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The volume near the zeroes

of a smooth function

Pavel Batchourine and Charles Fefferman

Abstract
We show that if a smooth function that never vanishes to infinite
order, then the set of points within the distance ¢ from the zeroes of
this function has volume O(9).

1. Statement of Result

Let B(x,r) denote the open ball of radius r about x in R™. In this note we
prove the following result.

Theorem 1. Let F be a real-valued C™ function on B(0,1), with
1. ¢g < max |0°F(0)| < Co, and with

laj=m—1
2. |0“F| < Cy on B(0,1) for |a| = m.
Let
3. V(F)={x € B(0,1) : F(x) =0}, and let
4. V(F,§) ={x € B(0,¢y) : distance(z, V(F)) < d},

where ¢y is a small enough constant determined by cq, Co, Ci, m, n.
Then we have

Vol{V(F, )} < Cy6 for 0 < 0 < ¢y,
where Cy is a large constant determined by cq, Co, C1, m, n.

Thus, if F' is a smooth function that never vanishes to infinite order,
then the set of points within the distance § from the zeroes of F' has vol-
ume O(0). If we allow F' to vanish to infinite order then the corresponding
assertion is plainly wrong. For the level sets of polynomials this statement
is proven in [1].
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2. A Convenient Reduction

In this section, we reduce Theorem 1 to the following result which is seem-
ingly a bit less general.

Theorem 2. Let F' be a real-valued C™ function on B(0,1), with

1. ¢g < |0*F| < Cy everywhere on B(0,1), for every multi-index o of
order m — 1,

2. |0°F| < Cy everywhere on B(0,1) for every multi-index o of order m.

3. V(F)={x € B(0,1) : F(x) =0}, and let
4. V(F, ) ={x € B(0,¢y) : distance(x, V(F)) < d},

where ¢1 is a small enough constant determined by co, Co, C1, m, n.
Then we have

Vol{V(F,0)} < Cy for 0 < ¢ < ¢,
where Cs is a large constant determined by cq, Co, C1, m, n.
To reduce Theorem 1 to Theorem 2, we use the following elementary result.

Proposition 3. Let F' satisfy the hypotheses of Theorem 1. Then there
exists a linear map A : R" — R", and constants ¢ and C, with the following
properties:

1. ¢ and C are determined by cq, Cy, Cy, m, n,
the maps A and A™' have norms at most C,
F o A is well-defined on B(0,c),
c<|0“(FoA)| <C on B(0,c) for all o with || =m — 1,
|0%(F o A)| < C on B(0,c) for all a with |a| = m.

Once the proposition is proven, then the Theorem 1 follows by applying
Theorem 2 to the function F'(z) = (F o A)(cx), z € B(0,1).

Proof of the Proposition. In this proof, we say that a constant is con-
trolled, if it is determined by ¢y, Cy, C1, m and n; and we write ¢, C, C’, etc.
to denote the controlled constants.

Pick a vector v € R™ of length 1 to maximize |(v- V)™ 1 F(0)|. Without
loss of generality, we may assume that v = e,, the n’th unit vector in R".
Then we have

c< ’(ai )m_lF(O)’ < C, and |0“F(0)] < C for |a] =m — 1.
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Consequently, for any A € (0, 1), and for any multi-index a = (ay, ... @)
with || = oy + ...+ o, = m — 1, we have

19) 0 a1 0 o Qn—1 o an m—1
— . F(0) = Al \E
(8xn - A&xl) (&cn + A&cnl) (axn) (0) Z kA

k=0

with ¢ < |A{| < C and |A!®| < C for all k.

Therefore, if we take A = ¢ for small enough controlled constant ¢, then
we obtain

0 o\™" 0 0 AN,

for all & = (ay, ... a,) with |a] =m — 1.
We define

A (z,. . omp) = (T + A2y, o T + ATy, Ty).

Thus
2.1) 1Al 147 <
and
(2.2) c < |0%(F o A)(0)| < C for all @ with || =m — 1.

From (2.1), and from hypothesis (2) of Theorem 1, we see then

(2.3) F o A is well-defined on B(0,¢), and

(2.4) |0%(F o A)| < Con B(0,c), forall o with |a| =m.
From (2.2), (2.3), (2.4), we obtain

(25) < |0%(FoA)| <C on B(0,), forall awith |a|=m — 1.
Since ¢, C, ¢, C', ¢ are controlled constants, the conclusion of our propo-

sition follows at once from (2.1), (2.3), (2.4), (2.5). The proof of the propo-
sition is complete. |

Thus we have reduced Theorem 1 to Theorem 2.
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3. An Elementary Remark

For i = 1,...n, let e; denote the 7’th unit vector in R™. In this section we
recall the following elementary result.

Proposition 4. Let My, Ms, a1, 9, I' be positive real numbers and let G be
a real-valued C? function on B(a°,26). Assume that

1. |2G| < Mo~ and | G| < MyI'672 on B(a°,26);

o2
Ox;0x;

2. |52-G(2%)| > a.T'6* and
ig
3. |G(2%)| < a.T for all small enough a., determined by My, My, ay, n.
Then, for any x € B(x°, a.9), there exists T € (=0, ) such that G(z +7e;,) = 0.

Proof. By rescaling, we may suppose I' = § = 1. Integrating |VG| and
|V%G | on the line segment joining 2° to x, we find that
20

G(@) — G(a")] < vVaMilz —a°| < VaMia,, and

0 0 0 0
_ < — <
Do G(z) Do G(2")| < vnhh|z — 2°| < /nMsa,
Hence,
(3.1) G(2)] < (14 vnMi)a,, and
0 .
(3.2) ’ G(x)’ > a; — v/nMsa, > 1/2a;, (if we take a, small enough)

IL‘Z‘O

Since also |(32-)?G| < M, on B(2°,2), (3.2) implies that
ig

(3.3)

’ 0 G(z + Tei,)| > 1/2a1 — M|7| > 1/4ay,

8:7%
for e [ N (=1,1) =1
Let g(1) = G(z + 7e;,) for 7 € I. Then g is a C?*—function on I;
and (3.1), (3.3) yield

(3.4) 19(0)] < (14 v/nMj)a,, and |g'| > 1/4a; on I

If a, is taken small enough, then (3.4) easily implies g(7) = 0 for some
7 € I. In particular, G(z + Te;,) = 0 for some 7 € (—1,1), proving the
proposition. |
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4. Two Main Lemmas

From now on, we assume that the function F' and the constants cq, Cy, C;
satisfy the hypothesis of the Theorem 2. We say that a constant is controlled,
if it is determined by c¢q, Cy, C1, m and n; and we write ¢, C, C’, etc. to
denote the controlled constants.

As in the Section 2, we write ey, ..., e, for the unit vectors in R".

Lemma 5. For a small enough controlled constant ¢, the following holds.
Suppose x° € V(F) N B(0,1/2), and suppose 0 < & < ¢. Then, for any
x € B(2°, &), there exist 3, iy, T with

118 <m—2, 1<iy<m

2. 7 €[-9,0] and

8. O°F(z + Te;,) = 0.

Proof. Let A,,, A,_1,...Ag be constants to be picked later. We write
C(An, ... Ag) to denote a constant determined by A,,, ... Ay and ¢y, Cy, C1,
m, n. We define
(4.1) 2 = max A‘7‘5|V||87F(x0)|,

ly|<m—1
and we suppose that the max in (4.1) is attained at v = 7. From the hy-
pothesis (1) of the Theorem 2, we have

(42) Q Z Am_lco5m_1

In particular, Q # 0. Since z° € V(F), we have F(2) = 0, so the
maximum in (4.1) is not attained at v = 0. Hence, 7 # 0, and consequently,
we may write 7 = 1;, + [, where 3] < m — 2, and 1;, is the iyp-th unit
multi-index. In particular, iy and [ satisfy (1). By the definition of Q, 7,
19, 3, we have

(4.3) |07 F(20)| < AB‘IQ(VM for [y <m —1, and
(4.4) |8§i0 (0PF)(20)| = A‘EHQ(S’W'”

Also, for |y| =m, x € B(0, 1), estimate (4.2) and the hypothesis (2) of the
Theorem 2 yield

(4.5) |07F(z)| < Cy < Ciegt At QoD
If
(46) 0<d< A;&C()Am_lcfl,

then (4.5) implies
(4.7) 07F| < A Q5 M on B(0,1), for |y| = m.
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From (4.3), (4.7) and Taylor’s theorem, we obtain

(4.8) 0VF| < C(Ap, ... A6 on B(2°,26), for |v] < m,
provided
(4.9) §<1/4

(Condition (4.9) guarantees that B(z°, 26) C B(0,1), since 2° € B(0,1/2))
In particular, (4.8) gives

(4.10) ) ‘Z [0°F] ‘ < C(Ap, ... Ap)0 P on B(a®,20),

and
32

(4.11) 5 [86F} ) <C(Am,- .., AMH)Q(S_W'_Q on B(z°,20) for all 4, .
L0

Also, (4.3) and (4.4) give

(4.12) )85 [aﬂF] (1‘0)) = Aﬁﬂgg—lﬁ\—l
and
(4.13) [[0°F] ()] < A

Note that A appears in (4.13), but not in (4.10), (4.11), (4.12). Suppose
that

(4.14) A exceeds a large enough constant C'(Ay, ..., Ajg+41),

Then (4.10)-(4.14) are the hypotheses of the proposition 3 with G = 9°F,
I'= Q(;*w, M, = C(Am, cee AmHl), My = C(Am, cee AM—}-Q), a; = Al_ﬁtrl’
ay = A‘E Applying the proposition, we learn the following:

Given x € B(z°, A0), there exists 7 € (—0,0),

IE]

4.15
(4.15) such that O°F(z + Te;,) = 0.

We now take A,, = A,,_1 = 1, and successively pick the controlled
constants A, 2, A3, ... Ag, so that (4.14) holds for all |3] < m — 2. In
particular, if ¢ is a small enough controlled constant, and if 0 < § < ¢,
then (4.6) and (4.9) are satisfied, and (4.15) applies to all x € B(z°, ).
Since we have already noted, that (1) holds, the conclusions of the lemma 5
are obvious from (4.15). |
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From now on, we fix ¢ as in the Lemma 5.
We prepare to state our second Lemma. Let 0 < § < ¢ be given. Fix a
cube Q° centered at the origin, such that

(4.16) 1/4 < diameterQ® < 1/2,

and such that diameter@® is an integer multiple of §. Then we can parti-
tion Q° into cubes {Q,} of diameter .

Let x, be the center of Q,. Note that Q° C B(0,1/2), thanks to (4.16).

We define a label to be an ordered pair (ig, 3) satisfying condition (1) of
Lemma 5. We say, that the cube @, carries the label (ig, 3), provided we
have O°F (z, + Te;,) = 0 for some 7 € [—d,6]. From Lemma 5 (applied to
x = x,), we learn the following basic fact:

(4.17) Every ), containing a zero of F' must carry some label.

On the other hand, we have the following result.

Lemma 6. Fiz a label (ig, 3). Then there are at most C6~ "=V cubes Q,
that carry the given label.

Proof. Without loss of generality, we may suppose that ig = n. We arrange
the cubes @, into columns”, by saying that (), and @), belong to the same
“column” if their centers z, and z,, differ at most in the n-th coordinate.
There are at most C'6~ "1 distinct columns. Hence, to prove lemma 6, it is
enough to show that any given column contains at most C' distinct ), that
carry the label (ig, 3).

Fix a column C. For a suitable z € R""!, the cubes @, in C have centers
(Z,t1),...(Z,ty), where t,...ty form an arithmetic progression with the
step cd. For each i (1 <4 < N), we have (z,t;) € Q, C Q° C B(0,1/2).

Therefore, for 7 € [—§,6] and i =1, ..., N, we have

(418) tz‘—f—TGI,

where I is the interval {t € R: (z,t) € B(0,1)}.

Let @, be one of the cubes in C, with center (z,t;). By definition, @,
carries the label (ig, 3) (with iy = n) if and only if 9°F(7,t; + 7) = 0 for
some 7 € [—0,0]. In view of (4.18), it follows that the number of @, € C
that carry the label (ig, 3) is equal to the number of ¢; (i = 1,..., N) that lie
within the distance ¢ from a zero of the function g(t) = 0°F(z,t), defined
for t € I. Hence, to prove Lemma 6, it is enough to show:

There are at most C' distinct @ (i = 1,...N), such that ¢,

(4.19) lies within the distance ¢ from a zero of g(t) (¢t € I).
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Moreover, since t1, . . ., t form an arithmetic progression with the step cd,
assertion (4.19) will follow, if we can prove that
(4.20) the function g has at most C' distinct zeroes in 1.

Thus, Lemma 6 is reduced to the task of proving (4.20).
For t € I, we have (z,t) € B(0,1) by definition of I, and therefore

(%)mlm g(t) = ( ain)mml PF(5,t) £0,

thanks to the hypothesis (1) of Theorem 2. That is,

d\ " 1Al
(4.21) <%) g(t) vanishes nowhere on 1.
A standard argument, repeatedly applying Rolle’s theorem from elemen-
tary calculus, shows that any function satisfying (4.21) can have at most

m — 1 — | (3] distinct zeroes in I. Hence, (4.20) holds, completing the proof
of Lemma 6. |

5. Conclusion

We retain the notation and the setting of Section 4.

Let ¢; be a small enough controlled constant, and suppose we are given
x € V(F,d) with 0 < ¢ < ¢;. By definition of V(F, ), we have x € B(0, ¢;),
and |z — 2°| < § for some 2° € V(F). In particular, 2° € B(0,¢; + §) C
B(0,2¢;) € Q° so 2° € @, for some v. Thus, @, contains a point of V(F),
and |z — z,| < |z — 2% + |2 — z,| < § + diameter Q, = (1 + ¢)4, i.e.,
x € B(z,,(1+ ¢)d). We have therefore proven the following:

For 0 < § < ¢1, the set V(F,0) is contained in the union of the balls

(5-1) B(z,, (1 + ¢)d) over all v such that @), contains a point of V' (F).

From Section 4 (conclusion (4.17) and lemma 6), we see that there are
at most C9~(~Y distinct v such that @, contains a point of V(F). Since
each B(z,, (1 + ¢)d) has volume C¢", it follows from (5.1) that

(5.2) Vol{V(F,0)} < Cy for 0 <0 < ¢y,

where C5 is a controlled constant. Estimate (5.2) is precisely the conclu-
sion of Theorem 2. We recall from Section 2 that Theorem 1 follows from
Theorem 2. Hence, the proofs of Theorems 1 and 2 are complete.
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