathbb{K}})_{k-15}$.

(3) J_{15}^2 has the following polynomial expressions:

$$J_{15}^{2} = 5^{5}J_{10}^{3} - 2 \cdot 3^{3}J_{6}^{5} + 2 \cdot 5^{2}J_{2}J_{6}^{3}J_{10} + 2 \cdot 5^{3}J_{2}J_{6}J_{10}J_{12} + J_{2}^{3}J_{12}^{2}$$

= $5^{5}J_{10}^{3} - 2 \cdot 3^{3}J_{6}^{5} + 2^{-1} \cdot 3^{2} \cdot 5^{2}J_{2}J_{6}^{3}J_{10} - 2^{-1} \cdot 5^{3}J_{2}^{2}J_{6}J_{10}^{2}$
+ $2^{-4}J_{2}^{3}J_{6}^{4} - 2^{-3}J_{2}^{4}J_{6}^{2}J_{10} + 2^{-4}J_{2}^{5}J_{10}^{2}.$

Set

$$\begin{split} C(X_1, X_2, X_3, X_4) &:= X_4^2 - 5^5 X_3^3 + 2 \cdot 3^3 X_2^5 - 2^{-1} \cdot 3^2 \cdot 5^2 X_1 X_2^3 X_3 \\ &\quad + 2^{-1} \cdot 5^3 X_1^2 X_2 X_3^2 - 2^{-4} X_1^3 X_2^4 + 2^{-3} X_1^4 X_2^2 X_3 \\ &\quad - 2^{-4} X_1^5 X_3^2 \in \mathbb{Q} \left[X_1, X_2, X_3, X_4 \right] \end{split}$$

If $p \neq 2$, then $C(X_1, X_2, X_3, X_4) \in \mathbb{Z}_{(p)}[X_1, X_2, X_3, X_4]$. Denote by $\tilde{C}_p(X_1, X_2, X_3, X_4) \in \mathbb{F}_p[X_1, X_2, X_3, X_4]$ the reduction modulo $p \ (p \neq 2)$.

Theorem 5.3 Assume that $\mathbb{K} = \mathbb{Q}(\sqrt{5})$. (1) If $p \ge 5$ is a prime number such that $p \equiv 3 \pmod{4}$, then

$$A_{\mathbb{F}_p}(\Gamma_{\mathbb{K}}) \cong \mathbb{F}_p[\tilde{J}_2, \tilde{J}_6, \tilde{J}_{10}, \tilde{J}_{15}] / (\tilde{A}_p(\tilde{J}_2, \tilde{J}_6, \tilde{J}_{10}) - 1, \tilde{C}_p(\tilde{J}_2, \tilde{J}_6, \tilde{J}_{10}, \tilde{J}_{15}))$$

(2)

$$A_{\mathbb{F}_3}(\Gamma_{\mathbb{K}}) \cong \mathbb{F}_3[\tilde{J}_6, \tilde{J}_{10}, \tilde{J}_{15}]/(\tilde{C}_p)$$
$$A_{\mathbb{F}_2}(\Gamma_{\mathbb{K}}) \cong \mathbb{F}_2[\tilde{J}_6, \tilde{J}_{10}, \tilde{J}_{12}, \tilde{J}_{15}]/(\tilde{J}_6^2 + \tilde{J}_{10}^2, \tilde{J}_{15}^2 + \tilde{J}_{10}^3 + \tilde{J}_{12}^2).$$

References

- BAILY, W. L., JR.: Automorphic forms with integral Fourier coefficients. In Several Complex Variables, I (Proc. Conf., Univ. of Maryland, College Park, Md., 1970), pp. 1-8. Springer Verlag, 1970.
- [2] BAILY, W. L., JR.: Theorems on the finite generation of algebras of modular forms. Amer. J. Math. 104 (1982), 645–682.
- [3] GOREN, E. Z.: Hilbert modular forms modulo p^m : the unramified case. J. Number Theory **90** (2001), 341–375.
- [4] GOREN, E. Z.: Lectures on Hilbert modular varieties and modular forms. CRM Monograph series 14. American Mathematical Society, Providence, RI, 2002.

- [5] NAGAOKA, S.: On the ring of Hilbert modular forms over Z. J. Math. Soc. Japan 35 (1983), 589–608.
- [6] NAGAOKA, S.: On Hilbert modular forms with integral Fourier coefficients. Abh. Math. Sem. Univ. Hamburg 56 (1986), 157–168.
- [7] NAGAOKA, S.: Note on mod p Siegel modular forms. Math. Z. 235 (2000), 405-420.
- [8] SERRE, J.-P.: Formes modulaires et fonctions zêta p-adiques. In Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), 191–268. Lecture Notes in Math. 350. Springer Verlag, Berlin, 1973.
- [9] SWINNERTON-DYER, H. P. F.: On *l*-adic representations and congruences for coefficients of modular forms. In *Modular functions of one variable, III* (*Proc. Internat. Summer School, Univ. Antwerp, 1972*), 1–55. Lecture Notes in Math. **350**. Springer Verlag, Berlin, 1973.

Recibido: 19 de septiembre de 2003

Shoyu Nagaoka Department of Mathematics Kinki University Higashi-Osaka Osaka 577-8502, Japan nagaoka@math.kindai.ac.jp