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A geometry on the space of probabilities
II. Projective spaces and exponential

families

Henryk Gzyl and Lázaro Recht

Abstract

In this note we continue a theme taken up in part I, see [8], namely
to provide a geometric interpretation of exponential families as end
points of geodesics of a non-metric connection in a function space. For
that we characterize the space of probability densities as a projective
space in the class of strictly positive functions, and these will be re-
garded as a homogeneous reductive space in the class of all bounded
complex valued functions. We shall develop everything in a generic
C∗-algebra setting, but shall have the function space model in mind.

1. Preliminaries

As we mentioned in [8], exponential families of probability densities have
been very much in use in Statistics and Information Theory, see Barndorff-
Nielsesn’s [3], Kullback’s [12] or [13] and Vajda’s [19] for example. In [18]
and [17], Pistone and Sempi and Pistone and Rogantin, examine a geometric
(manifold) structure on the class of probability densities of probabilities
equivalent to a given one. Here we shall examine another geometric structure
on the space of probabilities. For us, probabilities with densities will be
described as representatives of equivalence classes of a projective structure
on the class of positive, invertible elements in a special complex Banach
algebra. We should also mention the pioneering results by Amari [1] and [2],
as well as Efron’s [6], where a geometric structure on the class of exponential
families is studied, and trace back from [9] and [7] the enormous literature
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on a topic with which this line of work will eventually connect, namely, that
of non-commutative random variables and quantum probability.

To make this note self-contained, we shall recall some results obtained
by Corach, Porta and Recht in [4], [15] and [16], and we shall adapt some
of what we did in [8]. Our case is simpler than the theory developed by
Corach, Porta and Recht, because all the Banach algebras we deal with here
are commutative. In section 2, the basic algebraic structure is explained, the
connection (its associated distribution of horizontal spaces) and its geodesics
are studied. We devote section 3 to the geometry on the class of probability
densities regarded as representatives of rays in a projective space. The rays
correspond to the strictly positive functions when the C∗-algebra is a function
algebra.

Although we present our results in the framework of a generic abstract
C∗-algebra A, we urge the reader to keep in mind the standard algebras
of function type. For the time being the direct application of our results
to convolution algebras seems cumbersome, a fact that could be avoided
bringing Fourier analysis into play, but this makes a verbatim application of
our results impossible.

Before continuing, we should mention that given a probability space
(Ω,F , P ) and any random variable X such that E[eX ] < ∞, clearly eX

E[eX ]
is a

positive probability density, and every positive density Z can be so written.
The whole point of this note is to understand this fact from a geometric
point of view. To paraphrase [18]: “. . . nothing is so practical as a good
theory”. We should also add that the C∗-algebra setting is a bit less general
that the setting examined in [18] and [17], but in this setting many analytical
details are much simpler, and the extension to algebras other than function
algebras is included. We mention as well that the characterization of den-
sities in terms of projective structures may allow us to explore connections
between projective geometry and statistical inference.

2. The basic C∗ algebra and its properties

In this section we recall the basic facts about the geometry on a commuta-
tive C∗ algebra A with a unit. In particular we define a special connection,
describe its geodesics and the parallel transport along them, as well as the
resulting geometries on the positive elements and the basic properties of the
projective spaces in the set of positive elements in A.

The typical examples of commutative C∗-algebras that come up to mind
easily are function algebras and convolution algebras. Let us list a couple
of each, but mention that below we have in mind function algebras, even
though we state results in an abstract setting.
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Example 1 The class of complex valued functions on a probability or fi-
nite measure space (Ω,F , Q). The conjugation operation X → X∗

is just the standard complex conjugation. The (multiplicative) unit,
obviously denoted by 1, regarded as a function. The norm being the
usual (essential) supremum norm.

Example 2 When Ω is compact, C(Ω), the class of continuous, complex
valued functions comprise a C∗-algebra.

Example 3 Let a < b be two real numbers and denote by Cn([a, b]) the
class of all n-times continuously differentiable, complex valued func-
tions. The algebra operations are defined pointwise, and the norm is
defined by

‖X‖ = sup
{ ∑

k

|X(k)(t)|
k!

∣∣ t ∈ [a, b]
}

.

Example 4 Let Ω be either Z or N and let

A =
{

X : Ω → C |
∑

k

|X(k)| < ∞
}

.

As product operation we consider X ∗ Y (k) =
∑k

n=a X(n)Y (k − n),
where a = −∞ or a = 0 depending on the range of k. The unit is the
sequence 1(k) = δ(0,k).

Example 5 The previous example can be generalized considerably. Let Ω
denote a commutative topological group, and let A denote the class
of all (necessarily) bounded, σ-finite, complex valued measures on
(Ω, B(Ω)). Given X, Y ∈ A, we define their (convolution) product

X ∗ Y (B) =

∫
Ω

X(B − t)Y (dt); ∀ B ∈ B(Ω).

The unit for this product is the Dirac-point mass measure concentrated
at 0 ∈ Ω and the norm on the space is the total variation measure
‖X‖ = |X|(Ω).

In the all of these examples it is clear which the invertible (with respect to
the product in the algebra) and the positive elements are. In the last two, the
invertibility has to be characterized in terms of Fourier transforms. Also, the
conjugation operation ∗ : A → A is just the ordinary complex conjugation
and we shall write A = As⊕ iAs. Clearly, in the examples above As denotes
the underlying real part of the algebra. Nevertheless, we direct the reader to
Pedersen’s [14] for details about C∗-algebras, in particular for the definition
of the exponential, arbitrary powers and logarithms. But for algebras of
function type, this is inherited from the field of complex numbers.
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2.1. The basic reductive homogeneous space

In this algebra the set of invertible vectors G = {X ∈ A |X−1 exists} is a
(commutative) group and the class G+ ⊂ G denotes the class of positive
invertible elements. Also, it is an standard result that G is an open set
in A and that the inversion operation is continuously differentiable. This
allows us to provide G with a manifold structure modeled on A regarded as
a Banach algebra. In several of the examples mentioned above the invertible
elements are just the non-identically zero functions.

Now, to begin with, note that G+ is a homogeneous space for the group
action defined by

Lg : G+ → G+; Lg(a) = (g∗)−1ag−1, ∀ a ∈ G+.

for any g ∈ G. Since the product is commutative, Lg(a) = |g|−2a. An
intuitive way of understanding that mapping is to realize that every a ∈ G+

defines a scalar product on Ha ≡ L2(aP ) by

< X,Y >a= E[XY a] =

∫
XY adP.

Now we may interpret the group action as an isometry Ha → HLg(a).

Now, let us fix some arbitrary a0 ∈ G+, and define the projection oper-
ator πa0 : G → G+ by means of

πa0(g) = Lg(a0)

and notice right away that the fiber (isotropy group) over a0 is defined by

Ia0 = {g ∈ G | πa0(g) = a0} = {g ∈ G | g∗g = 1},
and notice as well that when A is a function algebra, Ia0 is the class of
functions taking values in the circle, that is, an infinite dimensional torus.
When the product in the algebra is of convolution type, things are not that
simple, but loosely speaking, if a notion of Fourier transform exists, the
Fourier transforms of the elements of the group are functions taking values
in the unit circle.

Since G is an open subset in A, its tangent space at any point is A, i.e.

(TG)1 = A,

and it is easy to see that

(TIa0)1 = V1 = {0} ⊕ iAs ,

which in the non-commutative case corresponds to the anti-hermitian ele-
ments in A.
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The derivative (Dπa0)1(X) of πa0 at 1 in the direction of X ∈ A is easy
to compute, and it is given by

(Dπa0)1(X) = −a0(X + X∗) .

Clearly
(Dπa0)1 : A → (TG+)a0 ≡ As ⊕ {0}.

We shall define the horizontal space at 1 ∈ G as

H1 ≡ {X ∈ A | (a0)−1X∗a0 = X} ,

which can be written as

H1 = {X ∈ A |X∗ = X} = As ⊕ {0}
and we have the obvious splitting

A = H1 ⊕ V1.

Not only that, the map (Dπa0)1 is invertible from the left. That is, there
exists a mapping κa0 : (TG+)a0 → (TG)1, given by

κa0(z) ≡ −a−1
0

2
z

such that (TG+)a0

κ→ (TG)1

(Dπa0)→ (TG+)a0 is the identity mapping.

With these ingredients, a smooth distribution of horizontal and vertical
spaces, and a connection can be constructed as follows. For any a ∈ G,
A = aA = aH⊕aV ≡ Ha⊕Va, where Ha = aAs⊕{0} and Va = {0}⊕ iaAs,
and we have

Lemma 2.1 With the notations introduced above

i) A = (TG)1a = Ha ⊕ Va.

ii) Hah = Hah; for any a ∈ G and any h ∈ Ia.

To define the connection we set

Definition 2.1 The A-valued 1-form κ defined by κ : G → A
κ(a) = κa = κa0 ◦ (DLg)−1 if Lg(a0) = a .

Note that κ is equivariant, that is κa ◦ (DLg) = κa0.



838 H. Gzyl and L. Recht

The following is also easy:

Lemma 2.2 i) κa is independent of g ∈ G such that Lg(a0) = a.

ii) κ being equivariant implies

Ha = κa((TG+)a) = H1

whenever Lg(a0) = a, and also

iii) (Dπa) ◦ κa : (TG+)a → (TG+)a is the identity mapping.

iv) (Dπa)1 leaves Ha invariant and (Dπa)1(Ha) = Ha.

The A-valued linear mapping κ defined on the tangent bundle (TG+) is
called the structure 1-form of the homogeneous space G+. All the geom-
etry on G+ comes from κ. This whole setup is part of what Kobayashi and
Nomizu call reductive homogeneous structure. See [11] for full details.

2.2. Lifting curves from G+ to G and parallel transport

Let us begin with a basic lemma. Here the reason of being of the connection κ
will become apparent.

Lemma 2.3 Let a(t) : [0, 1] → G+ be a differentiable curve in G+. There
exists a curve g(t) : [0, 1] → G, (called the lifting of a(t) to G)such that

(2.1) Lg(t)(a0) = πa0(g(t)) = a(t)

where the identification a(0) = a0 will be used from now on.

Proof. Let us verify that the solution to the (transport) equation

(2.2) ġ(t) = κa(t)(ȧ(t))g((t)

satisfies (2.1). Here the commutativity makes things really simple. Equa-
tion (2.2), explicitly spelled out, is

ġ(t) = − ȧ(t)

2a(t)
g(t); g(0) = 1 ;

which can easily be solved to yield

(2.3) g(t) =
(a(0)

a(t)

)1/2

.

Note that

πa0(g(t)) =
( a(t)

a(0)

)1/2

a(0)
( a(t)

a(0)

)1/2

= a(t).

�
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The parallel transport along the continuous curve a(t) (from a(0) to
a(1)) is defined in

Definition 2.2 Let a(t) be a curve in G+ and let g(t) be its lifting to G. The
parallel transport along a(.) is the mapping τ(a(.)) : (TG+)a(0) → (TG+)a(1)

defined by

(2.4) τ(a(.))(X) = Lg(1)(X)

We may now say that a differentiable curve a(t) is a geodesic if ȧ(0) is
transported onto ȧ(t) by means of the (time) rescaled curve b(s) := a(st),
s ∈ [0, 1]. From (2.3)–(2.4) it is clear that this amounts to

ȧ(t) =
a(t)

a(0)
ȧ(0) ⇐⇒ ȧ(t)

a(t)
=

ȧ(0)

a(0)
≡ X.

Or equivalently,

Lemma 2.4 The curve a(t) is a geodesic if and only if there exists a (real)
vector X such that

a(t) = a(0)etX .

Comment 2.1 This means that the lifted geodesic is given by

g(t) = a(0)1/2e−tX/2.

Observe that if we specify the initial and final points of the geodesic, the
vector X is automatically determined:

a(1) = a(0)eX ⇒ X = ln
(a(1)

a(0)

)
,

and the equation of the geodesic can be rewritten as

(2.5) a(t) = a(0)1−ta(1)t.

2.3. Semi-norms and Kullback’s “distance”

The notion of geodesic introduced above is not related to a metric notion but
to a notion of parallel transport. In order to have distance along geodesics,
one need to introduce norms in the tangent bundle. What we do below is a
bit less: we define a pseudo-metric starting from a pseudo norm, which will
lead us to the famous Kullback distance used in Information Theory. Recall
that A is a Banach algebra, and thus comes provided with a norm, which
if needed will be denoted by a symbol different that the one we introduce
next. For the next definition we shall need the following

Assumption 1 There exists at least one positive linear, continuous func-
tional on A denoted by E[Z]. That is, if Z ≥ 0 then E[Z] ≥ 0.
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Comment 2.2 Actually, given any positive, linear functional E : A → C,
for any p ∈ G+ we can define Ep[X] ≡ E[pX], and clearly Ep is a linear
positive functional on A.

Let us examine a few candidates for the list of examples given above. In
the first example we already have a measure at hand, so E[Z] =

∫
ZdQ. For

the next two examples, just consider any finite measure Q on the underlying
space, and do as above. A good candidate for example 4 is given by the
pairing

E[X] ≡< 1, X >≡
∑

X(n),

and similarly, for example 5,

E[X] ≡< 1, X >≡ X(1) =

∫
1dX.

For reasons that will be clear below, we shall consider the following semi-
norm: For any Z ∈ A define

‖Z‖ = |E[Z]|.
To define a metric on TG+, we begin by defining it at (TG+)1 by ‖X‖1 ≡

‖X‖, and transporting it to any other (TG+)a0 by means of the group action:
that is, we set

‖X‖a0 = |E[a−1
0 X]|.

It is easy to verify that this is a consistent definition. Note now that if
a(t) is a geodesic joining a(0) to a(1) in G+, then the “length” of the velocity
vector along the geodesic is constant:

‖ȧ(t)‖a(t) = |E[a(t)−1a(t)X] = ‖X‖1 =
∥∥∥ ln

(
a(1)/a(0)

)∥∥∥
and therefore, the geodesic distance from a(0) to a(1) is given by

d(a(0), a(1)) =

∫ 1

0

‖ȧ(t)‖a(t)dt = ‖X‖1 =
∥∥∥ ln

(
a(1)/a(0)

)∥∥∥.

Comment 2.3 Note that once we have a positive linear functional, we can
rapidly come up with variations on the theme. For example, for a fixed
p ∈ G+ we might have defined

‖X‖(p),a(0) := |Ep[a(0)−1X]| = |E[pa(0)−1X]|
and we would have ended up with

‖ȧ(t)‖(p)a(t) = |E[pa(t)−1a(t)X] = ‖X‖(p) = ‖p ln
(
a(1)/a(0)

)
‖,
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which is still symmetric in a(0), a(1). If we chose p = a(1), we would end
up with

‖X‖a(1) =
∣∣E[a1 ln

(
a1/a0

)
]
∣∣

which is not symmetric anymore (the norm depends on the final point of the
trajectory). It is a simple application of Jensen’s inequality to verify that
when a1 and a0 are densities (with respect to the same probability), that is
E[a1] = E[a0] = 1, then K(a1, a0) ≡ E[a1 ln

(
a1/a0

)
] ≥ 0. K(a1, a0) is

called the Kullback distance between a1 and a0.

In [12] it is proved that a1 = a0 if and only if K(a1, a0) = 0. But this is
neither a symmetric function nor does it satisfy a triangular inequality. So
it is not a true distance even when restricted to the class of densities. But it
has nevertheless proven enormously useful in Information Theory, Statistics
and Inverse Problems.

In the context of our first three examples, that is when A = L∞(Ω,F , Q),
and E[X] =

∫
XdQ, then for positive a1 and a0 we have the obvious

‖X‖(p) =

∫
p ln

(a1

a0

)
dQ

where as above, X ≡ ln
(

a1

a0

)
.

2.4. Conditional expectations and additive and multiplicative de-
compositions

Consider a sub-algebra B of the algebra A, that is a linear subspace, closed
in the topology induced by the original norm, and closed with respect to
the multiplicative and conjugation operations as well. In the setup of ex-
amples (1)-(3), think for instance on the functions measurable with respect
to a sub-σ-algebra G of the given σ-algebra F on Ω. Let us now make the
following

Assumption 2 We shall assume the existence of a positive, linear, orthog-
onal projection EB : A → B such that EB[XY ] = Y EB[X], ∀X ∈ A and
∀Y ∈ B.

Note that when B = C, then any Ep such that Ep[1] = 1 satisfies the
definition. In the setup of examples (1)-(3), for any fixed probability mea-
sure Q on Ω, denote by EQ,G the usual conditional expectation. This is
an orthogonal projection of A onto B satisfying EQ,G[XY ] = EQ,G[X]Y for
any Y in B.

This conditional expectation induces a decomposition A = B⊕K, where
to simplify notation we set K ≡ ker(EB). It induces also a similar decom-
position on As � (TG+)1 given by As = Bs ⊕ Ks.
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The interesting thing is that this decomposition can be lifted to the set
of positive vectors, i.e., to G+ by means of the exponential map. That is, if
q ∈ G+, and q = eX for X ∈ As, then

q = eX = eEB[X]eX−EB[X]

and, in the case that will be important for us below, when B = C, which
in our standing class of examples, corresponds to the case in which the σ-
algebra defining B is trivial, and EB = Ep is as above, the last decomposition
will look like

(2.6) q = eX = eEp[X]eX−Ep[X] .

2.5. The B-projective structure on the class G+

We want to define equivalence classes (modulo B) in such a way that they
are preserved under the action of GB, the group of invertible elements in B,
that is, under the action of the mapping a → Lg(a) = (g∗)−1ag−1, but
for g ∈ GB. In particular we want the relation, denoted by ∼B, to be such
that, if a(t) is a curve in G+, then ã(t) = Lg(a(t)) ∼B a(t), that is, the
resulting projective structure is to be preserved under the action of Lg. In
particular, since we shall be transporting tangent vector fields, we will want
the tangent

X̃ = ˙̃a(0) =
1

|g|2
(
X − a

(V

g
+

V ∗

g∗

))

to be somehow equivalent to X. Here, V = ġ(0). For that, note that the
previous identity can be rewritten as

X̃

ã
=

X

a
+ W ,

where W = −(V
g

+ V ∗
g∗ ) is a symmetric element in B. Now we state

Definition 2.3 With the notations introduced above, we say that a and ã,
both in G+, are ∼B if and only if

ã

a
∈ G+

B .

Comment 2.4 Notice that if ã(t)
a(t)

= h(t) ∈ G+
B and g(t) ∈ GB is any square

root of h(t)−1/2, then, taking logarithms and differentiating at t = 0, we
obtain

X̃

ã
=

X

a
− (

V

g
+

V ∗

g∗ ).

That is, the equivalence relation may be lifted to G+ ×A+, which should be
regarded as a trivial tangent bundle.
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We can form the quotient space G+/ ∼B and verify that G+/ ∼B� PB ≡
{α ∈ G+ |EB[α] = 1}, where the equivalence is brought about by the map-
ping Φp : G+ → PB and the following

Lemma 2.5 With the notations introduced above, ã ∼B a if and only if
Φp(ã) = Φp(a), where Φp(a) = a

EB[a]
.

Proof. Let ã = ah, where h ∈ G+
B . Therefore, EB[ã] = hEB[a] and Φp(ã) =

Φp(a). Conversely, if Φp(ã) = Φp(a), then

ã = a
EB[ã]

EB[a]
,

thus ã
a
∈ G+

B . �

Comment 2.5 When B = C is the trivial sub-algebra then G+
B = [0,∞),

and if Ep is the projection onto B, then we have

Φp(a) =
a

Ep[a]
.

In this case we write PB = Pp, and Pp can be regarded as the class of proba-
bilities equivalent to Ep. Also, in this case we shall put ∼ instead of ∼B to
simplify the notation.

To define the action of G on G+/ ∼B we proceed as usual: if [a] denotes the
equivalence class of a ∈ G+, then we put Lg[a] = [Lga], and we have the
following simple result:

Lemma 2.6 Let g ∈ G and let [a] = [b]. Then [Lg(a)] = [Lg(b)].

Proof. Invoking Lemma 2.5, it suffices to see that Φp([Lg(a)]) = Φp([Lg(b)]).
For that it is enough to note that b = ha, where h ∈ G+

B , from which the
desired conclusion follows. �
Comment 2.6 The notion of B-equivalence can be related to the notion of
sufficiency. As a matter of fact, the analogue of Theorem 3.2 in chapter 3
of [13] asserts that B is sufficient for a family {at} ⊂ A if and only if there
exists b ∈ A such that at ∼B b.

2.6. Geometry on PB

In the finite dimensional case, one can either introduce homogeneous co-
ordinates, or work with a well chosen class of representatives for G+/ ∼B.
As a matter of fact, we did that in [8]. Let us repeat what is needed here.
To define the geodesic curves, we proceed as above and examine what the
isotropy group is and how to describe the vertical and horizontal spaces.
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We already know how does G act on PB. Let α ∈ PB and let us consider
the mapping π̂α : G → G and define the isotropy group of this action by
Îα = {g ∈ G | π̂α(g) = α}.

Clearly, the tangent space to PB is {X ∈ As |EB[X] = 0} = Ks. Note
that if g(t) is any curve in G such that g(0) = 1 and ġ(0) = X, then

(Dπ̂)1(X) = −α(X + X∗) + αEB[(X + X∗)α] ∈ Ks

(This is easy to see differentiating

|g(t)|−2α

EB[|g(t)|−2α]

at t = 0). Note also that if X ∈ B, then (Dπ̂)1(X) = 0. Note as well
that the tangent space (T Îα)1 = Ka, i.e., it consists of those antisymmetric
elements X of A that have zero trace (EB[X] = 0).

Therefore A = B⊕Ks⊕Ka. Starting from this (which is a decomposition
of the tangent space to G at g = 1) we can define a distribution of horizontal
spaces by Hg = B ⊕ {gX |X ∈ Ks}. Again, to lift curves in PB, we need a
connection, this time defined as follows: for α ∈ PB and Y ∈ TαPB, we put

κα(Y ) = −1

2
α−1Y.

Clearly, for Y ∈ PB we have (Dπ̂)1(κα(Y )) = Y. Now, to lift curves and
define geodesics we can proceed verbatim as above.

3. Exponential coordinates on Pp

We saw above that we can identify rays in G+ with points in P via an
equivalence relation. That is, we identify lines in G+ with the point they
intersect at Pp; that is, P can be regarded as a projective space. In other
words, as the quotient space G+/ ∼, where ∼ is the equivalence relation of
Definition 2.3. In particular, we saw in Lemma 2.5 that

a(1) ∼ a(2) whenever
a(1)

Ep[a(1)]
=

a(1)

Ep[a(2)]
.

Just before (2.5) we saw that given two points a0 and a1, there is vector
field X = ln(a1

a0
) such that γ(t) = a0e

tX is the geodesic joining a0 to a1 in G+

(and G).
Note that the trace on Pp of a geodesic given by (2.5), or if you prefer,

the equivalence class of each point of the geodesic, is given by

(3.1) γ(t) =
q(t)

Ep[q(t)]
=

q(0)1−tq(1)t

Ep[q(0)1−tq(1)t]
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The geometric interpretation of (3.1) as the representative in Pp of the rays
through the geodesic described in (2.5) is clear now. For earlier appearances
of these curves in the context of Information Theory see chapter 3 of [12],
where a guide to earlier references is provided.

Note as well that Lemma 2.6 asserts that collinear points stay collinear
under the action �Lg. Consider now fixed p ∈ G+ and q0 ∈ Pp ⊂ G+. Since
Lg : G+ → G+ is bijective, then there exists g ∈ G such that

q =
|g|−2q0

Ep[|g|−2q0]
.

That is, all probabilities equivalent to Ep can be obtained from any given q0

by means of the group action. While this is clear in the examples (1)-(3)
when we consider probability laws with strictly positive densities, the geo-
metric interpretation of the fact is nice.

3.1. Exponential Families

Let us now examine a bit further in what sense eX

Ep[eX ]
is natural in our

setup. Set a(0) = 1 and let a(1) be any other point in G+. We now know
that there exists a real vector X, actually given by X = ln a(1), such that
a(t) = etX joins 1 geodesically to a(1), and the trace on Pp of this geodesic
is q(t) = a(t)/Ep[a(t)] or if you prefer,

q(t) =
etX

Ep[etX ]
.

That is, we have a correspondence between vectors in A regarded as
tangent vectors to TG+ and probabilities in Pp, which we shall now explore
further.

We shall consider the mapping

Φ : (TG+)1 � A → Pp � G+/ ∼

given by

(3.2) X → Φ(X) =
eX

Ep[eX ]

and now we shall examine some of the basic properties of this map. Observe
first that Φ(X) = Φ(X + α1) for any α ∈ C. Thus Φ as defined cannot
be a bijective map. Positive collinear vectors differ by a factor of eα1 for
appropriate α.
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Recall that to understand this more algebraically we noted that As �
(TG+)1 = B ⊕Ks, where K = ker Ep[.] and Ks is the class of real, centered
random variables, and for this we want to regard the expected value as a
linear mapping from As onto a commutative algebra Bs (which in this case
coincides with R). This additive decomposition at the Lie algebra level
induces a multiplicative decomposition at the group level. That is, we can
write any positive element in g ∈ G+ as

g = eX = eEp[X]eX−Ep[X].

This establishes a mapping from B × C where C = {eY |E[Y ] = 0}
onto G+. We thus obtain an approach to exponential families somewhat
similar to that of Pistone and Sempi in [18] motivated by the work of Porta
and Recht in [16].

Note now that the projection

g = eEp[X]eX−Ep[X] → eX−<1,X>

E[eX−<1,X>]

is independent of eEp[X]. This motivates the following: To make the map Φ
a bijection, we have to restrict its domain. Thus if we define

(3.3) Φp : Ks → Pp; Y → Φp(Y ) =
eY

Ep[eY ]

we have a bijection, the inverse mapping being given by

Φ−1
p : q → Y = ln q − Ep[ln q].

To conclude, we note that the special role played by the vector p can
be done away as follows: We could have chosen any other positive q ∈ G+

and we could have defined the standard Eq[X]. Observe that a = qp−1 ∈ Pp

because Ep[a] = 1 and therefore a = a/Ep[a].

Summing up, if we put Kq ≡ (ker Ep[.])s, or more explicitly Kp = {X ∈
A0 |Eq[X] = 0}, which is a linear subspace of A0 on which the following
maps are defined

Ψp(Y ) : Kp → R

Y → Ψp(Y ) = ln Ep[eY ],

Φp(Y ) : Kp → Pp

Y → Φp(Y ) = eY −Ψp(Y )p =
eY

Ep[eY ]
p.

and every Φp maps Kp bijectively onto Pp.
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Now it is not hard to see that the collection {Kp, Φp} provide an atlas
for Pp modeled on the (closed) linear subspace Kp of A0, the coordinate
maps Φp are globally defined, and that the changes of coordinates Φ−1

q ◦Φp :
Kp → Kq are affine maps.

3.2. Some transformation properties

Let A1 and A2 be two C∗-algebras. Let T : A1 → A2 be a C∗-algebra
morphism, that is T is linear, T (ab) = T (a)T (b) and T (a∗) = T (a)∗. Let
E : A2 → C be a linear, positive functional, such that E[1] = 1. Then
ET : A1 → C, defined by

ET [a] = E[T (a)] ∀ a ∈ A1

clearly defines linear, positive functional, such that ET [1] = 1.
In the context of the function algebra models, assume you are given a

measurable mapping T : (Ω2,F2) → (Ω1,F1). By means of T we can pull
back functions X : Ω1 → C onto functions T (X) ≡ X ◦ T : Ω2 → C. Given
any measure Q on (Ω2,F2), it can be pushed forward onto a measure on
(Ω1,F1). The issue to examine is what happens to the quotient spaces we
considered above.

Lemma 3.1 Let T be a positive and surjective C∗-algebra morphism as
above. For p ∈ G+

1 , denote by ET
p and put ΦT

p (a) = a
ET

p [a]
. Then T ◦ΦT

p (a) =

ΦTp ◦ T (a).

Proof. The proof is easy. Note that ET
p [a] = ET [pa] = E[T (ap)] = ETp[Ta],

and therefore

ΦTp ◦ T (a) = ΦTp(Ta) =
Ta

ETp[Ta]
=

Ta

ET
p [a]

= T (
a

ET
p [a]

) = T ◦ ΦT
p (a).

�

Comment 3.1 Put KT
p = {X ∈ A1,0 |ET

p [X] = 0}, then TX ∈ KTp =
{Y ∈ A2,0 |ETp[Y ] = 0}, then we can replace eX for a in the previous Lemma.

4. Concluding remarks

We saw that we can define a homogeneous, reductive space structure upon
the positive densities equivalent to a given one, such that the curves given
by (2.5) or (3.1) are the geodesics of a non Riemannian connection defined on
the class on non-vanishing, complex valued, bounded functions on (Ω,F , Q).
In this setup, the exponential families of densities appear as representatives
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of equivalence classes of appropriately defined equivalence relation associated
to an expectation, and the entropy functional

K(p, q) =

∫
p1(ω) ln

(p1(ω)

p0(ω)

)
dQ(ω)

is the norm of the velocity at the end point of the geodesic joining p1 to p0.
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