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On the density of continuous functions
in variable exponent Sobolev space

Peter A. Hästö

Abstract
In this article we give new conditions for the density of continuous

or smooth functions in variable exponent Sobolev spaces. Our first re-
sult combines the previously known sufficient conditions, a monotony
condition by Edmunds and Rákosńık and a continuity condition inde-
pendently due to Samko and Diening, into a single weaker condition.
The second main result gives a sufficient condition in terms of the
regularity of the level-sets of the variable exponent.

1. Introduction

In this paper we prove the density of smooth or continuous functions in
variable exponent Sobolev spaces under new and weaker conditions than
were previously known. The first main result is a refinement of previous
results; the second is derived using a new method.

Variable exponent Lebesgue and Sobolev spaces have been intensely in-
vestigated in the last five year, see [8, 12, 20, 17, 34] for overviews. The main
motivation for studying these spaces are differential equations with non-
standard growth and coercivity conditions, see e.g. [1, 2, 13, 29], which have
been applied in models of electrorheological fluids [32] and image restora-
tion [3]. One major factor in this increase in interest was the discovery of a
fairly weak condition on the exponent which guarantees that the variable ex-
ponent space has most properties of classical Lebesgue and Sobolev spaces.
This is the so-called logarithmic Hölder continuity (a.k.a. weak-Lipschitz or
Dini-Lipschitz) condition:

|p(x) − p(y)| � C

− log |x − y| for |x − y| ≤ 1

2
.
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One very important consequence of this condition is that the maximal
operator is locally bounded in Lp(·) [7], see also [4, 30]. Moreover, the con-
dition is essentially the optimal one for drawing this conclusion [31]. More
recently also potential type operators and singular integrals have been stud-
ied in variable exponent spaces under the same condition, see e.g., [6, 9, 10,
18, 26].

In contrast to the situation of the maximal operator, necessary and suf-
ficient conditions for the density of smooth functions in Sobolev space are
quite intricate. Samko [33] and Diening [7] have shown, independently, that
log-Hölder continuity of the exponent is sufficient for the density of smooth
functions. In more general domains, a density result under the log-Hölder
assumption was recently obtained by Cruz-Uribe and Fiorenza [5, Theo-
rem 2.6]. Edmunds and Rákosńık [11] have given a sufficient condition of a
different kind, which requires that the exponent be monotone in a certain
sense. Their conditions allows no saddle points, strict minima or maxima,
but works even for some discontinuous exponents.1

These conditions have some obvious short-comings: the Edmunds–Rá-
kosńık monotony condition fails if the exponent has a strict minimum or
maximum, no matter how regular it would otherwise be there. The continu-
ity condition, on the other hand, does not work for instance if the exponent
is piece-wise constant, a case in which it is often easy to see that we have
density. The first result of this paper, Theorem 3.2, combines the suffi-
cient conditions of Samko/Diening and Edmunds–Rákosńık to give a single,
much weaker condition. Although this new result remedies some of these
short-comings, there are still some obvious cases where it does not work.
One example is when the exponent has a ridge or trough (see Figure 2 on
page 224).

The density results in [5, 7, 11, 33], like Theorem 3.2, are all based on
convolving the Sobolev function with a suitable mollifier. However, this tool
does not seem very well suited to variable exponent spaces, since convolu-
tion with a smooth compactly supported function is in general not bounded
from Lp(·) to itself.

In Section 4 we introduce a method which is based on convolution only in
the level-sets of the exponent. Once we restrict our attention to the level-set
of the exponent, convolution again becomes a very natural operation which
does not impose any additional restrictions on the exponent. However, to
patch up our approximations on level-sets we have to assume that the level-
sets are bilipschitz images of parallel planes or concentric circles.

1After this article was completed, two more investigations on this issue were completed
by Zhikov [37] and Fan, Wang and Zhao [15]. The latter article includes also Theorem 3.2
of this paper.
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In contrast to previous results, Theorem 4.10 allows us to conclude only
that continuous, but not necessarily smooth, functions are dense.

It is interesting to note that although the level-sets of the exponent
seems like a prime candidate for determining whether a variable exponent
space is well-behaved or not, there is to-date only one result based on the
regularity of level-sets, by Růžička on the Sobolev embedding theorem [32,
Proposition 2.9].

Although it should be clear to anyone studying function spaces that the
question of density of continuous or smooth functions is central, it might
have some additional ramifications in the variable exponent spaces. Based
on earlier work by Zhikov [36], the author presented an example of a variable
exponent Sobolev space with uniformly continuous exponent in which con-
tinuous functions are not dense and showed that in this space the Dirichlet
energy integral minimizer need not be continuous and that not quasievery
point need be a Lebesgue point of a Sobolev function [24]. This prompts
the question: what happens to the regularity of the variable exponent space
if we assume that continuous functions are dense instead of assuming that
the exponent is log-Hölder continuous? We return to this and other open
questions in Section 5.

2. Preliminaries

For x ∈ R
n and r > 0 we denote by Bn(x, r) the open ball with center x and

radius r. We abbreviate Bn(r) = Bn(0, r), S(r) = ∂Bn(r) and Bn = Bn(1).
For a ball B and a constant c we denote by cB the ball with the same center
as B and c times the radius. By ei we denote the ith unit vector. By Ω we
always denote a non-empty open subset of R

n. The inequality u � v means
that there exists a constant C such that u � Cv. For an integrable function
defined on a set A of finite non-zero measure we denote

uA = –

∫
A

u(x) dx =
1

|A|
∫

A

u(x) dx.

Let p : Ω → [1,∞) be a measurable bounded function, called a vari-
able exponent on Ω. For A ⊂ Ω we set p+

A = ess supx∈A p(x) and p−A =
ess infx∈A p(x) and abbreviate p+ = p+

Ω and p− = p−Ω. We define the vari-
able exponent Lebesgue space Lp(·)(Ω) to consist of all measurable functions
u : Ω → R for which the modular �p(·)(u) =

∫
Ω
|u(x)|p(x) dx is finite. We

define the Luxemburg norm on this space by

‖u‖Lp(·)(Ω) = ‖u‖p(·) = inf{λ > 0 : �p(·)(u/λ) � 1}.
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One central property of these spaces (since p is bounded) is that �p(·)(ui) → 0
if and only if ‖ui‖p(·) → 0. This and many other basic results were proven
in [28] (similar results were derived earlier in the one-dimensional case by
Sharapudinov [35]).

It is also possible to consider variable exponent spaces with unbounded
exponents. However, in this case we do not know whether continuous func-
tions are dense in Lp(·). Also, functions with compact support need not be
dense even in Lp(·). Examples of this were given, independently, by Cruz-
Uribe & Fiorenza [5, p. 5] and Harjulehto [19, Example 3.1].

The variable exponent Sobolev space W 1,p(·)(Ω) is the subspace of func-
tions u ∈ Lp(·)(Ω) whose distributional gradient exists almost everywhere
and satisfies |∇u| ∈ Lp(·)(Ω). The norm ‖u‖1,p(·) = ‖u‖p(·) + ‖∇u‖p(·) makes
W 1,p(·)(Ω) a Banach space. When we want to emphasize in which set the
norm is taken we use the notation ‖u‖W 1,p(·)(Ω). We also define a modular in
the Sobolev space, �1,p(·)(u) = �p(·)(u) + �p(·)(|∇u|).

We will derive results for the density of smooth and continuous functions
in Sobolev spaces. For an open set Ω we denote the set of continuous and
smooth functions by C(Ω) and C∞(Ω), respectively. By smooth we mean
that the classical derivatives of arbitrary order exist at every point of the
open set. By C0(Ω) and C∞

0 (Ω) we denote the corresponding spaces of
functions which have compact support in Ω.

3. A merger of old conditions

In this section we will show how to combine the continuity condition and
the monotony condition to give a single, weaker condition for the density of
smooth functions in variable exponent Sobolev space. The new condition
says that the exponent need not be monotone, as long as it decreases no
more than allowed by log-Hölder continuity.

The idea of the proof of the next lemma is to combine the directed
mollifier of Edmunds–Rákosńık with an estimate based on the Diening’s
method from [7].

Lemma 3.1. Suppose that the bounded variable exponent p is defined on
Ω = Bn(7/6) and let K � 0. Suppose that there exist r ∈ (0, 1/12) and
h ∈ (0, 1) such that for every x ∈ Bn we have

p(y) − p(x) � − K

log(1/|x− y|)
for every y in the cone ⋃

0<t�r

Bn(x + te1, ht).

Then C∞(Bn) ∩ W 1,p(·)(Bn) is dense in W 1,p(·)(Bn).
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Proof. Let φ ∈ C∞
0 (Bn) be a non-negative function of unit integral and fix

ε > 0. For an integrable function u : Bn(7/6) → R and δ ∈ (0, r) we define

Rδu(x) =

∫
Bn

u(x + δ(hz + e1))φ(z) dz.

The usual integration-by-parts argument shows that Rδu is smooth.

Let u ∈ Lp(·)(Ω). We next show that ‖Rδu − u‖p(·) → 0. Recall that to
do this it suffices to show that �p(·)(Rδu−u) → 0. Using that φ is bounded,
we estimate

�p(·)(Rδu − u) =

∫
Bn

∣∣∣ ∫
Bn

(u(x + δ(hz + e1)) − u(x))φ(z) dz
∣∣∣p(x)

dx

�
∫

Bn

(∫
Bn

|u(x + δ(hz + e1)) − u(x)| dz
)p(x)

dx

Let us denote B = Bn(x+δe1, hδ). Using Hölder’s inequality for the fixed

exponent p−B and the fact that
∫

B
|u(z) − u(x)|p−Bdz � 1 for small enough δ

(uniformly), we find that

∫
Bn

(∫
Bn

|u(x + δ(hz + e1)) − u(x)| dz
)p(x)

dx

=

∫
Bn

(
|Bn| –

∫
B

|u(z) − u(x)| dz

)p(x)

dx

�
∫

Bn

(
–

∫
B

|u(z) − u(x)|p−B dz

)p(x)/p−B
dx

�
∫

Bn

(hδ)−np(x)/p−B

∫
B

|u(z) − u(x)|p−B dz dx.

We will use the method introduced by Diening to deal with this. By as-
sumption we have

p(y) ≥ p(x) − K

log(1/|x − y|)

for all y ∈ B. Thus p is ”log-Hölder with respect to” x, which means (pre-

cisely) that δ(p−B−p(x))/p−B is bounded by a constant independent of δ and x.
(This follows since p−B − p(x) � K/ log δ.)
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Using this, we continue our previous estimate:∫
Bn

( ∫
Bn

|u(x + δ(hz + e1)) − u(x)| dz
)p(x)

dx

�
∫

Bn

(hδ)n(p−B−p(x))/p−B –

∫
B

|u(z) − u(x)|p−B dz dx

�
∫

Bn

∫
Bn

|u(x + δ(hz + e1)) − u(x)|p−B dz dx

=

∫
Bn

∫
Bn

|u(x + δ(hz + e1)) − u(x)|p−B dx dz.

Then we pick up along the track of Edmunds–Rákosńık. Since 1 +
|u(x)|p(x) is an integrable function, we can choose τ > 0 such that∫

V

1 + |u(x)|p(x) dx < ε/2

for every V ⊂ Bn with |V | < τ . For a fixed z ∈ Bn this implies that∫
V

2 + |u(x + δ(hz + e1))|p(x+δ(hz+e1)) + |u(x)|p(x) dx < ε,

for |V | < τ , since the translate of V also satisfies |V + δ(hz +e1)| < τ . Since
u is measurable there exists, by Luzin’s theorem, an open set U ⊂ Bn(7/6)
such that u is continuous in Bn(7/6) \ U and |U | < τ/2. By choosing δ
small enough we assume that for all x, y ∈ Bn \ U with |x− y| < δ we have
|u(y)−u(x)| < ε. For z ∈ Bn we denote by Uz the set of those points x ∈ Bn

for which x ∈ U or x + δ(hz + e1) ∈ U . Note that |Uz| < τ for every z. We
find that∫

Bn

∫
Bn

|u(x + δ(hz + e1)) − u(x)|p−B dx dz

�
∫

Bn

∫
Bn

εp−B dx dz +

∫
Bn

∫
Uz

|u(x + δ(hz + e1)) − u(x)|p−B dx dz

�
∫

Bn

∫
Bn

max{ε, εp+} dx dz +

∫
Bn

∫
Uz

|u(x + δ(hz + e1))|p−B + |u(x)|p−B dx dz

� max{ε, εp+} +

∫
Bn

∫
Uz

2 + |u(x + δ(hz + e1))|p(x+δ(hz+e1)) + |u(x)|p(x) dx dz

� max{ε, εp+} +

∫
Bn

ε dz,

where, for the third inequality, we used that

|u(x)|p−B � 1 + |u(x)|p(x),

and similarly for |u(x+ δ(hz + e1))|p−B . Thus we have an upper bound which
tends to zero with ε.
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To complete the proof of the lemma we still have to show that ‖Rδu −
u‖1,p(·) → 0 for a function u in Sobolev space. This follows easily from
the Lp(·)-result that we just derived, because ∂i[Rδu] = Rδ[∂iu], where ∂i

represents differentiation with respect to the ith coordinate. Thus the pre-
vious argument applies to all the ∂iu, which are in Lp(·)(Ω) and therefore
|∇u| ∈ Lp(·)(Ω) �

The idea of the next proof is to patch up the balls from the previous
lemma following the proof of [11, Theorem 1].

Theorem 3.2. Let Ω ⊂ R
n. Suppose that for every point x ∈ Ω there are

four quantities
rx ∈ (

0, 1
2
min{1, d(x, ∂Ω)}),

hx ∈ (0, 1), ξx ∈ Sn−1 and Kx ∈ [0,∞) such that for every point y ∈ Bn(x, rx)
we have

p(z) − p(y) � − Kx

log(1/|y − z|)
for all points z in the cone

C(y) =
⋃

0<t�rx

Bn(y + tξx, hxt).

Then C∞(Ω) ∩ W 1,p(·)(Ω) is dense in W 1,p(·)(Ω).

Proof. Let Bx = B(x, rx/10). By a standard covering theorem we find a
countable subfamily consisting of disjoint B′

i = Bxi
such that

⋃∞
i=1 5B′

i = Ω.
We define Bi = 6B′

i and B∗
i = 7B′

i. We note that we still have
∞⋃
i=1

Bi =

∞⋃
i=1

B∗
i = Ω

and we see (by the disjointness of the balls B′
i) that any point x ∈ Ω is

contained in at most θ of the balls B∗
i . Thus there exists a partition of unity

by smooth functions φi such that φi is supported in Bi and |∇φi| is bounded
by Li � 1.

�

Fix u ∈ W 1,p(·)(Ω) and ε > 0. By Lemma 3.1 we can choose vi ∈
W 1,p(·)(Bi) ∩ C∞(Bi) such that

‖u − vi‖W 1,p(·)(Bi) < 2−iε/Li.

Define v =
∑

φivi. Since at most finitely many of the φi are non-zero in a
neighborhood of any point, we see that v is smooth. We easily calculate that

‖u − v‖W 1,p(·)(Bi) �
∞∑
i=1

‖φi(u − vi)‖W 1,p(·)(Bi) �
∞∑
i=1

(1 + Li)‖u − vi‖W 1,p(·)(Bi)

� 2ε.
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Remark 3.3. Notice that if we set Kx ≡ 0 in the preceding theorem, then
we regain the result of Edmunds and Rákosńık. More precisely, that gives a
corrected version of the condition in [11]. The version in [11] only assumes
p(x) � p(z) for z ∈ C(x). To see that the result does not hold in that
form we need only consider the example of Zhikov (see [36] or [24]). (The
additional assumption is used on line 12 of page 234 of [11]. It is actually
clear from the paper that the correct version of the condition was what the
authors had in mind. However, since the incorrect version has been quoted
in the literature, this remark seems in place.)

A special case of the previous theorem is the following:

Corollary 3.4. Let r ≥ 0 and monotone in the sense of Edmunds–Rákosńık
(i.e. satisfy the condition of the previous theorem with Kx ≡ 0), and let q
be a log-Hölder continuous function, both defined on Ω and such that p =
q + r ≥ 1. Then C∞(Ω) ∩ W 1,p(·)(Q) is dense in W 1,p(·)(Ω).

Example 3.5. Consider the exponent shown in Figure 1: here we have
added the log-Hölder continuous function 1 + x1 + |x2| (xi refers to the
ith co-ordinate of x) to the monotone characteristic function χ{x∈Q : x1<0} in
the unit square Q. This exponent satisfies the assumptions of the previous
corollary.

Figure 1: The exponent p which is neither monotone nor continuous at the
origin.

As is shown by this corollary and example, the previous theorem is
stronger than just saying that the exponent is log-Hölder continuous in one
part of the domain and monotone in the rest — the exponent in the ex-
ample satisfies the assumptions of the theorem only because the exponent
is allowed to be either monotone or continuous within a single cone. This
flexibility is needed at the origin.
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4. A new type of condition

In this section we introduce a new kind of condition for the density of contin-
uous functions in variable exponent Sobolev space. This condition is based
on the regularity of the level-sets of the exponent. The proof is composed
of two lemmas and corollaries. The idea is to prove the claim in some tem-
plate cases (a cube and a ball) and then to patch the templates together via
bilipschitz mappings.

Lemma 4.1. Let Q = (−1, 1)n and p+
Q < ∞. Suppose that the exponent p

depends only on the nth co-ordinate. Then C(Q) ∩ W 1,p(·)(Q) is dense in
W 1,p(·)(Q).

Proof. In this proof dx, dmn−1(x) and dm1(x) stand for integration with
respect to the n-, (n−1)- and 1-dimensional Lebesgue measures. We denote
the nth co-ordinate of x ∈ R

n by xn. We use

B = Bn(0, 1) ∩ {x ∈ R
n : xn = 0}

to denote the (n − 1)-dimensional unit ball which lives in the xn = 0 plane.
Let u ∈ W 1,p(·)(Q) and assume first that u has compact support in Q.

We consider only ε smaller than the distance between the support of u and
∂Q. Let φ : B → [0,∞) be smooth and compactly supported with∫

B

φ dmn−1 = 1.

We define an (n − 1)-dimensional convolution by

uε(x) =

∫
B

u(x + εy)φ(y) dmn−1(y).

Then clearly uε is continuous (even smooth) in the plane orthogonal to the
xn-axis. Consider two points differing in xn co-ordinate. Using that u is
absolutely continuous on almost every line parallel to the coordinate axes,
we find that

|uε(x) − uε(x + δen)| =
∣∣∣ ∫

B

[u(x + εy) − u(x + δen + εy)]φ(y) dmn−1(y)
∣∣∣

�
∫

B

|u(x + εy) − u(x + δen + εy)| dmn−1(y)

�
∫

B

∫ δ

0

|∇u(x + εy + ten)| dm1(t) dmn−1(y)

=

∫
B×[0,δ/ε]

|∇u(x + εy)| dy.

Since |∇u| ∈ L1(Q), the last integral tends to zero as δ → 0. Therefore uε

is uniformly continuous in the en direction as well, hence in all of Q.
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It remains to show that uε → u in Sobolev space. Define vx(y) = u(x +
εy) − u(x) and

Mε(x) =

∫
B

|vx(y)|p(x) dmn−1(y).

Using Fubini’s theorem for the first equality we find that∫
Q

Mε(x) dx �
∫

Q

∫
B

|u(x + εy)|p(x) + |u(x)|p(x) dmn−1(y) dx

= mn−1(B)

∫
Q

|u(x)|p(x) dx +

∫
B

∫
Q

|u(x + εy)|p(x) dx dmn−1(y)

= 2mn−1(B)�p(·)(u).

Thus Mε ∈ L1(Q). For M > 0 let EM ⊂ Q be the set of all x ∈ Q for
which Mε(x) > M . The previous inequality also implies that |EM | � C/M .
Choose M so large that

∫
EM

Mε(x) dmn(x) < ε.

It also follows that vx ∈ Lp(·)(B, mn−1) for almost every x. Thus we find,
using Hölder’s inequality for a fixed exponent, that∫

Q

|uε(x) − u(x)|p(x) dx =

∫
Q

∣∣∣ ∫
B

vx(y)φ(y) dmn−1(y)
∣∣∣p(x)

dx

�
∫

Q

∫
B

|vx(y)|p(x) dmn−1(y) dx.

We divide this integral into in two parts, and use
∫

EM
Mε(x) dmn(x) < ε:

(4.2)

∫
Q

|uε(x) − u(x)|p(x) dx � ε +

∫
Q\EM

Mε(x) dx.

For x ∈ Q\EM we see that ‖vx‖Lp(·)(B,mn−1) is uniformly bounded. Therefore
it follows by the continuity of the shift operator (in fixed exponent Lebesgue
space) that

‖u(x + εy) − u(x)‖Lp(y)(B,mn−1) → 0

with ε uniformly in Q \ EM . Thus the second term in (4.2) tends to zero
with ε, and so uε → u in Lp(·)(Ω).

The approximation result for the gradient is analogous, using the usual
identity

∂iuε(x) =

∫
B

[∂iu(x + εy)]φ(y) dmn−1(y).

Therefore the previous argument applies to all the co-ordinate functions of
∇u, and so ‖∇(u−uε)‖p(·) → 0. Thus uε ∈ W 1,p(·)(Q)∩C(Q) is the required
approximation of the compactly supported function u.
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Let then u ∈ W 1,p(·)(Q) be a general, not compactly supported, function.
Let Qi be the cube centered at the origin with side-length 2 − 21−i. Define
A2 = Q2 and Ai = Qi \ Qi−2 for larger i. Then we can find a partition of
unity by Lipschitz functions φi such that φi is compactly supported in Ai.
Let Li � 1 be the Lipschitz constant of φi. The function φiu has compact
support in Q, so the previous argument implies that there exists vi ∈ Q
supported in Ai such that ‖φiu − vi‖1,p(·) � 2−iε/Li. Then v =

∑∞
i=2 vi is

continuous and

‖u − v‖1,p(·) �
∞∑
i=2

‖φiu − vi‖1,p(·) �
∞∑
i=2

(1 + Li)2
−iε/Li � 2ε. �

Remark 4.3. If p− > 1, then we can say a bit more about the continuity of
uε: in the previous proof we derived the estimate

|uε(x) − uε(x + δen)| �
∫

B×[0,δ/ε]

|∇u(x + εy)|dy.

Since |∇u| ∈ Lp−(Q), this implies, by Hölder’s inequality, that

|uε(x) − uε(x + δen)|

�
∣∣B × [0, δ/ε]

∣∣1−1/p−
( ∫

B×[0,δ/ε]

|∇u(x + εy)|p−dy

)1/p−

�
(

δ
ε

)1−1/p−
,

so that uε is (1 − 1/p−)-Hölder continuous in compact subsets of Q.

By a simple trick we can apply the previous lemma to a much wider range
of situations. Recall that the mapping f : Q→ R

n is said to be L–bilipschitz if

1
L
|x − y| � |f(x) − f(y)| � L|x − y|

for all x, y ∈ Q.

Corollary 4.4. Let Q = (0, 1)n and let f : Q → R
n be L–bilipschitz. Let

p′ : Q → [1,∞) be a bounded variable exponent which depends only on the
nth coordinate. Define Ω = f(Q) and p = p′ ◦ f−1. Then C(Ω) ∩ W 1,p(·)(Ω)
is dense in W 1,p(·)(Ω).

Proof. This is just a change of variables. Let ε > 0, u ∈ W 1,p(·)(Ω) and
define u′ = u ◦ f . We have

�1,p′(·)(u′) =

∫
Q

|u′(y)|p′(y) + |∇u′(y)|p′(y) dy

�
∫

Ω

(|u(x)|p(x) + |L∇u(x)|p(x)
)
Jf−1(x) dx � Ln+p+

�1,p(·)(u),

so that u′ ∈ W 1,p′(·)(Q). By the previous lemma we find a function v′ ∈
C(Q) ∩ W 1,p′(·)(Q) such that �1,p′(·)(u′ − v′) < ε. Define v = v′ ◦ f−1. Then

by a similar calculation �1,p(·)(u − v) < Ln+p+
ε. �
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The previous corollary nicely takes care of the exponents with ridges or
troughs:

Example 4.5. Let Q = (−1, 1)2 and define

p(x) = 2 − (
log(100/|x2|)

)−a

for some a > 1. This exponent is shown in Figure 2, to the left. The
previous lemma allows us to conclude that continuous functions are dense
in W 1,p(·)(Q), whereas Theorem 3.2 is not applicable. The graph on right in
Figure 2 shows an exponent for which Corollary 4.4 is applicable.
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Figure 2: The exponent p with a ridge or trough.

The problem with Corollary 4.4 is that it again does not allow us to to
say anything in the case of exponents with strict local minima or maxima.
For that we need a different model.

Lemma 4.6. Suppose that the bounded exponent p depends only on |x|
in Bn. Then C(Bn) ∩ W 1,p(·)(Bn) is dense in W 1,p(·)(Bn).

Proof. Let u ∈ W 1,p(·)(Q) and define

v(x) = –

∫
S(|x|)

u(y) dmn−1(y).

Using the fixed-exponent Hölder inequality we find that∫
S(r)

|v(y)|p(y) dmn−1(y) �
∫

S(r)

|u(y)|p(y) dmn−1(y)

for r ∈ (0, 1). Integrating this over r implies that v ∈ Lp(·)(Bn). It is easy
to see that

∇v(x) = –

∫
S(|x|)

∇u(y) · y

|y| dmn−1(y),
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so that

|∇v(x)| ≤ –

∫
S(|x|)

|∇u(y)| dmn−1(y).

Therefore a similar argument shows that |∇v| ∈ Lp(·)(Bn).

Fix ε ∈ (0, 1) and choose r < 1 so small that

�W 1,p(·)(Bn(r))(u) < ε and �W 1,p(·)(Bn(r))(v) < ε.

Consider the domain D = Bn \ Bn(r/2). Denote by H+
i and H−

i the sets
{x ∈ D : xi > 0} and {x ∈ D : xi < 0}, respectively, where xi is the ith

coordinate of x. Then each H±
i satisfies the assumptions of Corollary 4.4

and so we can find continuous functions w±
i with

‖u − w+
i ‖W 1,p(·)(H+

i ) < εr and ‖u − w−
i ‖W 1,p(·)(H−

i ) < εr.

Let φ be a (C/r)–Lipschitz function such that 0 � φ � 1, φ = 1 on
Bn(r/2) and φ = 0 on Bn \ Bn(r). Let φ±

i be (C/r)–Lipschitz functions
with support in H±

i , such that {φ, φ+
1 , . . . , φ−

n } is a partition of unity on Bn.
Define

f = φv +

n∑
i=1

φ+
i w+

i + φ−
i w−

i .

Then we have

‖f −u‖1,p(·) � ‖φ(v−u)‖1,p(·) +
n∑

i=1

(‖φ+
i (w+

i −u)‖1,p(·) +‖φ−
i (w−

i −u)‖1,p(·)
)
.

For the terms in the sum we get

‖φ±
i (w±

i − u)‖1,p(·)
� ‖w±

i − u‖Lp(·)(H±
i ) + ‖(w±

i − u)∇φ±
i ‖Lp(·)(H±

i ) + ‖∇(w±
i − u)‖Lp(·)(H±

i )

� ‖w±
i − u‖W 1,p(·)(H±

i ) + C
r
‖w±

i − u‖Lp(·)(H±
i ) � εr(1 + C/r) � ε.

So it remains to estimate ‖φ(v−u)‖1,p(·). To estimate the Lp(·)-modular
of the function is easy:

∫
Bn(r)

|φ(x)(v(x) − u(x))|p(x) dx � 2p+−1
(
�Lp(·)(Bn(r))(u) + �Lp(·)(Bn(r))(v)

)
< 2p+

ε.
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For the gradient we calculate∫
Bn(r)

∣∣∇(
φ(x)(v(x) − u(x)

)∣∣p(x)
dx

�
∫

Bn(r)

(|∇φ(x)||v(x) − u(x)|)p(x)
+ |∇(v(x) − u(x))|p(x) dx

�
∫

Bn(r)

(
2
r
|v(x) − u(x)|)p(x)

dx + �Lp(·)(B(r))(|∇v|) + �Lp(·)(B(r))(|∇u|)

�
∫

Bn(r)

(
2
r
|v(x) − u(x)|)p(x)

dx + 2ε.

By the (n−1)-dimensional, fixed-exponent Poincaré inequality on the sphere
S we conclude that( ∫

S

(
1

diam S
|u−uS|

)q
dmn−1

)1/q

= 1
diam S

‖u−uS‖Lq(S,mn−1) � ‖∇u‖Lq(S,mn−1),

where uS denotes the (n−1)-dimensional average of u over S. Let us denote
by ∇S the non-radial gradient, and note that ∇Sv = 0, since v is radial.
Using the Poincaré inequality for the second inequality we find that∫

Bn(r)

(2
r
|v(x) − u(x)|)p(x)dx �

∫ r

0

∫
S(t)

(1
t
|v(y) − u(y)|)p(t) dmn−1(y) dm1(t)

�
∫ r

0

∫
S(t)

|∇S(v(y) − u(y))|p(t) dmn−1(y) dm1(t)

�
∫ r

0

∫
S(t)

|∇(v(y) − u(y))|p(t) dmn−1(y) dm1(t)

=

∫
Bn(r)

|∇(v(x) − u(x))|p(x) dx � ε.

Using this in the previous estimate we conclude that

�p(·)
(∇(φ(v − u))

)
� ε.

Therefore we have shown that f → u in W 1,p(·)(Bn).
It remains to show that f is continuous. Now the function w±

i and φ
are clearly continuous, so we need only worry about v. Since v is radial and
v ∈ W 1,p(·)(Bn), it behaves much like a one-dimensional Sobolev function
away from the origin. Thus we find that

|v(se1) − v(te1)| �
∫ t

s

|∇v(re1)| dr � 1

sn−1

∫ t

s

|∇v(re1)|rn−1 dr

=
C

sn−1

∫
Bn(t)\Bn(s)

|∇v(x)| dx,
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for every 0 < s < t < 1. We conclude that v is continuous except possibly
at the origin. Let δ > 0. Then the function

vδ(x) =

{
v(x), for x ∈ Bn \ Bn(δ)

v(δe1), for x ∈ Bn(δ)

is continuous in Bn and approximates v in W 1,p(·)(Bn). Using this function in
place of v, we get a sequence of continuous functions fδ → f , so we are
done. �

Remark 4.7. The previous proof illustrates the use of Corollary 4.4. We can
get arbitrarily close to the center-point, but we cannot quite reach it. We
return to this question in the next section, see Example 5.3. Note that the
function v was necessary, since we do not have a Poincaré inequality at our
disposal, unless p is log-Hölder continuous, see [21].

Example 4.8. Define

p(x) = 2 − (
log(1/|x|))−a

for some a > 1. Then the previous lemma allows us to conclude that con-
tinuous functions are dense in W 1,p(·)(Bn), whereas Theorem 3.2 is not ap-
plicable. Another example is given by

p(x) = 2 + sin(1/|x|).
Variable exponent spaces with exponent depending only on the distance

to the origin have been studied previously by Fan, Zhao and Zhao [14] in
connection with Strauss-Lion type imbeddings. However, for us the main
reason for looking at such spaces is the following corollary and its implica-
tions.

Corollary 4.9. Let f : Bn → R
n be L–bilipschitz. Let p′ : Bn → [1,∞)

be a bounded exponent which depends only on |x|. Define Ω = f(Bn) and
p = p′ ◦ f−1. Then C(Ω) ∩ W 1,p(·)(Ω) is dense in W 1,p(·)(Ω).

The proof is similar to the proof of Corollary 4.4, and is hence omitted.
We can combine the results from the corollaries in this section into the

following theorem. Notice that the partition of unity need not be uniformly
bilipschitz. This means that we can also handle cases where the regularity
of the exponent decreases towards the boundary of the domain.

The statement of the following theorem is quite complicated, but the
intuition behind it is simple. We must be able to split the domain into
regular pieces with sufficient overlap, such that every piece comes from one
of the previous corollaries.
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Theorem 4.10. Let Ω ⊂ R
n be open and let {Ωi} be an open covering of Ω

with a subordinate partition of unity by bilipschitz functions φi such that the
number of indices i for which φi(x) > 0 is locally bounded. Suppose further
that for every i the set Ωi satisfies the conditions of Corollary 4.4 or 4.9.
Then C(Ω) ∩ W 1,p(·)(Ω) is dense in W 1,p(·)(Ω).

Proof. Denote the bilipschitz constant of φi by Li. Fix u ∈ W 1,p(·)(Ω) and
ε > 0. By Corollary 4.4 or 4.9 we conclude that C(Ωi) is dense in W 1,p(·)(Ωi).
Therefore we can choose vi ∈ C(Ωi) ∩ W 1,p(·)(Ωi) so that

‖u − vi‖W 1,p(·)(Ωi) � ε2−i/Li.

Then v =
∑∞

i=1 φivi is continuous and satisfies

‖u − v‖p(·) �
∞∑
i=1

‖φi(u − vi)‖W 1,p(·)(Ωi) �
∞∑
i=1

(1 + Li)‖u − vi‖W 1,p(·)(Ωi) � ε.
�

It is not quite clear how the conditions of this theorem and those of
Theorem 3.2 are related. Theorem 3.2 can handle some cases where the
level-sets have cusps, as long as the cusp points in the right direction, see
Figure 3. Theorem 4.10, on the other hand, works in cases where there
is a cusp or ridge in the p-direction, like in Figure 2. (Obviously we can
trivially combine the theorems by allowing some of the Ωi’s in Theorem 4.10
to satisfy Theorem 3.2.)
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Figure 3: Theorem 3.2 works for the exponent on the left, but not for the
exponent on the right.

Remark 4.11. If the bilipschitz mappings in Theorem 4.10 could be replaced
by homeomorphisms, then the result would be essentially sharp, since it
would cover all cases except when the exponent has a saddle-point.
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5. Conclusions and questions

In this article we have given several conditions for the density of continuous
or smooth functions in variable exponent Sobolev spaces. Although these
conditions are not that simple, they demonstrate that the density of contin-
uous functions is a lot more common occurrence in Sobolev space than the
boundedness of the maximal function.

The results in this paper allow us to take care of a variety of exponents.
However, if the exponent has a saddle-point, then only the most restrictive
condition, log-Hölder continuity, works. On the other hand the example
in [24] showed that the growth rate at a saddle-point is critical to whether
continuous functions are dense. This raises the following question:

Question 5.1. Suppose that p : Ω → [1,∞) is a variable exponent without
saddle-points. Is C(Ω) ∩ W 1,p(·)(Ω) dense in W 1,p(·)(Ω)?

Another new aspect that has arisen in this article is that under some
conditions we can conclude that continuous (or Hölder continuous) functions
are dense in Sobolev space. It is natural to ask whether there in fact exists
an exponent such that continuous functions are dense, but smooth functions
are not? Intuitively, the converse seems more probable:

Question 5.2. Suppose that C(Ω) ∩ W 1,p(·)(Ω), or Cα(Ω) ∩ W 1,p(·)(Ω), is
dense in W 1,p(·)(Ω). Is it then true that smooth functions are dense in
W 1,p(·)(Ω)?

If p− > n, then every u ∈ W 1,p(·)(Ω) is continuous (when redefined on a
set of zero measure). Therefore a particular case of the previous question is:

Question 5.2’. If p− > n, are smooth functions dense in W 1,p(·)(Ω)?

Harjulehto and Hästö [20] have shown that smooth functions are dense
on open intervals of the real line irrespective of the variation of the bounded
exponent, so the answer to this question is yes in the case n = 1.

Arguing as in the proof of Lemma 4.6 it is sometimes possible to exclude
a point of irregularity in the domain, if we have a Poincaré inequality at our
disposal:

Example 5.3. Consider the square Q = (−1, 1)2 and define p to equal
p1 ∈ (1, 3/2) below the curve y =

√
x and p2 ∈ (p1, 3/2) above it, see

Figure 3, right. Then

C∞(Q) ∩ W 1,p(·)(Q) is dense in W 1,p(·)(Q).



230 P. A. Hästö

Proof. It suffices to prove the claim for a bounded function u ∈ W 1,p(·)(Q).
For every r ∈ (0, 1) we conclude by Theorem 3.2 that C∞(Q \ Bn(r)) ∩
W 1,p(·)(Q \ Bn(r)) is dense in W 1,p(·)(Q \ Bn(r)). So let

v ∈ C∞(Q \ Bn(r)) ∩ W 1,p(·)(Q \ Bn(r))

be such that
‖u − v‖W 1,p(·)(Q\Bn(r)) < ε/r.

Let φ have support in Bn(2r), equal 1 in Bn(r) and be (1/r)-Lipschitz.
We show that φuBn(2r) + (1 − φ)v is a sequence of approximating smooth
functions. As before we find that

‖u−(φuBn(2r) + (1 − φ)v)‖1,p(·)
� (1 + 1

r
)‖u − v‖W 1,p(·)(Q\Bn(r)) + ‖u − uBn(2r)‖W 1,p(·)(Bn(2r))

� 2ε + (1 + 1
r
)‖u − uBn(2r)‖Lp(·)(Bn(2r)) + ‖∇u‖Lp(·)(Bn(2r)).

The last term goes to zero, since |∇u| ∈ Lp(·)(Bn). So it remains to estimate
the middle term. Using the Poincaré inequality for a fixed exponent and
denoting the upper bound of |u| by u0 we find that

‖u − uBn(2r)‖Lp(·)(Bn(2r)) � ‖u − uBn(2r)‖Lp1(Bn(2r)) + ‖|u| + |uBn(2r)|‖Lp2(A)

� r‖∇u‖Lp1(Bn(2r)) + u0|A|1/p2,

where A is the set above the curve y =
√

x. Since

1
r
|A|1/p2 ∼ r3/(2p2)−1 → 0

as r → 0, the claim follows. �

Notice that if the cusp in the previous example would have been sharper,
than we could have drawn the conclusion for a larger range of exponents.
Therefore, the pointier the cusp, the better we know how to handle it!

The example gives rise to two questions:

Question 5.4. When can we approximate a Sobolev function locally with
a constant, using a Poincaré inequality or otherwise?

Affirmative answers to the following question would mean that we could
exclude problematic points from the interior of the domain, which would
greatly widen the applicability of our theorems. Notice that the answer is
certainly not always affirmative, even when E is just a single point, as is
demonstrated by the example in [24]. This property might be related to
results on removability in Sobolev spaces, see e.g., [27].
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Question 5.5. Suppose that C(Ω\E)∩W 1,p(·)(Ω\E) is dense in W 1,p(·)(Ω\
E), where E is a small set (in some appropriate sense). Does this imply that
C(Ω) ∩ W 1,p(·)(Ω) is dense in W 1,p(·)(Ω)?

As was mentioned in the introduction, we can also look at variable ex-
ponent spaces from a different angle and ask:

Question 5.6. Suppose that C(Ω)∩W 1,p(·)(Ω) is dense in W 1,p(·)(Ω). What
regularity properties of the Sobolev space does this imply?

Although this question has not hereto received that much attention,
some results have been derived under the assumption of density. For in-
stance, Harjulehto, Hästö, Koskenoja and Varonen showed that the density
of continuous functions is enough to guarantee that every Sobolev function
has a quasicontinuous representative [22, Theorem 5.2]. In [16], Fiorenza
states that he uses the assumption that smooth functions are dense in or-
der to prove some weak mean-continuity results. However, he then assumes
the more specific conditions of the Edmunds–Rákosńık result, and it is un-
clear to the author whether these latter assumptions are really needed in
that paper. In domains in R

n variable exponent Newtonian spaces agree
with variable exponent Sobolev spaces when continuous functions are dense,
hence results under this assumption can be derived from the metric measure
spaces setting, see [23].
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[21] Harjulehto, P. and Hästö, P.: A capacity approach to the Poincaré
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[28] Kováčik, O. and Rákosńık, J.: On spaces Lp(x) and W k,p(x). Czechoslo-
vak Math. J. 41(116) (1991), 592–618.

[29] Mingione, G. and Mucci, D.: Integral functionals and the gap prob-
lem: sharp bounds for relaxation and energy concentration. SIAM J. Math.
Anal. 36 (2005), 1540–1579.

[30] Nekvinda, A.: Hardy-Littlewood maximal operator on Lp(x)(Rn). Math.
Inequal. Appl. 7 (2004), 255–266.

[31] Pick, L. and Růžička, M.: An example of a space Lp(x) on which
the Hardy-Littlewood maximal operator is not bounded. Expo. Math. 19
(2001), 369–371.
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