The Structure of Linear Extension Operators for C^m

Charles Fefferman

Abstract

For any subset $E \subset \mathbb{R}^n$, let $C^m(E)$ denote the Banach space of restrictions to E of functions $F \in C^m(\mathbb{R}^n)$. It is known that there exist bounded linear maps $T: C^m(E) \longrightarrow C^m(\mathbb{R}^n)$ such that Tf = f on E for any $f \in C^m(E)$. We show that T can be taken to have a simple form, but cannot be taken to have an even simpler form.

0. Statement of Results

Fix $m, n \ge 1$, let $E \subset \mathbb{R}^n$ be given, and let $C^m(E) = \{F|_E : F \in C^m(\mathbb{R}^n)\}$, with norm

$$|| f ||_{C^m(E)} = \inf\{|| F ||_{C^m(\mathbb{R}^n)}: F \in C^m(\mathbb{R}^n) \text{ and } F|_E = f\}.$$

Here, as usual, $C^m(\mathbb{R}^n)$ denotes the space of m times continuously differentiable $F: \mathbb{R}^n \longrightarrow \mathbb{R}$, for which the norm

$$\parallel F \parallel_{C^m(\mathbb{R}^n)} = \max_{|\alpha| \le m} \sup_{x \in \mathbb{R}^n} |\partial^{\alpha} F(x)|$$

is finite. A linear extension operator for $C^m(E)$ is a bounded linear map $T: C^m(E) \longrightarrow C^m(\mathbb{R}^n)$, such that $Tf|_E = f$ for all $f \in C^m(E)$.

Given $E \subset \mathbb{R}^n$, there exists a linear extension operator for $C^m(E)$. See [17] for a proof, and [1,...,29] for related work going back to Whitney. In particular, Merrien [20] constructed linear extension operators for $C^m(E)$ when $E \subset \mathbb{R}^1$, and Bromberg [3] constructed linear extension operators for $C^1(E)$ when $E \subset \mathbb{R}^n$. The existence of linear extension operators for $C^m(E)$ was explicitly conjectured by Brudnyi and Shvartsman in [9].

2000 Mathematics Subject Classification: 41A05, 41A45. Keywords: Extension operators, Whitney's extension problem.

The purpose of this paper is to examine what a linear extension operator for $C^m(E)$ might look like. For arbitrary finite E, we showed in [11] that $C^m(E)$ admits an extension operator of bounded "depth". We recall the relevant definition from [11], in a slightly weakened form.

Let $s \geq 1$ be an integer, and let $T: C^m(E) \longrightarrow C^m(\mathbb{R}^n)$ be a linear map. Then we say that T has depth s if, for every $x^0 \in \mathbb{R}^n$, there exist $x_1, \ldots, x_s \in E$ and $\lambda_1, \ldots, \lambda_s \in \mathbb{R}$, such that

$$Tf(x^0) = \sum_{i=1}^{s} \lambda_i f(x_i)$$
 for all $f \in C^m(E)$.

From [11], we have the following result.

Theorem 1. Given $m \geq 1$ and $E \subset \mathbb{R}^n$ finite, there exists an extension operator $T: C^m(E) \longrightarrow C^m(\mathbb{R}^n)$ with norm at most C and depth at most s; here, C and s depend only on m and n.

One might be tempted to believe that the hypothesis of finite E can be dropped from Theorem 1. The following result dashes this hope.

Theorem 2. There exists a countable compact set $E \subset \mathbb{R}^2$, for which $C^1(E)$ admits no extension operator of finite depth.

We prove this result in Section 1 below, by exhibiting an explicit E. Our set E is very close to a counterexample given by Glaeser in [18].

Despite Theorem 2, we can get a positive result by modifying the notion of "depth". We prepare the way with the following definitions.

A "one-point differential operator on $C^m(\mathbb{R}^n)$ " is a linear functional on $C^m(\mathbb{R}^n)$ of the form

(1)
$$\mathcal{D}: F \mapsto \sum_{|\alpha| \le m} a_{\alpha} \partial^{\alpha} F(x^{0})$$
, with $x^{0} \in \mathbb{R}^{n}$ and $a_{\alpha} \in \mathbb{R}(|\alpha| \le m)$.

Next, let $E \subset \mathbb{R}^n$, and let \mathcal{D} be as in (1). We say that \mathcal{D} is a "one-point differential operator on $C^m(E)$ ", provided we have

(2)
$$\mathcal{D}F = 0$$
 whenever $F \in C^m(\mathbb{R}^n)$ and $F|_E = 0$.

Evidently, if (1) and (2) hold, then we obtain a linear functional on $C^m(E)$, by mapping $f \in C^m(E)$ to $\mathcal{D}F$, for any $F \in C^m(\mathbb{R}^n)$ with $F|_E = f$. Abusing notation, we denote this functional by $f \mapsto \mathcal{D}f$.

As a trivial example, suppose E is an embedded sub-manifold in \mathbb{R}^n . Then any tangent vector $X \in T_{x^0}E$ is a one-point differential operator on $C^1(E)$. The paper [2] of Bierstone-Milman-Pawłucki shows how to find all possible one-point differential operators on $C^m(E)$ for an arbitrary, given $E \subset \mathbb{R}^n$. (See also [13].)

Now let $T: C^m(E) \longrightarrow C^m(\mathbb{R}^n)$ be a linear map and let $s \geq 1$. Then we say that T has "breadth" s if, given any one-point differential operator \mathcal{D} on $C^m(\mathbb{R}^n)$, there exist one-point differential operators $\mathcal{D}_1, \ldots, \mathcal{D}_s$ on $C^m(E)$, such that

$$\mathcal{D}(Tf) = \sum_{i=1}^{s} \mathcal{D}_{i} f \text{ for all } f \in C^{m}(E).$$

In particular, this implies that, for any $x^0 \in \mathbb{R}^n$, we can express $Tf(x^0)$ as a sum of at most s terms of the form $\mathcal{D}_i f$, where \mathcal{D}_i is a one-point differential operator on $C^m(E)$.

We are ready to state our positive result.

Theorem 3. Given $m \geq 1$ and $E \subset \mathbb{R}^n$, there exists an extension operator $T: C^m(E) \longrightarrow C^m(\mathbb{R}^n)$, with norm at most C and breadth at most s; here, C and s depend only on m and n.

The proof of Theorem 3 is accomplished by modifying the proof of the main result in [17], as explained in Section 2 below.

I am grateful to Gerree Pecht for LaTeXing this paper with remarkable speed and accuracy.

1. Proof of Theorem 2

We exhibit the countable compact set $E \subset \mathbb{R}^2$ from Theorem 2. Let

(1)
$$P_{N,k} = (x_{N,k}, y_{N,k}) = (2^{-N} + 10^{-N-k}, (-1)^k \cdot 10^{-2N-k}) \in \mathbb{R}^2 \text{ for } N, k \ge 1;$$

and let

(2)
$$P_{N,\infty} = (2^{-N}, 0) \in \mathbb{R}^2$$
, for $N \ge 1$.

We define

(3)
$$E_N = \{P_{N,\infty}\} \cup \{P_{N,k} : k \ge 1\} \subset \mathbb{R}^2 \text{ for } N \ge 1,$$

and we set

(4)
$$E = \{(0,0)\} \cup \bigcup_{N \ge 1} E_N.$$

Note that the E_N are pairwise disjoint. As promised, E is a countable compact subset of \mathbb{R}^2 .

To show that $C^1(E)$ admits no extension operators of finite depth, we use the following three properties of E.

Lemma 1. Let $\tilde{E} \subset E$, and suppose $\tilde{E} \cap E_N$ is finite for each $N \geq 1$. Then $\tilde{E} \subset \{(x,y) \in \mathbb{R}^2 : y = \psi(x)\}$ for some function $\psi \in C^1(\mathbb{R})$.

Lemma 2. Let $s \geq 1$, and let (P_1^n, \ldots, P_s^n) be a sequence of s-tuples of points of E. Then there exist an integer $N_0 \geq 1$ and an increasing infinite sequence $(n_{\nu})_{\nu \geq 1}$, such that $\{P_i^{n_{\nu}} : \nu \geq 1, 1 \leq i \leq s\} \cap E_N$ is finite for each $N \geq N_0$.

Lemma 3. Let $F \in C^1(\mathbb{R}^2)$. If F = 0 on E, then $\nabla F(0,0) = 0$.

Assume these three lemmas for the moment, and suppose $T: C^1(E) \longrightarrow C^1(\mathbb{R}^2)$ is an extension operator of depth s. We will derive a contradiction.

For n > 1, let

(5)
$$Q^n = (0, \frac{1}{n}) \in \mathbb{R}^2$$
.

Since T has depth s, there exist points $P_1^n, \ldots, P_s^n \in E$ and coefficients $\lambda_1^n, \ldots, \lambda_s^n \in \mathbb{R}$, such that

$$Tf(Q^n) = \sum_{i=1}^{s} \lambda_i^n f(P_i^n) \text{ for } f \in C^1(E), n \ge 1.$$

In particular, for each $n \geq 1$, we have

(6)
$$Tf(Q^n) = 0$$
 whenever $f \in C^1(E)$ with $f(P_1^n) = \cdots = f(P_s^n) = 0$.

We apply Lemma 2 to the s-tuples (P_1^n, \ldots, P_s^n) , $n \ge 1$.

Let N_0 and $(n_{\nu})_{\nu\geq 1}$ be as in Lemma 2. We define sets

(7)
$$\hat{E} = \{P_i^{n_\nu} : \nu \ge 1, 1 \le i \le s\},$$

(8)
$$E^{\#} = \{ P \in \hat{E} : P \in E_N \text{ for some } N < N_0 \}, \text{ and }$$

$$(9) \ \tilde{E} = \hat{E} \setminus E^{\#}.$$

The set $E \cap E_N$ is finite for $N \geq N_0$ (by Lemma 2), and empty for $N < N_0$ (by (8) and (9)). Hence, Lemma 1 applies, and there exists $\psi \in C^1(\mathbb{R})$ such that

(10)
$$y = \psi(x)$$
 for all $(x, y) \in \tilde{E}$.

Now let $\theta(x, y)$ be a smooth cutoff function on \mathbb{R}^2 , equal to one in a neighborhood of the origin, and equal to zero on E_N for $N < N_0$. We define

(11)
$$F(x,y) = \theta(x,y) \cdot [y - \psi(x)]$$
 for $(x,y) \in \mathbb{R}^2$, and

(12)
$$f = F|_E \in C^1(E)$$
.

The functions F and Tf both belong to $C^1(\mathbb{R}^2)$, and are both equal to f on E. Hence, Lemma 3 gives

(13)
$$\nabla(Tf)(0,0) = \nabla F(0,0).$$

On the other hand, we can compute $\frac{\partial}{\partial y}(Tf)(0,0)$ and $\frac{\partial}{\partial y}F(0,0)$, and they will turn out to be unequal.

In fact, we have F = 0 on \tilde{E} thanks to (10), (11); and F = 0 on $E^{\#}$, since $\theta = 0$ on E_N for $N < N_0$. (See (8), (11).) Thus, F = 0 on \hat{E} , hence f = 0 on \hat{E} , and therefore $Tf(Q^{n_{\nu}}) = 0$ for $\nu \ge 1$, thanks to (6) and (7).

Recalling (5), we conclude that

$$(14) \frac{\partial}{\partial y}(Tf)(0,0) = 0.$$

However, since $\theta = 1$ in a neighborhood of the origin, the definition (11) yields

$$(15) \frac{\partial}{\partial y} F(0,0) = 1.$$

Thus, $\frac{\partial}{\partial y}(Tf)(0,0)$ and $\frac{\partial}{\partial y}F(0,0)$ are distinct, as claimed.

This contradicts (13), showing that $C^1(E)$ cannot have an extension operator of depth s.

To complete the proof of Theorem 2, it remains to establish Lemmas 1, 2 and 3. We begin with the following elementary result, which will be used in the proof of Lemma 1.

Proposition. Given $M \geq 1$, there exists $\psi_M \in C^1(\mathbb{R})$, with

- (16) supp $\psi_M \subset (0,1)$,
- (17) $\psi_M(10^{-k}) = (-1)^k \cdot 10^{-k} \text{ for } 1 \le k \le M, \text{ and }$
- (18) $\|\psi_M\|_{C^1(\mathbb{R})} \leq C$, with C independent of M.

Proof. Fix smooth functions θ , $\tilde{\theta}$ on \mathbb{R} , with $\theta(x) = 0$ for $x \leq 1/2$, $\theta(x) = 1$ for $x \geq 1$, $\tilde{\theta}(x) = 1$ for $|x| \leq 1/2$, $\tilde{\theta}(x) = 0$ for $|x| \geq 2/3$. One checks easily that

$$\psi_M(x) = \theta(10^M x) \cdot \tilde{\theta}(x) \cdot x \cos(\pi \log_{10} |x|)$$

satisfies all the conditions asserted in the proposition.

Proof of Lemma 1. For each $N \ge 1$, pick

(19)
$$M_N > \max\{k : P_{N,k} \in \tilde{E}\}.$$

We can do this, since $\tilde{E} \cap E_N$ is assumed finite. Define

(20)
$$\psi(x) = \sum_{N \ge 1} 10^{-2N} \psi_{M_N} (10^N \cdot [x - 2^{-N}]) \text{ for } x \in \mathbb{R},$$

with ψ_{M_N} as in the Proposition.

Each summand in (20) is a C^1 function on \mathbb{R} , with the N^{th} summand having C^1 norm at most $C \cdot 10^{-N}$. (This follows easily from (18).) Hence, $\psi \in C^1(\mathbb{R})$.

From (1) and (17), we have

$$10^{-2N} \, \psi_{M_N} (10^N \, \cdot \, [x_{N,k} - 2^{-N}]) \, = \, 10^{-2N} \, \psi_{M_N} (10^{-k}) = \, (-1)^k \, \cdot \, 10^{-2N-k}$$

for $1 \le k \le M_N$. Hence, (1) and (19) yield

(21) $10^{-2N} \psi_{M_N} (10^N \cdot [x_{N,k} - 2^{-N}]) = y_{N,k}$ whenever $P_{N,k} \in \tilde{E}$.

On the other hand, (16) implies easily that

(22)
$$10^{-2N'} \psi_{M_{N'}} (10^{N'} \cdot [x_{N,k} - 2^{-N'}]) = 0$$
 whenever $N' \neq N (N, N', k \geq 1)$.

Putting (21), (22) into (20), we see that

(23)
$$\psi(x_{N,k}) = y_{N,k}$$
 whenever $P_{N,k} = (x_{N,k}, y_{N,k}) \in \tilde{E}$.

For $(x, y) = P_{N,\infty}$ or (0, 0), we have y = 0, and all the summands in (20) are equal to zero, thanks to (16). Hence,

(24)
$$\psi(x) = y$$
 whenever $(x, y) = P_{N,\infty}$ or $(0, 0)$.

From (23), (24) and (3), (4), we conclude that $\psi(x) = y$ for all $(x, y) \in \tilde{E}$, since $\tilde{E} \subset E$. The proof of Lemma 1 is complete.

Proof of Lemma 2. For $n \geq 1$, let \mathcal{P}^n be the set

(25)
$$\mathcal{P}^n = \{P_1^n, \dots, P_s^n\}.$$

Suppose \mathcal{N} is any set of positive integers. We say that \mathcal{N} is a "sink" if there are infinitely many $n \geq 1$ for which \mathcal{P}^n intersects E_N for each $N \in \mathcal{N}$. The empty set is a sink. On the other hand, no sink can have more than s elements, since the E_N are pairwise disjoint and the \mathcal{P}^n have cardinality at most s. Hence there exists a sink $\bar{\mathcal{N}}$ of maximal cardinality. Thus,

(26) The set $A = \{n \geq 1 : \mathcal{P}^n \text{ intersects } E_N \text{ for each } N \in \bar{\mathcal{N}}\}$ is infinite (since $\bar{\mathcal{N}}$ is a sink)

and

(27) Given $N \geq 1$ not belonging to $\bar{\mathcal{N}}$, there are at most finitely many $n \in A$ for which \mathcal{P}^n intersects E_N . (Otherwise, $\bar{\mathcal{N}} \cup \{N\}$ would be a sink, contradicting the maximal cardinality of $\bar{\mathcal{N}}$.)

In view of (26), we can write

(28)
$$A = \{n_1, n_2, n_3, \ldots\}$$

for an infinite increasing sequence $(n_{\nu})_{\nu>1}$.

Since \mathcal{N} is a sink, it has at most s elements. Hence we can pick an integer $N_0 \geq 1$ such that

(29)
$$N_0 > N$$
 for all $N \in \bar{\mathcal{N}}$.

From (27), (28), (29), we learn the following:

(30) Given $N \geq N_0$, there are at most finitely many ν for which $\mathcal{P}^{n_{\nu}}$ intersects E_N .

From (25) and (30), we obtain the conclusion of Lemma 2.

Proof of Lemma 3. Let $F \in C^1(\mathbb{R}^2)$, with F = 0 on E. Fix $N \ge 1$, and note that $F(P_{N,\infty}) = F(P_{N,k}) = 0$ for $k \ge 1$. Consequently,

(31)
$$0 = \lim_{\substack{k \to \infty \\ (k \text{ even})}} \left[\frac{F(P_{N,k}) - F(P_{N,\infty})}{10^{-N-k}} \right] = \left(\frac{\partial F}{\partial x} + 10^{-N} \frac{\partial F}{\partial y} \right) (P_{N,\infty}) \quad \text{and}$$

$$(32) \ 0 = \lim_{\substack{k \to \infty \\ (k \text{ odd})}} \left[\frac{F(P_{N,k}) - F(P_{N,\infty})}{10^{-N-k}} \right] = \left(\frac{\partial F}{\partial x} - 10^{-N} \frac{\partial F}{\partial y} \right) (P_{N,\infty}).$$

(See (1)...(4).)

From (31) and (32), we learn that $\nabla F(P_{N,\infty}) = 0$. Taking the limit as $N \to \infty$, we conclude that $\nabla F(0,0) = 0$, proving Lemma 3.

We have now established Lemmas 1, 2 and 3. Since we reduced Theorem 2 to those lemmas, the proof of Theorem 2 is complete.

It is an amusing exercise to construct a linear extension operator for $C^1(E)$ with $E \subset \mathbb{R}^2$ given by $(1) \dots (4)$.

2. Sketch of Proof of Theorem 3

We recall the main result of [17], then explain how to modify it to prove Theorem 3. We begin with some notation and definitions.

We write \mathcal{R}_x for the ring of m-jets of smooth real-valued functions at $x \in \mathbb{R}^n$. For $F \in C^m(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$, we write $J_x(F)$ to denote the m-jet of F at x.

Let $E \subset \mathbb{R}^n$ be compact. For each $x \in E$, suppose we are given an m-jet $f(x) \in \mathcal{R}_x$ and an ideal I(x) in \mathcal{R}_x . Then $(f(x) + I(x))_{x \in E}$ is called a "family of cosets". (We allow the possibilities $I(x) = \{0\}$ and $I(x) = \mathcal{R}_x$.) The family of cosets $(f(x) + I(x))_{x \in E}$ is called "Glaeser stable" if it satisfies the following condition: Given $x_0 \in E$ and $P_0 \in f(x_0) + I(x_0)$, there exists $F \in C^m(\mathbb{R}^n)$ such that $J_{x_0}(F) = P_0$, and $J_x(F) \in f(x) + I(x)$ for all $x \in E$.

More generally, suppose Ξ is a vector space, and again let $E \subset \mathbb{R}^n$ be compact. For each $x \in E$, suppose we are given a linear map $\xi \mapsto f_{\xi}(x)$ from Ξ into \mathcal{R}_x , and an ideal I(x) in \mathcal{R}_x . Then we call $(f_{\xi}(x) + I(x))_{x \in E, \xi \in \Xi}$ a "family of cosets depending linearly on $\xi \in \Xi$ ". We say that $(f_{\xi}(x) + I(x))_{x \in E, \xi \in \Xi}$ is "Glaeser stable" if, for each fixed $\xi \in \Xi$, the family of cosets $(f_{\xi}(x) + I(x))_{x \in E}$ is Glaeser stable.

These notions arise naturally in [16, 17], and we refer the reader to those papers for the motivation. The main result of [17] is as follows.

Theorem 4. Let Ξ be a vector space, with seminorm $|\cdot|$. Let $(f_{\xi}(x) + I(x))_{x \in E, \xi \in \Xi}$ be a Glaeser stable family of cosets depending linearly on $\xi \in \Xi$.

Assume that for each $\xi \in \Xi$ with $|\xi| \leq 1$, there exists $F \in C^m(\mathbb{R}^n)$, with $||F||_{C^m(\mathbb{R}^n)} \leq 1$, and $J_x(F) \in f_{\xi}(x) + I(x)$ for all $x \in E$.

Then there exists a linear map $\xi \mapsto F_{\xi}$, from Ξ into $C^m(\mathbb{R}^n)$, such that

- (A) $J_x(F_{\xi}) \in f_{\xi}(x) + I(x)$ for all $x \in E, \xi \in \Xi$; and
- (B) $||F_{\xi}||_{C^{m}(\mathbb{R}^{n})} \leq C|\xi|$ for all $\xi \in \Xi$, with C depending only on m and n.

This result easily implies the existence of extension operators for $C^m(E)$. To prove Theorem 3, we modify Theorem 4 by introducing the notion of "s-admissible" operators, which we now explain.

Let $\hat{\Xi}$ be a set of (real) linear functionals on the linear space Ξ , and let $s \geq 1$ be an integer. Then:

- A linear functional on Ξ will be called "s-admissible" (with respect to $\hat{\Xi}$) if it can be written as a linear combination of at most s elements of $\hat{\Xi}$.
- A linear map T from Ξ to a finite-dimensional vector space V is called "s-admissible" (with respect to $\hat{\Xi}$) if, for every linear functional λ on V, the linear functional $\lambda \circ T$ on Ξ is s-admissible.
- A linear map $T: \Xi \longrightarrow C^m(\mathbb{R}^n)$ will be called "s-admissible" (with respect to $\hat{\Xi}$) if, for every $x \in \mathbb{R}^n$, the map $\xi \mapsto J_x(T\xi)$ is s-admissible as a map from Ξ to \mathcal{R}_x .

Our modification of Theorem 4 is as follows.

Theorem 5. Let Ξ be a vector space, with seminorm $|\cdot|$, let $\hat{\Xi}$ be a set of linear functionals on Ξ , and let $s \geq 1$ be an integer. Let $(f_{\xi}(x)+I(x))_{x\in E, \xi\in\Xi}$ be a Glaeser stable family of cosets depending linearly on $\xi\in\Xi$.

Assume that the map $\xi \mapsto f_{\xi}(x)$, from Ξ into \mathcal{R}_x , is s-admissible with respect to $\hat{\Xi}$, for each $x \in E$.

Assume also that, for each $\xi \in \Xi$ with $|\xi| \leq 1$, there exists $F \in C^m(\mathbb{R}^n)$, with

$$\parallel F \parallel_{C^m(\mathbb{R}^n)} \le 1$$
, and $J_x(F) \in f_{\xi}(x) + I(x)$ for all $x \in E$.

Then there exists a linear map $\xi \mapsto F_{\xi}$, from Ξ into $C^m(\mathbb{R}^n)$, such that

- (A) $J_x(F_{\xi}) \in f_{\xi}(x) + I(x)$ for all $x \in E$, $x \in \Xi$;
- (B) $|| F_{\xi} ||_{C^m(\mathbb{R}^n)} \leq C |\xi|$ for all $\xi \in \Xi$, with C depending only on m and n;
- (C) The map $\xi \mapsto F_{\xi}$ is s'-admissible, with s' depending only on s, m and n.

We indicate briefly why Theorem 5 implies Theorem 3 and then we explain how the proof of Thm. 4 in [17] may be modified to prove Theorem 5.

Reduction of Theorem 3 to Theorem 5. To prove Theorem 3, we may assume that the set E is compact. (In fact, for a general E, we may pass without difficulty to the closure of E, and then reduce matters to the case of closed, bounded E by a partition of unity.)

For $E \subset \mathbb{R}^n$ compact, we make the following definitions.

- $\Xi = C^m(E)$.
- $|\xi| = 2 \|\xi\|_{C^m(E)}$ for $\xi \in \Xi$.
- $\widehat{\Xi}$ is the set of all one-point differential operators on $C^m(E)$.

For each $x \in E$:

- $I(x) = \{J_x(F) : F \in C^m(\mathbb{R}^n) \text{ and } F = 0 \text{ on } E\}.$
- $V(x) = \text{any complementary subspace to } I(x) \text{ in } \mathcal{R}_x.$
- $\pi_x : \mathcal{R}_x \longrightarrow V(x)$ is the natural projection arising from the direct sum $\mathcal{R}_x = V(x) \oplus I(x)$.

Suppose $x \in E$ and $\xi \in \Xi$. Since $\xi \in \Xi$, there exists $F \in C^m(\mathbb{R}^n)$ with $F|_E = \xi$. We define $f_{\xi}(x) = \pi_x(J_x(F))$. This is independent of the choice of F. (In fact, suppose $F_1, F_2 \in C^m(\mathbb{R}^n)$, with $F_i|_E = \xi$. Then $F_1 - F_2 \in C^m(\mathbb{R}^n)$ and $(F_1 - F_2)|_E = 0$. Hence, $J_x(F_1 - F_2) \in I(x)$, and therefore $\pi_x(J_x(F_1) - J_x(F_2)) = 0$.)

One checks easily that the above Ξ , $|\cdot|$, $\widehat{\Xi}$, I(x), $f_{\xi}(x)$ satisfy the hypotheses of Theorem 5, with s = 1. Hence, applying Theorem 5, we obtain a linear map $\xi \mapsto F_{\xi}$ from Ξ into $C^m(\mathbb{R}^n)$, satisfying (A), (B), (C).

From (A), we see that $\xi \mapsto F_{\xi}$ is an extension operator for $C^m(E)$. Conclusion (B) controls the norm of this extension operator, and conclusion (C) tells us that it has breadth s', with s' depending only on m and n. Thus, Theorem 3 is reduced to Theorem 5.

Sketch of Proof of Theorem 5. We assume that the reader is familiar with our previous papers [11, ..., 17]. It is a long, routine exercise to follow the proof of Theorem 4, as given in [17], and note that at each step, we preserve s'-admissibility (although s' may increase). ("Admissibility" will always be defined with respect to $\widehat{\Xi}$, given in the hypotheses of Theorem 5.) The highlights of this tedious exercise are as follows.

• For $E \subset \mathbb{R}^n$ compact, let $C^m_{\text{jet}}(E)$ be the space of families of jets $\vec{f} = (f_x)_{x \in E}$, with $f_x \in \mathcal{R}_x$ for each $x \in E$, such that there exists $F \in C^m(\mathbb{R}^n)$ satisfying

(1)
$$J_x(F) = f_x$$
 for each $x \in E$.

The norm $\|\vec{f}\|_{C^m_{jet}(E)}$ is defined as the infimum of $\|F\|_{C^m(\mathbb{R}^n)}$ over all $F \in C^m(\mathbb{R}^n)$ satisfying (1).

The proof of the standard Whitney extension theorem [19, 24, 25] gives an operator $T: C^m_{\text{iet}}(E) \longrightarrow C^m(\mathbb{R}^n)$, with the following properties.

- (a) $||T|| \le C$, with C depending only on m and n.
- (b) For $\vec{f} = (f_x)_{x \in E} \in C^m_{\text{jet}}(E)$, we have $J_x(T\vec{f}) = f_x$ for each $x \in E$.
- (c) For each $x_0 \in \mathbb{R}^n$ there exist $x_1, \ldots, x_k \in E$ such that, as $\vec{f} = (f_x)_{x \in E}$ varies over $C^m_{\text{jet}}(E)$, the jet $J_{x_0}(T\vec{f})$ depends only on f_{x_1}, \ldots, f_{x_k} . Here, k depends only on m and n.

In view of (c), we have the following result.

Let $\xi \mapsto \vec{f}_{\xi} = (f_{x,\xi})_{x \in E}$ be a linear map from Ξ into $C^m_{\text{jet}}(E)$. Assume that $\xi \mapsto f_{x,\xi}$ is s'-admissible, for each $x \in E$.

Then the map $\xi \mapsto T\vec{f_{\xi}}$ is s''-admissible from Ξ into $C^m(\mathbb{R}^n)$, where T is as above, and s'' depends only on s', m, n.

• Suppose we add to the hypotheses of Lemma 3.3 in [16] the assumption that $\xi \mapsto f_{\xi}(x)$ is s'-admissible for each $x \in E$. (Here, $s' \geq 1$ is given.) Then the map $\xi \mapsto \tilde{f}_{\xi}(x_0)$ in the conclusion of that lemma may be taken to be s''-admissible, with s'' depending only on $s', m, n, k^{\#}$. (That's because the $\tilde{f}_{\xi}(x_0)$ constructed in the proof of Lemma 3.3 in [16] depends on ξ only through the $f_{\xi}(x)$ for $x \in \bar{S}$, where $\bar{S} \subset E$ has cardinality less than $k^{\#}$.) When we apply the above lemma in [17], we take $k^{\#}$ to depend only on m and n.

Therefore, the property of s'-admissibility (for some s' depending only on m, n, s) is preserved when we apply Lemma 3.3 from [16].

- Whenever we applied Theorem 5 from [16] in the proof of Theorem 4, we now apply instead Theorem 8 from [16]. Note that the notion of "depth" in [16] differs from our present notion.
- For suitable $x \in E$, let $\operatorname{proj}_x : \mathcal{R}_x \longrightarrow \mathcal{R}_x$ be the linear map defined in Section 10 of [17]. If $\xi \mapsto g_{\xi}(x)$ is an s'-admissible linear map from Ξ into \mathcal{R}_x , then also $\xi \mapsto \operatorname{proj}_x(g_{\xi}(x))$ is s'-admissible. (This follows trivially from the definition of s'-admissibility.)
- Suppose $F_{\xi} = \sum_{\nu} \theta_{\nu} \cdot F_{\xi}^{\nu}$ for $\xi \in \Xi$; and suppose that, for each $x \in \mathbb{R}^{n}$, we are given a finite set $\Omega(x)$, such that

$$J_x(F_{\xi}) = \sum_{\nu \in \Omega(x)} J_x(\theta_{\nu} \cdot F_{\xi}^{\nu}) \text{ for all } \xi \in \Xi.$$

If $\xi \mapsto F_{\xi}^{\nu}$ is s'-admissible for each ν , and if $\Omega(x)$ has cardinality at most k for each $x \in \mathbb{R}^n$, then $\xi \mapsto F_{\xi}$ is s''-admissible, with $s'' = k \cdot s'$.

Finally, we can prove Theorem 5 by following the proof of Theorem 4 in [17], and using the above observations to keep track of s'-admissibility of every operator and functional that enters the argument. We dispense with further details.

References

- [1] BIERSTONE, E., MILMAN, P. AND PAWŁUCKI, W.: Differentiable functions defined on closed sets. A problem of Whitney. *Invent. Math.* **151** (2003), no. 2, 329–352.
- [2] BIERSTONE, E., MILMAN, P. AND PAWŁUCKI, W.: Higher-order tangents and Fefferman's paper on Whitney's extension problem. *Ann. of Math* (2) **164** (2006), 361–370.
- [3] Bromberg, S.: An extension in class C^1 . Bol. Soc. Mat. Mex. (2) **27** (1982), no. 2, 35–44.
- [4] Brudnyi, Y. and Shvartsman, P.: The traces of differentiable functions to subsets of \mathbb{R}^n in Linear and complex Analysis. Lect. Notes in Math., 279–281. Spring-Verlag, 1994.
- [5] BRUDNYI, Y.: On an extension theorem. Funk. Anal. i Prilzhen. 4 (1970), 97–98; English transl. in Func. Anal. Appl. 4 (1970), 252–253.
- [6] Brudyni, A. and Brudyni, Y.: Metric spaces with linear extensions preserving Lipschitz condition. *Amer. Math. J.* **129** (2007), no. 1, 217–314.
- [7] Brudnyi, Y. and Shvartsman, P.: A linear extension operator for a space of smooth functions defined on closed subsets of \mathbb{R}^n . Dokl. Akad. Nauk SSSR **280** (1985), no. 2, 268–270.
- [8] Brudnyi, Y. and Shvartsman, P.: Generalizations of Whitney's extension theorem. *Internat. Math. Res. Notices* **3** (1994), 129–139.
- [9] Brudnyi, Y. and Shvartsman, P.: The Whitney problem of existence of a linear extension operator. J. Geom. Anal. 7 (1997), no. 4, 515–574.
- [10] Brudnyi, Y. and Shvartsman, P.: Whitney's extension problem for multivariate $C^{1,w}$ functions. Trans. Amer. Math. Soc. **353** (2001), no. 6, 2487–2512.
- [11] Fefferman, C.: Interpolation and extrapolation of smooth functions by linear operators. Rev. Mat. Iberoamericana 21 (2005), no. 1, 313–348.
- [12] C. Fefferman: A sharp form of Whitney's extension theorem. Ann. of Math. (2) 161 (2005), no. 1, 509–577.
- [13] FEFFERMAN, C.: Whitney's extension problem for C^m . Ann. of Math. (2) **164** (2006), no. 1, 313–359.
- [14] Fefferman, C.: Whitney's extension problem in certain function spaces. Preprint.
- [15] Fefferman, C.: A generalized sharp Whitney theorem for jets. Rev. Mat. Iberoamericana 21 (2005), no. 2, 577–688.

- [16] FEFFERMAN, C.: Extension of $C^{m,\omega}$ smooth functions by linear operators. To appear in $Rev.\ Mat.\ Iberoamericana.$
- [17] FEFFERMAN, C.: C^m extension by linear operators. To appear in Ann. of Math. (2) **166** (2007), no. 3.
- [18] GLAESER, G.: Etudes de quelques algebres tayloriennes. J. Analyse Math. 6 (1958), 1–124.
- [19] Malgrange, B.: Ideals of Differentiable Functions. Oxford Univ. Press, 1966.
- [20] MERRIEN, J.: Prolongateurs de foncions differentiables d'une variable relle. J. Math. Pures Appl. (9) 45 (1966), 291–309.
- [21] SHVARTSMAN, P.: Lipshitz selections of multivalued mappings and traces of the Zygmund class of functions to an arbitrary compact. *Dokl. Acad. Nauk SSSR* **276** (1984), 559–562; English transl. in *Soviet Math. Dokl.* **29** (1984), 565–568.
- [22] SHVARTSMAN, P.: On traces of functions of Zygmund classes. Sibirskyi Mathem. J. 28 N5 (1987), 203–215; English transl. in Siberian Math. J. 28 (1987), 853–863.
- [23] Shvartsman, P.: Lipschitz selections of set-valued functions and Helly's theorem. J. Geom. Anal. 12 (2002), no. 2, 289–324.
- [24] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, 1970.
- [25] WHITNEY, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc. **36** (1934), 63–89.
- [26] WHITNEY, H.: Differentiable functions defined in closed sets I. Trans. Amer. Math. Soc. 36 (1934), 369–3897.
- [27] WHITNEY, H.: Functions differentiable on the boundaries of regions. Ann. of Math. 35 (1934), 482–485.
- [28] ZOBIN, N.: Whitney's problem on extendability of functions and an intrinsic metric. Adv. Math. 133 (1998), no. 1, 96–132.
- [29] ZOBIN, N.: Extension of smooth functions from finitely connected planar domains. J. Geom. Anal. 93 (1999), 489–509.

Recibido: 14 de julio de 2005

Charles Fefferman
Department of Mathematics
Princeton University
Fine Hall, Washington Road
Princeton, New Jersey 08544
cf@math.princeton.edu