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Local Fatou theorem and the density
of energy on manifolds of negative

curvature

Frédéric Mouton

Abstract

Let u be a harmonic function on a complete simply connected
manifold M whose sectional curvatures are bounded between two
negative constants. It is proved here a pointwise criterion of non-
tangential convergence for points of the geometric boundary: the
finiteness of the density of energy, which is the geometric analogue of
the density of the area integral in the Euclidean half-space.

Introduction

If the study of non-tangential convergence of harmonic functions began
in 1906 with the well-known theorem of Fatou (see [11]), it became clear in
the 1970s (see for example [14]) that spaces of negative curvature provide a
natural “geometric” setting for this study: as can be seen in section 1, several
notions have simpler or more natural expressions in this geometric setting.
From this point of view, we proved some years ago two pointwise criteria
of non-tangential convergence –non-tangential boundedness and finiteness
of the non-tangential energy– on Riemannian manifolds of pinched negative
curvature by the use of Brownian motion (see [16]). We refer the reader
to this article for the historical details and references on the study of non-
tangential convergence. Many questions arised as a consequence of these
results. One was the existence of discrete analogues and we solved recently
the case of trees (see [17]). Another was to find a geometric criterion corre-
sponding to the Euclidean one on the density of the area integral given by
J. Brossard (see [6]) and the purpose of this article is to give an answer.
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In section 1, we recall that the geometric interpretation of the area in-
tegral is the non-tangential energy. In section 4, we introduce the density
of energy as a geometric interpretation of the density of the area integral.
Again, this geometric expression is simpler than the Euclidean one. In or-
der to prove that the finiteness of this density implies almost everywhere
the non-tangential convergence we first recall a local Fatou theorem due to
Hitoshi Arai (see [4]) in section 3. A new proof of that result is also given
by refining arguments used in a previous work (see [16]). A straightforward
corollary of this local Fatou theorem is a pointwise one: non-tangential
boundedness from below is almost everywhere equivalent to non-tangential
convergence. We then prove the main result in section 4 by a geometric
interpretation of the proof of J. Brossard (see [6]), using for that some of
our previous estimates. The geometric notions used along this article are
introduced in section 1 and the probabilistic ones in section 2. This will
be done briefly since the reader can refer to the previous article for more
details (see [16]).

1. A geometric setting

The idea of studying non-tangential convergence on spaces of negative cur-
vature came from the following observation: if you consider the Euclidean
half-space with the standard hyperbolic metric, several non-tangential no-
tions have more natural expressions. The boundary becomes an ideal one
–it is at infinity–, the rays become geodesic rays, non-tangential cones be-
come tubular neighbourhoods of geodesic rays and the area integral becomes
an energy –an integral of a gradient to the square. We will now introduce
these notions in the more general setting of pinched negative curvature.

Let M be a complete simply connected Riemannian manifold whose sec-
tional curvatures are bounded between two negative constants:

−b2 ≤ K ≤ −a2 < 0.

It has been known since Hadamard and Cartan that M is diffeomorphic
to the open ball Bd with d = dim M . Denote by ∆ the Laplace-Beltrami
operator on M and by G the associated Green function. As shown by
M.T. Anderson and R. Schoen (see [3]) and also A. Ancona (see [1]), the
Martin boundary of M , defined by the Green kernels, and its geometric
boundary, defined by the geodesic rays, agree. We will denote this unique
boundary by ∂M .

There are natural measures on ∂M when dealing with harmonic functions
and Brownian motion: the harmonic measures µx, x ∈ M , which can be



Density of energy on manifolds of negative curvature 3

defined either as exit laws of Brownian motion starting at x or by solving
the Dirichlet problem at infinity (see [19]). We thus obtain a family µ =
(µx)x∈M of equivalent measures and then a notion of µ-negligibility. Fixing
a basepoint o ∈ M , and defining the Poisson Kernel pθ(x) as limit of the
Green kernels (normalised at o), we also have

pθ(x) = (dµx/dµo)(θ)

(the Radon-Nykodim derivative).

Now let us define the non-tangential notions. Let γθ be the geodesic ray
from o to θ ∈ ∂M . If c > 0 and θ ∈ ∂M , denote by

Γθ
c = {x ∈ M | d(x, γθ) < c}

the (non-tangential) tube of radius c at θ. A sequence of points of M con-
verges non-tangentially to θ if it converges to θ staying in a tube at θ.
A function u converges non-tangentially at θ if, for all c > 0, u(x) has a
limit as x tends to θ in Γθ

c . The function u is said to be non-tangentially
bounded at θ if it is bounded on each Γθ

c , c > 0. The non-tangential energy
of u on Γθ

c is the quantity

Jθ
c (u) =

∫
Γθ

c

|∇u(x)|2vM(dx) = ||∇u||2L2(Γθ
c),

where vM denotes the Riemannian volume on M . The function u is said to
have a finite non-tangential energy at θ if

Jθ
c (u) < +∞ for all c > 0.

The main result of our previous work (see [16]) is the following:

Theorem 1 Let M be a complete simply connected manifold of pinched
negative curvature and u be a harmonic function on M . Then, for µ-almost
all θ ∈ ∂M , the following properties are equivalent:

(i) The function u converges non-tangentially at θ.

(ii) The function u is non-tangentially bounded at θ.

(iii) The function u has a finite non-tangential energy at θ.

The proof uses asymptotic Brownian notions as does the present work.
They will be introduced in the next section.
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2. Brownian motion and conditioning

Let us denote by (Xt(ω))t the Brownian motion on M which is defined
as the diffusion associated to the Laplace-Beltrami operator. It is known
under our hypotheses on M that there is no explosion, i.e. the process is
defined for all t ≥ 0, and that Brownian motion converges almost surely
to a point of ∂M (see [18]). It is possible to chose as probability space
the canonical space Ω = C(R+, M) which is the space of continuous paths
defined for t ≥ 0. Then Xt(ω) = ω(t) and the law of Brownian motion is
given by probabilities Px, x ∈ M which are the probabilities obtained when
Brownian motion starts at x. The above result can be now formulated as
follows: for Px-almost all ω ∈ Ω, there exists θ ∈ ∂M such that

lim
t→+∞

Xt(ω)

(
= lim

t→+∞
ω(t)

)
= θ.

Denoting this limit by X∞(ω), the image law of Px by X∞ is the harmonic
measure µx as claimed in the last section.

By Doob’s h-processes method, it is possible to condition Brownian mo-
tion to exit at a fixed point θ ∈ ∂M (see [10]). We thus obtain a probability
P θ

x on Ω that verifies a strong Markov property and an asymptotic zero-one
law (see [16]). We can reconstruct the probability Px with these conditioned
probabilities: for a suitable random variable F ,

(2.1) Ex[F ] =

∫
∂M

Eθ
x[F ]µx(dθ).

A fundamental formula is the following: if T is an almost surely finite stop-
ping time and FT is the associated σ-algebra, then for a non-negative FT -
measurable function F ,

Eθ
x[F ] =

1

pθ(x)
Ex[F · pθ(XT )].

The asymptotic zero-one law implies that for a function u on M and a
given point θ ∈ ∂M , the quantity u(Xt) has a finite limit (t → +∞) with
P θ

x -probability 0 or 1. In the second case we say that there is Brownian
convergence of u at the point θ. This definition does not depend on the
point x and in the case of Brownian convergence the value of the limit de-
pends on neither ω nor x. It is possible to define in the same way notions
of Brownian boundedness and finiteness of the Brownian energy and it is
a straightforward consequence of martingale theorems that these three no-
tions are µ-almost everywhere equivalent when u is harmonic. However they
are not equivalent to the corresponding non-tangential notions, which are
stronger.
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3. Local and pointwise Fatou theorems

We recall in this section a theorem which will be used for the proof of the
criterion of the density of energy in section 4. We begin with a definition.
If U is an open subset of M and θ a point of ∂M , θ is said to be tangential
for U if the set Γθ

c \ U is bounded for each c > 0.
The following result for admissible convergence in the sense of [4] is due

to Hitoshi Arai (see [4]), who proved it by potential theoretic arguments.
Later Patricio Cifuentes and Adam Korányi proved that admissible regions
and non-tangential regions are equivalent (see [9]). Therefore as pointed out
in [5], his result holds true for non-tangential convergence. We give here a
different proof by the use of Brownian motion.

Theorem 2 (“Local Fatou theorem”, H. Arai) Let U be an open sub-
set of M . If u is a non-negative harmonic function on U then for µ-almost
all θ that is tangential for U , the function u converges non-tangentially at θ.

To prove this theorem we will use two lemmas which generalise previ-
ous results (see [16]) and a proposition first proved by Alano Ancona in a
potential theoretic setting (see [2]). A geometric-probabilistic proof of this
proposition is given in the appendix.

Lemma 1 Let U be an open subset of M . Then for µ-almost all θ that
are tangential for U , Brownian motion “ends its life” in U P θ

o -almost surely
(i.e. Xt ∈ U for t big enough).

Lemma 2 Let U be a connected open subset of M such that o ∈ U and let τ
be the time for which Brownian motion exits U . Then for µ-almost all θ
that are tangential for U , P θ

o [τ = +∞] > 0.

Proposition 1 (A. Ancona) Consider a sequence of balls of fixed (posi-
tive) radius whose centers converge non-tangentially to a point θ ∈ ∂M .

Then Brownian motion meets P θ
o -almost surely an infinity of these balls.

Proof of Lemma 1. Let c be a fixed positive real. Let A be the set of
tangential points for U and, for N ∈ N, let

AN = {θ ∈ ∂M | Γθ
c \ U ⊂ B(o, N)}.

As A is the countable union of the AN , it is sufficient to prove the required
property for µ-almost all θ ∈ AN , for each N ∈ N. Let N be a fixed integer.
It is known (see [16], corollaire 4.1) that for µ-almost all θ ∈ AN , Brownian
motion ends its life in Γc(AN) =

⋃
θ′∈AN

Γθ′
c P θ

o -almost surely. Let θ be such
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a point. As Brownian motion goes to infinity P θ
o -almost surely, it leaves the

ball B(o, N) and then ends its life in Γc(AN ) \ B(o, N) which is a subset
of U . The property is then true for µ-almost all θ ∈ AN and lemma 1 is
proved. �
Proof of Lemma 2. The proof is similar to one in our previous arti-
cle (see [16, p. 496]) and uses the maximum principle, lemma 1 and the
strong Markov property. Let us recall the sketch: the function h(x) =
pθ(x)P θ

x [τ = +∞] is non-negative harmonic and therefore either identically
zero or positive at each point by the maximum principle on the connected
open set U . Let τN denote the exit time of the ball B(o, N). Then there
exists N such that

P θ
o [“Xt stays in U after τN”] > 0,

because the monotonous union of these events is almost sure by lemma 1.
Applying the strong Markov property at the stopping time τN gives the
positivity of h and the proof is completed. �

We can now prove the theorem.

Proof of Theorem 2. As U is open, it has a countable number of con-
nected components and we can assume without loss of generality that U is
connected. We can also assume that o ∈ U (note that the empty set has no
tangential points). Denote by τ the exit time of the set U . It is well-known
that (u(Xt)) is a local martingale on [0, τ) since u is harmonic. As u is non-
negative, the local martingales convergence theorem tells us that the local
martingale converges Po-almost surely. Then by formula 2.1, for µ-almost all
θ ∈ ∂M , u(Xt) converges P θ

o -almost surely. Combining this with lemma 2
gives that, for µ-almost all θ that are tangential for U ,

P θ
o [“τ = +∞ and u(Xt) converges”] > 0.

Let θ be such a point. Consider the function ũ defined on the whole
manifold M by ũ(x) = u(x) for x ∈ U and u(x) = 0 otherwise. As the
above probability is positive, ũ(Xt) converges with positive P θ

o -probability
as t tends to +∞ and therefore P θ

o -almost surely by the asymptotic zero-one
law (section 2): we therefore have Brownian convergence of ũ at θ. Taking
the logarithm, we have Brownian convergence of f = ln(ũ + 1) at θ. Let l
denote the corresponding finite limit.

Let us fix c > 0. Since the function u + 1 is harmonic and positive
on U , the Cheng-Yau infinitesimal version of the Harnack inequality (see [8])
implies that ln(u+1) and therefore f are uniformly continuous on Γ = Γθ

c+1\
B(o, R), provided R is chosen such that there exists an η-neighbourhood
(η > 0) of Γ contained in U , which is possible because θ is tangential.
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As shown in [16], this uniform continuity along with the Brownian con-
vergence above insures that the limit of f(x) at θ in Γθ

c exists and is l. Other-
wise, there would exist ε > 0 and a sequence (xn) in Γθ

c such that limn xn = θ
and |f(xn) − l| ≥ ε for all n. Without loss of generality, xn can be taken to
lie outside B(o, R+1) and therefore B(xn, 1) ⊂ Γ. By uniform continuity of
f on Γ, there exists 0 < α < 1 such that for all x, y ∈ Γ, |f(x) − f(y)| ≤ ε

3

as soon as d(x, y) ≤ α. As xn goes non-tangentially to θ, the Brownian mo-
tion meets P θ

o -almost surely an infinity of Bn = B(xn, α) by proposition 1.
Let now (Xt(ω)) be a P θ

o -generic Brownian path: limt→+∞ f(Xt(ω)) = l
and (Xt(ω)) meets an infinity of balls Bn. We can then choose a t0 such
that |f(Xt(ω)) − l| ≤ ε

3
as soon as t > to. By compactness, truncated

path (Xt(ω))t≤tO meets only a finite number of Bn and the path (Xt(ω))t>t0

therefore meets at least one ball Bn1 . We can then choose t1 > t0 such that
Xt1(ω) ∈ Bn1 , for which

0 < ε ≤ |f(xn1) − l| ≤ |f(xn1) − f(Xt1(ω))| + |f(Xt1(ω)) − l| ≤ 2ε

3
,

a contradiction which proves that the limit of f(x) at θ in Γθ
c is l.

As this is true for any c > 0, on taking the exponential we see that the
function u is non-tangentially convergent at θ. Since this is true for µ-almost
all tangential θ, the theorem is proved. �

A consequence of this theorem is that non-tangential boundedness from
below (or above) is a pointwise criterion of non-tangential convergence,
which corresponds to a result of L. Carleson in the Euclidean case (see [7]):

Corollary 1 (“Pointwise Fatou theorem”, H. Arai) Let M be a com-
plete simply connected manifold of pinched negative curvature and let u be
a harmonic function on M . Then, for µ-almost all θ ∈ ∂M , the following
properties are equivalent:

(i) The function u converges non-tangentially at θ.

(ii) For all c > 0, u is bounded from below on Γθ
c.

(iii) There exists c > 0 such that u is bounded from below on Γθ
c.

Proof of Corollary 1. The only thing to prove is that (iii) implies (i).
Fix c > 0 and, for N ∈ N, let

AN = {θ ∈ ∂M |∀x ∈ Γθ
c , u(x) ≥ −N}.

By countable union, it is sufficient to prove that u converges non-tangentially
at µ-almost all points of AN , for each N ∈ N. Let N be a fixed integer. Take

U =
⋃

θ∈AN

Γθ
c .
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The function u+N is non-negative harmonic on U and by theorem 2, u+N
is non-tangentially convergent at µ-almost all tangential points for U , and
therefore so is the function u. It is known (see [16], corollaire 4.2) that
µ-almost all θ ∈ AN are tangential for U , which completes the proof. �

4. The density of the energy

The density of the area integral for harmonic functions on the Euclidean
half-space has been introduced in 1983 by R.F. Gundy (see [13] and [12]).
It is defined by the formulas:

Dr(x) =
1

2

∫
Γ(x)

y1−ν∆|u − r|(dz) =

∫
Γ(x)

y1−ν|∇u(z)|σr(dz),

where points of half-space R
ν × (0, +∞) are denoted by z = (x, y), Γ(x) is a

non-tangential cone over x and σr is the hypersurface measure on the level
set {u = r}.

Formulating these expressions with the hyperbolic metric, the term y1−ν

disappears, which leads us to introduce in our geometric setting, for u har-
monic, θ ∈ ∂M and c > 0:

Dr
c(θ) = −1

2

∫
Γθ

c

∆|u − r|(dx)

and

D̃r
c(θ) =

∫
Γθ

c

|∇u(x)|σr(dx),

where σr is the hypersurface measure on {u = r}. The minus sign is due to
the geometers’ convention for the sign of ∆. As in the Euclidean case, the
positive measures −(1/2)∆|u − r| (recall that |u − r| is subharmonic) and
|∇u|σr are equal as distributions outside singular points of u, and Dr

c(θ) =

D̃r
c(θ) for almost all r ∈ R by Sard’s theorem. J. Brossard has shown the

equality for all r in the Euclidean case (see [6]). We will use only the first
expression, which will be called the density of the energy, but it is the second
which has given the name of “density”: the geometric “co-area” formula
gives, for a non-negative function f on R, the equation∫

Γθ
c

f(u(x))|∇u(x)|2vM(dx) =

∫
R

f(r)

(∫
Γθ

c

|∇u(x)|σr(dx)

)
dr.

Our goal is here to prove the following criterion of non-tangential con-
vergence:
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Theorem 3 Let M be a complete simply connected manifold of pinched
negative curvature, u a harmonic function on M and c > 0.

Then u is non-tangentially convergent at µ-almost all θ such that D0
c (θ)

is finite.

Proof of Theorem 3. As before, it is sufficient to prove for all N ∈ N that
u is non-tangentially convergent at µ-almost all points of the set

AN = {θ ∈ ∂M |D0
c (θ) ≤ N}.

By integration on AN , we obtain

N ≥
∫

AN

D0
c (θ)µo(dθ) = −1

2

∫
AN

(∫
Γθ

c

∆|u|(dx)

)
µo(dθ)

which, with the notation Γ =
⋃

θ∈AN
Γθ

c and Hc(x) = {θ ∈ ∂M |x ∈ Γθ
c}, is

equal to

−1

2

∫
Γ

µo(Hc(x) ∩ AN)∆|u|(dx).

This integral is finite and the idea is to “replace” the term µo(Hc(x)∩AN )
by a Green kernel, which will enable a Brownian interpretation. For that we
use an estimate that can be found in our previous article (see [16], p. 499),
which relies on the Harnack principle at infinity: if uAN

is the bounded
harmonic function defined by uAN

(x) = Px[X∞ ∈ AN ] then there exists
α ∈ (0, 1) and C, c′ > 0 such that {uAN

> α} ⊂ Γ and

∀x ∈ {uAN
> α} \ B(o, c′), G(o, x) ≤ C · µo(Hc(x) ∩ AN ).

For convenience, we will denote V = {uAN
> α}. As a consequence of the

above estimates,

−
∫

V \B(o,c′)
G(o, x)∆|u|(dx) < +∞.

We need now the following lemma, which will be proved later:

Lemma 3 Let U be a bounded regular domain of M such that o ∈ U , let
GU be the associated Green function, let τ be the exit time of U and let u be
a harmonic function on M . Then

Eo[|u(Xτ)|] = |u(o)| −
∫

U

GU(o, x)∆|u|(dx).
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Applying this lemma with U = B(o, c′) gives

−
∫

B(o,c′)
GB(o,c′)(o, x)∆|u|(dx) < +∞.

On the other hand, the function f defined by

f(x) = G(o, x) − GB(o,c′)(o, x)

is positive harmonic on B(o, c′) and can be extended continuously to B(o, c′).
Since −∆|u| is a positive measure which is finite on compact sets,

−
∫

B(o,c′)
f(x)∆|u|(dx) ≤ −

∫
B(o,c′)

f(x)∆|u|(dx) < +∞,

so

−
∫

B(o,c′)
G(o, x)∆|u|(dx) < +∞

and

I = −
∫

V

G(o, x)∆|u|(dx) < +∞.

Applying lemma 3 for an increasing sequence of compact regular domains
Vn such that

⋃
n Vn = V , and using the fact that GVn ≤ G, gives for all n:

Eo[|u(Xτn)|] ≤ |u(o)| + I,

where τn is the exit time of Vn. So supn Eo[|u(Xτn)|] is finite and a well-
known potential theoretic method (see [6], p. 307) gives a decomposition of
u as the difference of two non-negative harmonic functions on V . By the
local Fatou theorem (theorem 2), both converge non-tangentially at µ-almost
all tangential θ for V , and therefore so does u. The classical convergence
result for bounded harmonic functions (see [16], théorème 4.1) tells us that
uAN

converges non-tangentially to 1 at µ-almost all θ ∈ AN . Such a θ is
then tangential for V by definition of V . So u converges non-tangentially at
µ-almost all θ of AN and the proof is completed. �

The proof of the lemma remains:

Proof of Lemma 3. Using the Green formula twice, as GU(o, ·) vanishes
on ∂U ,∫

U

GU(o, x)∆|u|(dx) =

∫
U

∆xGU(o, x)|u(x)|vM(dx)

−
∫

∂U

∂xGU(o, x)

∂ 
N
|u(x)|vM(dx)

where 
N is the interior normal to ∂U .
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By definition of the Green function,∫
U

∆xGU(o, x)|u(x)|vM(dx) = |u(o)|

and it is known that ∂xGU (o,x)

∂ �N
vM is equal to the harmonic measure of U

starting at o. Then∫
U

GU(o, x)∆|u|(dx) = |u(o)| −
∫

∂U

|u(x)|µU
o (dx) = |u(o)| − Eo[|u(Xτ )|].

Appendix

Here we give a geometric-probabilistic proof of Ancona’s result (proposi-
tion 1):

For a sequence of balls of fixed positive radius whose centers converge
non-tangentially to θ ∈ ∂M , Brownian motion meets P θ

o -almost surely an
infinity of balls.

We will need the two following Harnack type propositions. The first
one is the usual Harnack property for balls. It is a direct consequence of
Cheng-Yau infinitesimal Harnack inequality (see [8]).

Proposition 2 (“Harnack property for balls”) Let r and R be two
radii such that 0 < r < R. There exists a constant C1 depending only on
dimension of M and the lower bound of the curvature such that, for all
x ∈ M and all positive harmonic function u on B(x, R), we have

sup
z∈B(x,r)

u(z) ≤ C1 · inf
z∈B(x,r)

u(z).

The second one is the Harnack principle at infinity, which is the key step
used in the identification of geometric and Martin boundaries (see [3], [1]).

We introduce some notations. For x ∈ M , a tangent vector ξ ∈ TxM
and an angle α, we denote by Λ(x, ξ, α) the open cone of vertex x, direction
ξ and angle α i.e. the union of all (open) geodesic rays starting at x and
whose angles with respect to ξ are smaller than α. We denote by

Λ(x, ξ, α)

the corresponding closed cone (not the same as the closure Λ(x, ξ, α) of the
cone in M) and by

T (x, ξ, α) = Λ(x, ξ, α) \ B(x, 1)

the corresponding truncated closed cone.
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Theorem 4 (“Harnack principle at infinity”) Let α ∈ (0, π/2) be an
acute angle. There exists a constant C2 depending only on the dimension of
M and curvature bounds such that for all x ∈ M and ξ ∈ TxM we have the
following property:

If u and v are two positive harmonic functions on Λ(x, ξ, α), having
limit 0 at infinity (for the topology of M), then

sup
z∈T

u(z)

v(z)
≤ C2 · inf

z∈T

u(z)

v(z)
,

where T = T (x, ξ, α/2).

Using these results, we will first prove the following technical lemma
which invites comparison with Ancona’s probabilistic interpretation of the
Harnack principle at infinity (see [1]):

Lemma 4 Given an acute angle α ∈ (0, π/2) and a radius R > 1, there
exists a constant C3 depending only on the dimension of M and curvature
bounds such that:

If a compact K of M , y, z ∈ M , ξ ∈ TyM and θ ∈ ∂M verify the four
following properties

• K ∩ Λ(y, ξ, α) = ∅
• K ⊂ B(y, R)

• z ∈ T (y, ξ, α/2)

• θ �∈ Λ(y, ξ, α)

then, for all x ∈ T (y, ξ, α/2)∩ B(y, R),

P θ
z [“Xt meets K”] ≥ C3 · Px[“Xt meets K”].

Proof of Lemma 4. Let C1 be the constant obtained using the Harnack
property for balls with radii R and 2R, and C2 the constant obtained using
the Harnack principle at infinity with angle α. These constants depend only
on dimension of M and curvature bounds.

Let x ∈ T (y, ξ, α/2)∩B(y, R). The function f : w �→ Pw[“Xt meets K”]
is known to be harmonic (using the strong Markov property for example).
Let τ be the exit time of Kc, which is +∞ if the trajectory doesn’t meet K.
By definition of the conditional probability P θ

z ,

P θ
z [“Xt meets K”] = Eθ

z [1K(Xτ )] =
1

pθ(z)
Ez[1K(Xτ )pθ(Xτ )].
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In the case of 1K(Xτ ) �= 0, Xτ ∈ K, so x and Xτ are both in B(y, R).
As pθ is positive harmonic on B(y, 2R) (since it is so on M), the Harnack
property for balls gives us

P θ
z [“Xt meets K”] ≥ C1 · pθ(x)

pθ(z)
· f(z) = C1 · f(x)

(
pθ(x)

f(x)

) (
f(z)

pθ(z)

)
.

The functions pθ and f are harmonic on the cone Λ(y, ξ, α) and their
restrictions on the cone tend to 0 at infinity (since θ �∈ Λ(y, ξ, α)). As x and
z are in T (y, ξ, α/2), the Harnack principle gives us(

pθ(x)

f(x)

) (
f(z)

pθ(z)

)
≥ C2,

which completes the proof of lemma 4. �

A consequence of that lemma is the following:

Corollary 2 Fix z ∈ M and θ ∈ ∂M . Let (Kn) be a sequence of compact
sets of M such that there exist an angle α ∈ (0, π/2), a radius R > 1 and
a sequence (yn, ξn) in TM for which the hypotheses of lemma 4 are satisfied
for all n.

Let (xn) be a sequence in M such that xn ∈ T (yn, ξn, α/2)∩B(yn, R) for
all n, and verifying

inf
n

Pxn[“Xt meets Kn”] > 0.

Then we have
P θ

z [“Xt meets an infinity of Kn”] > 0.

Moreover, if for each ball B, Kn ∩ B = ∅ for n large enough, the above
probability is 1.

Proof of Corollary 2. Let An be the event “Xt meets Kn”. As a direct
consequence of lemma 4,

inf
n

P θ
z [An] > 0

and
P θ

z [lim sup
n

An] = inf
n

P θ
z [

⋃
k≥n

Ak] ≥ inf
n

P θ
z [An] > 0,

which proves the first assertion.

If the Kn exit each ball, the event “Xt meets an infinity of Kn” is as-
ymptotic (see [16]) and its probability is 1 by the zero-one law. �
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Proof of Proposition 1. We can now prove Ancona’s property. It can
be supposed without loss of generality that the balls are closed (by taking
closed balls of smaller radius). Let us denote by Bn the balls and by r their
radius. It can also be supposed that d(z, Bn) ≥ 1 for all n since the centers
converge to infinity. In order to apply the corollary above with Kn = Bn,
we construct first the pairs (yn, ξn). Let γn be the geodesic segment from
Bn’s center to z, yn be the intersection of γn and Bn’s boundary and ξn be
the vector of TynM pointing toward z.

It remains to choose the angle α and the radius R. Let R = 2r + 1. The
first, second and third hypothesis of lemma 4 are easily checked. The fourth
will be verified for large n by appropriate choice of α.

The points yn converge non-tangentially to θ, hence stay at a bounded
distance c of the geodesic ray (zθ). The angle ŷnzθ tends to zero as n goes
to infinity and so is acute for n large, which can be supposed true for all n
without loss of generality. It implies that the projection tn of yn onto the
geodesic line defined by z and θ lies between z and θ i.e. on the ray (zθ). It
can be shown (see [15]) by classical techniques using Toponogov’s theorem

that the angle ẑynθ is greater than or equal to the analogous angle of an
ideal triangle of finite side length d(yn, z) and height d(yn, tn) in the model
of constant curvature −b2. This analogue angle is itself greater than or equal
to the angle β of a right-angled ideal triangle of finite side length c in the
same model (as d(yn, tn) ≤ c). We choose α = β/2 which implies ẑynθ > α
and hence θ �∈ Λ(yn, ξn, α).

To apply the corollary, it will be enough to choose xn. Let xn be the
point on the geodesic segment γn at distance 1 from yn i.e. on the boundary
of T (yn, ξn, α/2). Then

Pxn [“Xt meets Bn”] ≥ Pxn[“Xt leaves B(xn, 1 + r) by S(xn, 1 + r) ∩ Bn”].

The curvature being pinched, there exists γ > 0 depending only upon r and
the curvature bounds, such that Bn ∩ S(xn, 1 + r) contains the intersection
of S(xn, 1 + r) and a cone of angle γ and vertex xn. By a known property
of quasi-isotropy of harmonic measures (see [15]), the probability of leaving
B(xn, 1+r) by that cone is more than a positive constant independent on n,
which proves that

inf
n

Pxn[“Xt meets Bn”] > 0.

As the Bn exit from each fixed ball, applying the corollary finishes the
proof. �

Thanks. I am very grateful to Jean Brossard for all the discussions we have
had and will have.
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