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Riesz transforms for symmetric
diffusion operators on complete

Riemannian manifolds
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Dedicated to my mother for her sixtieth birthday

Abstract

Let (M, g) be a complete Riemannian manifold, L = ∆ −∇φ · ∇
be a Markovian symmetric diffusion operator with an invariant mea-
sure dµ(x) = e−φ(x)dν(x), where φ ∈ C2(M), ν is the Riemannian
volume measure on (M, g). A fundamental question in harmonic
analysis and potential theory asks whether or not the Riesz trans-
form Ra(L) = ∇(a − L)−1/2 is bounded in Lp(µ) for all 1 < p < ∞
and for certain a ≥ 0. An affirmative answer to this problem has
many important applications in elliptic or parabolic PDEs, potential
theory, probability theory, the Lp-Hodge decomposition theory and in
the study of Navier-Stokes equations and boundary value problems.

Using some new interplays between harmonic analysis, differential
geometry and probability theory, we prove that the Riesz transform
Ra(L) = ∇(a − L)−1/2 is bounded in Lp(µ) for all a > 0 and p ≥ 2
provided that L generates a ultracontractive Markovian semigroup
Pt = etL in the sense that Pt1 = 1 for all t ≥ 0, ‖Pt‖1,∞ < Ct−n/2 for
all t ∈ (0, 1] for some constants C > 0 and n > 1, and satisfies

(K + c)− ∈ L
n
2
+ε(M, µ)

for some constants c ≥ 0 and ε > 0, where K(x) denotes the lowest
eigenvalue of the Bakry-Emery Ricci curvature Ric(L) = Ric + ∇2φ
on TxM , i.e.,

K(x) = inf{Ric(L)(v, v) : v ∈ TxM, ‖v‖ = 1}, ∀ x ∈ M.
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Examples of diffusion operators on complete non-compact Rie-
mannian manifolds with unbounded negative Ricci curvature or
Bakry-Emery Ricci curvature are given for which the Riesz transform
Ra(L) is bounded in Lp(µ) for all p ≥ 2 and for all a > 0 (or even for
all a ≥ 0).

1. Introduction

Let (M, g) be a complete non-compact Riemannian manifold, ∆ be the non-
positive Laplace-Beltrami operator, and dν(x) =

√
det(g(x))dx be the Rie-

manian volume measure on (M, g). Let L = ∆ − ∇φ · ∇ be a symmetric
diffusion operator with an invariant measure dµ(x) = e−φ(x)dν(x), where
φ ∈ C2(M). For a non-negative constant a, let us define the Riesz trans-
form Ra(L) associated with the diffusion operator L by

Ra(L)f = ∇(a − L)−1/2f, ∀ f ∈ C∞
0 (M).

where

C∞
0 (M) =

{
C∞

c (M) if a > 0 or µ(M) = +∞,{
f ∈ C∞

c (M) :
∫

M
fdµ = 0

}
otherwise.

Integration by parts yields, for every a ≥ 0 and f ∈ C∞
0 (M),

a‖f‖2
L2(µ) + ‖∇f‖2

L2(µ) = ‖√a − Lf‖2
L2(µ).

This implies that for all a ≥ 0 we have

‖Ra(L)f‖L2(µ) ≤ ‖f‖L2(µ), ∀f ∈ C∞
0 (M).

It is very natural to pose the following fundamental

Problem 1.1 What is the (weakest possible) condition on (M, g) and (L, φ)
under which the Riesz transform Ra(L) is bounded in Lp(M,µ) for all 1 <
p < ∞ ? That is, for any 1 < p < ∞, there exists a constant C = Cp,a such
that

‖Ra(L)f‖Lp(µ) ≤ Cp,a‖f‖Lp(µ), ∀ f ∈ C∞
0 (M).

In the special case where L = ∆, φ = 0 and a = 0, Problem 1.1 is
exactly the famous Strichartz problem [65] concerning the Lp-boundedness
of the Riesz transform R0(∆) = ∇(−∆)−1/2 on a complete non-compact
Riemannian manifold. For the historical background and for some partial
affirmative answers to this problem, we refer the reader to [65, 48, 49, 3,
11, 40, 41, 17, 13, 14, 15, 39] and the references therein. See also [17, 13,
15, 39] for some counter-examples of complete or non-complete Riemannian
manifolds on which the Riesz transform R0(∆) is not bounded in Lp(ν) for
certain p ∈ (1,∞).



Riesz transforms for symmetric diffusion operators 593

Note that, as indicated in Strichartz [65], the Riesz transform R0(∆) =
∇(−∆)−1/2 is a zeroth order pseudo-differential operator. Well-known re-
sults in the theory of pseudo-differential operators imply that R0(∆) (and
hence Ra(∆) = ∇(a−∆)−1/2 for all a ≥ 0, see Theorem 3.2 below) is always
bounded in Lp(ν) for all 1 < p < ∞ if (M, g) is a compact Riemannian
manifold.

In the general case where M is a complete Riemannian manifold and
φ ∈ C2(M), the study of Problem 1.1 has a great interest and very important
applications in probability theory. Again, results in the theory of pseudo-
differential operators imply that for all a ≥ 0, Ra(L) = ∇(a − L)−1/2 is
bounded in Lp(µ) if (M, g) is a compact Riemannian manifold. While the
situation when (M, g) is non-compact is very complicated. In [56], P.A.
Meyer proved that if ∇ is the gradient operator and L is the Ornstein-
Uhlenbeck diffusion operator on the Wiener space W = {x ∈ C([0, 1], Rd) :
x(0) = 0} equipped with the Wiener measure µ, then the Riesz transform
R0(L) = ∇(−L)−1/2 is bounded from Lp

0(µ) = {f ∈ Lp(µ) :
∫

W
fdµ = 0}

into Lp(W,H, µ) with respect to the Wiener measure for every 1 < p < ∞,
where H = H1,2([0, 1], Rd) ∩ W is the Cameron-Martin space. This yields
that, for all cylinder functions f on W , the Sobolev norm ‖f‖p + ‖∇f‖p is
equivalent to the Sobolev norm ‖(I − L)1/2f‖p. This results, the so-called
P.A. Meyer equivalence or the P.A. Meyer inequality, played a crucial rôle
in the Malliavin calculus on the infinite dimensional Wiener space (see e.g.
Malliavin [54]). For two different proofs of the P.A. Meyer inequality, see G.
Pisier [57] and R. Gundy [31].

In a more general and geometric setting, using a probabilistic approach
to the Littlewood-Paley theory, D. Bakry [5], see also [3, 6], proved the
following remarkable

Theorem 1.1 Let (M, g) be a complete Riemannian manifold, φ ∈ C2(M),
L = ∆ − ∇φ · ∇, dµ(x) = e−φ(x)dν(x). Suppose that there exists a non-
negative constant a such that

(1.1) Ric(x) + ∇2φ(x) ≥ −a, ∀ x ∈ M.

Then for any 1 < p < ∞, there exists a constant Cp independent of a and
n = dimM such that

‖Ra(L)f‖Lp(µ) ≤ Cp‖f‖Lp(µ), ∀ f ∈ C∞
0 (M).

Here Ric denotes the Ricci curvature, ∇2φ denotes the Hessian of φ. Both
of them are taken with respect to the Levi-Civita connection determined by
the Riemannian metric g. In [6], Bakry introduced the symmetric 2-tensor

Ric(L) := Ric + ∇2φ(1.2)
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and called it the Ricci curvature associated with the diffusion operator L =
∆ − ∇φ · ∇. In the literature, it is also called the Bakry-Emery Ricci
curvature, see e.g. [50]. The inequality Ricx(L) ≥ −a means that the lowest
eigenvalue of the Bakry-Emery Ricci curvature tensor Ric(L), considered as
an endomorphism of the tangent space at x ∈ M , is at least −a. Note that,
due to the free dependence of the constant Cp on n = dimM , Theorem 1.1
even applies to sub-elliptic diffusion operators L (formally given by L =
∆−∇φ·∇) on some infinite dimensional manifolds provided that the Bakry-
Emery Ricci curvature Ric(L) defined by (1.2) is uniformly bounded from
below. For example, if L is the Ornstein-Uhlenbeck operator on the Wiener
space, then Ric(L) = IH (the identity operator on the Cameron-Martin
space H). This enables us to recapture the P.A. Meyer inequality from
Theorem 1.1 by taking a = 0 in (1.1).

Complete non-compact Riemannian manifolds are not necessarily to be
those on which the Ricci curvature should be uniformly bounded from below.
For example, one can easily construct a Cartan-Hadamard manifold and a
rotational symmetric Riemannian manifold on which the Ricci curvature is
not uniformly bounded from below. Moreover, starting from a complete
non-compact Riemannian manifold (M, g) on which the Ricci curvature is
uniformly bounded from below, we can use a conformal transformation to
construct a new Riemannian metric g̃ on M such that the Ricci curvature
on (M, g̃) is no longer uniformly bounded from below. Indeed, if g̃ is a
conformal change of g given by

g̃ = eug, u ∈ C2(M),

then, see e.g. Schoen and Yau [60], the Ricci curvature on (M, g̃) is given by

(1.3) Ric�g = Ricg− n − 2

2
∇2u+

n − 2

4
∇u⊗∇u− 1

2

(
∆u +

n − 2

2
|∇u|2

)
g.

Hence, we can easily choose u ∈ C2(M) \C2
b (M) such that the Ricci curva-

ture Ric�g corresponding to the new Riemannian metric g̃ is not uniformly
bounded from below eventhough Ricg is uniformly bounded from below. In
general, we can use a quasi-isometry to construct a new Riemannian metric g̃
on M in the sense that there exist two constants c and C such that

cg ≤ g̃ ≤ Cg .

It this case, there is no explicit relationship between Ricg and Ric�g but it
is well-known that, even if the Ricci curvature Ricg on (M, g) is uniformly
bounded from below, the Ricci curvature Ric�g on (M, g̃) is usually not uni-
formly bounded from below.
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Similarly, there are many examples of diffusion operators L for which the
Bakry-Emery Ricci curvature Ric(L) = Ric+∇2φ is not uniformly bounded
from below. As the most simple example, we consider the one-dimensional
diffusion operator

(1.4) L =
d2

dx2
− φ′(x)

d

dx

on the real line, where φ ∈ C2(R). The Bakry-Emery Ricci curvature asso-
ciated with L is

Ricx(L) = φ′′(x), ∀ x ∈ R .

Therefore, Ric(L) is not uniformly bounded from below if we choose φ ∈
C2(R) such that

inf
x∈R

φ′′(x) = −∞ .

Moreover, starting from a symmetric diffusion operator L = ∆ − ∇φ · ∇
with Bakry-Emery Ricci curvature Ric(L) = Ric +∇2φ uniformly bounded
from below, we can use the conformal transformations to construct a new
class of diffusion operators

L̃ = L + ∇u · ∇, u ∈ C2(M) .

Then µ̃ = e−uµ is an invariant measure of L̃ and the Bakry-Emery Ricci
curvature of L̃ is

Ric(L̃) = Ric(L) + ∇2u .

Hence, we can easily choose u ∈ C2(M)\C2
b (M) such that Ric(L̃) is no longer

uniformly bounded from below. In general, we can use the quasi-isometries
to change either the Riemannian metric g or the density function e−φ to
obtain a new symmetric diffusion operator such that the Bakry-Emery Ricci
curvature (of the new diffusion operator) is not uniformly bounded from
below. Finally, let us mention that the Bakry-Emery Ricci curvatures as-
sociated with the Ornstein-Uhlenbeck diffusion operators on the path and
the loop spaces (or the loop group) over a compact Riemannian manifold
(or a compact non-Abelian Lie group) are not uniformly bounded from be-
low, see Getzler [27] and Cruzeiro-Malliavin [18].

Due to the high importance of the Riesz transforms in potential theory
will be illustrated in Section 3 below, it is very natural to ask whether or
not the Riesz transforms associated with a general Markovian symmetric
difusion operator L = ∆ − ∇φ · ∇ are bounded in Lp with respect to its
invariant measure µ(dx) = e−φ(x)dν(x) even though the Bakry-Emery-Ricci
curvature of L is not uniformly bounded from below. In [13], Coulhon and
Duong have studied this problem for the case 1 < p ≤ 2 and proved that the
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Riesz transform R0(∆) = ∇(−∆)−1/2 (respectively, R0(L) = ∇(−L)−1/2) is
bounded in Lp(M, ν) (respectively, Lp(M,µ)) for all 1 < p ≤ 2 provided that
ν (respectively, µ) has the doubling volume property and the heat kernel of
∆ (respectively, L) satisfies the inequality pt(x, x) ≤ C

V (x,
√

t)
for all x ∈ M

and t > 0. Under a reasonable modification of these conditions, similar
result holds for the Lp-boundedness of Ra(L) for all 1 < p ≤ 2. Their result
partially implies that the Riesz transform R0(∆) is bounded in Lp(ν) for
1 < p ≤ 2 if (M, g) is quasi-isometric to a complete Riemannian manifold
with non-negative Ricci curvature. A complete non-compact Riemannian
manifold (which is quasi-isometric to R

n but has a small piece of negative
Ricci curvature) has been given in [13] which shows that the same conditions
cannot imply the Lp(ν)-boundedness of the Riesz transform R0(∆) for all
p > 2. Indeed, it could be explicitly proved that it is not possible using
duality argument to deduce from the results of Coulhon-Duong on the Lp-
boundedness (for p ∈ (1, 2]) of Riesz transforms to the results for p > 2.

The purpose of this paper is to study the problem of the Lp(µ)-bounded-
ness of the Riesz transform Ra(L) = ∇(a − L)−1/2 for p ≥ 2 and a ≥ 0
for a class of Markovian symmetric diffusion operators L = ∆ −∇φ · ∇ on
a complete Riemannian manifold (M, g) on which the Ricci curvature Ric
or the Bakry-Emery Ricci curvature Ric(L) = Ric + ∇2φ is not necessarily
uniformly bounded from below but satisfies some gaugeability or integrabil-
ity conditions that we will explain in Section 2 below. Here we would like
to point out that the (geodesically) completeness condition is only used to
ensure that the Laplace-Beltrami operator ∆ or the diffusion operator L is
essentially self-adjoint in L2(ν) or in L2(µ), see e.g. [65, 5, 6].

In the case where M is not geodesically complete but the L-diffusion
process does not explode (i.e., M is L-stochastically complete), such as
the conic manifold (see e.g. [39]) or some infinite dimensional Riemani-
ann manifolds (see e.g. [55, 56, 62]), one can still study the Lp-boundedness
of the Riesz transforms Ra(L). While, the key semigroup domination in-
equalities (see Theorem 4.1) which play a crucial rôle in the whole pa-
per cannot hold if one does not assume the stochastically completeness
(i.e., the Markov property) of L (i.e. Pt1 = 1 for all t ≥ 0). Indeed,
according to Page 254 in [23], the gaugeability in Theorem 2.1 or the L

n
2
+ε-

integrability condition in Theorem 2.2 together with dPtf = e−t�φdf for all
f ∈ C∞

c (M) (where �φ is the Witten-Bismut operator on one-forms) will
automatically imply that the L-diffusion process does not explode. By [51],
it is well-known that the stochastically completeness of Brownian motion on
complete non-compact Riemannian manifolds is not a stable property un-
der general quasi-isometry. The above-mentioned counter-example due to
Coulhon-Duong [13] shows that the Lp-boundedness of the Riesz transform
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R0(∆) = ∇(−∆)−1/2 on complete non-compact Riemannian manifolds is
not stable under general quasi-isometry at least for all p ≥ 2 eventhough so
is the Riesz transform Ra(∆) = ∇(a−∆)−1/2 for all a > 0 and all p > 1 on
their manifold. We conjecture that the Lp-boundedness of the Riesz trans-
form Ra(L) = ∇(a − L)−1/2 (for all a ≥ 0 or all a > 0) associated with
a general symmetric diffusion operator L is not stable under general quasi-
isometry on complete non-compact Riemannian manifolds. Our results (see
Theorem 2.4, Theorem 2.5, Example 2.2 and Theorem 2.6 below) provide
us with some examples of complete and stochastically complete Riemannian
manifolds which are quasi-isometric to complete Riemannian manifolds with
Ricci curvature bounded from below and with positive injectivity radius or
to Cartan-Hadamard manifolds such that the Riesz transforms Ra(L) are
bounded in Lp for all p ≥ 2 and all a > 0.

2. Main results

Throughtout this paper, let L = ∆−∇φ·∇ be a Markovian symmetric diffu-
sion operator with an invariant measure dµ(x) = e−φ(x)dν(x) on a complete
Riemannian manifold (M, g).

Define the potential function K defined as follows: For all x ∈ M , let

(2.1) K(x) := inf{< Ric(x)v, v > + < ∇2φ(x)v, v >: v ∈ TxM, ‖v‖ = 1},
Recall that L is a Markovian operator if it generates a Markovian semi-

group Pt = etL in the sense that 0 ≤ Ptf ≤ 1 for all f ∈ B(M) with
0 ≤ f ≤ 1 and Pt1 = 1 for all t ≥ 0. Equivalently, the diffusion process {xt}
generated by L on M has an infinite lifetime.

By Lemma A3 in [23], if there exists a constant c ∈ R
+ such that the Ricci

curvature on M satisfies Ric(x) ≥ −c[1+ρ2(x)], and dρ(∇φ(x)) ≤ c[1+ρ(x)],
where ρ(x) = d(o, x) denotes the Riemannian distance function between x
and a fixed point o ∈ M , then L is a Markovian symmetric diffusion operator.
By Proposition A6 in [23], if we further suppose that

Ex

[
sup
s≤t

exp

(
−
∫ s

0

K(xr)dr

)]
< +∞, ∀ x ∈ M, t > 0 ,

then dPtf(x) = e−t�φ(df)(x) for all x ∈ M, t > 0 and for all f ∈ C∞
c (M),

where �φ denotes the Witten-Bismut operator on one-forms with respect
to µ (see Section 3 for details).

Using some new interplays between harmonic analysis, differential geom-
etry and probability theory, we prove a criterion for the Lp-boundedness of
the Riesz transform Ra(L) = ∇(a − L)−1/2 for all a > 0 and p ≥ 2.
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Theorem 2.1 Let p > 2, q = p
p−1

, and L = ∆ − ∇φ · ∇ be a Markovian

symmetric diffusion operator on a complete Riemannian manifold (M, g)
with an invariant measure dµ(x) = e−φ(x)dν(x). Suppose that K− satisfies
the following gaugeability condition: for some β > p,

(2.2) sup
0≤t≤1,x∈M

Ex

[
exp

(
β

∫ t

0

K−(xs)ds

)]
< +∞.

Then, for all a > 0 and all p ∈ [2, β), the Riesz transform Ra(L) = ∇(a −
L)−1/2 is bounded in Lp(µ). That is, there exists a constant Cp,a such that

‖Ra(L)f‖Lp(M,µ) ≤ Cp,a‖f‖Lp(M,µ), ∀ f ∈ C∞
0 (M).

Suppose further that

sup
t>0,x∈M

Ex

[
exp

(
−β

∫ t

0

K(xs)ds

)]
dt < +∞,(2.3)

sup
x∈M

∫ ∞

0

Ex

[
K−(xt) exp

(
−q

∫ t

0

K(xs)ds

)]
dt < +∞ .(2.4)

Then the Riesz transform R0(L) = ∇(−L)−1/2 is bounded in Lp(µ) for all
p ∈ [2, β).

Note that the gaugeability condition (2.2) is weaker than (1.1) in Theo-
rem 1.1. Indeed, (1.1) implies

sup
0≤t≤1,x∈M

Ex

[
exp

(
β

∫ t

0

K−(xs)ds

)]
≤ eβa .

Moreover, if Ric +∇2φ ≥ 0, then (2.3) and (2.4) hold. Therefore, Theo-
rem 2.1 partially extends Theorem 1.1 to a class of Markovian symmetric dif-
fusion operators with unbounded Bakry-Emery-Ricci curvature for all p ≥ 2.

By Theorem 2.1, we will find a more effective sufficient condition for the
Lp-boundedness of Riesz transforms associated with a class of ultracontrac-
tive Markovian symmetric diffusion operators. To state it, let us first recall
the notion of ultracontractivity.

Following E.B. Davies [19] and Bakry [7], we call (L, µ) a ultracontractive
diffusion operator with dimension n = dim(L) if there exists a constant
C > 0 such that the semigroup Pt = etL generated by L satisfies

(2.5) ‖Ptf‖∞ ≤ Ct−n/2‖f‖L1(µ), ∀t ∈ (0, 1].
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By Corollaire 4.6 in Bakry [7], this is the case if there exists an increasing
and concave fonction Φ : R

+ → R
+ such that Φ′(x) is equivalent to n

2x
at

x = ∞ and the so-called Φ-energy-entropy inequality holds

(2.6) ∀f ∈ C∞
0 (M), ‖f‖L2(µ) = 1 =⇒ Entµ(f2) ≤ Φ

(
‖∇f‖2

L2(µ)

)
,

where

Entµ(f2) :=

∫
M

f2logf2dµ −
∫

M

f2dµlog

(∫
M

f2dµ

)
.

When n > 2, a well-known result due to Varopoulos [70] (see also
Davies [19] and Bakry [7]) says that the ultracontractivity (2.5) is equiv-
alent to the following L2-Sobolev inequality for (L, µ) with two constants A
and B:

(2.7) ‖f‖2

L
2n

n−2 (µ)
≤ A‖∇f‖2

L2(µ) + B‖f‖2
L2(µ), ∀ f ∈ C∞

0 (M).

When n ∈ (1, 2], if for some p ∈ [1, n] there exist Ap and Bp such that (L, µ)
satisfies the Lp-Sobolev inequality

(2.8) ‖f‖
L

pn
n−p (µ)

≤ Ap‖∇f‖Lp(µ) + Bp‖f‖Lp(µ), ∀ f ∈ C∞
0 (M),

or when n ≥ 1, if there exists certain constant C such that the Nash in-
equality holds

(2.9) ‖f‖2+4/n

L2(µ) ≤ C‖∇f‖2
L2(µ)‖f‖4/n

L1(µ), ∀f ∈ C∞
0 (M),

then (L, µ) is ultracontractive with dimensional dim(L) = n. Indeed, for
n ∈ [1, 2], if (L, µ) satisfies (2.8) or (2.9), then the Φ-energy-entropy in-
equality holds for Φ(x) = n

2
log (a + bx) with some suitable constants a and b.

Moreover, it is well-known that the L2-Sobolev and the Lp-Sobolev inequal-
ities and the Nash inequality as well as the Φ-energy-entropy inequality are
stable under all bounded conformal transformations and all quasi-isometries.
For instance, if (2.7) holds with two constants A and B on a complete Rie-
mannian manifold (M, g), and if g̃ is a new Riemannian metric g̃ on M such
that g̃ is quasi-isometric to g with

cg ≤ g̃ ≤ Cg ,

then we can verify that (2.7) holds on (M, g̃) with two new constants Ã

and B̃ given by

Ã =
AC

n
2

c
n+4

2

, B̃ =
BC

n−2
2

c
n
2

.

Now we are able to state the main result of this paper as follows.
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Theorem 2.2 Let L = ∆−∇φ ·∇ be a Markovian symmetric diffusion op-
erator on a complete Riemannian manifold (M, g) with an invariant measure
dµ(x) = e−φ(x)dν(x), φ ∈ C2(M).

Suppose that L generates a ultracontractive semigroup Pt = etL in the
sense that there exist some constant C > 0 and n ≥ 1 such that

‖Ptf‖∞ ≤ Ct−n/2‖f‖L1(µ), ∀t ∈ (0, 1] .

Suppose further that there exist two constants c ≥ 0 and ε > 0 such that

(K + c)− ∈ L
n
2
+ε(M,µ) .

Then, for all p ≥ 2 and all a > 0, the Riesz transform Ra(L) = ∇(a−L)−1/2

is bounded in Lp(M,µ).

Applying Theorem 2.2 to the one-dimensional diffusion operator (1.4)
and using a result due to Kavian-Kerkyacharian-Roynette [36], we have the
following result. For its proof and its high dimensional extension, see Sec-
tion 9.2.

Theorem 2.3 Let φ ∈ C2(R, R), L be the one-dimensional diffusion oper-
ator given by

L =
d2

dx2
− φ′(x)

d

dx
.

Suppose that there exist some constants c1 ∈ R, c2 ∈ R, c3 ∈ R
+ and ε > 0

such that
φ(x) ≤ c1, ∀x ∈ R ,

φ′2(x)

4
− φ′′(x)

2
+ c2 ≥ 0, ∀ x ∈ R ,

and ∫
R

(
[φ′′(x) + c3]

−) 1
2
+ε

e−φ(x)dx < +∞ .

Then, for all p ≥ 2 and all a > 0, the Riesz transform Ra(L)= d
dx

(a − L)−1/2

is bounded in Lp(R, e−φ(x)dx).

Remark 2.1 Let L0 be the diffusion operator on the real line satisfying all
the conditions in Theorem 2.3, and L1 be the Ornstein-Uhlenbeck diffusion
operator on the Wiener space. Then the Bakry-Emery Ricci curvature of the
diffusion operator L = L0 + L1 on the product manifold R × W is given by

Ricx(L) =

(
φ′′(x0) 0

0 IH

)
, ∀x = (x0, x1) ∈ R × W,

where IH is the identity operator on the Cameron-Martin space

H = H1,2([0, 1], Rd) ∩ W .
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By Theorem 2.1, one can verify that, under the same conditions as in
Theorem 2.3, the Riesz transform Ra(L) = ∇(a − L)−1/2 is bounded in
Lp(R × W, e−φ(x0)dx0 ⊗ µ(dx1)) for all p ≥ 2 and all a > 0, where µ is the
Wiener measure on the Wiener space.

Example 2.1 By [4], if L = ∆−∇φ·∇ is a diffusion operator on a complete
Riemannian manifold (M, g) with Ric(L) = Ric + ∇2φ uniformly bounded
from below, then L is conservative. Suppose further that L satisfies the so-
called curvature-dimension CD(K,n) condition with K = −(n−1)k2 where
k ≥ 0, that is,

Γ2(u, u) ≥ 1

n
(Lu)2 + K|∇u|2, ∀ u ∈ C∞(M) ,

where Γ2(u, u) := 1
2
L|∇u|2−<∇Lu, u >. By the Bochner-Weitzenböck for-

mula, we can show that Γ2(u, u) = |∇2u|2+ < Ric(L)∇u,∇u >. Thus, the
CD(K,n) condition holds when L is the Laplace-Beltrami operator ∆ on
a complete Riemannian manifold with Ric ≥ K = −(n − 1)k2. By a new
preprint of Bakry-Qian [8], CD(K,n) implies Lρ(x) ≤ (n − 1)kcoth(kρ(x))
on M \ cut(o), where ρ(x) = d(x, o), cut(o) denotes the cut-locus of a fixed
point o ∈ M . By standard argument, see for example Bakry-Qian [8],
Gong-Wang [29] and Lott [50], this differential inequality yields the Bishop-
Gromov type volume comparison inequality for the weight measure µ, that

is, µ(B(x, r)) ≤ Crnµ(B(x, r0))e
kr
√

(n−1) for all x ∈ M and r > r0 > 0.
Using the generalized Karp-Li [35] or Grigory’an [30] conservativeness cri-
terion of diffusion semigroup due to K. T. Sturm [68], it is easy to see that

for all u ∈ Cb(M) ∩ C1(M), the diffusion operator L̃ = L + ∇u · ∇ is still
conservative. Combining this with the stability of Sobolev inequalities or
Nash inequality under bounded quasi-isometry and using Theorem 2.2, we
can easily obtain the following result: if L = ∆ − ∇φ · ∇ is a ultracon-
tractive diffusion operator on a complete Riemannian manifold (M, g) with
dim(L) = n and if L satisfies the CD(K,n) condition with K = −(n− 1)k2

where k ≥ 0, then for all u ∈ Cb(M) ∩ C2(M), the Riesz transform associ-

ated with the diffusion operator L̃ = L+∇u ·∇, namely, Ra(L̃) = ∇(a− L̃),
is bounded in Lp(M, e−uµ) for all a > 0 and p ≥ 2 provided that for some
c ≥ 0 and ε > 0,∫

M

[(
λmin(∇2u(x)) + c

)−]n
2
+ε

dµ(x) < +∞ ,

where λmin(∇u2(x)) denotes the lowest eigenvalue of ∇2u(x), ∀x ∈ M . See
also Example 2.2 below for the particular case of conformal change of Rie-
mannian metric on R

2.
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Below we focus on the Riesz transforms associated with the Laplace-
Beltrami operator. Recall that, if the Ricci curvature on (M, g) satisfies
Ric(x) ≥ −c[1 + ρ2(x)] (where ρ(x) = d(o, x) for a fixed o ∈ M), or if
(M, g) is quasi-isometric to a complete Riemannian manifold with Ricci
curvature bounded from below by a constant, then the well-known results
due to Li [42], Karp-Li [35] and Grigor’yan [30] imply that (M, g) is sto-
chastically complete. That is, the Brownian motion on M has an infinite
lifetime. By Hoffman-Spruck [33], if (M, g) is (or is quasi-isometric to) a
Cartan-Hadamard manifold (i.e., a complete, connected, simply connected
Riemannian manifold with negative sectional curvature), then the Sobolev
inequality holds for (∆, ν) with B = 0. Moreover, see e.g. Hebey [32], if
(M, g) is (or is quasi-isometric to) a complete Riemannian manifold with
positive injectivity radius and Ricci curvature uniformly bounded from be-
low, then the Sobolev inequality holds for (∆, ν) with some constants A and
B. Let

K0(x) := inf{< Ric(x)v, v >: v ∈ TxM, ‖v‖ = 1}, ∀x ∈ M .

Applying Theorem 2.2 to L = ∆ and µ = ν, we obtain the following

Theorem 2.4 Let (M, g) be a complete Riemannian manifold which is
quasi-isometric to a complete Riemannian manifold with positive injectiv-
ity radius and Ricci curvature uniformly bounded from below. Suppose that
for some constants c ≥ 0 and ε > 0,

(K0 + c)− ∈ L
n
2
+ε(M, ν) .

Then Ra(∆)=∇(a−∆)−1/2 is bounded in Lp(M, ν) for any p ≥ 2 and a > 0.

Theorem 2.5 Let (M, g) be a Cartan-Hadamard manifold with Ricci cur-
vature Ric(x) ≥ −c[1 + ρ(x)2], where ρ(x) = d(o, x) for some fixed point
o ∈ M . Suppose that for some constants c ≥ 0 and ε > 0,

(K0 + c)− ∈ L
n
2
+ε(M, ν) .

Then Ra(∆)=∇(a−∆)−1/2 is bounded in Lp(M, ν) for any p ≥ 2 and a > 0.

Example 2.2 Consider (M, g) = (R2, eug0) endowed with a Riemannian
metric g = eug0 which is conformal to the standard Euclidean metric g0.
By Theorem 2.4 and (1.3), we can prove that, see Section 7.1 for details, if
u ∈ C2(R2) ∩ Cb(R

2) satisfies∫
R2

[
(c − ∆0u(x))−

]1+ε
dx < +∞
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for some constants c ≥ 0 and ε > 0, where ∆0 denote the usual Laplace
operator on R

2, then for all a > 0 and all p ≥ 2, the Riesz transform
Ra(∆) = ∇(a−∆)−1/2 is bounded in Lp(R2, eu(x)dx), where ∇ and ∆ denote
the Riemannian gradient operator and the Laplace-Beltrami operator on
(R2, eu(x)g0). This can be regarded as a special case of Example 2.1.

By Theorem 2.4, and using an idea originally due to N. Lohoué [48] and
re-formulated recently in Coulhon-Duong [13], see Theorem 3.3 below, we
can prove the following

Theorem 2.6 Let (M, g) be a Cartan-Hadamard manifold with sectional
curvature Sect ≤ −k < 0 and Ricci curvature Ric(x) ≥ −c[1+ρ2(x)], where
ρ(x) = d(o, x) for a fixed point o ∈ M . Suppose that there exist two constants
c ≥ 0 and ε > 0 such that

(K0 + c)− ∈ L
n
2
+ε(M, ν) .

Then R0(∆)=∇(−∆)−1/2 is bounded in Lp(M, ν) for any p ≥ 2 and a > 0.

Remark 2.2 In [48], N. Lohoué proved that: Let M be a Cartan-Hadamard
manifold on which the (Riemannian) curvature tensor and its first and sec-
ond order covariant derivatives are bounded. Suppose that there exists a
constant C > 0 such that ‖f‖L2(ν) ≤ C‖∆f‖L2(ν) (i.e., the Laplace-Beltrami
operator is strictly negative in L2(M, ν)). Then for any vector fields X sat-
isfying ‖X(x)‖ = 1, ∀x ∈ M , the Riesz transform X(−∆)−1/2 is bounded
in Lp(M, ν) for all 1 < p < ∞. As pointed out in [48] (p. 164), the most
important step to prove this result is to show that there exist two constants
C1(p) and C2(p) such that

(2.10) ‖∇f‖Lp(ν) ≤ C1(p)‖√−∆f‖Lp(ν) + C2(p)‖f‖Lp(ν), ∀f ∈ C∞
0 (M).

This is equivalent to say that there exists a certain a > 0 such that the
Riesz transform Ra(∆) = ∇(a−∆)−1/2 is bounded in Lp(M, ν). Notice that
the boundedness of the Riemannian curvature tensor implies that the Ricci
curvature is bounded from below. Therefore, (2.10) can be obtained from
Theorem 1.1.

Compare with N. Lohoué’s theorem, Theorem 2.6 holds for all p ≥ 2
on any Cartan-Hadamard manifold on which the Ricci curvature is not nec-
essarily to be uniformly bounded from below but Ric(x) ≥ −c[1 + ρ2(x)]
and K0 (the lowest eigenvalue of the Ricci curvature) satisfies the condition
(K0+c)− ∈ L

n
2
+ε for certain c ≥ 0 and ε > 0. In other words, we do not need

to assume that the Riemannian curvature tensor and its first two covariant
derivatives are bounded.
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By the second part of Theorem 2.1 and combining two arguments due to
Rosenberg-Yang [59] and Davies-Simon [20] for the positivity of the principal
eigenvalue and the Lyapunov exponent of the Schrödinger operators, we can
prove the following result.

Theorem 2.7 Let L = ∆ − ∇φ · ∇ be a Markovian symmetric diffusion
operator on a complete Riemannian manifold (M, g) on which there exist
two constants A and B such that

‖f‖2

L
2n

n−2 (M,µ)
≤ A‖∇f‖2

L2(M,µ) + B‖f‖2
L2(M,µ), ∀ f ∈ C∞

0 (M) .

Suppose that n > 4 and there exist some constants β > 2, c ≥ 0, α > 0 and
ε > 0 such that

(K + c)− ∈ L
n
2
+ε(M,µ)

and
‖(K − α)−‖

L
n
2 (µ)

< min{(βA)−1, αB−1} .

Then, for all p ∈ [2, β), the Riesz transform

R0(L) = ∇(−L)−1/2

is bounded in Lp(M,µ).

Remark 2.3 Taking φ ≡ 0, Theorem 2.7 provides us with another non-
trivial example of complete and stochastically Riemannian manifolds on
which the Ricci curvature is not uniformly bounded below while the Riesz
transform R0(∆) = ∇(−∆)−1/2 is bounded in Lp(ν) for all p ∈ [2, β). For
details, see Theorem 9.1 in Section 9.1.

The rest part of this paper is organised as follows: In Section 3 we give
some applications of the Lp-continuity of the Riesz transforms. In Section 4
we prove some semigroup domination inequalities and the Littlewood-Paly
inequalities on functions and on one-forms. In Section 5 we deal with the
potential theory of Schrödinger operator. In Section 6 we prove Theorem 2.1
and a useful criterion for the Lp(µ)-boundedness of R0(L) = ∇(−L)−1/2

for all p ≥ 2. In Section 7 we prove Theorem 2.2. In Section 7 we prove
Theorem 2.7. In Section 9, we prove Theorem 2.3, Theorem 2.4, Theorem 2.5
and Theorem 2.6 and describe how to construct a one-dimensional diffusion
operator

L =
d2

dx2
− φ′(x)

d

dx

with unbounded negative Bakry-Emery Ricci curvature and satisfying the
conditions required in Theorem 2.3.
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3. Applications

In this section we give some basic properties of the Riesz transforms and
some important applications of the Lp-continuity of the Riesz transforms.
Here we state the results under the assumption that Ra(L) = ∇(a − L)−1/2

is bounded in Lp(µ) for all 1 < p < ∞.

If Ra(L) is bounded in Lp(µ) for a fixed p ∈ (1,∞), the Marcinkiewicz
interpolation theorem implies that Ra(L) is bounded in Lq(µ) for all q ∈
[min{2, p}, max{2, p}]. In this case, the reader can easily reformulate these
results in a similar way by himself.

The following result is well-known to experts and is the starting point to
develop a nice Lp-potential theory as we will explain later.

Theorem 3.1 The following statements are equivalent:

(1) The Riesz transform Ra(L) = ∇(a − L)−1/2 is bounded in Lp(µ) for
all 1 < p < ∞. That is, for every 1 < p < ∞, there exists a constant
‖Ra(L)‖p,p ∈ (0,∞) such that

‖Ra(L)f‖Lp(µ) ≤ ‖Ra(L)‖p,p‖f‖Lp(µ), ∀f ∈ C∞
0 (M) .

(2) The Sobolev norms ‖ · ‖1,p and ‖| · ‖|1,p are equivalent, where

‖f‖1,p =
√

a‖f‖Lp(µ) + ‖∇f‖Lp(µ) ,

|‖f‖|1,p = ‖(a − L)1/2f‖Lp(µ) .

(3) The domain of the Cauchy operator
√

a − L in Lp(M,µ) coincides
with the domain of the closure of the gradient operator ∇ in Lp(M,µ).
That is, the Sobolev space H1,p(M,µ) coincides with the Sobolev space
W 1,p(M,µ), where

H1,p(M,µ) = {u ∈ Lp(M,µ) : |∇u| ∈ Lp(µ)} ,

W 1,p(M,µ) = (a − L)−1/2(Lp(µ)) .

(4) The (1, p)-capacities c1,p and C1,p are equivalent, where

c1,p(O) = inf{‖f‖p
1,p : f ∈ H1,p(M,µ), f ≥ 0, f ≥ 1 µ − a.s. on O} ,

C1,p(O) = inf{|‖f‖|p1,p : f ∈ W 1,p(M,µ), f ≥ 0, f ≥ 1 µ − a.s. on O} ,

for all open sets O ⊂ M , and for all A ⊂ M ,

c1,p(A) = inf{c1,p(O) : A ⊂ O ⊂ M,O is open} ,

C1,p(A) = inf{C1,p(O) : A ⊂ O ⊂ M,O is open} .
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Proof. The proof of the equivalence between (2), (3) and (4) is easy and
is omitted. Here we only prove (1) ⇐⇒ (2). First, we prove (2) =⇒ (1).
Indeed, if (2) is true, then for some constant Ap,a,

‖∇f‖p ≤ ‖f‖1,p ≤ Ap,a|‖f‖|1,p = Ap,a‖
√

a − Lf‖p.

By density argument, we can replace f by
√

a − Lf in the above inequality.
Thus ‖Ra(L)f‖p ≤ Ap,a‖f‖p and (1) is proved.

Next, we prove (1) =⇒ (2). Suppose that Ra(L) is bounded in Lp(µ) for
all p > 1. Then

‖∇f‖p ≤ ‖Ra(L)‖p,p‖
√

a − Lf‖p .

By Lemma 4.2 in Bakry [5], there exist two constants cp and Cp such that

(3.1) cp

(√
a‖f‖p+‖√−Lf‖p

)
≤ ‖√a − Lf‖p ≤ Cp

(√
a‖f‖p+‖√−Lf‖p

)
.

Hence ‖∇f‖p ≤ Cp‖Ra(L)‖p,p

(√
a‖f‖p + ‖√−Lf‖p

)
. This yields

‖f‖1,p ≤ (1 + Cp‖Ra(L)‖p,p)
(√

a‖f‖p + ‖√−Lf‖p

)
≤ c−1

p (1 + Cp‖Ra(L)‖p,p)|‖f‖|1,p .

This is to say ‖f‖1,p ≤ Bp,a|‖f‖|1,p, where Bp,a := c−1
p (1 + Cp‖Ra(L)‖p,p).

On the other hand, using the duality argument as used in the proof of
Corollaire 4.3 in [5], for q = p

p−1
,

‖√a − Lf‖q ≤ sup{‖f‖1,q‖g‖1,p : g ∈ C∞
0 (M), ‖√a − Lg‖p ≤ 1}

≤ Bp,a sup{‖f‖1,q|‖g‖|1,p : g ∈ C∞
0 (M), ‖√a − Lg‖p ≤ 1}

= Bp,a‖f‖1,q .

Hence |‖f‖|1,q ≤ Bp,a‖f‖1,q. Combining this with the inverse inequality, we
have

B−1
q,a |‖f‖|1,p ≤ ‖f‖1,p ≤ Bp,a|‖f‖|1,p, ∀f ∈ C∞

0 (M) .

The proof of Theorem 3.1 is completed. �

The following result is very useful. It seems that one cannot find it in
the literature.

Theorem 3.2 Let p ∈ (1,∞). Suppose that for some a ≥ 0, Ra(L) =
∇(a − L)−1/2 is bounded in Lp(µ). Then Rb(L) = ∇(b − L)−1/2 is bounded
in Lp(µ) for all b > min{a, 0}. Moreover, there exists a constant Ap such
that

‖Rb(L)‖p,p ≤ Ap max{
√

ab−1, 1}‖Ra(L)‖p,p .
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Proof. Indeed, saying that Ra(L) = ∇(a − L)−1/2 is bounded in Lp(µ) is
equivalent to saying that

‖∇f‖p ≤ ‖Ra(L)‖p,p‖(a − L)1/2f‖p with ‖Ra(L)‖p,p < +∞ .

By (3.1), if Ra(L) is bounded in Lp(µ), then for all b ≥ a,

‖∇f‖p ≤ ‖Ra(L)‖p,pCp

(√
a‖f‖p + ‖√−Lf‖p

)
≤ ‖Ra(L)‖p,pCp

(√
b‖f‖p + ‖√−Lf‖p

)
≤ ‖Ra(L)‖p,pc

−1
p Cp‖(b − L)1/2f‖p .

This yields, for all b ≥ a,

‖Rb(L)‖p,p ≤ c−1
p Cp‖Ra(L)‖p,p .

On the other hand, for a > b > 0,

‖∇f‖p ≤ ‖Ra(L)‖p,pCp

(√
a‖f‖p + ‖√−Lf‖p

)
≤ ‖Ra(L)‖p,pCp

√
a

b

(√
b‖f‖p +

√
b

a
‖√−Lf‖p

)

≤ ‖Ra(L)‖p,pCp

√
a

b

(√
b‖f‖p + ‖√−Lf‖p

)
≤ ‖Ra(L)‖p,pc

−1
p Cp

√
a

b
‖(b − L)1/2f‖p.

Hence
‖Rb(L)‖p,p ≤ c−1

p Cp

√
ab−1‖Ra(L)‖p,p .

Taking Ap = c−1
p Cp, the proof of Theorem 3.2 is completed. �

The following result is due to N. Lohoué [48], see also Coulhon-Duong
[13, p. 1154].

Theorem 3.3 Let p > 1 be fixed. Suppose that the Riesz transform Ra(L) =
∇(a−L)−1/2 is bounded in Lp(µ) for some a > 0, and the bottom of spectrum
of −L in L2(µ) is strictly positive, i.e.,

λ2(−L) := inf
f∈L2(µ)\{0}

∫
M
|∇f(x)|2dµ(x)

‖f‖2
2

> 0 .

Then the Riesz transform R0(L) = ∇(−L)−1/2 is bounded in Lp(µ).
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Now we give an important application of the Lp-continuity of the Riesz
transforms in the regularity theory of parabolic PDEs (the heat semigroup
and the Poisson semigroup).

Theorem 3.4 Suppose that the Riesz transform Ra(L) is bounded in Lp(µ).
Then1

(1) there exist two constants Ap and Cp such that

‖∇etLf‖p ≤ Cp‖Ra(L)‖p,p

(√
a +

Ap√
t

)
‖f‖p, ∀ t > 0 .

(2) there exists a constant Ap > 0 such that, for any ε ∈ (0, 1),

‖∇etLf‖p ≤ Ap‖Ra(L)‖p,p√
ε

eaεt

√
t
‖f‖p, ∀ t > 0 .

(3) if the heat semigroup etL is hypercontractive, i.e., ‖etL‖p,q(t) = mp,q(t),
then

‖∇etL‖p ≤ Cp‖Ra(L)‖p,p√
ε

eaεtmp,q((1 − ε)t)√
t

‖f‖q .

(4) there exists a constant Ap > 0 such that, for any ε ∈ (0, 1), and any
t > 0,

‖∇e−t
√

a−Lf‖p ≤ Ap‖Ra(L)‖p,p

ε

e−
√

aεt

t
‖f‖p .

Proof. From the proof of Theorem 3.1, for the same constant Cp as in (3.1),
we have

‖∇f‖p ≤ Cp‖Ra(L)‖p,p

(
‖√−Lf‖p +

√
a‖f‖p

)
.

Replacing f by etLf we obtain

‖∇etLf‖p ≤ Cp‖Ra(L)‖p,p

(
‖√−LetLf‖p +

√
a‖etLf‖p

)
.

Since L is a sub-Markovian operator, the semigroup etL is analytic. Hence
there exists a constant Ap such that

‖√−LetLf‖p = ‖√−Le
t
2
Le

t
2
Lf‖p ≤ Apt

−1/2‖e t
2
Lf‖p.

1In a recent paper [1], for the case where L = ∆ and µ = ν, P. Auscher, T. Coulhon,
X.T. Duong and S. Hoffman have shown that the Lp-regularity property of etL together
with the exponential growth condition of the geodesic ball is indeed a sufficient condition
for the Lp-boundedness of Ra(∆) = ∇(a − ∆)−1/2.
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Moreover, the semigroup etL is contractive in Lp for all 1 < p < ∞. Hence

‖∇etLf‖p ≤ Cp‖Ra(L)‖p,p

(
Ap√

t
‖e t

2
Lf‖p +

√
a‖etLf‖p

)
≤ Cp‖Ra(L)‖p,p

(
Ap√

t
+
√

a

)
‖f‖p .

Similarly, since the semigroup e−t(a−L) is analytic and since etL is Lp-contrac-
tive, for ε ∈ (0, 1), there exists a constant Ap such that, for every ε ∈ (0, 1),

‖∇e−t(a−L)f‖p ≤ ‖Ra(L)‖p,p‖
√

a − Le−t(a−L)f‖p

= ‖Ra(L)‖p,p‖
√

a − Le−εt(a−L)e−t(1−ε)(a−L)f‖p

≤ ‖Ra(L)‖p,p
Ap√
εt
‖e−t(1−ε)(a−L)f‖p

≤ Ap‖Ra(L)‖p,p√
εt

e−a(1−ε)t‖e(1−ε)tLf‖p

≤ Ap‖Ra(L)‖p,p√
εt

e−a(1−ε)t‖f‖p .

Hence

‖∇etLf‖p ≤ Ap‖Ra(L)‖p,p√
ε

eaεt

√
t
‖f‖p .

Moreover, if ‖etL‖p,q = mp,q(t), then

‖∇etLf‖p ≤ Ap‖Ra(L)‖p,p√
ε

eaεtmp,q((1 − ε)t)√
t

‖f‖q .

On the other hand, the analyticity of e−t
√

a−L implies, for some Ap > 0
and for all ε ∈ (0, 1),

∥∥∥∇e−t
√

a−Lf
∥∥∥

p
≤ ‖Ra(L)‖p,p

∥∥∥√a − Le−t
√

a−Lf
∥∥∥

p

≤ ‖Ra(L)‖p,p
Ap

(1 − ε)t
‖e−tε

√
a−Lf‖p

≤ Ap‖Ra(L)‖p,p

1 − ε

e−tε
√

a

t
‖f‖p,
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where in the last step we have used the following estimate∥∥∥e−t
√

a−Lf
∥∥∥

p
=

∥∥∥∥ 1√
π

∫ ∞

0

e−
t2

4u
(a−L)f(·)e−uu−1/2du

∥∥∥∥
p

≤ 1√
π

∫ ∞

0

∥∥∥e− t2

4u
(a−L)f

∥∥∥
p
e−uu−1/2du

=
1√
π

∫ ∞

0

e−
at2

4u

∥∥∥e t2

4u
Lf
∥∥∥

p
e−uu−1/2du

≤ 1√
π

(∫ ∞

0

e−
at2

4u e−uu−1/2du

)
‖f‖p

= e−t
√

a‖f‖p .

The proof of Theorem 3.4 is completed. �
In the case M = R

n, the Lp-boundedness of the Riesz transforms and the
Sobolev inequalities yield the regularity of the solution to Poisson equation
∆u = f , see e.g. E.M. Stein [63] and Gilbarg-Trudinger [28]. Similarly, we
have the following result for a general ultracontractive diffusion operator on
a complete Riemannian manifold.

Theorem 3.5 Suppose that there exists a constant C1 > 0 such that

‖etL‖1,∞ ≤ C1t
−n/2, ∀ t > 0 .

For a fixed p < n, suppose that R0(L) is bounded in Lq(µ) for q = pn
n−p

. Let

f ∈ Lp(M) satisfying
∫

M
fdµ = 0, u be a solution to the Poisson equation

Lu = f .

Then there exists a constant C = Cp,n,C1 such that

‖∇u‖ pn
n−p

≤ C‖f‖p .

Proof. Write

∇u = ∇L−1f = ∇(−L)−1/2(−L)−1/2f = R0(L)(−L)−1/2f.

By [71],
‖etL‖1,∞ ≤ C1t

−n/2 for all t > 0

implies ‖(−L)−1/2‖q,p < +∞. Hence

‖∇u‖q ≤ ‖R0(L)‖q,q‖(−L)−1/2‖p,q‖f‖p .

This finishes the proof of Theorem 3.5. �
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Below we describe some important applications of the Lp-continuity of
the Riesz transforms in probability theory. Since the gradient operator ∇
is a local derivative operator while the square root operator (a − L)1/2 is a
global integral operator, it is easy to deal with the Sobolev norm ‖f‖1,p and
the (1, p)-capacity c1,p while usually it is very hard to deal with the Sobolev
norm |‖f‖|1,p and the (1, p)-capacity C1,p. For example, under some suitable
conditions we have two effective approaches (see [58] [44]) to prove that
c1,p is tight, that is, for any ε > 0, there exists a compact subset K ⊂ M
such that c1,p(M \ K) ≤ ε. Moreover, this is true if for any ε > 0 there
exists f ∈ C∞

0 (M, [0, 1]) such that µ(M \ suppf) < ε/2 and ‖∇f‖p ≤ ε/2.
However, usually it is very hard to prove the tightness of C1,p except for
p = 2. If one can prove the tightness of c1,p by the above method and the
approaches in [58] [44] and if one can further prove that the Riesz transform
Ra(L) = ∇(a−L)−1/2 is bounded in Lp(µ) for all 1 < p < ∞, then Theorem
3.4 implies that the (1, p)-capacity C1,p is also tight. In this case, we have
the following nice properties:

(1) By Sugita [69] and Kazumi-Shigekawa [37], for every positivity-pres-
erving distribution Φ ∈ W−1,q(M,µ), there exists a unique finite tight
measure νΦ such that

Φ(f) =

∫
M

f(x)dνΦ(x), ∀ f ∈ W 1,p(M,µ) .

Here W−1,q(M,µ) is the dual of W 1,p(M,µ), 1
p

+ 1
q

= 1. Moreover, for
all open set O ⊂ M ,

(3.2) νΦ(O) ≤ ‖Φ‖−1,q (C1,p(O))1/p .

In particular, νΦ(A) = 0 for any Borel set A ∈ B(M) with C1,p(A) = 0.

(2) By Fukushima [26] and the references therein, the Hunt process associ-
ated with the Dirichlet form E(f, g) =

∫
M
|∇f |2dµ can be constructed

uniquely up to C1,p-equivalence on M via the Dirichlet form theory if
C1,p is tight.

As the last application of the Riesz transforms, we would like to mention
that the Riesz transform R0(L) = ∇(−L)−1/2 (and its generalisations on
k-forms) is naturally involved in the Hodge decomposition theorem with
respect to the weight measure

dµ(x) = e−φ(x)dv(x).
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Let
�φ,k = dd∗

φ + d∗
φd

be the Witten-de Rham-Hodge operator on k-forms, where d is the exte-
rior differential operator, d∗

φ denotes its L2(µ)-adjoint operator. Suppose

that the Green operators L−1 and �−1
φ,k exist, k = 1, 2. Similarly to the

well-known integral representation formulae in the standard Hodge decom-
position theorem, see e.g. [21], we can prove that every 1-forms ω in L2(µ)
can be decomposed into

ω = ω0 + ω1 + ω2 ,

where ω1 is �φ,1-harmonic, i.e., �φ,1ω1 = 0, and

ω0 = d(−L)−1δφω = d(−L)−1/2(d(−L)−1/2)∗ω = R0(L)R∗
0(L)ω,

ω2 = δ�−1
φ,2dω = δ�−1/2

φ,2 (δ�−1/2
φ,2 )∗ω = R0(�φ,2)R

∗
0(�φ,2)ω .

Here R0(L)=d(−L)−1/2 (we identify it with ∇(−L)−1/2), R0(�φ,2)=δ �−1/2
φ,2 ,

R∗
0(L) (respectively, R∗

0(�φ,2)) denotes the L2(µ)-adjoint of R0(L) (respec-
tively, R0(�φ,2)). Thus, we have the following result related to the Lp-Hodge
decomposition theory.

Theorem 3.6 Let p > 1, q = p
p−1

. Suppose that the Riesz transforms

R0(L) = ∇(−L)−1/2 and R0(�φ,2) = δ�−1/2
φ

are bounded in Lp(µ) and in Lq(µ). Then the harmonic projection

ω → ω1 := (I − R0(L)R∗
0(L) − R0(�φ,2)R

∗
0(�φ,2)) ω

is bounded in Lp(µ). That is, there exists a constant Cp such that

‖ω1‖Lp(µ) ≤ Cp‖ω‖Lp(µ) .

To obtain the Lp-boundedness of R0(�φ,2), we need the Ricci curvature
and the Weitzenböck curvature on 2-forms. Here we will not discuss this
issue and refer the reader to Bakry [5] in which it was proved that R0(�φ,2)
is bounded in Lp(µ) provided that the Ricci curvature and the Weitzenböck
curvature are non-negative. To end this section, we would like to mention
that the Lp-(Helmotz)-Hodge decomposition theory plays an important rôle
(via the Leray projection) in the study of the Navier-Stokes equations and
boundary value problems, see e.g. [47, 61]. We also refer the reader to [65,
66, 34, 1] for the discussion of the Lp-Hodge decomposition theory related
to the de Rham-Hodge operator on complete Riemaniann manifolds.
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4. Littlewood-Paley inequalities

4.1. Semigroup domination inequalities

Let d be the exterior differential operator on Λ(T ∗M), d∗ be the L2(v)-
adjoint of d, d∗

φ be the L2(µ)-adjoint of d. Then d∗
φ = d∗ − i∇φ, where i∇φ is

the interior multiplication by the vector field X = ∇φ. The Hodge-de Rham
operator � and the Witten-Bismut operator �φ on one-forms are defined by

� = dd∗ + d∗d,

�φ = dd∗
φ + d∗

φd.

Moreover, see e.g. Formula (2.5) in [25], we have �φ = �−L∇φ, where L∇φ

is the Lie derivative along the direction of ∇φ.

In the proof of Theorem 1.1, Bakry [5] used the following two semigroup
domination inequalities: if Ric(x) + ∇2φ(x) ≥ −a, ∀ x ∈ M , then for any
f ∈ C∞

0 (M) and ω ∈ C∞
0 (Λ1(T ∗(M)),∣∣e−t�φω(x)

∣∣ ≤ eatetL |ω| (x), ∀ x ∈ M,(4.1) ∣∣∇etLf(x)
∣∣ ≤ eatetL|∇f |(x), ∀ x ∈ M.(4.2)

These type semigroup domination inequalities cannot be expected if we
do not assume that the Bakry-Emery Ricci curvature Ric+∇2φ is uniformly
bounded from below2. For this reason the study of the Lp-boundedness of
the Riesz transform Ra(L) = ∇(a−L)−1/2 for a diffusion operator L with un-
bounded negative Bakry-Emery Ricci curvature is very complicated. One of
the most important ingredients of this paper is that we can replace (4.1)
and (4.2) in an appropriate way such that our new semigroup domination
inequalities (see Theorem 4.1 below) hold for any Markovian symmetric dif-
fusion operator L on a complete Riemannian manifold on which the Bakry-
Emery Ricci curvature is not necessarily to be uniformly bounded from be-
low. Moreover, these new semigroup domination inequalities enable us to
prove the Lp-boundedness of the Littlewood-Paly function ga−L(f) for all
p ∈ (1,∞) and the Lp-boundedness of the Littlewood-Paly function ga+�φ

for all p ∈ (1, 2), which imply the Lp-boundedness of the Riesz transforms
Ra(L) = ∇(a−L)−1/2 for all p ≥ 2. In this subsection we will first recall the
probabilistic representations of the heat semigroup e−t�φ . Then we prove
our new semigroup domination inequalities which will play a crucial rôle in
the proof of Theorem 2.1.

2By Bakry-Emery [2], for diffusion operator L = ∆−∇φ ·∇ on a complete Riemannian
manifold M , (4.2) holds if and only if Ric(x) −∇2φ(x) ≥ −a for all x ∈ M .
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Let O(M) be the orthonormal frame bundle over M , π : O(M) → M be
the projection. Let A1, . . . , An be the canonical horizontal vector fields on
O(M), X be the unique horizontal vector field on O(M) such that

π∗u(X) = ∇φ(x), ∀ u ∈ π−1(x) .

Then, for any u ∈ O(M) with π(x) = x, there exists a unique non-explosive
Markov process {ut, t ∈ R

+} on O(M) such that

dut =
n∑

i=1

Ai(ut) ◦ dwi
t − X(ut)dt

u0 = u.

Moreover, xt = π(ut) is a non-explosive Markovian diffusion process on
M starting at x with infinitesimal generator L = ∆ − ∇φ · ∇. We call
{ut, t ∈ R

+} the stochastic horizontal lift of {xt, t ∈ R
+} with respect to the

Levi-Civita connection on (M, g).
Let Ex be the expectation with respect to the measure µx, the law of

{xt, t ∈ R
+} on the path space Px(M) = {γ ∈ C(R+,M) : γ(0) = x}. Let

Pt = etL, P 1
t = e−t�φ. Then for any ω ∈ Λ1(T ∗M) and v ∈ TxM , see e.g.

[53, 54, 22, 24, 5], it is well-known that

(4.3) < P 1
t ω, v > (x) = Ex [< ω(xs), vt >] ,

where vt is an TxtM -valued process defined by the following covariant dif-
ferential equation:

(4.4)
D

∂t
vt = −Ricxt(L)vt, v0 = v.

Here
D

∂t
vt = ut

d

dt
(u−1

t vt)

denotes the Itô stochastic covariant derivative along the diffusion process {xt}
on M . By [53, 22, 5, 24], we have

‖vt‖ ≤ ‖v‖ exp

(
−
∫ t

0

K(xs)ds

)
,(4.5)

∣∣P 1
t ω(x)

∣∣ ≤ Ex

[
|ω(xt)| exp

(
−
∫ t

0

K(xs)ds

)]
,(4.6)

|∇Ptf(x)| ≤ Ex

[
|∇f(xt)| exp

(
−
∫ t

0

K(xs)ds

)]
.(4.7)
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For a reasonable function V ∈ B(M, R), the Schrödinger semigroup
P V

t := e−t(−L+V ) and its associated Poisson semigroup QV
t := e−t

√−L+V

are defined as follows: for any f ∈ B(M, R+),

P V
t f(x) = Ex

[
f(xs) exp

(
−
∫ t

0

V (xs)ds

)]
, ∀x ∈ M,

QV
t f(x) =

∫ ∞

0

m(t, s)P V
s f(x)ds, ∀x ∈ M,

where

m(t, s) =
t

2
√

π
s−3/2e−

t2

4s , s > 0.

Let
Qt := e−t

√−L, Q1
t := e−t

√
�φ

be the Poisson semigroups associated with L and �φ.

Theorem 4.1 For all x ∈ M , ω ∈ C∞
0 (Λ1(T ∗M)) and f ∈ C∞

0 (M), we
have ∣∣P 1

t ω(x)
∣∣2 ≤ P 2K

t 1(x) · Pt|ω|2(x),(4.8)

|∇Ptf(x)|2 ≤ P 2K
t 1(x) · Pt|∇f |2(x),(4.9)

|∇Qtf(x)|2 ≤ Q2K
t 1(x) · Qt(|∇f |2)(x),(4.10)

|∇Qtf(x)|2 ≤ Q2K
t
2

1(x)Q t
2

(
|∇Q t

2
f(·)|2

)
(x),(4.11)

|∂tQtf(x)|2 ≤ 4Q t
2

(
|∂tQ t

2
f(·)|

)2

(x).(4.12)

Proof. By the Cauchy-Schwarz inequality, (4.6) (resp., (4.7)) implies (4.8)
(resp., (4.9)). Note that

∫∞
0

m(t, s)ds = 1. By (4.9) and using the Cauchy-
Schwarz inequality,

|∇Qtf(x)|2 ≤
[∫ ∞

0

m(t, s)
√

P 2K
s 1(x) · Ps|∇f |2(x)ds

]2

≤
(∫ ∞

0

m(t, s)P 2K
s 1(x)ds

)∫ ∞

0

m(t, s)Ps|∇f |2(x)ds.

This proves (4.10). Replacing (t, f) in (4.10) by (t/2, Qt/2f), we get (4.11).
To prove prove (4.12), notice that

∂

∂t
Qtf(x) =

√−LQtf(x) = Qt/2

√−LQt/2f(x).

The Poisson kernel of L is given by kt(x, y) =
∫∞
0

m(t, s)ps(x, y)ds,
where ps(x, y) is the heat kernel of L. By Fubini’s theorem and since
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∫
M

ps(x, y)dy = 1, ∀ s > 0, x ∈ M , we have
∫

M
kt(x, y)dy = 1, ∀ t > 0,

x ∈ M . The Cauchy-Schwarz inequality yields∣∣∣∣ ∂

∂t
Qtf(x)

∣∣∣∣2 =

[∫
M

√−LQt/2f(y)kt/2(x, y)dy

]2

≤
∫

M

∣∣∣√−LQt/2f(y)
∣∣∣2 kt/2(x, y)dy = 4Qt/2

[∣∣∣∣ ∂

∂t
Qt/2f(x)

∣∣∣∣2
]

.

The proof of Theorem 4.1 is completed. �

4.2. The Littlewood-Paley inequality for ga−L

Recall the definition of the Littlewood-Paley function ga−L: for any f ∈
C∞

0 (M) and any constant a ≥ 0,

(4.13) ga−L(ω)(x) =

[∫ ∞

0

t

(
| ∂

∂t
e−t

√
a−Lf(x)|2 + |∇e−t

√
a−Lf(x)|2

)
dt

]1/2

.

Here the Poisson semigroup e−t
√

a−L is given by

e−t
√

a−Lf(x) =

∫ ∞

0

m(t, s)e−s(a−L)f(x)ds.

In this subsection we prove the following Littlewood-Paley inequality.

Theorem 4.2 Let L = ∆−∇φ ·∇ be a Markovian symmetric diffusion op-
erator on a complete Riemannian manifold (M, g) with an invariant measure
dµ(x) = e−φ(x)dv(x), where φ ∈ C2(M).

(1) For any a ≥ 0 and 1 < p ≤ 2, there exists a constant Cp such that

‖ga−L(f)‖Lp(µ) ≤ Cp‖f‖Lp(µ).

(2) Suppose that

(4.14) CK = sup
x∈M,t>0

Q2K
t 1(x) < ∞.

Then for all p > 2, there exists a constant Cp such that

(4.15) ‖ga−L(f)‖Lp(µ) ≤ Cp‖f‖Lp(µ).

(3) Under the same condition of (2), for any 1 < p < ∞, there exists a
constant Bp such that for any f ∈ Lp(µ),

(4.16) ‖f − E0f‖Lp(µ) ≤ Bp‖ga−L(f)‖Lp(µ),

where E0 denotes the orthogonal projection from L2(µ) onto

Ker(L) = {u ∈ L2(µ) : Lu = 0} .
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Proof. By Stein [64], the horizontal Littlewood-Paley function

g1,a−L(f)(x) :=

[ ∫ ∞

0

t

∣∣∣∣ ∂

∂t
e−t

√
a−Lf(x)

∣∣∣∣2 dt

]1/2

, ∀ x ∈ M,

is bounded in Lp(µ) for all 1 < p < ∞. Hence we need only to show the
vertical Littlewood-Paley function

g2,a−L(f)(x) :=

[∫ ∞

0

t
∣∣∣∇e−t

√
a−Lf(x)

∣∣∣2 dt

]1/2

, ∀ x ∈ M,

is bounded in Lp(µ) for all 1 < p ≤ 2 on any complete Riemannian manifold,
and for p > 2 on any complete Riemannian manifold satisfying the condition
in (2).

To prove (1), we use Stein’s argument as one has used in the proof of
Theorem 1.4 in [16].

Let f ∈ C∞
0 (M), and set ua(x, t) = e−t(a−L)f(x). One can assume that f

is non-negative and non identically zero. Then by standard estimates u is
smooth and positive everywhere. Let

Ha(f)(x) =

[∫ +∞

0

|∇ua(x, t)|2dt

]1/2

.

Using the Bochner subordination formula

e−
√

a−L =
1√
π

∫ ∞

0

e−
t2

4u
(a−L)e−uu−1/2du,

one can prove (for details, see [16, p. 40])

g2,a−L(f)(x) ≤ CHa(f)(x), ∀ x ∈ M.

Now, for any 1 < p ≤ 2, we have( ∂

∂t
−L

)
up

a(x,t)= pua(x,t)p−1
( ∂

∂t
−L

)
ua(x,t)−p(p−1)u(x,t)p−2|∇ua(x,t)|2

= − apua(x, t)p − p(p − 1)u(x, t)p−2|∇ua(x, t)|2,

which yields

(4.17) |∇ua(x, t)|2 = − 1

p(p − 1)
ua(x, t)2−p

(
∂

∂t
− L + ap

)
up

a(x, t).
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Hence

H2
a(f)(x) : =

∫ +∞

0

|∇ua(x, t)|2 dt

= − Cp

∫ +∞

0

ua(x, t)2−p

(
∂

∂t
− L + ap

)
up

a(x, t) dt

≤ Cp sup
t>0

ua(x, t)2−pJa(x),

where

Ja(x) = −
∫ +∞

0

(
∂

∂t
− L + ap)up

a(x, t)dt .

Using the Hölder inequality with exponent 2
2−p

and 2
p
,∫

M

Hp
a(f)(x) dµ(x) ≤Cp

∫
M

sup
t>0

ua(x, t)
(2−p)p

2 Ja(x)
p
2 dµ(x)

≤Cp

[∫
M

sup
t>0

ua(x, t)p dµ(x)

](2−p)/2[∫
M

Ja(x) dµ(x)

]p/2

.

By the maximal inequality for the symmetric Lp-contractive semigroups
(see [64]), there exists a constant Ap such that

‖ sup
t>0

ua(·, t)‖p ≤ Ap‖f‖p .

By (4.17),
(
L − ∂

∂t
− ap

)
up

a(x, t) ≥ 0, ∀(x, t) ∈ M × R
+. Applying first the

Fubini theorem, then integrating by parts and using L1 = 0, we obtain∫
M

Ja(x) dµ(x) =

∫
M

∫ ∞

0

(
L − ∂

∂t
− ap

)
up

a(x, t)dt dµ(x)

≤ −
∫

M

up
a(x, t)|∞0 dµ(x) +

∫ ∞

0

∫
M

Lup
a(x, t) dµ(x)dt

=

∫
M

ua(x, 0)p dµ(x) = ||f ||pp.

Combining this with the previous inequalities, we have

||Ha(f)||p ≤ C ′
p||f ||

2−p
2

p ||f ||
p
2
p ≤ C ′

p||f ||p.
Therefore, we have proved ‖g2,a−L(f)‖p ≤ Cp‖f‖p for all 1 < p ≤ 2.

Next we prove (4.15) for the case p > 2. Without loss of the generality,
we only consider the case where a = 0.

Let u(x, t) = Qtf(x). Combining (4.11) with (4.12) in Theorem 4.1, we
have

|∂tu(x, t)|2 + |∇u(x, t)|2 ≤ (4 + CK) Qt/2

(|∂tu(x, t/2)|2 + |∇u(x, t/2)|2) .
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Therefore

g(f)2 =

∫ ∞

0

[|∇u(x, t)|2 + |∂tu(x, t)|2] tdt

≤ (4 + CK)

∫ ∞

0

e−
t
2

√−L
(|∇u(x, t/2)|2 + |∂tu(x, t/2)|2) tdt.

Changing the variable t → 2t, we get

g(f)2 ≤ 4 (4 + CK)

∫ ∞

0

e−t
√−L

(|∇u(x, t)|2 + |∂tu(x, t)|2) tdt.

whence

(4.18) g(f) ≤ 2
√

4 + CKH(f),

where

H(f) :=

[∫ ∞

0

e−t
√−L

(
|∇e−t

√−L(x)|2 + | ∂

∂t
e−t

√−Lf(x)|2
)

tdt

]1/2

,

By P.A. Meyer [55], Bakry [5], see also Shigekawa-Yoshida [62], for any
p ≥ 2, there exists a constant Cp such that

(4.19) ‖H(f)‖p ≤ Cp‖f‖p.

Hence ‖g(f)‖p ≤ 2Cp

√
4 + CK‖f‖p. In fact, we can prove (2) by the same

argument as used in Stein [64] (p. 51-55). Due to the limit of the paper, we
leave this to the reader.

Finally, let L = − ∫∞
0

λdEλ be the spectral decomposition of L in L2(µ).
Then, for all f ∈ L2(µ),

‖g1,a−L(f)‖2
2 =

∫
M

∫ ∞

0

∣∣∣∣ ∂

∂t
e−t

√
a−Lf(x)

∣∣∣∣2 tdtdµ(x)

=

∫ ∞

0

tdt

∫
M

|√a − Le−t
√

a−Lf(x)‖2
2dµ(x)

=

∫ ∞

0

tdt

∫ ∞

0

|√a + λe−t
√

a+λ|2d‖Eλf‖2
2

=

∫ ∞

0

(a + λ)

(∫ ∞

0

e−2t
√

a+λtdt

)
d‖Eλf‖2

2

=
1

4
‖f − E0f‖2

2.

Hence
‖f − E0f‖2

2 = 4‖g1,a−L(f)‖2
2.
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By polarization, for any f, h ∈ L2(µ), we have

< f − E0f, h − E0h >L2(µ)= 4

∫
M

∫ ∞

0

t
∂

∂t
e−t

√
a−Lf(x)

∂

∂t
e−t

√
a−Lh(x)dtdµ(x).

By duality argument, we have

‖f − E0f‖p ≤ Bp‖g1,a−L(f)‖p ≤ Bp‖ga−L(f)‖p ≤ Cp‖f‖p

for all 1 < p < ∞. The proof of Theorem 4.2 is completed. �

4.3. The Littlewood-Paley inequality for ga+�φ

Recall the definition of the Littlewood-Paley function ga+�φ
: for any ω ∈

C∞
0 (Λ1(T ∗M)) and any constant a ≥ 0,

(4.20)

ga+�φ
(ω)(x) =

[∫ ∞

0

t

(
| ∂

∂t
e−t

√
a+�φω(x)|2 + |∇e−t

√
a+�φω(x)|2

)
dt

]1/2

,

where ∇ denotes the Levi-Civita covariant derivative on M , and

(4.21) e−t
√

a+�φω(x) =

∫ ∞

0

m(t, s)e−s(a+�φ)ω(x)ds.

In this subsection we prove the following Littlewood-Paley inequality.

Theorem 4.3 Let 1 < p ≤ 2, L = ∆ −∇φ · ∇ be a Markovian symmetric
diffusion operator on a complete Riemannian manifold (M, g) with an in-
variant measure dµ(x) = e−φ(x)dv(x), where φ ∈ C2(M). Suppose that for
some β > q = p

p−1
we have

Cβ,K = sup
t>0,x∈M

P
β(a+K)
t 1(x) < ∞,(4.22)

and

sup
x∈M

Gp(a+K)(a + K)−(x) < ∞,(4.23)

where Gp(a+K) is the Green potential operator of the Schrödinger operator
−L + p(a + K). Then there exists a constant Ap such that

‖ga+�φ
(ω)‖p ≤ Ap‖ω‖p.

To prove Theorem 4.3, we need two lemmas.
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Lemma 4.4 Suppose that (4.22) holds on (M, g). Then for any 1 < p ≤ 2,
there exists a constant Cp such that

(4.24)

∫
M

sup
t>0

∣∣∣e−t
√

a+�φω(x)
∣∣∣p dµ(x) ≤ Cp‖ω‖p

Lp(M,µ).

Proof. By (4.3), (4.5) and (4.21), we have∣∣∣e−t
√

a+�φω(x)
∣∣∣ = sup

‖v‖=1

∣∣∣∣∫ ∞

0

m(t, s)e−asEx[< ω(xs), vs >]ds

∣∣∣∣
≤ sup

‖v‖=1

∫ ∞

0

m(t, s)e−asEx [|ω(xs)|‖vs‖] ds

≤
∫ ∞

0

m(t, s)e−asEx

[
|ω|(xs)e

− � s
0 K(xu)du

]
ds

=

∫ ∞

0

m(t, s)Ex

[
|ω|(xs)e

− � s
0 (a+K)(xu)du

]
ds.

By the Hölder inequality, for any α = β
β−1

∈ (1, p) and β > q = p
p−1

, we
have

sup
t>0

∣∣∣e−t
√

a+�φω(x)
∣∣∣ ≤ sup

s>0
Ex

[
|ω|(xs)e

− � s
0 (a+K)(xu)du

]
≤ sup

s>0

(
{Ex [|ω|α(xs)]}1/α

{
Ex

[
e−β

� s
0 (a+K)(xu)du

]}1/β
)

≤ sup
s>0,x∈M

{
Ex

[
e−β

� s
0 (a+K)(xu)du

]}1/β

sup
s>0

[Ps|ω|α(x)]1/α.

Note that
Ex

[
e−β

� t
0 (a+K)(xu)du

]
= P

β(a+K)
t 1(x).

Thus under the assumption (4.22), we get

sup
t>0

∣∣∣e−t
√

a+�φω(x)
∣∣∣ ≤ C

1/β
β,K sup

s>0
[Ps|ω|α(x)]1/α,

from which and using the maximal inequality for symmetric Lp-contractive
semigroups (see [64]), we get∫

M

sup
s>0

∣∣∣e−t
√

a+�φω(x)
∣∣∣p dµ(x) ≤ C

p/β
β,K

∫
M

∣∣∣∣sup
s>0

Ps|ω|α(x)

∣∣∣∣p/α

dµ(x)

≤ C
p/β
β,KA

p/α
p/α

∫
M

|ω|α·p/α(x)dµ(x)

= C
p/β
β,KA

p/α
p/α‖ω‖p

p.

The proof of the lemma is finished. �
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To state the second lemma, for any ω ∈ C∞
0 (Λ1(T ∗M)) and any ε > 0,

let us define

ω(x, t) = e−t
√

a+�φω(x),

ωε(x, t) =
√
|ω(x, t)|2 + ε2.

Lemma 4.5 Under the above notation, for any 1 < p ≤ 2, we have

|∇ω(x, t)|2 ≤ 1

p(p − 1)
|ω(x, t)|2−p lim inf

ε→0

(
∂2

∂t2
+ L

)
|ωε(x, t)|p

+
1

p − 1
(a + K)−(x)|ω(x, t)|2,

where ∇ = ( ∂
∂t

,∇), ∇ is the Levi-Civita covariant derivative on M .

Proof. The modified Bochner-Weitzenböck formula reads (cf. Bakry [5]
Formula (0.3))

L|ω|2 = −2 < ω,�φω > +2|∇ω|2 + 2 < Ric(L)ω, ω >,

which implies that(
∂2

∂t2
+ L

)
|ω(x, t)|2 = 2|∇ω(x, t)|2 + 2 < (

∂2

∂t2
− �φ)ω(x, t), ω(x, t) >

+2 < Ricx(L)ω(x, t), ω(x, t) > .

Notice that ( ∂2

∂t2
− a − �φ

)
ω(x, t) = 0

and
< Ricx(L)ω(x, t), ω(x, t) > ≥ K(x)|ω(x, t)|2 .

Hence

(4.25)

(
∂2

∂t2
+ L

)
|ω(x, t)|2 ≥ 2|∇ω(x, t)|2 + 2 (a + K(x)) |ω(x, t)|2.

On the other hand, we have( ∂2

∂t2
+ L

)
|ωε(x, t)|p =

( ∂2

∂t2
+ L

)
(|ωε(x, t)|2) p

2

=
p

2
(|ωε(x, t)|2) p

2
−1
( ∂2

∂t2
+ L

)
|ωε(x, t)|2

+
p

2
(
p

2
− 1)(|ωε(x, t)|2) p

2
−2|∇|ωε(x, t)|2|2

=
p

2
|ωε(x, t)|p−2

( ∂2

∂t2
+ L

)
|ωε(x, t)|2 +

p

2
(
p

2
− 1)|ωε(x, t)|p−4|∇|ωε(x, t)|2|2.
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Hence(
∂2

∂t2
+ L

)
|ωε(x, t)|p =

p

2
|ωε(x, t)|p−2

(
∂2

∂t2
+ L

)
|ω(x, t)|2

+
p

2
(
p

2
− 1)|ωε(x, t)|p−4|∇|ω(x, t)|2|2.(4.26)

Moreover

|∇|ω(x, t)|2|2 = |∇|ω(x, t)|2|2 +
∣∣∂t|ω(x, t)|2∣∣2

= 4| < ∇ω(x, t), ω(x, t) > |2 + 4| < ω(x, t), ∂tω(x, t) > |2
≤ 4|ω(x, t)|2|∇ω(x, t)|2.

Hence

|∇|ω(x, t)|2|2 ≤ 4|ωε(x, t)|2|∇ω(x, t)|2.(4.27)

From (4.25), (4.26) and (4.27), for any 1 < p < 2, we have(
∂2

∂t2
+ L

)
|ωε(x, t)|p ≥ p

2
|ωε(x, t)|p−2

(
2|∇ω(x, t)|2+ 2 (a + K(x)) |ω(x, t)|2)

+
p

2
(
p

2
− 1)|ωε(x, t)|p−4 · 4|ωε(x, t)|2|∇|ω(x, t)|2|2

= p(p − 1)|ωε(x, t)|p−2|∇ω(x, t)|2
+ p (a + K(x)) |ωε(x, t)|p−2|ω(x, t)|2.

Hence

|∇ω(x, t)|2 ≤ 1

p(p − 1)
|ωε(x, t)|2−p

(
∂2

∂t2
+ L

)
|ωε(x, t)|p

+
1

p − 1
(a + K)−(x)|ω(x, t)|2.

Taking ε → 0, the proof of Lemma 4.5 is completed. �
Proof of Theorem 4.3. By (4.20) and Lemma 4.5, we have

ga+�φ
(ω) ≤ I1(ω) + I2(ω),(4.28)

where

I2
1 (ω) =

1

p(p − 1)

∫ ∞

0

t|ω(x, t)|2−p lim inf
ε→0

(
∂2

∂t2
+ L

)
|ωε(x, t)|pdt,

I2
2 (ω) =

1

p − 1

∫ ∞

0

t(a + K)−(x)|ω(x, t)|2dt.
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Note that

I2
1 (ω) ≤ 1

p(p − 1)
sup
t>0

|ω(x, t)|2−p

∫ ∞

0

t lim
ε→0

(
∂2

∂t2
+ L

)
|ωε(x, t)|pdt

I2
2 (ω) ≤ 1

p − 1
(a + K)−(x) sup

t>0
|ω(x, t)|2−p

∫ ∞

0

t|ω(x, t)|pdt.

Using the Hölder inequality with exponent 2
2−p

and 2
p
, we have

‖I1(ω)‖p
p ≤Cp

∫
M

sup
t>0

|ω(x, t)| p(2−p)
2

(∫ ∞

0

t lim inf
ε→0

(
∂2

∂t2
+L

)
|ωε(x, t)|pdt

)p/2

dµ(x)

≤ Cp‖ sup
t>0

|ω(x, t)|‖
p(2−p)

2
p

(∫
M

∫ ∞

0

t lim inf
ε→0

(
∂2

∂t2
+L

)
|ωε(x, t)|pdµ(x)dt

)p/2

.

Using Lemma 4.4, we have

‖ I1(ω)‖p
p(4.29)

≤ Cp‖ω‖
p(2−p)

2
p

(∫
M

∫ ∞

0

t lim inf
ε→0

(
∂2

∂t2
+ L

)
|ωε(x, t)|pdµ(x)dt

)p/2

.

Let Bt be a one-dimensional Brownian motion with the generator d2

dt2

starting at T ∈ R
+. Let τ = inf{t ≥ 0 : Bt = 0}. Then (xt, Bt) is a diffusion

process on M × R with infinitesimal generator L + ∂2

∂t2
. Let

Zt = |ωε(xt∧τ , Bt∧τ )|p .

Then Zt − Z0 is a non-negative continuous submartingale with the Doob-
Meyer decomposition Zt−Z0 = Mt+At, where Mt is a continuous martingale
and At is a continuous increasing process given by

At =

∫ t∧τ

0

(
∂2

∂s2
+ L)|ωε(xs, Bs)|pds .

Denote Px,T the law of the diffusion process (xt, Bt). For any f ∈ B(M, R),
let ET [f ] =

∫
M

Ex,T (f)dx. By P. A. Meyer [55] and Bakry [5], see also
Shigekawa-Yoshida [62],∫

M

∫ ∞

0

(T ∧t)

(
∂2

∂t2
+ L

)
|ωε(x, t)|pdt = ET

[∫ τ

0

(
∂2

∂s2
+ L

)
|ωε(xs, Bs)|pds

]
.

On the other hand, using the Lenglart-Lépingle-Pratelli inequality [38],
we have

E[A∞] ≤ 2E[Z∞ − Z0] .
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Hence

ET

[∫ τ

0

(
∂2

∂s2
+ L

)
|ωε(xs, Bs)|pds

]
≤ 2ET

[(|ω(xτ , 0)|2 + ε2
) p

2 − εp
]

≤ 2ET [|ω(xτ , 0)|p]
≤ 2

∫
M

|ω(x, 0)|pdµ(x) = 2‖ω‖p
p.

where in the second step we have used the elementary inequality: for any
p ∈ (1, 2) and for any x, y ∈ R

+, it holds that

(x + y)
p
2 − y

p
2 ≤ x

p
2 .

By Fatou’s lemma∫
M

∫ ∞

0

t lim inf
ε→0

(
∂2

∂t2
+ L

)
|ωε(x, t)|pdtdµ(x) ≤

≤ lim inf
ε→0

lim
T→∞

∫
M

∫ ∞

0

(T ∧ t)

(
∂2

∂t2
+ L

)
|ωε(x, t)|pdtdµ(x)

≤ 2‖ω‖p
p.

Combining this with (4.29), we have

(4.30) ‖I1(ω)‖p ≤ C‖ω‖p.

Next we estimate ‖I2(ω)‖p.
Using the Hölder inequality with exponent 2

2−p
and 2

p
, we have

‖I2(ω)‖p
p = Ap

∫
M

sup
t>0

|ω(x, t)| p(2−p)
2

(
(a + K)−(x)

∫ ∞

0

t|ω(x, t)|pdt

)p/2

dµ(x)

≤ Ap‖ sup
t>0

|ω(x, t)|‖
p(2−p)

2
p

[∫
M

∫ ∞

0

t(a + K)−(x)|ω(x, t)|pdtdµ(x)

]p/2

.

By Lemma 4.4 we have

(4.31) ‖I2(ω)‖p ≤ Ap‖ω‖
(2−p)

2
p

[∫
M×R+

t(a + K)−(x)|ω(x, t)|pdµ(x)dt

]1/2

.

Therefore it is enough to estimate

(4.32) J :=

∫
M×R+

t(a + K)−(x)|ω(x, t)|pdµ(x)dt.
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To do so, combining (4.3), (4.5) with (4.21), we obtain

J =

∫
M×R+

t(a + K)−(x)

∣∣∣∣∫ ∞

0

m(t, s)e−s(a+�φ)ω(x)ds

∣∣∣∣p dtdµ(x)

≤
∫

M×R+

t(a + K)−(x)

∫ ∞

0

m(t, s)
∣∣e−s(a+�φ)ω(x)

∣∣p dsdµ(x)dt.

The Fubini formula yields

J ≤
∫

M×R+

(∫ ∞

0

tm(t, s)dt

)
(a + K)−(x)

(
Ex

[
|ω(xs)|e−

� s
0 (a+K(xr))dr

])p

dµ(x)ds.

Notice that for any s > 0, by changing variable t =
√

sv, we have∫ ∞

0

tm(t, s)dt =

∫ ∞

0

t2

2
√

πs3/2
e

−t2

4s dt =

∫ ∞

0

v2

2
√

π
e

−v2

4 dv =
1

2
.

Hence

(4.33) J ≤ C

∫
M×R+

(a + K)−(x)Ex

[
|ω(xs)|pe−p

� s
0 (a+K(xr))dr

]
dx.

Notice that qs(x, y) is the transition density of xs with respect to the refer-
ence measure µ. Taking conditional expectation and then setting x̂r := xs−r,
r ∈ [0, s], we have

J ≤ C

∫
M×R+

(a+K)−(x)

∫
M

|ω(y)|pEx

[
e−p

� s
0 (a+K(xr))dr|xs =y

]
qs(x, y)dµ(y)dsdµ(x)

= C

∫
M

|ω(y)|p
∫

M×R+

(a+K)−(x)Êy

[
e−p

� s
0 (a+K(�xr))dr|x̂s =x

]
qs(x, y)dµ(x)dsdµ(y).

By the reversibility of the L-diffusion process, using the Fubini theorem and
since qs(x, y) = qs(y, x), we obtain

J≤ C

∫
M

|ω(y)|p
∫

M×R+

(a+K)−(x)Ey

[
e−p

� s
0 (a+K(xy

r ))dr|xs =x
]
qs(y, x)dµ(x)dsdµ(y)

= C

∫
M

|ω(y)|p
∫ ∞

0

Ey

[
(a + K)−(xy

s)e
−p

� s
0 (a+K(xy

r ))dr
]
dsdµ(y)

= C

∫
M

|ω(y)|pEy

[∫ ∞

0

(a + K)−(xy
s)e

−p
� s
0 (a+K(xy

r ))drds

]
dµ(y),

where {xy
s , s ∈ [0,∞)} is a sample of L-diffusion process on M starting at

y ∈ M .
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Moreover, by the definition of the Green potential operator of −L+p(a+K),

Gp(a+K)(a + K)−(y) = Ey

[∫ ∞

0

(a + K)−(xy
s)e

−p
� s
0 (a+K(xy

r ))drds

]
.

Thus, under the assumptions of Theorem 4.3,

(4.34) J ≤ Cp‖ω‖p
p.

From (4.31), (4.32) and (4.34), we have ‖I2(ω)‖p ≤ C‖ω‖p. Combining this
with (4.30) and (4.28), the proof of Theorem 4.3 is completed. �

Remark 4.1 The heat kernel of the Schrödinger operator −L + pK can be
given by

qpK
t (x, y) = pt(x, y)Ex

[
exp

(
−p

∫ t

0

K(xs)ds

)∣∣∣∣xt = y

]
.

In view of this, one can reformulate the above proof and the proof of Lemma
4.4 in an analytic way by avoiding the use of the probabilistic representation
of the Schrödinger semigroup.

5. Schrödinger semigroups on Riemannian manifold

Let {xt, t ∈ R
+} be the diffusion process generated by the Markovian sym-

metric diffusion operator L = ∆ −∇φ · ∇ on a complete Riemannian man-
ifold (M, g). Throughout this section, we let V denote a potential on M ,
i.e., a Borel measurable real valued function on M . For V ∈ B(M, R) such
that

∫ t

0
|V (xs)|ds < +∞, ∀t > 0, Pµ = Px ⊗ µ(dx) − a.s., the Schrödinger

semigroup generated by −L + V is defined by the Feynman-Kac formula

P V
t f(x) = Ex

[
f(xt) exp

(
−
∫ t

0

V (xs)ds

)]
, ∀ f ∈ B(M, R+) .

Definition 5.1 ([9], [12]) The Kato class K(M,L) associated with the
L-diffusion operator L on a complete Riemannian manifold M is defined
as the collection of Borel measurable real valued functions V on M such that

lim
t↓0

sup
x∈M

Ex

[∫ t

0

|V |(xs)ds

]
= 0 .

Definition 5.2 ([72]) The weak Kato class Kw(M,L) is defined as the col-
lection of Borel measurable real valued functions V on M such that

sup
x∈M

Ex

[
exp

(∫ t

0

|V (xs)|ds

)]
< +∞, ∀t ≥ 0.



628 X.D. Li

Proposition 5.3 ([12, 67]) K(M,L) ⊂ Kw(M,L). Indeed, if V ∈ K(M,L),
then there exist two constants C1, C2(V ) such that

sup
x∈M

Ex

[
exp

(∫ t

0

|V (xs)|ds

)]
≤ C1 exp(C2(V )t), ∀t > 0,

where C1 can be chosen independent of V .

Definition 5.4 Let V ∈ Kw(M,L). For any p ∈ [2,∞], the Lp-bottom of
spectrum λp(−L + V ) of −L + V is defined as follows:

λp(−L + V ) = − lim
t→∞

1

t
log ‖P V

t ‖Lp(µ),Lp(µ).

Proposition 5.5 Suppose that sup
0≤t≤1

‖P V
t ‖∞,∞ < +∞. Then

− log γ(−L + V ) ≤ λ∞(−L + V ) ,

where
γ(−L + V ) := sup

0≤t≤1
‖P V

t ‖∞,∞ .

Moreover, if sup
0≤t≤1

‖P−|V |
t ‖∞,∞ < +∞, then V ∈ Kw(M,L).

Proof. Indeed, for any t > 0, let t = [t] + {t}, where [t] is the integer part
of t. Then, the semigroup (or the strong Markov) property implies

(5.1) ‖P V
t ‖∞,∞ ≤ ‖P V

{t}‖∞,∞‖P V
1 ‖[t]

∞,∞ ≤ sup
0≤s≤1

‖P V
s ‖[t]+1

∞,∞.

Hence, if sup
0≤s≤1

‖P V
s ‖∞,∞ < +∞, then

−logγ(−L + V ) ≤ λ∞(−L + V ) .

Similarly

(5.2) ‖P−|V |
t ‖∞,∞ ≤ sup

0≤s≤1
‖P−|V |

s ‖[t]+1
∞,∞, ∀t > 0.

This implies V ∈ Kw(M,L). �

Corollary 5.6 Let V − ∈ K(M,L). Then λ∞(−L + V ) > −∞.

Proof. This is an easy consequence of Proposition 5.3 and Proposition 5.5.
�
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Proposition 5.7 Let V ∈ Kw(M,L). Then

(1) For any a ∈ R and p ∈ [2,∞], λp(−L + a + V ) = a + λp(−L + V ).
Moreover

inf{V (x), x ∈ M} ≤ λp(−L + V ), ∀p ∈ [2,∞] .

(2) The function p → λp(−L + V ) is decreasing on [2,∞].

(3) The function r → λ∞(−L + rV ) is concave on [0,∞).

(4) The function r → λ∞(−L + rV )/r is decreasing on (0,∞).

Proof. The proof of (1) is trivial. For (2), (3) and (4), we use the Hölder
inequality as in the case where V ∈ K(M,L), see e.g. [67]. �

Proposition 5.8 Suppose that

sup
0≤s≤1

‖P V
s ‖∞,∞ < +∞ and λ∞(−L + V ) ≥ 0.

Then

sup
t>0

sup
x∈M

P V
t 1(x) < +∞,(5.3)

sup
t>0

sup
x∈M

QV
t 1(x) < +∞.(5.4)

Proof. By λ∞(−L + V ) ≥ 0, there exists t0 > 0 such that

sup
t≥t0

‖P V
t ‖∞,∞ ≤ 1.

Combining this with (5.1) we finish the proof. �

Following Chung-Zhao [12], let us introduce the class F(M,V −) of func-
tions f ∈ B(M, R) satisfying

|f(x)| ≤ C1 + C2V
−(x),

for some constants C1 > 0 and C2 > 0 and for all x ∈ M .

Proposition 5.9 Suppose that

sup
0≤s≤1

‖P−V −
s ‖∞,∞ < +∞, f ∈ F(M,V −).

Then ∥∥∥∥∫ t

0

P V
s |f |ds

∥∥∥∥
∞

≤ (C1t + C2) sup
0≤s≤1

‖P−V −
s ‖[t]+1

∞,∞, ∀t > 0.
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Proof. We modify the proof of Prop. 3.6 in [12, pp. 80-81]). Notice that∫ t

0

P V
s |f |ds ≤ C1

∫ t

0

P V
s 1ds + C2

∫ t

0

P V
s V −ds

≤ C1t sup
0≤s≤t

‖P V
s 1‖∞ + C2 sup

x∈M
Ex

[∫ t

0

exp

(∫ s

0

V −(xu)du

)
V −(xs)ds

]
= C1t sup

0≤s≤t
‖P V

s 1‖∞ + C2 sup
x∈M

Ex

[∫ t

0

d exp

(∫ s

0

V −(xu)du

)]
= C1t sup

0≤s≤t
‖P V

s 1‖∞ + C2 sup
x∈M

Ex

[
exp

(∫ t

0

V −(xu)|du

)
− 1

]
≤ C1t sup

0≤s≤1
‖P V

s ‖[t]+1
∞,∞ + C2

[
sup

0≤s≤1
‖P−V −

s ‖[t]+1
∞,∞ − 1

]
;

in the last step we have used (5.1) and (5.2). This finishes the proof. �
Definition 5.10 The Green operator of the Schördinger operator −L + V
is defined as follows: for any f ∈ B(M, R+),

GV f(x) =

∫ ∞

0

P V
t f(x)dt.

Proposition 5.11 Suppose that

sup
0≤s≤1

‖P−V −
s ‖∞,∞ < +∞ and sup

x∈M
GV 1(x) < +∞ .

Then for any f ∈ F(M,V −), we have

GV |f | ∈ L∞(M) .

In particular,
sup
x∈M

GV V −(x) < ∞ .

Proof. For any x ∈ M and t > 0, write

GV |f |(x) =

∫ t

0

P V
s |f |(x)ds + GV (P V

t |f |)(x).(5.5)

By Proposition 5.9, there exist a > 0 and A > 0 such that for every t ∈ (0, a],∥∥∥∥∫ t

0

P V
s |f |ds

∥∥∥∥
∞

≤ A .

Integrating with respect to t from 0 to a on both sides of (5.5) and then
dividing by a, we get

GV |f |(x) ≤ A + GV

(
1

a

∫ a

0

P V
t |f |dt

)
(x) ≤ A

(
1 + a−1 ‖GV 1‖∞

)
.

Hence GV |f | ∈ L∞(M). �
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Proposition 5.12 Suppose that

sup
0≤s≤1

‖P−V −
s ‖∞,∞ < +∞ and λ∞(−L + V ) > 0 .

Then

sup
x∈M

GV V −(x) < ∞.(5.6)

Proof. Choose T big enough such that ‖P V
t 1‖∞ ≤ e−λ∞(−L+V )t/2, ∀t ≥ T .

Then
∥∥∫∞

T
P V

t 1dt
∥∥
∞ < +∞. Note that∥∥∥∥∫ T

0

P V
t 1dt

∥∥∥∥
∞

≤ T‖P−V −
T 1‖∞ ≤ T sup

0≤s≤1
‖P−V −

s ‖[T ]+1
∞,∞ .

Hence ‖GV 1‖∞ =
∥∥∫∞

0
P V

t 1dt
∥∥
∞ < +∞. Applying Proposition 5.11, we

obtain (5.6). �

6. General case: Proof of Theorem 2.1

To prove Theorem 2.1, we need the following result which first appeared in
Bakry [5] (p. 161) and has been used by many authors (see e.g. [3, 5, 6, 11,
14, 15, 44, 45, 62]).

Lemma 6.1 For any f ∈ C∞
0 (M) and ω ∈ C∞

0 (Λ1(T ∗M)),

‖< Ra(L)f, ω >‖L1(µ) ≤ 4

∫
M

g2,a−L(f)(x)g1,a+�φ
(ω)dµ(x),

where

g2,a−L(f)(x) =

(∫ ∞

0

|∇e−t
√

a−Lf(x)|2tdt

)1/2

,

g1,a+�φ
(ω)(x) =

(∫ ∞

0

∣∣∣∣ ∂

∂t
e−t

√
a+�φω(x)

∣∣∣∣2 tdt

)1/2

.

Proof. (See [5]. See also [14] for the special case where L = ∆ and a = 0.)
For the completeness of the paper and for the convenience of the reader, we
would like to give the proof here for general diffusion operator L and a ≥ 0.

Similarly to the proof of (3) in Theorem 4.2, using spectral decompo-
sition and polarization, we can prove that for all ω, η ∈ L2(Λ1(T ∗M), µ)
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with E0(η) = E0(ω) = 0, where E0 denote the orthogonal projection from
L2(Λ1(T ∗M), µ) onto Ker(�) = {ω ∈ L2(Λ1(T ∗M), µ),�φω = 0}, we have

< η, ω >L2(µ)= 4

∫ ∞

0

<
∂

∂t
e−t

√
a+�φη,

∂

∂t
e−t

√
a+�φω >L2(µ) tdt.

Applying the above formula to η = d(a − L)−1/2f , and using the fact

de−t
√

a−L(f) =
∂

∂t
e−t

√
a+�φ(d(a − L)−1/2)f) ,

we obtain∣∣< Ra(L)f, ω >L2(µ)

∣∣ = 4

∣∣∣∣∫ ∞

0

< de−t
√

a−Lf,
∂

∂t
e−t

√
a+�φω >L2(µ) tdt

∣∣∣∣
≤ 4

∫
M×R+

∣∣∣∇e−t
√

a−Lf(x)
∣∣∣ ∣∣∣∣ ∂

∂t
e−t�a+�φω(x)

∣∣∣∣ tdtdµ(x).

Using the Cauchy-Schwarz inequality, we complete the proof of Lemma 6.1.
�

Combining Theorem 4.2, Theorem 4.3 and Lemma 6.1, we have the fol-
lowing

Theorem 6.2 Let p ≥ 2, q = p
p−1

. Let M be a complete Riemannian
manifold, L = ∆ − ∇φ · ∇ be a symmetric Markovian diffusion operator.
Suppose that

sup
t>0,x∈M

Ex

[
e−β

� t
0 (a+K)(xs)ds

]
< ∞ for some β > p,

and
sup
x∈M

Gq(a+K)(a + K)−(x) < ∞.

Then the Riesz transform Ra(L) = ∇(a − L)−1/2 is bounded in Lp(µ).

Now we are able to prove Theorem 2.1.

Proof of Theorem 2.1. Let γβ := sup
0≤s≤1

‖P βK
s ‖∞,∞. Then

γβ ≤ sup
0≤s≤1

‖P−βK−
s ‖∞,∞ < +∞.

Proposition 5.5 yields λ∞(−L + βK) ≥ −logγβ > −∞. If we assume that
a > max{−λ∞(−L+βK)/β, 0}, then λ∞(−L+β(a+K)) > 0. This implies
λ∞(−L + 2(a + K)) > 0.
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By Proposition 5.8 we get supt>0,x∈M Q
2(a+K)
t 1(x) < ∞. By Theorem 4.2,

for any p > 1, there exists Ap > 0 such that

‖ga−L(f)‖p ≤ Ap‖f‖p, ∀f ∈ C∞
0 (M).(6.1)

By Proposition 5.7, for all q ∈ (1, 2], we have

λ∞(−L + q(a + K))

q
≥ λ∞(−L + β(a + K))

β
> 0.

By Proposition 5.8 and Proposition 5.12, (4.22) and (4.23) hold when re-
placing p there by q = p

p−1
here. Applying Theorem 4.3, for all p ∈ [2, β)

and all a > max{−λ∞(−L + βK)/β, 0}, there exists Bq > 0 such that

‖ga+�φ
ω)‖q ≤ Bq‖ω‖q, ∀ω ∈ C∞

0 (Λ1(T ∗M)).(6.2)

By Lemma 6.1 and the Hölder inequality,

‖< Ra(L)f, ω >‖L1(µ) ≤ 4‖ga−L(f)‖p‖ga+�φ
(ω)‖q.

Combining this with (6.2) and (6.1),

‖< Ra(L)f, ω >‖L1(µ) ≤ 4ApBq‖f‖p‖ω‖q

for all p ∈ [2, β) and a > max{−λ∞(−L + βK)/β, 0}. Taking the supremum
over all ω ∈ C∞

0 (Λ1(T ∗(M)) with ‖ω‖q = 1, we obtain

‖Ra(L)f‖p ≤ 4ApBq‖f‖p

for all p ∈ [2, β) and all a > max{−λ∞(−L + βK)/β, 0}. By Theorem 3.2,
Ra(L) is bounded in Lp(µ) for all p ∈ [2, β) and all a > 0.

Finally, if (2.3) and (2.4) hold, then

λ∞(−L + βK) ≥ 0 and sup
x∈M

GqKK−(x) < +∞.

Hence ‖g2,−L(f)‖p ≤ Ap‖f‖p for all p ≥ 2 and ‖g1,�φ
(ω)‖q ≤ Bq‖ω‖q for

q = p
p−1

. By Lemma 6.1, we have ‖R0(L)f‖p ≤ 4ApBp‖f‖p for all p ∈ [2, β).
�

The following result gives a more effective criterion for the Lp-bounded-
ness of R0(L) = ∇(−L)−1/2. The proof is very similar to the above one and
is omitted here.

Theorem 6.3 Suppose that for some β > 2 we have

sup
0≤t≤1,x∈M

et(L+βK−)1(x) < +∞,

and λ∞(−L + βK) > 0, or λ∞(−L + βK) ≥ 0 and λ∞(−L + K) > 0. Then
the Riesz transform Ra(L) = ∇(a−L)−1/2 is bounded in Lp(µ) for all a ≥ 0
and p ≥ [2, β).
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7. Case of ultracontractive diffusion operator

From now on we suppose that (L, µ) is a ultracontractive diffusion operator
on a complete Riemannian manifold (M, g) with dimension dim(L) = n.
That is, Pt = etL satisfies

‖etLf‖∞ ≤ Ct−
n
2 ‖f‖L1(µ), ∀ t ∈ (0, 1], f ∈ C∞

0 (M),(7.1)

where C is a positive constant. Note that (7.1) holds if and only if the
heat kernel qt(x, y) of the diffusion operator L with respect to its invariant
measure µ satisfies

sup
x,y∈M

qt(x, y) = ‖etL‖1,∞ ≤ Ct−
n
2 , ∀ t ∈ (0, 1].

The following result is well-known to experts.

Proposition 7.1 Let (L, µ) be a ultracontractive diffusion operator with
dim(L) = n. Then V ∈ K(M,L) provided that

V ∈ L
n
2
+ε(µ) for some ε > 0 .

Proof. For the convenience of the reader, we give a proof here. By the
Riesz-Thorin interpolation, (7.1) implies that, for all p ≥ 1, there exists a
constant Cp such that

‖etLf‖p,∞ ≤ Cpt
− n

2p , ∀ t ∈ (0, 1].

Hence, for 0 < t ≤ 1, we have

sup
x∈M

Ex

[∫ t

0

|V (xs)|ds

]
≤

∫ t

0

‖Ex[|V (xs)|]‖∞ds =

∫ t

0

‖esL|V |‖∞ds

≤ Cp

∫ t

0

s−
n
2p‖V ‖pds =

Cp

1 − n
2p

t1−
n
2p‖V ‖p,

provided that V ∈ Lp(µ) with p > n
2
. Taking t → 0, Proposition 7.1 follows.

�
Proof of Theorem 2.2. By Proposition 7.1, (K + c)− ∈ L

n
2
+ε implies

(K + c)− ∈ K(M,L). Hence, for all β > 2, β(K + c)− ∈ K(M,L). Proposi-
tion 5.3 yields

sup
0≤s≤1

‖P−β(K+c)−
s ‖∞,∞ < +∞.

Note that K− ≤ (K + c)− + c+. Hence,

sup
0≤s≤1

‖P−βK−
s ‖∞,∞ < +∞ .

Theorem 2.2 follows immediately from Theorem 2.1. �
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8. From principal eigenvalue to Lyapunov exponent

From Theorem 6.3, the Riesz transform R0(L) = ∇(−L)−1/2 is bounded in
Lp(µ) if the Lyapunov exponent λ∞(−L+βK) > 0, or if λ∞(−L+βK) ≥ 0
an λ∞(−L+K) > 0. While it is not easy to estimate the Lyapunov exponent
if we do not assume that K (the lowest eigenvalue of the Bakry-Emery
Ricci curvature) is uniformly bounded from below. We now give an effective
approach to estimate the Lyapunov exponent λ∞(−L+V ) from the principal
eigenvalue λ2(−L + V ). To state it, let us define Lν

w(M,µ) (for ν ≥ 1) be
the collection of Borel measurable functions f : M → R such that

‖f‖ν,w :=

[
sup
ξ>0

µ {x ∈ M : |f(x)| ≥ ξ} ξν

]1/ν

< +∞ .

Note that for all ν ≥ 1, Lp(M,µ) ⊂ Lν
w(M,µ). However, ‖ · ‖ν,w is not a

norm.

Theorem 8.1 Let (L, µ) be a ultracontractive diffusion operator with
dim(L) = n. Suppose that V ∈ B(M, R), V − ∈ K(M,L) and there exists
ν > 2 such that

(V − λ+
2 (V ))− ∈ Lν

w(M,µ) ,

where λ+
2 (V ) := max{0, λ2(−L + V )}. Then

‖e−t(−L+V )‖∞,∞ ≤ C(1 + t)ν/2e−λ2(−L+V )t, ∀ t > 0 ,

and

λ∞(−L + V ) = λ2(−L + V ) .

Proof. We modify the argument used in Davies-Simon [20]. Let H =
−L + V , H+ = −L + V +. Then

e−tH = e−tH+

+

∫ t

0

e−sHV −e−(t−s)H+

ds .

Therefore

0 ≤ e−tH1 = e−tH+

1 +

∫ t

0

e−sHV −e−(t−s)H+

1ds ≤ 1 +

∫ t

0

e−sHV −ds

and

0 ≤ e−(t+1)H1 ≤ e−H1 +

∫ t

0

e−(s+1)HV −ds .
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Recall an interpolation inequality 3 used in Davies-Simon [20] for positivity-
preserving linear operators T mapping L2 + L∞ into L∞:

‖Tf‖∞ ≤ ν

ν − 2
‖T‖1−2/ν

∞,∞ ‖T‖2/ν
∞,2‖f‖ν,w ,

where f ∈ Lν
w(M,µ), ν > 2. By this interpolation inequality and using

Proposition 5.3, we have

(8.1)
∥∥e−(t+1)H

∥∥
∞,∞ ≤ c1+c2

∫ t

0

∥∥e−(s+1)H
∥∥2/ν

2,∞
∥∥e−(s+1)H

∥∥1−2/ν

∞,∞ ‖V −‖ν,wds.

Let g(s) = ‖e−sH‖2,2, n(t) = sup{‖e−(s+1)H‖∞,∞ : 0 ≤ s ≤ t}. Then

‖e−(s+1)H‖2,∞ ≤ ‖e−H‖2,∞‖e−sH‖2,2 = ‖e−H‖2,∞g(s).(8.2)

By the Feynman-Kac formula and the Cauchy-Schwarz inequality, we have

‖e−H‖2,∞ = sup
‖f‖2≤1

∥∥e−(−L+V )f
∥∥
∞

≤ sup
‖f‖2≤1

sup
x∈M

Ex

[
|f(x1)|e−

� 1
0 V (xs)ds

]
≤ sup

‖f‖2≤1

sup
x∈M

{Ex [|f(x1)|2]}1/2
{

Ex

[
e−2

� 1
0 V (xs)ds

]}1/2

≤ ∥∥e−(−L+2V )
∥∥1/2

∞,∞ sup
‖f‖2≤1

sup
x∈M

{
eL|f |2(x)

}1/2

≤ ∥∥e−(−L+2V )
∥∥1/2

∞,∞ sup
‖f‖2≤1

(∥∥eL
∥∥1/2

1,∞ ‖f‖2

)
≤

∥∥∥eL+2V −
∥∥∥1/2

∞,∞

∥∥eL
∥∥1/2

1,∞ .

Combining this with (7.1) and using Proposition 5.3, we have ‖e−H‖2,∞<∞.
Hence

n(t) ≤ c1 + c3

∫ t

0

g(s)2/νn(s)1−2/νds(8.3)

≤ c1 + c3n(t)1−2/ν

∫ t

0

g(s)2/νds.(8.4)

To simplify the notation, let λp(V ) = λp(−L+V ). By Proposition 5.7, it
is always true that λ∞(V ) ≤ λ2(V ). We now prove the converse inequality
in the following three cases.

3For its proof, see for example the MathSciNet Review of [20] given by J. A. Van
Casteren.



Riesz transforms for symmetric diffusion operators 637

Case 1. Suppose that λ2(V )=0. Then g(s)≤C and n(t)≤c1 + c4n(t)1−2/νt.
Hence

n(t) ≤ Ctn(t)1−2/ν , ∀ t ≥ 1 .

Thus ∥∥e−tH
∥∥
∞,∞ ≤ n(t) ≤ C(1 + t)ν/2 .

This yields λ∞(V ) ≥ 0 and hence λ∞(V ) = 0.

Case 2. Suppose that λ2(V ) = a2. Let Ha := H − a2 = −L + Va, where
Va = V − a2. Then λ2(Va) = 0, Va ∈ K(M,L) and V −

a ∈ Lν
w(M). Using the

result in the Case 1, we have

‖e−tHa‖∞,∞ ≤ C(1 + t)ν/2 .

Hence
‖e−tH‖∞,∞ ≤ C(1 + t)ν/2e−a2t .

This yields λ∞(V ) ≥ a2 and hence λ∞(V ) = a2.

Case 3. Suppose that λ2(V ) = −a2. Then g(s) = ‖e−sH‖2,2 ≤ ea2s. Hence

n(t) ≤ c1 + c3n(t)1−2/ν

∫ t

0

e2a2s/νds ≤ c1 + c4n(t)1−2/νe
2a2t

ν .

Let y(t) = n(t)e−a2t. Then

y(t) ≤ c1e
−a2t + c4y(t)1−2/ν ≤ c5 + c4y(t)1−2/ν.

This yields that y(t) ≤ C for some constant C > 0. Hence∥∥e−tH
∥∥
∞,∞ ≤ n(t) ≤ Cea2t .

This yields λ∞(V ) ≥ −a2 and hence λ∞(V ) = −a2. �

Remark 8.1 Suppose that λ2(V ) = a2 > 0 and V − ∈ Lν
w(M,µ) for some

ν > 2. Then

‖e−t(−L+V )‖∞,∞ ≤ C, and λ∞(−L + V ) ≥ 0 .

Indeed, in the proof of the Case 1, g(s) = ‖e−sH‖2,2 ≤ e−a2s. Hence

n(t) ≤ c1 + c3

∫ t

0

e−2a2s/νn(s)1−2/νds ≤ c1 + c4n(t)1−2/ν.

The function f(x) = x−c4x
1−2/ν−c1 is increasing on [c

2/ν
4 (1−2/ν)2/ν,∞)

and f(+∞) = +∞. Let C = max{x > 0 : f(x) = 0}. Then n(t) ≤ C,
∀ t > 0. Thus ∥∥e−tH

∥∥
∞,∞ ≤ C, ∀ t > 0, and λ∞(V ) ≥ 0 .
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Similarly to the proof of Case 2 in Theorem 8.1, we have the following

Proposition 8.2 Let (L, µ) be a ultracontractive Markovian diffusion oper-
ator with dim(L) = n. Suppose that V ∈ B(M, R), V − ∈ K(M,L). If

λ2(−L + V ) ≥ a2 and (V − a2)− ∈ Lν
w(M,µ) ,

then

‖e−t(−L+V )‖∞,∞ ≤ Ce−a2t, and λ∞(−L + V ) ≥ a2 .

Proof of Theorem 2.7. By the same argument as used in [59], we can
prove

λ2(−L + βK) ≥ a2 := βα − β‖(K − α)−‖n/2B > 0.

Indeed, integration by parts and the Sobolev inequality yield∫
M

(−Lf+ βKf, f)dµ ≥ ‖∇f‖2
2 + βα

∫
M

f2dµ −
∫

M

β(K − α)−f2dµ

≥ ‖∇f‖2
2 + βα‖f‖2

2 − β‖(K − α)−‖2
n/2‖f‖2

2n/n−2

≥ ‖∇f‖2
2(1 − β‖(K − α)−‖n/2A) + β‖f‖2

2(α − ‖(K − α)−‖n/2B)

≥ β(α − ‖(K − α)−‖n/2B)‖f‖2
2.

Note that

(βK − a2)− = (βK + βB‖(K − α)−‖n/2 − βα)− ≤ β(K − α)−.

Therefore

‖(βK − a2)−‖
L

n
2 (µ)

≤ β‖(K − α)−‖
L

n
2 (µ)

≤ min{A−1, αβB−1}.

Hence

(βK − a2)− ∈ L
n
2 (M,µ) ⊂ L

n
2
w (M,µ).

Since n
2

> 2, Proposition 8.2 applies and yields

λ∞(−L + βK) ≥ a2 > 0.

By Theorem 2.1, R0(L) = ∇(−L)−1/2 is bounded in Lp(µ) for all p ∈ [2, β).
�
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9. Examples

9.1. Riesz transforms for the Laplace-Beltrami operator

Suppose that (M, g) is a n-dimensional complete and stochastically complete
Riemannian manifold on which the following Sobolev inequality holds

‖f‖2

L
2n

n−2 (ν)
≤ A‖∇f‖2

L2(ν) + B‖f‖2
L2(ν), n ≥ 3.(9.1)

By Proposition VIII.3.3 in Chavel [10], see also Proposition 3.6 in Hebey [32],
if (M, g) is a complete Riemannian manifold with positive injectivity radius
and Ricci curvature bounded from below, then

‖et∆‖1,∞ ≤ Ct−n/2, ∀t ∈ (0, 1]

and in particular, when n > 2, the Sobolev inequality (9.1) holds with
some constants A and B. On the other hand, by Hoffman-Spruck [33], see
also Theorem 8.3 in Hebey [32], if (M, g) is a Cartan-Hadamard manifold,
then the Sobolev inequality holds with some constant A (which depends
only on n = dim M) and B = 0. In both cases, the Laplace-Beltrami
operator (∆, ν) is a ultracontractive diffusion operator with dim(∆) = n =
dim M . Note that, see Section 1 above, the family of Sobolev inequalities is
stable under the quasi-isometry (and in particular the bounded conformal
transformation).

Proof of Theorem 2.4 and Theorem 2.5. They follow immediately from
Theorem 2.2, the Sobolev inequality on the Cartan-Hadamard manifolds and
on the complete Riemannian manifolds with positive injectivity radius and
with Ricci curvature bounded from below, and the stability of the Sobolev
inequalities under quasi-isometries. �

Proof of Theorem 2.6. By Theorem 2.4, Ra(∆) is bounded in Lp(ν)
for all p ≥ 2 and all a > 0. By H.P. McKean’s theorem (see [52]), if
M is a n-dimensional Cartan-Hadamard manifold with sectinal curvature
Sect ≤ −k < 0, then

‖f‖2
L2(ν) ≤ Ck,n‖∆f‖L2(ν)

holds for all f ∈ C∞
0 (M) with Ck,n = (n−1)2k

4
. Hence −∆ is strictly positive

in L2(ν). As in Lohoué [48] and Coulhon-Duong [13], Theorem 3.3 yields
that R0(∆) = ∇(−∆)−1/2 is bounded in Lp(ν) for all p ≥ 2. �

Applying Theorem 2.7 to the case L = ∆, we obtain immediately the
following
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Theorem 9.1 Let (M, g) be an n-dimensional complete and stochastically
complete Riemannian manifold satisfying the Sobolev inequality (9.1), n ≥ 5.
Let

K0(x) = inf{< Ric(x)v, v >: v ∈ TxM, ‖v‖ = 1} .

Suppose that there exist some constants β > 2, c ≥ 0, ε > 0 and α > 0 such
that

(K0 + c)− ∈ L
n
2
+ε(M, ν) ,

and
‖(K0 − α)−‖

L
n
2 (ν)

< min{(βA)−1, αB−1} .

Then, R0(∆) = ∇(−∆)−1/2 is bounded in Lp(ν) for all p ∈ [2, β).

Remark 9.1 By [4, 46], if the Ricci curvature on M is bounded from below,
then λ∞(−∆+K0) > 0 implies that M has finite volume and finite universal
covering. Thus, the Ricci curvature on a complete non-compact Riemannian
manifold with infinite volume and satisfying the conditions in the second part
of Theorem 9.1 must to be unbounded from below.

9.2. Case of (Rn, eu(x)g0)

In particular, let us consider the complete Riemannian manifold

(M, g) = (Rn, eug0)

on which the Riemannian metric g is conformal to the standard Euclidean
metric g0 on R

n. Let u ∈ (C2(Rn) \ C2
b (R

2)) ∩ Cb(R
n). Then (Rn, eug0) is

stochastically complete. As pointed out in Hebey [32] (p. 62), the Sobolev
imbedding H1,p(M, ν) ⊂ Lp∗(M, ν) holds with Bp = 0 for all p ∈ [1, n],
n ≥ 2. Indeed, this is a consequence of the stability of Sobolev inequalities
under the quasi-isometries. Hence, (∆, ν) is a ultracontractive operator on
(Rn, eug0) with dim(∆) = n = dimR

n, ∀n ≥ 2.

By (1.3), the Ricci curvature on (Rn, eug0) is given by

Ric = −n − 2

2
∇2

0u +
n − 2

4
∇0u ⊗∇0u − 1

2

(
∆0u +

n − 2

2
|∇0u|2

)
g0 ,

where ∇0 and ∆0 denote the standard gradient and Laplace operators on
(Rn, g0). Suppose u ∈ C1

b (Rn)∩C2(Rn) but u /∈ C2
b (Rn). Then Ric ≥ K(x)g.

Here

K(x) = c0 − 1

2
e−u(x)∆0u(x) − n − 2

2
e−u(x) sup{< ∇2

0u(x)v, v >: ‖v‖ = 1} ,
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where ‖ ‖ and < > denote the standard Euclidean norm and inner-product
on R

n, and

c0 := inf

{
n − 2

4
e−u(x)∇0u ⊗∇0u − n − 2

4
e−u(x)|∇0u(x)|2 : x ∈ R

n

}
.

To simplify the computation, below we consider the case n = 2. Then
Ric = −1

2
(e−u∆0u) g. Hence K(x) = −1

2
e−u(x)∆0u(x). The volume element

on (R2, eu(x)g0) is dν(x) = eu(x)dx. The condition (K + c)− ∈ L
2
2
+ε(ν) for

some c ∈ R
+ writes∫

R2

[(
2c − e−u(x)∆0u(x)

)−]1+ε

eu(x)dx < +∞ ,

which is true provided that

(9.2)

∫
R2

[(
2ceminu − ∆0u(x)

)−]1+ε

dx < +∞.

Hence, if u ∈ C2(R2) ∩ Cb(R
2) satisfies (9.2) for some constant c ∈ R

+,
then for all a > 0 and p ≥ 2, the Riesz transform Ra(∆) = ∇(a − ∆)−1/2 is
bounded in Lp(R2, eu(x)dx), where ∇ and ∆ denote the Riemannian gradient
operator and the Laplace-Beltrami operator on (R2, eu(x)g0). This proves
Example 2.2.

9.3. Riesz transforms for diffusion operators on R
1 and R

d

Let φ ∈ C2(R, R), L be the one-dimensional diffusion operator on the real
line given by

Lf(x) = f ′′(x) − φ′(x)f ′(x), ∀ f ∈ C∞
0 (R),∀ x ∈ R .

Then µ(dx) = e−φ(x)dx is an invariant measure of L and the Bakry-Emery
Ricci curvature of L is Ricx(L) = φ′′(x), ∀ x ∈ R. Hence

K(x) = φ′′(x), ∀ x ∈ R .

By Remarque 2.2 or 5.2 in [36], Pt = etL is a ultracontractive Markovian
diffusion semigroup provided that u(x) := e−φ(x) is bounded from below by a

strictly positive constant and ∆u1/2

u1/2 + c2 ≥ 0 holds for some constant c2 ∈ R.
Equivalently, Pt = etL is ultracontractive and Markovian if there exist two
constants c1 ∈ R and c2 ∈ R such that

φ(x) ≤ c1, ∀ x ∈ R ,

and
φ′2(x)

4
− φ′′(x)

2
+ c2 ≥ 0, ∀ x ∈ R ,
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More precisely, under the above conditions,

‖Ptf‖∞ ≤ Cec2tt−1/4‖f‖L2(µ), ∀ t > 0 .

By Lemma 2.1.2 in Davies [19], ‖Pt‖1,∞ = ‖P t
2
‖2

2,∞. Hence, for a suitable
constant C,

‖Pt‖1,∞ ≤ Ct−1/2, ∀ t ∈ (0, 1] .

That is, (L, µ) is a ultracontractive diffusion operator with dim(L) = 1.

Applying Theorem 2.2 to this special case of (L, µ,K), we obtain imme-
diately Theorem 2.3. In general, using the same argument as above and by
Remarque 2.2 or 5.2 in [36] for general case of R

d, we can prove the following

Theorem 9.2 Let φ ∈ C2(Rd, R), L = ∆−∇φ ·∇. Suppose that there exist
some constants c1 ∈ R, c2 ∈ R, c3 ∈ R

+ and ε > 0 such that

φ(x) ≤ c1, ∀x ∈ R
d ,

|∇φ(x)|2
4

− ∆φ(x)

2
+ c2 ≥ 0, ∀ x ∈ R

d,

and ∫
Rd

(
[K(x) + c3]

−) d
2
+ε

e−φ(x)dx < +∞ ,

where K(x) is the lowest eigenvalue of

∇2φ(x) =
( ∂2

∂xi∂xj

φ(x)
)

1≤i,j≤d
, ∀x ∈ R

d .

Then, for all p ≥ 2 and all a > 0, the Riesz transform Ra(L) = ∇ (a − L)−1/2

is bounded in Lp(Rd, e−φ(x)dx).

9.4. Realisation of a one dimensional model

To end this paper, let us describe how to construct a diffusion operator
L = d2

dx2 − φ′(x) d
dx

such that the Bakry-Emery Ricci curvature Ric(L) = φ′′

is not uniformly bounded from below but the Riesz transform Ra(L) =
d
dx

(a − L)−1/2 is bounded in Lp(R, e−φ(x)dx) for all p ≥ 2 and all a > 0.
To this end, we need only to construct a C2-smooth function φ such that φ
satsifies all the conditions required in Theorem 2.3 and infx∈R φ′′(x) = −∞.

Let c be a fixed positive constant, {ak, k ∈ Z} and {bk, k ∈ Z} be
two sequences such that ak < bk < ak+1 < bk+1, limk→−∞ ak = −∞ and
limk→+∞ bk =+∞. Let

φ(x) =
+∞∑

k=−∞
c1[ak,bk](x) + φk(x)1(bk,ak+1)(x) .
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where φk ∈ C2((bk, ak+1), R) is a “V”-sharp function which is only concave
in a very narrow well Ik ⊂ (bk, ak+1).

Suitably control |Ik| (the length of Ik) and choose 0 ≤ φk ≤ c so that

inf{φ′′
k(x) : x ∈ Ik} → −∞, when |k| → ∞ ,

and ∞∑
k=−∞

∫
Ik

[
(φ′′(x))−

] 1
2
+ε

dx < +∞ .

Then Ric(L) = φ′′ is not uniformly bounded from below and φ satisfies the
conditions required in Theorem 2.3. This provides us with a possible way
to construct explicitly a one-dimensional diffusion operator

L =
d2

dx2
− φ′(x)

d

dx

with unbounded negative part of Bakry-Emery Ricci curvature Ric(L) = φ′′

and for which the Riesz transform Ra(L) = d
dx

(a − L)−1/2 is bounded in
Lp(R, µ) for all p ≥ 2 and all a > 0. Modifying this example, we can con-
struct a complete non-compact rotational symmetric Riemannian manifold
with unbounded negative part of Ricci curvature and for which the Riesz
transform Ra(∆) = ∇(a − ∆)−1/2 is bounded in Lp(ν) for all p ≥ 2 and
all a > 0.
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