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Abstract

The aim of this paper is to classify the finite minimal non-p-su-
persoluble groups, p a prime number, in the p-soluble universe.

1. Introduction

All groups considered in this paper are finite.
Given a class X of groups, we say that a group G is a minimal non-X-

group or an X-critical group if G /∈ X, but all proper subgroups of G belong
to X. It is rather clear that detailed knowledge of the structure of X-critical
groups could help to give information about what makes a group belong
to X.

Minimal non-X-groups have been studied for various classes of groups X.
For instance, Miller and Moreno [10] analysed minimal non-abelian groups,
while Schmidt [14] studied minimal non-nilpotent groups. These groups
are now known as Schmidt groups. Rédei classified completely the minimal
non-abelian groups in [12] and the Schmidt groups in [13]. More precisely,

Theorem 1 ([12]). The minimal non-abelian groups are of one of the fol-
lowing types:

1. G = [Vq]Crs, where q and r are different prime numbers, s is a positive
integer, and Vq is an irreducible Crs-module over the field of q elements
with kernel the maximal subgroup of Crs,

2. the quaternion group of order 8,

3. GII(q, m, n) = 〈a, b | aqm
= bqn

= 1, ab = a1+qm−1〉, where q is a prime
number, m ≥ 2, n ≥ 1, of order qm+n, and
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4. GIII(q, m, n) = 〈a, b | aqm
= bqn

= [a, b]q = [a, b, a] = [a, b, b] = 1〉,
where q is a prime number, m ≥ n ≥ 1, of order qm+n+1.

We must note that there is a misprint in the presentation of the last type
of groups in Huppert’s book [7; Aufgabe III.22].

Theorem 2 ([13], see also [2]). Schmidt groups fall into the following classes:

1. G = [P ]Q, where Q = 〈z〉 is cyclic of order qr > 1, with q a prime
not dividing p − 1 and P an irreducible Q-module over the field of p
elements with kernel 〈zq〉 in Q.

2. G = [P ]Q, where P is a non-abelian special p-group of rank 2m, the
order of p modulo q being 2m, Q = 〈z〉 is cyclic of order qr > 1, z in-
duces an automorphism in P such that P/Φ(P ) is a faithful irreducible
Q-module, and z centralises Φ(P ). Furthermore, |P/Φ(P )| = p2m and
|P ′| ≤ pm.

3. G = [P ]Q, where P = 〈a〉 is a normal subgroup of order p, Q = 〈z〉 is
cyclic of order qr > 1, with q dividing p − 1, and az = ai, where i is
the least primitive q-th root of unity modulo p.

Here [K]H denotes the semidirect product of K with H , where H acts
on K.

Itô [8] considered the minimal non-p-nilpotent groups for a prime p, which
turn out to be Schmidt groups.

Doerk [5] was the first author in studying the minimal non-supersoluble
groups. Later, Nagrebeckĭı [11] classified them.

Let p be a prime number. A group G is said to be p-supersoluble when-
ever G is p-soluble and all p-chief factors of G are cyclic groups of order p.

Kontorovič and Nagrebeckĭı [9] studied the minimal non-p-supersoluble
groups for a prime p with trivial Frattini subgroup. Tuccillo [15] tried to clas-
sify all minimal non-p-supersoluble groups in the soluble case, and gave re-
sults about non-soluble minimal non-p-supersoluble groups. Unfortunately,
there is a gap in his paper and some groups are missing from his classifica-
tion.

Example 3. The extraspecial group N = 〈a, b〉 of order 413 and exponent 41
has automorphisms y of order 5 and z of order 8, given by ay = a10, by = b37,
and az = b19, bz = a35, satisfying yz = y−1. The semidirect product G
of N by 〈x, y〉 is a minimal non-supersoluble group such that the Frattini
subgroup Φ(N) of N is not a central subgroup of G. This is a minimal
non-41-supersoluble group not appearing in any type of Tuccillo’s result.
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Example 4. The extraspecial group N = 〈a, b〉 of order 173 and exponent 17
has an automorphism z of order 32 given by az = b, bz = a3. The semidirect
product G = [N ]〈z〉 is a minimal non-17-supersoluble group. It is clear that
[a, b]z = [a, b]14 and so [a, b] does not belong to the centre of G. This is
another group missing in Tuccillo’s work.

Example 5. The automorphism group of the extraspecial group of order 73

and exponent 7 has a subgroup isomorphic to the symmetric group Σ3

of degree 3. The corresponding semidirect product is a minimal non-7-
supersoluble group not corresponding to any case of Tuccillo’s work.

Example 6. Let E = 〈x1, x2〉 be an extraspecial group of order 125 and
exponent 5. This group has two automorphisms α and β given by xα

1 = x4
2,

xα
2 = x1, xβ

1 = x2
1, and xβ

2 = x3
2 generating a quaternion group H of order 8

such that the corresponding semidirect product [E]H is a minimal non-5-
supersoluble group. This group is also missing in [15].

Example 7. With the same notation as in Example 6, the automorphisms
β and γ defined by xγ

1 = x2, xγ
2 = x1 generate a dihedral group D of order 8.

The corresponding semidirect product [E]D is a minimal non-5-supersoluble
group not appearing in [15].

By looking at these examples, we see that the classification of minimal
non-p-supersoluble groups given in [15] is far from being complete. In our
examples, the Frattini subgroup of the Sylow p-subgroup is not a central
subgroup, contrary to the claim in [15; 1.7].

The aim of this paper is to give the complete classification of minimal
non-p-supersoluble groups in the p-soluble universe. This restriction is mo-
tivated by the following result.

Proposition 8. Let G be a minimal non-p-supersoluble group. Then either
G/Φ(G) is a simple group of order divisible by p, or G is p-soluble.

Our main theorem is the following:

Theorem 9. The minimal p-soluble non-p-supersoluble groups for a prime p
are exactly the groups of the following types:

Type 1: Let q be a prime number such that q divides p − 1. Let C be a
cyclic group of order ps, with s ≥ 1, and let M be an irreducible C-
module over the field of q elements with kernel the maximal subgroup
of C. Consider a group E with a normal q-subgroup F contained
in the Frattini subgroup of E and E/F isomorphic to the semidirect
product [M ]C. Let N be an irreducible E-module over the field of p
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elements with kernel the Frattini subgroup of E. Let G = [N ]E be
the corresponding semidirect product. In this case, Φ(G)p, the Sylow
p-subgroup of Φ(G), which coincides with the Frattini subgroup of a
Sylow p-subgroup of E, is a central subgroup of G and Φ(G)q, the
Sylow q-subgroup of Φ(G), is equal to Φ(E), which coincides with the
Frattini subgroup of a Sylow q-subgroup of E and centralises N .

Type 2: G = [P ]Q, where Q = 〈z〉 is cyclic of order qr > 1, with q a prime
not dividing p − 1, and P is an irreducible Q-module over the field of
p elements with kernel 〈zq〉 in Q.

Type 3: G = [P ]Q, where P is a non-abelian special p-group of rank 2m,
the order of p modulo q being 2m, q is a prime, Q = 〈z〉 is cyclic of
order qr > 1, z induces an automorphism in P such that P/Φ(P ) is
a faithful and irreducible Q-module, and z centralises Φ(P ). Further-
more, |P/Φ(P )| = p2m and |P ′| ≤ pm.

Type 4: G = [P ]Q, where P = 〈a0, a1, . . . , aq−1〉 is an elementary abelian
p-group of order pq, Q = 〈z〉 is cyclic of order qr, with q a prime such
that qf is the highest power of q dividing p − 1 and r > f ≥ 1. Define
az

j = aj+1 for 0 ≤ j < q−1 and az
q−1 = ai

0, where i is a primitive qf -th
root of unity modulo p.

Type 5: G = [P ]Q, where P = 〈a0, a1〉 is an extraspecial group of order
p3 and exponent p, Q = 〈z〉 is cyclic of order 2r, with 2f the largest
power of 2 dividing p−1 and r > f ≥ 1. Define a1 = az

0 and az
1 = ai

0x,
where x ∈ 〈[a0, a1]〉 and i is a primitive 2f -th root of unity modulo p.

Type 6: G = [P ]E, where E is a 2-group with a normal subgroup F such
that F ≤ Φ(E) and E/F is isomorphic to a quaternion group of order
8 and P is an irreducible module for E with kernel F over the field of
p elements of dimension 2, where 4 | p − 1.

Type 7: G = [P ]E, where E is a 2-group with a normal subgroup F such
that F ≤ Φ(E) and E/F is isomorphic to a quaternion group of order
8, P is an extraspecial group of order p3 and exponent p, where 4 | p−1,
and P/Φ(P ) is an irreducible module for E with kernel F over the field
of p elements.

Type 8: G = [P ]E, where E is a q-group for a prime q with a normal
subgroup F such that F ≤ Φ(E) and E/F is isomorphic to a group
GII(q, m, 1) of Theorem 1, P is an irreducible E-module of dimension
q over the field of p elements with kernel F , and qm divides p − 1.

Type 9: G = [P ]E, where E is a 2-group with a normal subgroup F such
that F ≤ Φ(E) and E/F is isomorphic to a group GII(2, m, 1) of
Theorem 1, P is an extraspecial group of order p3 and exponent p such
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that P/Φ(P ) is an irreducible E-module of dimension 2 over the field
of p elements with kernel F , and 2m divides p − 1.

Type 10: G = [P ]E, where E is a q-group for a prime q with a normal sub-
group F such that F ≤ Φ(E) and E/F is isomorphic to an extraspecial
group of order q3 and exponent q, with q odd, P is an irreducible E-
module over the field of p elements with kernel F and dimension q,
and q divides p − 1.

Type 11: G = [P ]MC, where C is a cyclic subgroup of order rs+t, with
r a prime number and s and t integers such that s ≥ 1 and t ≥ 0,
normalising a Sylow q-subgroup M of G, M/Φ(M) is an irreducible C-
module over the field of q elements, q a prime, with kernel the subgroup
D of order rt of C, and P is an irreducible MC-module over the field
of p elements, where q and rs divide p − 1. In this case, Φ(G)p′, the
Hall p′-subgroup of Φ(G), coincides with Φ(M)×D and centralises P .

Type 12: G = [P ]MC, where C is a cyclic subgroup of order 2s+t, with
s and t integers such that s ≥ 1 and t ≥ 0, normalising a Sylow q-
subgroup M of G, q a prime, M/Φ(M) is an irreducible C-module
over the field of q elements with kernel the subgroup D of order 2t

of C, and P is an extraspecial group of order p3 and exponent p such
that P/Φ(P ) is an irreducible MC-module over the field of p elements,
where q and 2s divide p− 1. In this case, Φ(G)p′, the Hall p′-subgroup
of Φ(G), is equal to Φ(M) × D and centralises P .

From Proposition 8 and Theorem 9 we deduce immediately that a mini-
mal non-p-supersoluble group is either a Frattini extension of a non-abelian
simple group of order divisible by p, or a soluble group.

As a consequence of Theorem 9, bearing in mind that minimal non-
supersoluble groups are soluble by [5] and minimal non-p-supersoluble groups
for a prime p, we obtain the classification of minimal non-supersoluble
groups:

Theorem 10. The minimal non-supersoluble groups are exactly the groups
of Types 2 to 12 of Theorem 9, with r dividing q − 1 in the case of groups
of Type 11.

The classification of minimal non-p-supersoluble groups can be applied
to get some new criteria for supersolubility. A well-known theorem of Buck-
ley [4] states that if a group G has odd order and all its subgroups of prime
order are normal, then G is supersoluble. The next generalisation follows
easily from our classification:
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Theorem 11. Let G be a group whose subgroups of prime order permute
with all Sylow subgroups of G and no section of G is isomorphic to the
quaternion group of order 8. Then G is supersoluble.

As a final remark, we mention that Tuccillo [15] also gave some partial
results for Frattini extensions of non-abelian simple groups of order divisi-
ble by p. Looking at the results of Section 4 of that paper, it seems that
the classification of minimal non-p-supersoluble groups in the general finite
universe is a hard task.

2. Preliminary results

First we gather the main properties of a minimal non-supersoluble group.
They appear in Doerk’s paper [5].

Theorem 12. Let G be a minimal non-supersoluble group. We have:

1. G is soluble.

2. G has a unique normal Sylow subgroup P .

3. P/Φ(P ) is a minimal normal subgroup of G/Φ(P ).

4. The Frattini subgroup Φ(P ) of P is supersolubly embedded in G, i. e.,
there exists a series 1 = N0 ≤ N1 ≤ · · · ≤ Nm = Φ(P ) such that Ni is
a normal subgroup of G and |Ni/Ni−1| is prime for 1 ≤ i ≤ m.

5. Φ(P ) ≤ Z(P ); in particular, P has class at most 2.

6. The derived subgroup P ′ of P has at most exponent p, where p is the
prime dividing |P |.

7. For p > 2, P has exponent p; for p = 2, P has exponent at most 4.

8. Let Q be a complement to P in G. Then Q ∩ CG

(
P/Φ(P )

)
= Φ(G) ∩

Φ(Q) = Φ(G) ∩ Q.

9. If Q = Q/
(
Q ∩ Φ(G)

)
, then Q is a minimal non-abelian group or a

cyclic group of prime power order.

In [6; VII, 6.18], some properties of critical groups for a saturated for-
mation in the soluble universe are given. This result has been extended to
the general finite universe by the first author and Pedraza-Aguilera. Recall
that if F is a formation, the F-residual of a group G, denoted by GF, is the
smallest normal subgroup of G such that G/GF belongs to F.
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Lemma 13 ([3; Theorem 1 and Proposition 1]). Let F be a saturated for-
mation.

1. Assume that G is a group such that G does not belong to F, but all its
proper subgroups belong to F. Then F′(G)/Φ(G) is the unique mini-
mal normal subgroup of G/Φ(G), where F′(G) = Soc

(
G mod Φ(G)

)
,

and F′(G) = GFΦ(G). In addition, if the derived subgroup of GF is
a proper subgroup of GF, then GF is a soluble group. Furthermore, if
GF is soluble, then F′(G) = F(G), the Fitting subgroup of G. More-
over (GF)′ = T ∩ GF for every maximal subgroup T of G such that
G/ CoreG(T ) /∈ F and F′(G)T = G.

2. Assume that G is a group such that G does not belong to F and there
exists a maximal subgroup M of G such that M ∈ F and G = M F(G).
Then GF/(GF)′ is a chief factor of G, GF is a p-group for some prime
p, GF has exponent p if p > 2 and exponent at most 4 if p = 2.
Moreover, either GF is elementary abelian or (GF)′ = Z(GF) = Φ(GF)
is an elementary abelian group.

It is clear that the class F of all p-supersoluble groups for a given prime
p is a saturated formation [7; VI, 8.3]. Thus Lemma 13 applies to this class.

The following series of lemmas is also needed in the proof of Theorem 9.

Lemma 14. Let N be a non-abelian special normal p-subgroup of a group G,
p a prime, such that N/Φ(N) is a minimal normal subgroup of G/Φ(N).
Assume that there exists a series 1 = N0 � N1 � · · · � Nt = Φ(N) with Ni

normal in G for all i and cyclic factors Ni/Ni−1 of order p for 1 ≤ i ≤ t.
Then N/Φ(N) has order p2m for an integer m.

Proof. The result holds if N is extraspecial by [6; A, 20.4]. Assume that
N is not extraspecial. Let T = N1 be a minimal normal subgroup of G
contained in Φ(P ), then T has order p. It is clear that (N/T )′ = N ′/T and
Φ(N/T ) = Φ(N)/T . Consequently (N/T )′ = Φ(N/T ). On the other hand,
Φ(N/T ) = Φ(N)/T = Z(N)/T ≤ Z(N/T ). If Φ(N/T ) �= Z(N/T ), then
Z(N/T ) = N/T because N/Φ(N) is a chief factor of G, but this implies that
N/T is abelian, in particular, T = N ′ and N is extraspecial, a contradiction.
Therefore G/T satisfies the hypothesis of the lemma and N/T is non-abelian.
By induction, (N/T )

/
Φ(N/T ) ∼= N/Φ(N) has order p2m. �

Lemma 15. Let G be a group, and let N be a normal subgroup of G con-
tained in Φ(G). If p is a prime and G is a minimal non-p-supersoluble group,
then G/N is a minimal non-p-supersoluble group.

Conversely, if G/N is a minimal non-p-supersoluble group, N ≤ Φ(G),
and there exists a series 1 = N0 � N1 � · · · � Nt = N with Ni normal in G
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for all i and whose factors Ni/Ni−1 are either cyclic of order p or p′-groups
for 1 ≤ i ≤ t, then G is a minimal non-p-supersoluble group.

Proof. Assume that G is a minimal non-p-supersoluble group and N ≤
Φ(G). If M/N is a proper subgroup of G/N , then M is a proper subgroup of
G. Hence M is p-supersoluble, and so is M/N . If G/N were p-supersoluble,
since N ≤ Φ(G), G would be p-supersoluble, a contradiction. Therefore
G/N is minimal non-p-supersoluble.

Conversely, assume that G/N is a minimal non-p-supersoluble group,
N ≤ Φ(G), and that there exists a series 1 = N0 � N1 � · · · � Nt = N with
Ni normal in G for all i and factors Ni/Ni−1 cyclic of order p or p′-groups for
1 ≤ i ≤ t. It is clear that G cannot be p-supersoluble. Let M be a maximal
subgroup of G. Since N ≤ Φ(G), N ≤ M . Thus M/N is p-supersoluble. On
the other hand, it is clear that every chief factor of M below N is either a
p′-group or a cyclic group of order p. Consequently, M is p-supersoluble. �

Lemma 16 ([1]). Let A be a group, and let B be a normal subgroup of
A of prime index r dividing p − 1, p a prime. If M is an irreducible and
faithful A-module over GF(p) of dimension greater than 1 and the restriction
of M to B is a sum of irreducible B-modules of dimension 1, then M has
dimension r. In this case, M is isomorphic to the induced module of one of
the direct summands of MB from B up to A.

In the rest of the paper, F will denote the formation of all p-supersoluble
groups, p a prime.

Lemma 17. Let G be a minimal non-p-supersoluble group whose p-supersol-
uble residual N = GF is normal Sylow p-subgroup. Then a Hall p′-subgroup
R/Φ(G) of G/Φ(G) is either cyclic of prime power order or a minimal non-
abelian group.

Proof. By Lemma 15, we can assume without loss of generality that
Φ(G)=1. Then, by Lemma 13, G is a primitive group and CG(N) = N . In
particular, for each subgroup X of G, we have that Op′,p(XN) = N . Let M
be a maximal subgroup of R. Then MN is a p-supersoluble group and so
MN/ Op′,p(MN) = MN/N is abelian of exponent dividing p− 1. Therefore
if R is non-abelian, then it is a minimal non-abelian group. Suppose that R
is abelian. If R has a unique maximal subgroup, then R is cyclic of prime
power order. Assume now that R has at least two different maximal sub-
groups. Then R is a product of two subgroups of exponent dividing p − 1.
Consequently R has exponent p − 1 and so N is a cyclic group of order p
by [6; B, 9.8], a contradiction. Therefore if R is not cyclic of prime power
order, R must be a minimal non-abelian group and the lemma is proved. �
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Lemma 18. Let G be a minimal non-p-supersoluble group with a normal
Sylow p-subgroup N such that G/Φ(N) is a Schmidt group. Then G is a
Schmidt group.

Proof. Let G be a minimal non-p-supersoluble group with a normal Sylow
p-subgroup N such that G/Φ(N) is a Schmidt group. Then G = NQ, for
a Hall p′-subgroup Q of G. Moreover, since G is not p-supersoluble and
G/Φ(N) is a Schmidt group, we have that Q is a cyclic q-group for a prime
q and q does not divide p− 1 by Theorem 2. Let M be a maximal subgroup
of G. If N is not contained in M , then a conjugate of Q is contained in M
and so we can assume without loss of generality that M = Φ(N)Q. Since q
does not divide p − 1 and M is p-supersoluble, we have that Q centralises
all chief factors of a chief series of M passing through Φ(N). But by [6; A,
12.4], it follows that Q centralises Φ(N) by and so M is nilpotent. If N is
contained in M , then M is a normal subgroup of G such that M/Φ(N) is
nilpotent. By [7; III, 3.5], it follows that M is nilpotent. This completes the
proof. �

3. Proof of the main theorems

Proof of Proposition 8. By Lemma 13, G/Φ(G) has a unique minimal
normal subgroup T/Φ(G) and T = GFΦ(G). It follows that T/Φ(G) must
have order divisible by p. Assume that T/Φ(G) is a direct product of non-
abelian simple groups. We note that, since G/Φ(G) is a minimal non-p-
supersoluble group by Lemma 15, T/Φ(G) = G/Φ(G) and so G/Φ(G) is a
simple non-abelian group.

Assume now that T/Φ(G) is a p-group. By Lemma 13, we have that GF

is a p-group. In this case, T/Φ(G) is complemented by a maximal subgroup
M/Φ(G) of G/Φ(G). Since M is p-supersoluble, so is M/Φ(G). Therefore
G/Φ(G) is p-soluble. It follows that G is p-soluble. �
Proof of Theorem 9. Assume that G is a p-soluble minimal non-p-super-
soluble group. By Lemma 13 and Proposition 8, N = GF is a p-group.

Assume first that N is not a Sylow subgroup of G. By Lemma 13,
N/Φ(N) is non-cyclic.

Assume that Φ(G) = 1. Then N is the unique minimal normal subgroup
of G, which is an elementary abelian p-group, and it is complemented by a
subgroup, R say. Moreover, N is self-centralising in G. This implies that
Op′,p(G) = N = Op(G). Since N is not a Sylow p-subgroup of G, we have
that p divides the order of R. Consider a maximal normal subgroup M of R.
Observe that NM is a p-supersoluble group and Op′,p(NM) = Op(NM) = N
because Op(M) is contained in Op(R) = 1. Therefore M ∼= MN/ Op′,p(MN)



136 A. Ballester-Bolinches and R. Esteban-Romero

is abelian of exponent dividing p − 1. It follows that M is a normal Hall
p′-subgroup of R and |R : M | = p because p divides |R|. In particular,
M is the only maximal normal subgroup of R. Moreover, if C is a Sylow
p-subgroup of R, then C is a cyclic group of order p.

Let M0 be a normal subgroup of R such that M/M0 is a chief factor of R.
Let X = NM0C. Since X is a proper subgroup of G, we have that X is
p-supersoluble. Hence X/ Op′,p(X) is an abelian group of exponent dividing
p − 1. It follows that C ≤ Op′,p(X). In particular, C = M0C ∩ Op′,p(X) is
a normal subgroup of M0C which intersects trivially M0. We conclude that
C centralises M0. If M1 is another normal subgroup of R such that M/M1

is a chief factor of R, then M = M0M1. The same argument shows that
C centralises M1 and so C centralises M as well, a contradiction because
in this case C ≤ Z(R) and then C ≤ Op(R) = 1. Consequently M0 is the
unique such normal subgroup. Since M is abelian, we have that M0 ≤ Z(R).

Now R has an irreducible and faithful module N over GF(p). By [6;
B, 9.4], Z(R) is cyclic. In particular, M0 is cyclic. We will prove next
that M0 = 1. In order to do so, assume, by way of contradiction, that
M is not a minimal normal subgroup of R. First of all, if M is not a q-
group for a prime q, then M is a direct product of its Sylow subgroups,
but all of them should be contained in M0, a contradiction. Therefore,
M is a q-group for a prime q. Since M has exponent dividing p − 1, we
have that q divides p − 1. If Soc(M) is a proper normal subgroup of M ,
then Soc(M) ≤ M0. Since M0 is cyclic, we have that M is an abelian
group with a cyclic socle. Therefore M is cyclic. But since q divides p − 1,
we have that C centralises M and so C ≤ Op(R) = 1, a contradiction.
Consequently M = Soc(M), and M is a C-module over GF(q). If M is
not irreducible as C-module, then M can be expressed as a direct sum
of proper C-modules over GF(q). Hence M has at least two maximal C-
submodules, which yield two different chief factors M/M1 and M/M2 of R,
a contradiction. Therefore M is a minimal normal subgroup of R, R = MC,
and CR(M) = M . On the other hand, N is a faithful and irreducible R-
module over GF(p). By Clifford’s theorem [6; B, 7.3], the restriction of N to
M is a direct sum of |R : T | homogeneous components, where T is the inertia
subgroup of one of the irreducible components of N when regarded as an M-
module. Moreover, by [6; B, 8.3], we have that each of these homogeneous
components Ni is irreducible. Therefore they have dimension 1 because NiM
is supersoluble for every i. Since N is not cyclic, we have that |R : T | > 1.
Since M ≤ T ≤ R, we have that M = T and so N has order pp.

Assume now that Φ(G) �= 1. In this case, G = G/Φ(G) is a minimal
non-p-supersoluble group by Lemma 15 and Φ(G) = 1. We observe that
NΦ(G)/Φ(G) cannot be a Sylow p-subgroup of G/Φ(G), because otherwise
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NH , where H is a Hall p′-subgroup of G, would be a proper supplement to
Φ(G) in G, which is impossible. In particular, if T is a normal subgroup of
G contained in Φ(G), then the p-supersoluble residual NT/T of G/T is not
a Sylow p-subgroup of G/T . Therefore G has the above structure. Since

NΦ(G) = F(G), F
(
G/Φ(G)

)
= F(G)/Φ(G), and Φ

(
F(G)/Φ(G)

)
= 1,

we have that N = (G)F = NΦ(G)/Φ(G) satisfies

N/Φ(N) =
(
NΦ(G)/Φ(G)

)/
Φ

(
NΦ(G)/Φ(G)

)

=
(
F(G)/Φ(G)

)/
Φ

(
F(G)/Φ(G)

)
,

which is isomorphic to F(G)/Φ(G) = NΦ(G)/Φ(G), and the latter is G-
isomorphic to N/

(
N ∩ Φ(G)

)
= N/Φ(N) by Lemma 13. Assume that

Φ(N) �= 1. By Lemma 14, we have that N/Φ(N) has square order. But
this order is equal to |N/Φ(N)| = pp, which implies that p = 2. This
contradicts the fact that q divides p − 1. Therefore Φ(N) = 1. Now we
will prove that Φ(G)p, the Sylow p-subgroup of Φ(G), is a central cyclic
subgroup of G. Assume first that Φ(G)p′ , the Hall p′-subgroup of Φ(G),
is trivial. We have that G/Φ(G) = N M C, where C is a cyclic group of
order p, M is an irreducible and faithful module for C over GF(q), q a prime
dividing p − 1, and N is an irreducible and faithful module for M C over
GF(p) of dimension p. Let N , M , and C be, respectively, preimages of N ,
M , and C by the canonical epimorphism from G to G/T . We can assume
that N = GF and M is a Sylow q-subgroup of G. Since C is cyclic of order p,
we can find a cyclic subgroup C of G such that C = CΦ(G)/Φ(G). Consider
now a chief factor H/K of G contained in Φ(G)p. Then G/ CG(H/K) is an
abelian group of exponent dividing p−1 and H/K is centralised by a Sylow
p-subgroup of G/K; in particular, G/ CG(H/K) is isomorphic to a factor
group of a group with a unique normal subgroup of index p. It follows that
CG(H/K) = G, that is, H/K is a central factor of G. Now N centralises
Φ(G) because Φ(N) = 1 = N ∩Φ(G) and M is a q-group stabilising a series
of Φ(G). By [6; A, 12.4], M centralises Φ(G). Moreover C normalises M
because MΦ(G) = M × Φ(G) is normalised by C. In particular, MC is a
subgroup of G. Since G = N(MC) and N is a minimal normal subgroup of
G, it follows that MC is a maximal subgroup of G. Hence Φ(G) is contained
in MC and so in C. This implies that Φ(C) ≤ Z(G). In the general case,
we have that

Φ(G)/Φ(G)p′ ≤ Z
(
G/Φ(G)p′

)
.

Then [G, Φ(G)p] ≤ Φ(G)p′ . Therefore Φ(G)p ≤ Z(G). On the other hand,
it is clear that Φ(G)p is a proper subgroup of C. Thus Φ(G)p ≤ Φ(C) and
so Φ(G)p ≤ Φ(MC). Now Φ(G)p′ = Φ(G)q, the Sylow q-subgroup of Φ(G),
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is contained in M and M/Φ(G)p′ is elementary abelian. Hence Φ(M) ≤
Φ(G)p′. Moreover, by Maschke’s theorem [6; A, 11.4], the elementary abelian
group M/Φ(M) admits a decomposition

M/Φ(M) = Φ(G)p′/Φ(M) × A/Φ(M),

where A is normalised by C. In this case, R = MC = A
(
CΦ(G)p′

)
. Since

C normalises A, we have that AC is a subgroup of G. Therefore N(AC) is
a subgroup of G and so G = (NAC)Φ(G)p′ . We conclude that G = NAC.
By order considerations, we have that M = A and so Φ(M) = Φ(G)p′ .

Now let G be a minimal non-p-supersoluble group such that N is a Sylow
p-subgroup of G. Let Q be a Hall p′-subgroup of G. Then G = NQ. Denote
with bars the images in G = G/Φ(G). By Lemma 13, N = NΦ(G)/Φ(G)
is a minimal normal subgroup of G = G/Φ(G) and either N is elementary
abelian, or N ′ = Z(N) = Φ(N). Note that Φ(N) = Φ(G)p, the Sylow p-
subgroup of Φ(G), because Φ(N) is contained in Φ(G)p and N is a chief
factor of G. Assume that Φ(G)p′ , the Hall p′-subgroup of Φ(G), is not
contained in Φ(Q). Then there exists a maximal subgroup A of Q such
that Q = AΦ(G)p′. In this case, G = NQ = NAΦ(G)p′ and so G = NA.
It follows that A = Q by order considerations, a contradiction. Therefore
Φ(G)p′ ≤ Φ(Q). We also note that since

Q = QΦ(G)/Φ(G) ∼= Q/Φ(G)q,

where Φ(G)q is the Sylow q-subgroup of Φ(G), has an irreducible and faithful
module N = N/Φ(N) over GF(p), we have that Z(Q) is cyclic by [6; B, 9.4].

By Lemma 17 we have that the Hall p′-subgroup Q of G is either a cyclic
group of prime power order or a minimal non-abelian group.

Suppose that Q = 〈z̄〉 is a cyclic group of order a power of a prime
number, q say. Since this group is isomorphic to Q/Φ(G)q and Φ(G)q ≤
Φ(Q), we have that Q is a cyclic group of q-power order, Q = 〈z〉 say.

Suppose that the order of z̄ is qf . Then qf−1 divides p−1. If z̄q = 1, then
G is a Schmidt group. By Lemma 18, G is a Schmidt group. By Theorem 2,
G is a group of Type 2 if Φ(N) = 1, or 3 if Φ(N) �= 1.

Assume now that f ≥ 2. In this case, q divides p−1 and, by Lemma 16,
we have that N has order pq. Let a0 ∈ N \ 1. Let ai = azi

0 for 1 ≤ i ≤ q − 1,
then azq

0 = ai
0, where i is a qf−1-root of unity modulo p. It follows that

(azqf−1

0 ) = aiq
f−2

0 .

If i is not a primitive qf−1-th root of unity modulo p, we have that iq
f−2 ≡ 1

(mod p). In particular, azqf−1

0 = a0, which contradicts the fact that the order
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of z̄ is qf . If Φ(N) = 1, then we obtain a group of Type 4. If Φ(N) �= 1, then
N has square order by Lemma 14 and so q = 2. Hence N is an extraspecial
group of order p3 and exponent 3, and G is a group of Type 5.

Assume now that Q is not cyclic. In this case, Q is a minimal non-
abelian group by Lemma 17. Let x be an element of Q. Since N〈x〉 is a
p-supersoluble group, we have that the order of x divides p−1. It follows that
the exponent of Q divides p − 1. Since N = N/Φ(N) is an irreducible and
faithful Q-module over GF(p) of dimension greater than 1 and the restriction
of N to every maximal subgroup of Q is a sum of irreducible modules of
dimension 1, we have that N has order pq by Lemma 16.

Suppose that Q is a q-group for a prime q. By Theorem 1,

either Q ∼= Q8, or Q ∼= GII(q, m, n), or Q ∼= GIII(q, m, n).

Suppose that Q is isomorphic to a quaternion group Q8 of order 8. In
this case, q = 2, |N | = p2 and exp(Q) = 4 divides p − 1. If Φ(N) = 1, then
we have a group of Type 6. Assume that Φ(N) �= 1. In this case, N is an
extraspecial group of order p3 and exponent p and so G is a group of Type 7.

Suppose that Q is isomorphic to

GII(q, m, n) = 〈a, b | aqm

= bqn

= 1, ab = a1+qm−1〉,

where m ≥ 2, n ≥ 1, of order qm+n. Since Q has an irreducible and faithful
module N , we have that Z(Q) is cyclic by [6; B, 9.4]. Since 〈ap, bp〉 ≤ Z(Q)
and m ≥ 2, we have that bp = 1 and so n = 1. Hence qm divides p − 1.
If Φ(N) = 1, then we obtain a group of Type 8. If Φ(N) �= 1, then N is
non-abelian and so |N | is a square by Lemma 14. It follows that q = 2 and
G is a group of Type 9.

Suppose now that Q is isomorphic to

GIII(q, m, n) = 〈a, b | aqm

= bqn

= [a, b]q = [a, b, a] = [a, b, b] = 1〉,

where m ≥ n ≥ 1, of order qm+n+1. Since GIII(2, 1, 1) ∼= GII(2, 2, 1), we can
assume that (q, m, n) �= (2, 1, 1).

As before, Z(Q) is cyclic. Consider 〈aq, bq, [a, b]〉, which is contained in
Z(Q). If m ≥ 2, then 〈aq, [a, b]〉 is cyclic. Since [a, b] has order p, we have
that [a, b] = aqt for a natural number t. But hence ab = a1+qt and so 〈a〉
is a normal subgroup of G. Therefore |Q| = |〈a, b〉| = |〈a〉〈b〉| ≤ qm+n, a
contradiction. Consequently m = 1. It follows that Q is an extraspecial
group of order q3 and exponent q. If Φ(N) �= 1, then N has square order,
but this implies that q = 2, a contradiction. Consequently, Φ(N) = 1 and
we have a group of Type 10.
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Assume now that Q is a minimal non-abelian group which is not a q-group
for any prime q. Then Q is isomorphic to [Vq]Crs, where q and r are different
primes numbers, s is a positive integer, and Vq is an irreducible Crs-module
over the field of q elements with kernel the maximal subgroup of Crs. Since
NVq is a p-supersoluble subgroup, it follows that the restriction of N to Vq

can be expressed as a direct sum of irreducible modules of dimension 1. By
Lemma 16, we have that N has dimension r. We know that Φ(G)p′ ≤ Φ(Q)
and Φ(G)p = Φ(N). Since Q is isomorphic to Q/Φ(G)p′, and this group
is r-nilpotent, Q is r-nilpotent. Consequently Q has a normal Sylow q-
subgroup M . On the other hand, Φ(G)q, the Sylow q-subgroup of Φ(G),
is contained in M and M/Φ(G)q is elementary abelian. This implies that
Φ(M) is contained in Φ(G)q. Let C be a Sylow r-subgroup of G. Then, by
Maschke’s theorem [6; A, 11.4],

M/Φ(M) = Φ(G)q/Φ(M) × A/Φ(M)

for a subgroup A of M normalised by C. Then Q = (AC)Φ(G)q = AC and
so A = M . Consequently Φ(M) = Φ(G)q. Now the Sylow r-subgroup Φ(G)r

of Φ(G) is contained in C. If Φ(G)r were not contained in Φ(C), there would
exist a maximal subgroup T of C such that C = TΦ(G)r. This would imply
Q = MT and T = C, a contradiction. Hence Φ(G)r is contained in Φ(C)
and C is cyclic. Moreover Φ(G)r centralises M .

If Φ(N) = 1, then we have a group of Type 11. If Φ(N) �= 1, then r = 2
and N is an extraspecial group of order p3 and exponent p. This is a group
of Type 12.

Conversely, it is clear that the groups of Types 1 to 12 are minimal
non-p-supersoluble. �
Proof of Theorem 10. It is clear that all groups of the statement of the
theorem are minimal non-supersoluble. Conversely, assume that a group
is minimal non-supersoluble. Hence it is soluble, and so its p-supersoluble
residual is a p-group by Proposition 8. Note that groups of Type 1 in
Theorem 9 are not minimal non-supersoluble. On the other hand, groups
of Type 11 are not minimal non-supersoluble when r does not divide q − 1,
because in this case the subgroup MC is not supersoluble. �
Proof of Theorem 11. Assume that the result is false. Choose for G a
counterexample of least order. Since the property of the statement is inher-
ited by subgroups, it is clear that G must be a minimal non-supersoluble
group, and so a minimal non-p-supersoluble group for a prime p. In par-
ticular, the p-supersoluble residual N = GF of G is a p-group. Suppose
that N has exponent p. The hypothesis implies that every subgroup of N
is normalised by Op(G). In particular, N/Φ(N) is cyclic, a contradiction.
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Consequently p = 2 and the exponent of N is 4. By Theorem 9, the only
group with F-residual of exponent 4 is a group of Type 3. But in this case
either N/Φ(N) has order 4 and N must be isomorphic to the quaternion
group of order 8, because the dihedral group of order 8 does not have any
automorphism of odd order, or N/Φ(N) has order greater than 4. In the
last case, N has an extraspecial quotient, which has a section isomorphic to
a quaternion group of order 8, final contradiction. �
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