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The Structure of Linear Extension
Operators forCm

Charles Fefferman

Abstract

For any subset E ⊂ R
n, let Cm(E) denote the Banach space of

restrictions to E of functions F ∈ Cm(Rn). It is known that there
exist bounded linear maps T : Cm(E) −→ Cm(Rn) such that Tf = f
on E for any f ∈ Cm(E). We show that T can be taken to have a
simple form, but cannot be taken to have an even simpler form.

0. Statement of Results

Fix m,n ≥ 1, let E ⊂ R
n be given, and let Cm(E) = {F |E : F ∈ Cm(Rn)},

with norm

‖ f ‖Cm(E) = inf{‖ F ‖Cm(Rn): F ∈ Cm(Rn) and F |E = f} .

Here, as usual, Cm(Rn) denotes the space of m times continuously differen-
tiable F : R

n −→ R, for which the norm

‖ F ‖Cm(Rn) = max
|α| ≤m

sup
x∈Rn

|∂αF (x)|

is finite. A linear extension operator for Cm(E) is a bounded linear map
T : Cm(E) −→ Cm(Rn), such that Tf |E = f for all f ∈ Cm(E).

Given E ⊂ R
n, there exists a linear extension operator for Cm(E).

See [17] for a proof, and [1,...,29] for related work going back to Whitney.
In particular, Merrien [20] constructed linear extension operators for Cm(E)
when E ⊂ R

1, and Bromberg [3] constructed linear extension operators for
C1(E) when E ⊂ R

n. The existence of linear extension operators for Cm(E)
was explicitly conjectured by Brudnyi and Shvartsman in [9].

2000 Mathematics Subject Classification: 41A05, 41A45.
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The purpose of this paper is to examine what a linear extension operator
for Cm(E) might look like. For arbitrary finite E, we showed in [11] that
Cm(E) admits an extension operator of bounded “depth”. We recall the
relevant definition from [11], in a slightly weakened form.

Let s ≥ 1 be an integer, and let T : Cm(E) −→ Cm(Rn) be a linear
map. Then we say that T has depth s if, for every x0 ∈ R

n, there exist
x1, . . . , xs ∈ E and λ1, . . . , λs ∈ R, such that

Tf(x0) =

s∑
i=1

λif(xi) for all f ∈ Cm(E) .

From [11], we have the following result.

Theorem 1. Given m ≥ 1 and E ⊂ R
n finite, there exists an extension

operator T : Cm(E) −→ Cm(Rn) with norm at most C and depth at most s;
here, C and s depend only on m and n.

One might be tempted to believe that the hypothesis of finite E can be
dropped from Theorem 1. The following result dashes this hope.

Theorem 2. There exists a countable compact set E ⊂ R
2, for which

C1(E) admits no extension operator of finite depth.

We prove this result in Section 1 below, by exhibiting an explicit E. Our
set E is very close to a counterexample given by Glaeser in [18].

Despite Theorem 2, we can get a positive result by modifying the notion
of “depth”. We prepare the way with the following definitions.

A “one-point differential operator on Cm(Rn)” is a linear functional on
Cm(Rn) of the form

(1) D : F �→
∑

|α| ≤m

aα ∂
αF (x0), with x0 ∈ R

n and aα ∈ R (|α| ≤ m).

Next, let E ⊂ R
n, and let D be as in (1). We say that D is a “one-point

differential operator on Cm(E)”, provided we have

(2) DF = 0 whenever F ∈ Cm(Rn) and F |E = 0.

Evidently, if (1) and (2) hold, then we obtain a linear functional on
Cm(E), by mapping f ∈ Cm(E) to DF , for any F ∈ Cm(Rn) with F |E = f .
Abusing notation, we denote this functional by f �→ Df .

As a trivial example, suppose E is an embedded sub-manifold in R
n.

Then any tangent vector X ∈ Tx0E is a one-point differential operator
on C1(E).
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The paper [2] of Bierstone-Milman-Paw�lucki shows how to find all possi-
ble one-point differential operators on Cm(E) for an arbitrary, given E ⊂ R

n.
(See also [13].)

Now let T : Cm(E) −→ Cm(Rn) be a linear map and let s ≥ 1. Then we
say that T has “breadth” s if, given any one-point differential operator D on
Cm(Rn), there exist one-point differential operators D1, . . . ,Ds on Cm(E),
such that

D(Tf) =
s∑

i=1

Dif for all f ∈ Cm(E) .

In particular, this implies that, for any x0 ∈ R
n, we can express Tf(x0) as a

sum of at most s terms of the form Dif , where Di is a one-point differential
operator on Cm(E).

We are ready to state our positive result.

Theorem 3. Given m ≥ 1 and E ⊂ R
n, there exists an extension operator

T : Cm(E) −→ Cm(Rn), with norm at most C and breadth at most s; here, C
and s depend only on m and n.

The proof of Theorem 3 is accomplished by modifying the proof of the
main result in [17], as explained in Section 2 below.

I am grateful to Gerree Pecht for LATEXing this paper with remarkable
speed and accuracy.

1. Proof of Theorem 2

We exhibit the countable compact set E ⊂ R
2 from Theorem 2. Let

(1) PN,k = (xN,k, yN,k) = (2−N+10−N−k, (−1)k·10−2N−k) ∈ R
2 forN, k ≥1;

and let

(2) PN,∞ = (2−N , 0) ∈ R
2, for N ≥ 1.

We define

(3) EN = {PN,∞} ∪ {PN,k : k ≥ 1} ⊂ R
2 for N ≥ 1,

and we set

(4) E = {(0, 0)} ∪ ⋃
N ≥ 1

EN .

Note that the EN are pairwise disjoint. As promised, E is a countable
compact subset of R

2.
To show that C1(E) admits no extension operators of finite depth, we

use the following three properties of E.
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Lemma 1. Let Ẽ ⊂ E, and suppose Ẽ∩EN is finite for each N ≥ 1. Then
Ẽ ⊂ {(x, y) ∈ R

2 : y = ψ(x)} for some function ψ ∈ C1(R).

Lemma 2. Let s ≥ 1, and let (P n
1 , . . . , P

n
s ) be a sequence of s-tuples of

points of E. Then there exist an integer N0 ≥ 1 and an increasing infinite
sequence (nν)ν≥1, such that {P nν

i : ν ≥ 1, 1 ≤ i ≤ s} ∩ EN is finite for
each N ≥ N0.

Lemma 3. Let F ∈ C1(R2). If F = 0 on E, then ∇F (0, 0) = 0.

Assume these three lemmas for the moment, and suppose T : C1(E) −→
C1(R2) is an extension operator of depth s. We will derive a contradiction.

For n ≥ 1, let

(5) Qn = (0, 1
n
) ∈ R

2.

Since T has depth s, there exist points P n
1 , . . . , P

n
s ∈ E and coefficients

λn
1 , . . . , λ

n
s ∈ R, such that

Tf(Qn) =
s∑

i=1

λn
i f(P n

i ) for f ∈ C1(E) , n ≥ 1 .

In particular, for each n ≥ 1, we have

(6) Tf(Qn) = 0 whenever f ∈ C1(E) with f(P n
1 ) = · · · = f(P n

s ) = 0.

We apply Lemma 2 to the s-tuples (P n
1 , . . . , P

n
s ), n ≥ 1.

Let N0 and (nν)ν≥1 be as in Lemma 2. We define sets

(7) Ê = {P nν
i : ν ≥ 1 , 1 ≤ i ≤ s} ,

(8) E# = {P ∈ Ê : P ∈ EN for some N < N0}, and

(9) Ẽ = Ê �E#.

The set Ẽ∩EN is finite for N ≥ N0 (by Lemma 2), and empty forN < N0

(by (8) and (9)). Hence, Lemma 1 applies, and there exists ψ ∈ C1(R) such
that

(10) y = ψ(x) for all (x, y) ∈ Ẽ.

Now let θ(x, y) be a smooth cutoff function on R
2, equal to one in a neigh-

borhood of the origin, and equal to zero on EN for N < N0. We define

(11) F (x, y) = θ(x, y) · [y − ψ(x)] for (x, y) ∈ R
2, and

(12) f = F |E ∈ C1(E).

The functions F and Tf both belong to C1(R2), and are both equal to f
on E. Hence, Lemma 3 gives

(13) ∇(Tf) (0, 0) = ∇F (0, 0).
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On the other hand, we can compute ∂
∂y

(Tf)(0, 0) and ∂
∂y
F (0, 0), and

they will turn out to be unequal.
In fact, we have F = 0 on Ẽ thanks to (10), (11); and F = 0 on E#,

since θ = 0 on EN for N < N0. (See (8), (11).) Thus, F = 0 on Ê, hence
f = 0 on Ê, and therefore Tf(Qnν ) = 0 for ν ≥ 1, thanks to (6) and (7).

Recalling (5), we conclude that

(14)
∂

∂y
(Tf)(0, 0) = 0.

However, since θ = 1 in a neighborhood of the origin, the definition (11) yields

(15)
∂

∂y
F (0, 0) = 1.

Thus, ∂
∂y

(Tf)(0, 0) and ∂
∂y
F (0, 0) are distinct, as claimed.

This contradicts (13), showing that C1(E) cannot have an extension
operator of depth s.

To complete the proof of Theorem 2, it remains to establish Lemmas 1, 2
and 3. We begin with the following elementary result, which will be used in
the proof of Lemma 1.

Proposition. Given M ≥ 1, there exists ψM ∈ C1(R), with

(16) supp ψM ⊂ (0, 1),

(17) ψM(10−k) = (−1)k · 10−k for 1 ≤ k ≤M , and

(18) ‖ ψM ‖C1(R) ≤ C, with C independent of M .

Proof. Fix smooth functions θ, θ̃ on R, with θ(x) = 0 for x ≤ 1/2, θ(x) = 1
for x ≥ 1, θ̃(x) = 1 for |x| ≤ 1/2, θ̃(x) = 0 for |x| ≥ 2/3. One checks easily
that

ψM (x) = θ(10Mx) · θ̃(x) · x cos(π log10 |x|)
satisfies all the conditions asserted in the proposition. �

Proof of Lemma 1. For each N ≥ 1, pick

(19) MN > max{k : PN,k ∈ Ẽ}.

We can do this, since Ẽ ∩EN is assumed finite. Define

(20) ψ(x) =
∑
N≥1

10−2N ψMN
(10N · [x− 2−N ]) for x ∈ R,

with ψMN
as in the Proposition.

Each summand in (20) is a C1 function on R, with the N th summand
having C1 norm at most C · 10−N . (This follows easily from (18).) Hence,
ψ ∈ C1(R).
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From (1) and (17), we have

10−2N ψMN
(10N · [xN,k − 2−N ]) = 10−2N ψMN

(10−k) = (−1)k · 10−2N−k

for 1 ≤ k ≤MN . Hence, (1) and (19) yield

(21) 10−2N ψMN
(10N · [xN,k − 2−N ]) = yN,k whenever PN,k ∈ Ẽ.

On the other hand, (16) implies easily that

(22) 10−2N ′
ψMN′ (10N ′ ·[xN,k−2−N ′

]) = 0 whenever N ′ �= N (N,N ′, k ≥ 1).

Putting (21), (22) into (20), we see that

(23) ψ(xN,k) = yN,k whenever PN,k = (xN,k, yN,k) ∈ Ẽ.

For (x, y) = PN,∞ or (0, 0), we have y = 0, and all the summands in (20)
are equal to zero, thanks to (16). Hence,

(24) ψ(x) = y whenever (x, y) = PN,∞ or (0, 0).

From (23), (24) and (3), (4), we conclude that ψ(x) = y for all (x, y) ∈ Ẽ,
since Ẽ ⊂ E. The proof of Lemma 1 is complete. �

Proof of Lemma 2. For n ≥ 1, let Pn be the set

(25) Pn = {P n
1 , . . . , P

n
s }.

Suppose N is any set of positive integers. We say that N is a “sink” if
there are infinitely many n ≥ 1 for which Pn intersects EN for each N ∈ N .
The empty set is a sink. On the other hand, no sink can have more than s
elements, since the EN are pairwise disjoint and the Pn have cardinality at
most s. Hence there exists a sink N̄ of maximal cardinality. Thus,

(26) The set A = {n ≥ 1 : Pn intersects EN for each N ∈ N̄} is infinite
(since N̄ is a sink)

and

(27) Given N ≥ 1 not belonging to N̄ , there are at most finitely many
n ∈ A for which Pn intersects EN . (Otherwise, N̄ ∪ {N} would be a
sink, contradicting the maximal cardinality of N̄ .)

In view of (26), we can write

(28) A = {n1, n2, n3, . . .}
for an infinite increasing sequence (nν)ν≥1.

Since N̄ is a sink, it has at most s elements. Hence we can pick an integer
N0 ≥ 1 such that

(29) N0 > N for all N ∈ N̄ .
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From (27), (28), (29), we learn the following:

(30) Given N ≥ N0, there are at most finitely many ν for which Pnν

intersects EN .

From (25) and (30), we obtain the conclusion of Lemma 2. �

Proof of Lemma 3. Let F ∈ C1(R2), with F = 0 on E. Fix N ≥ 1, and
note that F (PN,∞) = F (PN,k) = 0 for k ≥ 1. Consequently,

(31) 0 = lim
k→∞

(k even)

[
F (PN,k)−F (PN,∞)

10−N−k

]
=

(
∂F
∂x

+ 10−N ∂F
∂y

)
(PN,∞) and

(32) 0 = lim
k→∞
(k odd)

[
F (PN,k)−F (PN,∞)

10−N−k

]
=

(
∂F
∂x

− 10−N ∂F
∂y

)
(PN,∞).

(See (1). . . (4).)

From (31) and (32), we learn that ∇F (PN,∞) = 0. Taking the limit as
N → ∞, we conclude that ∇F (0, 0) = 0, proving Lemma 3. �

We have now established Lemmas 1, 2 and 3. Since we reduced Theo-
rem 2 to those lemmas, the proof of Theorem 2 is complete. �

It is an amusing exercise to construct a linear extension operator for
C1(E) with E ⊂ R

2 given by (1). . . (4).

2. Sketch of Proof of Theorem 3

We recall the main result of [17], then explain how to modify it to prove
Theorem 3. We begin with some notation and definitions.

We write Rx for the ring of m-jets of smooth real-valued functions at
x ∈ R

n. For F ∈ Cm(Rn) and x ∈ R
n, we write Jx(F ) to denote the m-jet

of F at x.
Let E ⊂ R

n be compact. For each x ∈ E, suppose we are given an
m-jet f(x) ∈ Rx and an ideal I(x) in Rx. Then (f(x) + I(x))x∈E is called a
“family of cosets”. (We allow the possibilities I(x) = {0} and I(x) = Rx.)
The family of cosets (f(x) + I(x))x∈E is called “Glaeser stable” if it satisfies
the following condition: Given x0 ∈ E and P0 ∈ f(x0) + I(x0), there exists
F ∈ Cm(Rn) such that Jx0(F ) = P0, and Jx(F ) ∈ f(x) + I(x) for all x ∈ E.

More generally, suppose Ξ is a vector space, and again let E ⊂ R
n be

compact. For each x ∈ E, suppose we are given a linear map ξ �→ fξ(x)
from Ξ into Rx, and an ideal I(x) in Rx. Then we call (fξ(x) + I(x))x∈E,ξ∈Ξ

a “family of cosets depending linearly on ξ ∈ Ξ”. We say that (fξ(x) +
I(x))x∈E, ξ∈Ξ is “Glaeser stable” if, for each fixed ξ ∈ Ξ, the family of cosets
(fξ(x) + I(x))x∈E is Glaeser stable.
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These notions arise naturally in [16, 17], and we refer the reader to those
papers for the motivation. The main result of [17] is as follows.

Theorem 4. Let Ξ be a vector space, with seminorm | · |. Let (fξ(x) +
I(x))x∈E, ξ∈Ξ be a Glaeser stable family of cosets depending linearly on ξ ∈ Ξ.

Assume that for each ξ ∈ Ξ with |ξ| ≤ 1, there exists F ∈ Cm(Rn), with
‖ F ‖Cm(Rn) ≤ 1, and Jx(F ) ∈ fξ(x) + I(x) for all x ∈ E.

Then there exists a linear map ξ �→ Fξ, from Ξ into Cm(Rn), such that

(A) Jx(Fξ) ∈ fξ(x) + I(x) for all x ∈ E, ξ ∈ Ξ; and

(B) ‖ Fξ ‖Cm(Rn) ≤ C|ξ| for all ξ ∈ Ξ, with C depending only on m and n.

This result easily implies the existence of extension operators for Cm(E).
To prove Theorem 3, we modify Theorem 4 by introducing the notion of “s-
admissible” operators, which we now explain.

Let Ξ̂ be a set of (real) linear functionals on the linear space Ξ, and let
s ≥ 1 be an integer. Then:

• A linear functional on Ξ will be called “s-admissible” (with respect
to Ξ̂) if it can be written as a linear combination of at most s elements
of Ξ̂.

• A linear map T from Ξ to a finite-dimensional vector space V is called
“s-admissible” (with respect to Ξ̂) if, for every linear functional λ on V ,
the linear functional λ ◦ T on Ξ is s-admissible.

• A linear map T : Ξ −→ Cm(Rn) will be called “s-admissible” (with
respect to Ξ̂) if, for every x ∈ R

n, the map ξ �→ Jx(Tξ) is s-admissible
as a map from Ξ to Rx.

Our modification of Theorem 4 is as follows.

Theorem 5. Let Ξ be a vector space, with seminorm | · |, let Ξ̂ be a set of
linear functionals on Ξ, and let s ≥ 1 be an integer. Let (fξ(x)+I(x))x∈E, ξ∈Ξ

be a Glaeser stable family of cosets depending linearly on ξ ∈ Ξ.
Assume that the map ξ �→ fξ(x), from Ξ into Rx, is s-admissible with

respect to Ξ̂, for each x ∈ E.
Assume also that, for each ξ∈Ξ with |ξ|≤1, there exists F ∈Cm(Rn), with

‖ F ‖Cm(Rn) ≤ 1 , and Jx(F ) ∈ fξ(x) + I(x) for all x ∈ E .

Then there exists a linear map ξ �→ Fξ, from Ξ into Cm(Rn), such that

(A) Jx(Fξ) ∈ fξ(x) + I(x) for all x ∈ E, x ∈ Ξ;

(B) ‖ Fξ ‖Cm(Rn) ≤ C|ξ| for all ξ ∈ Ξ, with C depending only on m and n;

(C) The map ξ �→ Fξ is s′-admissible, with s′ depending only on s,m and n.
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We indicate briefly why Theorem 5 implies Theorem 3 and then we ex-
plain how the proof of Thm. 4 in [17] may be modified to prove Theorem 5.

Reduction of Theorem 3 to Theorem 5. To prove Theorem 3, we may
assume that the set E is compact. (In fact, for a general E, we may pass
without difficulty to the closure of E, and then reduce matters to the case
of closed, bounded E by a partition of unity.)

For E ⊂ R
n compact, we make the following definitions.

• Ξ = Cm(E).

• |ξ| = 2 ‖ ξ ‖Cm(E) for ξ ∈ Ξ.

• Ξ̂ is the set of all one-point differential operators on Cm(E).

For each x ∈ E:

• I(x) = {Jx(F ) : F ∈ Cm(Rn) and F = 0 on E}.

• V (x) = any complementary subspace to I(x) in Rx.

• πx : Rx −→ V (x) is the natural projection arising from the direct sum
Rx = V (x) ⊕ I(x).

Suppose x ∈ E and ξ ∈ Ξ. Since ξ ∈ Ξ, there exists F ∈ Cm(Rn)
with F |E = ξ. We define fξ(x) = πx(Jx(F )). This is independent of the
choice of F . (In fact, suppose F1, F2 ∈ Cm(Rn), with Fi|E = ξ. Then
F1 − F2 ∈ Cm(Rn) and (F1 − F2)|E = 0. Hence, Jx(F1 − F2) ∈ I(x), and
therefore πx(Jx(F1) − Jx(F2)) = 0.)

One checks easily that the above Ξ, | · |, Ξ̂, I(x), fξ(x) satisfy the
hypotheses of Theorem 5, with s = 1. Hence, applying Theorem 5, we
obtain a linear map ξ �→ Fξ from Ξ into Cm(Rn), satisfying (A), (B), (C).

From (A), we see that ξ �→ Fξ is an extension operator for Cm(E). Con-
clusion (B) controls the norm of this extension operator, and conclusion (C)
tells us that it has breadth s′, with s′ depending only on m and n. Thus,
Theorem 3 is reduced to Theorem 5.

Sketch of Proof of Theorem 5. We assume that the reader is familiar
with our previous papers [11,. . . ,17 ]. It is a long, routine exercise to follow
the proof of Theorem 4, as given in [17], and note that at each step, we
preserve s′-admissibility (although s′ may increase). (“Admissibility” will

always be defined with respect to Ξ̂, given in the hypotheses of Theorem 5.)
The highlights of this tedious exercise are as follows.

• For E ⊂ R
n compact, let Cm

jet(E) be the space of families of jets 	f =
(fx)x∈E, with fx ∈ Rx for each x ∈ E, such that there exists F ∈
Cm(Rn) satisfying

(1) Jx(F ) = fx for each x ∈ E.
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The norm ‖ 	f ‖Cm
jet(E) is defined as the infimum of ‖ F ‖Cm(Rn) over all

F ∈ Cm(Rn) satisfying (1).
The proof of the standard Whitney extension theorem [19, 24, 25] gives

an operator T : Cm
jet(E) −→ Cm(Rn), with the following properties.

(a) ‖ T ‖≤ C, with C depending only on m and n.

(b) For 	f = (fx)x∈E ∈ Cm
jet(E), we have Jx(T 	f) = fx for each x ∈ E.

(c) For each x0 ∈ R
n there exist x1, . . . , xk ∈ E such that, as 	f = (fx)x∈E

varies over Cm
jet(E), the jet Jx0(T

	f) depends only on fx1 , . . . , fxk
. Here,

k depends only on m and n.

In view of (c), we have the following result.

Let ξ �→ 	fξ = (fx,ξ)x∈E be a linear map from Ξ into Cm
jet(E). Assume that

ξ �→ fx,ξ is s′-admissible, for each x ∈ E.

Then the map ξ �→ T 	fξ is s′′-admissible from Ξ into Cm(Rn), where T is
as above, and s′′ depends only on s′, m, n.

• Suppose we add to the hypotheses of Lemma 3.3 in [16] the assumption
that ξ �→ fξ(x) is s′-admissible for each x ∈ E. (Here, s′ ≥ 1 is
given.) Then the map ξ �→ f̃ξ(x0) in the conclusion of that lemma may
be taken to be s′′-admissible, with s′′ depending only on s′, m, n, k#.
(That’s because the f̃ξ(x0) constructed in the proof of Lemma 3.3
in [16] depends on ξ only through the fξ(x) for x ∈ S̄, where S̄ ⊂ E
has cardinality less than k#.) When we apply the above lemma in [17],
we take k# to depend only on m and n.

Therefore, the property of s′-admissibility (for some s′ depending only
on m,n, s) is preserved when we apply Lemma 3.3 from [16].

• Whenever we applied Theorem 5 from [16] in the proof of Theorem 4,
we now apply instead Theorem 8 from [16]. Note that the notion of
“depth” in [16] differs from our present notion.

• For suitable x ∈ E, let projx : Rx −→ Rx be the linear map defined
in Section 10 of [17]. If ξ �→ gξ(x) is an s′-admissible linear map from
Ξ into Rx, then also ξ �→ projx(gξ(x)) is s′-admissible. (This follows
trivially from the definition of s′-admissibility.)

• Suppose Fξ =
∑

νθν · F ν
ξ for ξ ∈ Ξ; and suppose that, for each x ∈ R

n,
we are given a finite set Ω(x), such that

Jx(Fξ) =
∑

ν∈Ω(x)

Jx(θν · F ν
ξ ) for all ξ ∈ Ξ .

If ξ �→ F ν
ξ is s′-admissible for each ν, and if Ω(x) has cardinality at

most k for each x ∈ R
n, then ξ �→ Fξ is s′′-admissible, with s′′ = k · s′.
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Finally, we can prove Theorem 5 by following the proof of Theorem 4
in [17], and using the above observations to keep track of s′-admissibility of
every operator and functional that enters the argument. We dispense with
further details.
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