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The volume near the zeroes
of a smooth function

Pavel Batchourine and Charles Fefferman

Abstract
We show that if a smooth function that never vanishes to infinite

order, then the set of points within the distance δ from the zeroes of
this function has volume O(δ).

1. Statement of Result

Let B(x, r) denote the open ball of radius r about x in R
n. In this note we

prove the following result.

Theorem 1. Let F be a real-valued Cm function on B(0, 1), with

1. c0 < max
|α|=m−1

|∂αF (0)| < C0, and with

2. |∂αF | ≤ C1 on B(0, 1) for |α| = m.

Let

3. V (F ) = {x ∈ B(0, 1) : F (x) = 0}, and let

4. V (F, δ) = {x ∈ B(0, c1) : distance(x, V (F )) < δ},
where c1 is a small enough constant determined by c0, C0, C1, m, n.

Then we have

Vol{V (F, δ)} ≤ C2δ for 0 < δ < c1,

where C2 is a large constant determined by c0, C0, C1, m, n.

Thus, if F is a smooth function that never vanishes to infinite order,
then the set of points within the distance δ from the zeroes of F has vol-
ume O(δ). If we allow F to vanish to infinite order then the corresponding
assertion is plainly wrong. For the level sets of polynomials this statement
is proven in [1].
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2. A Convenient Reduction

In this section, we reduce Theorem 1 to the following result which is seem-
ingly a bit less general.

Theorem 2. Let F be a real-valued Cm function on B(0, 1), with

1. c0 < |∂αF | < C0 everywhere on B(0, 1), for every multi-index α of
order m − 1,

2. |∂αF | ≤ C1 everywhere on B(0, 1) for every multi-index α of order m.

Let

3. V (F ) = {x ∈ B(0, 1) : F (x) = 0}, and let

4. V (F, δ) = {x ∈ B(0, c1) : distance(x, V (F )) < δ},
where c1 is a small enough constant determined by c0, C0, C1, m, n.

Then we have

Vol{V (F, δ)} ≤ C2δ for 0 < δ < c1,

where C2 is a large constant determined by c0, C0, C1, m, n.

To reduce Theorem 1 to Theorem 2, we use the following elementary result.

Proposition 3. Let F satisfy the hypotheses of Theorem 1. Then there
exists a linear map A : R

n → R
n, and constants c and C, with the following

properties:

1. c and C are determined by c0, C0, C1, m, n,

2. the maps A and A−1 have norms at most C,

3. F ◦ A is well-defined on B(0, c),

4. c < |∂α(F ◦ A)| < C on B(0, c) for all α with |α| = m − 1,

5. |∂α(F ◦ A)| < C on B(0, c) for all α with |α| = m.

Once the proposition is proven, then the Theorem 1 follows by applying
Theorem 2 to the function F̃ (x) = (F ◦ A)(cx), x ∈ B(0, 1).

Proof of the Proposition. In this proof, we say that a constant is con-
trolled, if it is determined by c0, C0, C1, m and n; and we write c, C, C ′, etc.
to denote the controlled constants.

Pick a vector v ∈ R
n of length 1 to maximize |(v · ∇)m−1F (0)|. Without

loss of generality, we may assume that v = en, the n’th unit vector in R
n.

Then we have

c <
∣∣∣( ∂

∂xn

)m−1

F (0)
∣∣∣ < C, and |∂αF (0)| < C for |α| = m − 1 .
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Consequently, for any λ ∈ (0, 1), and for any multi-index α = (α1, . . . αn)
with |α| = α1 + . . . + αn = m − 1, we have

(
∂

∂xn
+ λ

∂

∂x1

)α1

. . .

(
∂

∂xn
+ λ

∂

∂xn−1

)αn−1
(

∂

∂xn

)αn

F (0) =

m−1∑
k=0

A
(α)
k λk,

with c < |A(α)
0 | < C and |A(α)

k | < C for all k.

Therefore, if we take λ = c̄ for small enough controlled constant c̄, then
we obtain

c < |
(

∂

∂xn
+ λ

∂

∂x1

)α1

. . .

(
∂

∂xn
+ λ

∂

∂xn−1

)αn−1
(

∂

∂xn

)αn

F (0)| < C

for all α = (α1, . . . αn) with |α| = m − 1.

We define

A : (x1, . . . xn) �→ (xn + λx1, . . . , xn + λxn−1, xn).

Thus

(2.1) ||A||, ||A−1|| ≤ C

and

(2.2) c < |∂α(F ◦ A)(0)| < C for all α with |α| = m − 1.

From (2.1), and from hypothesis (2) of Theorem 1, we see then

(2.3) F ◦ A is well-defined on B(0, c), and

(2.4) |∂α(F ◦ A)| < C on B(0, c), for all α with |α| = m.

From (2.2), (2.3), (2.4), we obtain

(2.5) c′ < |∂α(F ◦ A)| < C ′ on B(0, c′′), for all α with |α| = m − 1.

Since c, C, c′, C ′, c′′ are controlled constants, the conclusion of our propo-
sition follows at once from (2.1), (2.3), (2.4), (2.5). The proof of the propo-
sition is complete. �

Thus we have reduced Theorem 1 to Theorem 2.



262 P. Batchourine and C. Fefferman

3. An Elementary Remark

For i = 1, . . . n, let ei denote the i’th unit vector in R
n. In this section we

recall the following elementary result.

Proposition 4. Let M1, M2, a1, δ, Γ be positive real numbers and let G be
a real-valued C2 function on B(x0, 2δ). Assume that

1. | ∂
∂xi

G| ≤ M1Γδ−1 and | ∂2

∂xi∂xj
G| ≤ M2Γδ−2 on B(x0, 2δ);

2. | ∂
∂xi0

G(x0)| ≥ a1Γδ−1 and

3. |G(x0)| ≤ a∗Γ for all small enough a∗, determined by M1, M2, a1, n.

Then, for any x∈B(x0, a∗δ), there exists τ ∈(−δ, δ) such that G(x +τei0)= 0.

Proof. By rescaling, we may suppose Γ = δ = 1. Integrating |∇G| and
|∇ ∂

∂xi0
G| on the line segment joining x0 to x, we find that

|G(x) − G(x0)| ≤ √
nM1|x − x0| ≤ √

nM1a∗, and

∣∣∣ ∂

∂xi0

G(x) − ∂

∂xi0

G(x0)
∣∣∣ ≤ √

nM2|x − x0| ≤ √
nM2a∗

Hence,

(3.1) |G(x)| ≤ (1 +
√

nM1)a∗, and

(3.2)
∣∣∣ ∂

∂xi0

G(x)
∣∣∣ ≥ a1 −

√
nM2a∗ ≥ 1/2a1, (if we take a∗ small enough)

Since also |( ∂
∂xi0

)2G| ≤ M2 on B(x0, 2), (3.2) implies that

(3.3)
∣∣∣ ∂

∂xi0

G(x + τei0)
∣∣∣ ≥ 1/2a1 − M2|τ | ≥ 1/4a1,

for τ ∈ [− a1

4M2
, a1

4M2
] ∩ (−1, 1) = I.

Let g(τ) = G(x + τei0) for τ ∈ I. Then g is a C2−function on I;
and (3.1), (3.3) yield

(3.4) |g(0)| ≤ (1 +
√

nM1)a∗, and |g′| ≥ 1/4a1 on I

If a∗ is taken small enough, then (3.4) easily implies g(τ) = 0 for some
τ ∈ I. In particular, G(x + τei0) = 0 for some τ ∈ (−1, 1), proving the
proposition. �
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4. Two Main Lemmas

From now on, we assume that the function F and the constants c0, C0, C1

satisfy the hypothesis of the Theorem 2. We say that a constant is controlled,
if it is determined by c0, C0, C1, m and n; and we write c, C, C ′, etc. to
denote the controlled constants.

As in the Section 2, we write e1, . . . , en for the unit vectors in R
n.

Lemma 5. For a small enough controlled constant c̄, the following holds.
Suppose x0 ∈ V (F ) ∩ B(0, 1/2), and suppose 0 < δ < c̄. Then, for any
x ∈ B(x0, c̄δ), there exist β, i0, τ with

1. |β| ≤ m − 2, 1 ≤ i0 ≤ n;

2. τ ∈ [−δ, δ] and

3. ∂βF (x + τei0) = 0.

Proof. Let Am, Am−1, . . . A0 be constants to be picked later. We write
C(Am, . . . Ak) to denote a constant determined by Am, . . . Ak and c0, C0, C1,
m, n. We define

(4.1) Ω = max
|γ|≤m−1

A|γ|δ|γ||∂γF (x0)|,

and we suppose that the max in (4.1) is attained at γ = γ̄. From the hy-
pothesis (1) of the Theorem 2, we have

(4.2) Ω ≥ Am−1c0δ
m−1

In particular, Ω 
= 0. Since x0 ∈ V (F ), we have F (x0) = 0, so the
maximum in (4.1) is not attained at γ = 0. Hence, γ̄ 
= 0, and consequently,
we may write γ̄ = 1i0 + β, where |β| ≤ m − 2, and 1i0 is the i0-th unit
multi-index. In particular, i0 and β satisfy (1). By the definition of Ω, γ̄,
i0, β, we have

|∂γF (x0)| ≤ A−1
|γ|Ωδ−|γ| for |γ| ≤ m − 1, and(4.3)

| ∂
∂xi0

(∂βF )(x0)| = A−1
|β|+1Ωδ−|β|−1(4.4)

Also, for |γ| = m, x ∈ B(0, 1), estimate (4.2) and the hypothesis (2) of the
Theorem 2 yield

(4.5) |∂γF (x)| ≤ C1 ≤ C1c
−1
0 A−1

m−1Ωδ−(m−1)

If

(4.6) 0 < δ < A−1
m c0Am−1C

−1
1 ,

then (4.5) implies

(4.7) |∂γF | ≤ A−1
m Ωδ−|γ| on B(0, 1), for |γ| = m.
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From (4.3), (4.7) and Taylor’s theorem, we obtain

(4.8) |∂γF | ≤ C(Am, . . . A|γ|)Ωδ−|γ| on B(x0, 2δ), for |γ| ≤ m,

provided

(4.9) δ < 1/4

(Condition (4.9) guarantees that B(x0, 2δ) ⊂ B(0, 1), since x0 ∈ B(0, 1/2))
In particular, (4.8) gives

(4.10)
∣∣∣ ∂

∂xi

[
∂βF

] ∣∣∣ ≤ C(Am, . . . , A|β|+1)Ωδ−|β|−1 on B(x0, 2δ),

and

(4.11)
∣∣∣ ∂2

∂xi∂xj

[
∂βF

] ∣∣∣ ≤ C(Am, . . . , A|β|+2)Ωδ−|β|−2 on B(x0, 2δ) for all i, j.

Also, (4.3) and (4.4) give

(4.12)
∣∣∣ ∂

∂xi0

[
∂βF

]
(x0)

∣∣∣ = A−1
|β|+1Ωδ−|β|−1

and

(4.13) | [∂βF
]
(x0)| ≤ A−1

|β|Ωδ−|β|

Note that A|β| appears in (4.13), but not in (4.10), (4.11), (4.12). Suppose
that

(4.14) A|β| exceeds a large enough constant C(Am, . . . , A|β|+1),

Then (4.10)-(4.14) are the hypotheses of the proposition 3 with G = ∂βF,
Γ = Ωδ−|β|, M1 = C(Am, . . . , A|β|+1), M2 = C(Am, . . . , A|β|+2), a1 = A−1

|β|+1,

a∗ = A−1
|β| . Applying the proposition, we learn the following:

(4.15)
Given x ∈ B(x0, A−1

|β|δ), there exists τ ∈ (−δ, δ),

such that ∂βF (x + τei0) = 0.

We now take Am = Am−1 = 1, and successively pick the controlled
constants Am−2, Am−3, . . . A0, so that (4.14) holds for all |β| ≤ m − 2. In
particular, if c̄ is a small enough controlled constant, and if 0 < δ < c̄,
then (4.6) and (4.9) are satisfied, and (4.15) applies to all x ∈ B(x0, c̄δ).
Since we have already noted, that (1) holds, the conclusions of the lemma 5
are obvious from (4.15). �
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From now on, we fix c̄ as in the Lemma 5.
We prepare to state our second Lemma. Let 0 < δ < c̄ be given. Fix a

cube Q0 centered at the origin, such that

(4.16) 1/4 ≤ diameterQ0 < 1/2,

and such that diameterQ0 is an integer multiple of δ. Then we can parti-
tion Q0 into cubes {Qν} of diameter c̄δ.

Let xν be the center of Qν . Note that Q0 ⊂ B(0, 1/2), thanks to (4.16).
We define a label to be an ordered pair (i0, β) satisfying condition (1) of

Lemma 5. We say, that the cube Qν carries the label (i0, β), provided we
have ∂βF (xν + τei0) = 0 for some τ ∈ [−δ, δ]. From Lemma 5 (applied to
x = xν), we learn the following basic fact:

(4.17) Every Qν containing a zero of F must carry some label.

On the other hand, we have the following result.

Lemma 6. Fix a label (i0, β). Then there are at most Cδ−(n−1) cubes Qν

that carry the given label.

Proof. Without loss of generality, we may suppose that i0 = n. We arrange
the cubes Qν into columns”, by saying that Qν and Qν′ belong to the same
“column” if their centers xν and xν′ differ at most in the n-th coordinate.
There are at most Cδ−(n−1) distinct columns. Hence, to prove lemma 6, it is
enough to show that any given column contains at most C distinct Qν that
carry the label (i0, β).

Fix a column C. For a suitable x̄ ∈ R
n−1, the cubes Qν in C have centers

(x̄, t1), . . . (x̄, tN), where t1, . . . tN form an arithmetic progression with the
step cδ. For each i (1 ≤ i ≤ N), we have (x̄, ti) ∈ Qν ⊂ Q0 ⊂ B(0, 1/2).

Therefore, for τ ∈ [−δ, δ] and i = 1, . . . , N, we have

(4.18) ti + τ ∈ I,

where I is the interval {t ∈ R : (x̄, t) ∈ B(0, 1)}.
Let Qν be one of the cubes in C, with center (x̄, ti). By definition, Qν

carries the label (i0, β) (with i0 = n) if and only if ∂βF (x̄, ti + τ) = 0 for
some τ ∈ [−δ, δ]. In view of (4.18), it follows that the number of Qν ∈ C
that carry the label (i0, β) is equal to the number of ti (i = 1, . . . , N) that lie
within the distance δ from a zero of the function g(t) = ∂βF (x̄, t), defined
for t ∈ I. Hence, to prove Lemma 6, it is enough to show:

(4.19)
There are at most C distinct i (i = 1, . . .N), such that ti

lies within the distance δ from a zero of g(t) (t ∈ I).
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Moreover, since t1, . . . , tN form an arithmetic progression with the step cδ,
assertion (4.19) will follow, if we can prove that

(4.20) the function g has at most C distinct zeroes in I.

Thus, Lemma 6 is reduced to the task of proving (4.20).
For t ∈ I, we have (x̄, t) ∈ B(0, 1) by definition of I, and therefore

(
d

dt

)m−1−|β|
g(t) =

(
∂

∂xn

)m−1−|β|
∂βF (x̄, t) 
= 0,

thanks to the hypothesis (1) of Theorem 2. That is,

(4.21)

(
d

dt

)m−1−|β|
g(t) vanishes nowhere on I.

A standard argument, repeatedly applying Rolle’s theorem from elemen-
tary calculus, shows that any function satisfying (4.21) can have at most
m − 1 − |β| distinct zeroes in I. Hence, (4.20) holds, completing the proof
of Lemma 6. �

5. Conclusion

We retain the notation and the setting of Section 4.
Let c1 be a small enough controlled constant, and suppose we are given

x ∈ V (F, δ) with 0 < δ < c1. By definition of V (F, δ), we have x ∈ B(0, c1),
and |x − x0| < δ for some x0 ∈ V (F ). In particular, x0 ∈ B(0, c1 + δ) ⊂
B(0, 2c1) ⊂ Q0, so x0 ∈ Qν for some ν. Thus, Qν contains a point of V (F ),
and |x − xν | ≤ |x − x0| + |x0 − xν | < δ + diameter Qν = (1 + c̄)δ, i.e.,
x ∈ B(xν , (1 + c̄)δ). We have therefore proven the following:

(5.1)
For 0 < δ < c1, the set V (F, δ) is contained in the union of the balls

B(xν , (1 + c̄)δ) over all ν such that Qν contains a point of V (F ).

From Section 4 (conclusion (4.17) and lemma 6), we see that there are
at most Cδ−(n−1) distinct ν such that Qν contains a point of V (F ). Since
each B(xν , (1 + c̄)δ) has volume Cδn, it follows from (5.1) that

(5.2) Vol{V (F, δ)} ≤ C2δ for 0 < δ < c1,

where C2 is a controlled constant. Estimate (5.2) is precisely the conclu-
sion of Theorem 2. We recall from Section 2 that Theorem 1 follows from
Theorem 2. Hence, the proofs of Theorems 1 and 2 are complete.
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