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Modified logarithmic Sobolev
inequalities in null curvature

Ivan Gentil, Arnaud Guillin and Laurent Miclo

Abstract
We present a new logarithmic Sobolev inequality adapted to a

log-concave measure on R between the exponential and the Gaussian
measure. More precisely, assume that Φ is a symmetric convex func-
tion on R satisfying (1+ε)Φ(x) � xΦ′(x) � (2−ε)Φ(x) for x � 0 large
enough and with ε ∈]0, 1/2]. We prove that the probability measure
on R µΦ(dx) = e−Φ(x)/ZΦdx satisfies a modified and adapted loga-
rithmic Sobolev inequality: there exist three constants A,B,C > 0
such that for all smooth functions f > 0,

EntµΦ

(
f2
)

� A

∫
HΦ

(
f ′

f

)
f2dµΦ,

with

HΦ(x) =
{

x2 if |x| < C,
Φ∗(Bx) if |x| � C,

where Φ∗ is the Legendre-Fenchel transform of Φ.

1. Introduction

A probability measure µ on R
n satisfies a logarithmic Sobolev inequality if

there exists C � 0 such that, for every smooth enough functions f on R
n,

(1.1) Entµ

(
f 2
)

� C

∫
|∇f |2dµ,

where

Entµ

(
f 2
)

:=

∫
f 2 log f 2dµ−

∫
f 2dµ log

∫
f 2dµ

and where |∇f | is the Euclidean length of the gradient ∇f of f .
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Gross in [9] defines this inequality and shows that the canonical Gaussian
measure with density (2π)−n/2e−|x|2/2 with respect to the Lebesgue measure
on R

n is the basic example of measure µ satisfying (1.1) with the optimal
constant C = 2. Since then, many results have presented measures satisfying
such an inequality, among them the famous Bakry-Émery Γ2-criterion, that
we recall now in our particular case. Let Φ a C2 function on R

n and note
µΦ(dx) = exp (−Φ(x))/ZΦdx, ZΦ being the normalization constant so that
µΦ is a probability measure on R

n. Assume that there exists λ > 0 such that

(1.2) ∀x ∈ R
n, Hess(Φ(x)) � λId,

in the sense of symmetric matrix. Then Bakry and Émery proved that µ is
satisfying inequality (1.1) with an optimal constant C ∈ [0, 2/λ]. We refer
to [3, 2] for the Γ2-criterion and to [1, 10] for a review on logarithmic Sobolev
inequality.

The interest of this paper is to give a logarithmic Sobolev inequality
when the probability measure µΦ on R defined before does not satisfy (1.2)
but Φ′′(x) � 0, ∀x ∈ R. A first answer is given for the following particular
measure: let α � 1 and define the probability measure µα on R by

(1.3) µα(dx) =
1

Zα
e−|x|αdx,

where Zα =
∫
e−|x|αdx.

The authors prove, in [8], that for 1 < α < 2, the measure µα satisfies
the following inequalities, for all smooth functions such that f � 0 and∫
f 2dµα = 1,

(1.4) Entµα

(
f 2
)

� AVarµα(f) +B

∫
f�2

∣∣∣∣f ′

f

∣∣∣∣βf 2dµα,

where A and B are some constants, α−1 + β−1 = 1 and

Varµα(f) :=

∫
f 2dµα −

(∫
fdµα

)2

.

It is well-known that the probability measure µα satisfies (still for α � 1)
a Poincaré inequality (or spectral gap inequality), i.e. for every smooth
enough function f ,

(1.5) Varµα(f) � C

∫
|∇f |2dµα,

where 0 < C <∞.
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Then using (1.5) and (1.4) we get that µα satisfies also this modified
logarithmic Sobolev inequality for all smooth and positive function f ,

(1.6) Entµ

(
f 2
)

� C

∫
Ha,α

(
f ′

f

)
f 2dµ,

here and in the whole paper the convention that 0 · ∞ = 0 is assumed,
otherwise stated where a and C are positive constants and

Ha,α(x) =

{
x2 if |x| < a,

|x|β if |x| � a,

with 1/α + 1/β = 1. This version of logarithmic Sobolev inequality admits
a n dimensional version, for all smooth function f on R

n,

(1.7) Entµ⊗n
α

(
f 2
)

� C

∫
Ha,α

(∇f
f

)
f 2dµ⊗n

α ,

where by definition we have taken

(1.8) Ha,α

(∇f
f

)
:=

n∑
i=1

Ha,α

(
∂if

f

)
.

Note that Bobkov and Ledoux gave in [7] a corresponding result for the
critical (exponential) case, when α = 1.

Our main purpose here will be to establish the generalization of inequal-
ities (1.4), (1.6) and (1.7) when the measure on R is only a log-concave
measure between e−|x| and e−x2

. More precisely, let Φ be a function on R,
we say that Φ satisfies the property (H) if this two properties are satisfied:

• Φ is a C2, symmetric and strictly convex on R.

• There exits M > 0 and 0 < ε � 1/2 such that Φ(M) > 0 and

∀x � M, (1 + ε)Φ(x) � xΦ′(x) � (2 − ε)Φ(x).

We assume along the article that the function Φ on R verifies hypothesis (H).

Remark 1.1 The assumption (H) implies that there exists m1, m2 > 0 such
that

∀x � M, m1x
1/(1−ε) � Φ(x) � m2x

2−ε.

This remark explains why, under the hypothesis (H), the function Φ lies
between e−|x| and e−x2

.

Due to Remark 1.1,
∫
e−Φ(x)dx < ∞. Then we define the probability

measure µΦ on R by

µΦ(dx) =
1

ZΦ

e−Φ(x)dx,

where ZΦ =
∫
e−Φ(x)dx.
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The main result of this article is the following theorem:

Theorem 1.2 Assume (H) then there exist constants A,A′, B,D � 0 and
κ > 0 such that for any smooth functions f � 0 satisfying

∫
f 2dµΦ = 1

we have

(1.9) EntµΦ

(
f 2
)

� AVarµΦ
(f) + A′

∫
f2�κ

HΦ

(
f ′

f

)
f 2dµΦ,

where

(1.10) HΦ(x) =

{
x2 if |x| < D,

Φ∗(Bx) if |x| � D,

where Φ∗ is the Legendre-Fenchel transform of the function Φ, Φ∗(x) :=
supy∈R

{x · y − Φ(y)}.
It is well known that the measure µΦ satisfies a Poincaré inequality (in-

equality (1.5) for the measure µΦ, see for example Chapter 6 of [1]). Then
we obtain the following corollary:

Corollary 1.3 Let Φ satisfying the property (H) then there exists A,B,D�0
such that for any smooth functions f > 0 we have

(1.11) EntµΦ

(
f 2
)

� A

∫
HΦ

(
f ′

f

)
f 2dµΦ,

where HΦ is defined on (1.10).

In [8] we investigate some particular example, where we have Φ(x) =
|x|α logβ |x|, for α ∈]1, 2[ and β ∈ R. Theorem 1.2 gives the result in the
general case.

Definition 1.4 Let µ a probability measure on R
n. µ satisfies a Modified

Logarithmic Sobolev Inequality (MLSI) of function HΦ (defined on (1.10))
if there exists A � 0 such that for any smooth functions f > 0 we have

(MLSI) EntµΦ

(
f 2
)

� A

∫
HΦ

(∇f
f

)
f 2dµΦ,

where

HΦ

(∇f
f

)
:=

n∑
i=1

HΦ

(
∂if

f

)
.

The MLSI of function HΦ is the n-dimensional version of inequality (1.11).
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In Section 2 we will give the proof of Theorem 1.2. The proof is done
in two steps, Proposition 2.4 and 2.9. In Subsection 2.1, we will describe
the case where the entropy is large and in Subsection 2.2 we will study the
other case, when the entropy is small. This two cases exhibit very different
behavior as we will see in the next sections but they are connected via the
common use of Hardy’s inequality we recall now.

Let µ, ν be Borel measures on R
+. Then the best constant A so that

every smooth functions f satisfy

(1.12)

∫ ∞

0

(f(x) − f(0))2dµ(x) � A

∫ ∞

0

f ′2dν

is finite if and only if

(1.13) B = sup
x>0

{
µ([x,∞[)

∫ x

0

(
dνac

dt

)−1

dt

}

is finite, where νac is the absolutely continuous part of ν with respect to µ.
Moreover, we have (even if A or B is infinite),

B � A � 4B.

We refer to [12] or [6, 1] for a review in this domain.

In Section 3 we will explain some classical properties of this particular
logarithmic Sobolev inequality. We explain briefly how, as in the classical
logarithmic Sobolev inequality of Gross,

• the MLSI of function HΦ satisfies the tensorization and the pertur-
bation properties,

• the MLSI of function HΦ implies also Poincaré inequality.

The last application is the concentration property for probability measure
satisfying inequality (1.11). Indeed, we obtain Hoeffding’s type inequality:
assume that a measure µ on R satisfies inequality (1.11) and let f be a Lip-
schitz function on R with ‖f‖Lip � 1, then, for some constants A,B,D � 0
independent of the dimension n,

P

(
1

n

∣∣∣∣ n∑
k=1

f(Xk)−µ(f)

∣∣∣∣ > λ

)
(1.14)

�
{

2 exp (−nAΦ(Bλ)) if λ � D,
2 exp

(−nAλ2
)

if 0 � λ � D,
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or equivalently,

(1.15) P

(
1√
n

∣∣∣∣ n∑
k=1

f(Xk) − µ(f)

∣∣∣∣ > λ

)
�⎧⎨⎩ 2 exp

(
− nAΦ

(
B

λ√
n

))
if λ � D

√
n,

2 exp
(−Aλ2

)
if 0 � λ � D

√
n.

Inequality (1.15) is interesting as for large enough n we find the Gaussian
concentration, this is natural due to the convergence of

1√
n

( n∑
k=1

f(Xk) − µ(f)

)
to the Gaussian distribution. This result is not a new one, Talagrand ex-
plains it in [13], see also [11] for a large review on this topic, the interest of
this part is to observe this phenomenon via Logarithmic Sobolev inequality.
Note also that it implies control of Laplace functionals which have applica-
tions for example in statistics.

Note finally that Barthe, Cattiaux and Roberto [4] have studied the same
sort of log-concave measure, they prove functional inequalities with an other
point of view, namely Beckner type inequalities or Φ-Sobolev inequalities,
in particular one of their results is concentration inequalities for the same
measure µΦ.

2. Proof of the Modified logarithmic Sobolev inequality

(Theorem 1.2)

Let us first give a lemma stating classical properties satisfied by the func-
tion Φ under (H).

Lemma 2.1 Assume that Φ satisfies assumption (H) then there exists C�0
such that for large enough x � 0,

x2 � CΦ∗(x),(2.1)

εΦ(Φ′−1(x)) � Φ∗(x) � (1 − ε)Φ(Φ′−1(x)),(2.2)

1
C

Φ′−1(x) � Φ∗(x)
x

� CΦ′−1(x).(2.3)

The proof of Lemma 2.1 is an easy consequence of the property (H).

For this we will note by smooth function a locally absolutely continuous
function on R. This is the regularity needed for the use of Hardy inequality
in our case.
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2.1. Large entropy

The proof of MLSI for large entropy is based on the next lemma, we give
a MLSI saturate on the left, with some weighted type energy.

Lemma 2.2 There exists Ch � 0 and M > 0 such that for every smooth
functions g we have

(2.4) EntµΦ

(
g2
)

� Ch

∫
g′2hdµΦ,

where h is defined as follows

(2.5) h(x) =

{
1 if |x| < M

x2

Φ(x)
if |x| � M.

Proof. We use Theorem 3 of [5] which is a refinement of the criterion of a
Bobkov-Götze theorem (see Theorem 5.3 of [6]).

The constant Ch satisfies

max(b−, b+) � Ch � max(B−, B+)

where

b+ = sup
x�0

µΦ([x,+∞[) log

(
1 +

1

2µΦ([x,+∞[)

)∫ x

0

ZΦ
eΦ(t)

h(t)
dt,

b− = sup
x�0

µΦ(] −∞, x]) log

(
1 +

1

2µΦ( ] −∞, x])

)∫ 0

x

ZΦ
eΦ(t)

h(t)
dt,

B+ = sup
x�0

µΦ([x,+∞[) log

(
1 +

e2

µΦ([x,+∞[)

)∫ x

0

ZΦ
eΦ(t)

h(t)
dt,

B− = sup
x�0

µΦ(] −∞, x]) log

(
1 +

e2

µΦ([−∞, x[)

)∫ 0

x

ZΦ
eΦ(t)

h(t)
dt.

An easy approximation proves that for large positive x

(2.6) µΦ([x,∞[) =

∫ ∞

x

1

ZΦ
e−Φ(t)dt ∼∞

1

ZΦΦ′(x)
e−Φ(x),

and ∫ x

0

ZΦ
eΦ(t)

h(t)
dt ∼∞

ZΦ

h(x)Φ′(x)
eΦ(x),

and one may prove similar behaviors for negative x.
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Then, there is K and M such that for x � M ,

µΦ([x,+∞[) log

(
1 +

1

2µΦ([x,+∞[)

)∫ x

0

ZΦ
eΦ(t)

h(t)
dt �

K
Φ(x)

Φ′(x)2h(x)
= K

(
Φ(x)

xΦ′(x)

)2

.

The right hand term is bounded by the assumption (H).
A simple calculation then yields that constants b+, b−, B+ and B− are

finite and the lemma is proved. �

Remark 2.3 Note that this lemma can be proved in a more general case,
when Φ does not satisfy hypothesis (H).

Proposition 2.4 There exist A,B,D,A′ � 0 such that for any functions
f � 0 satisfying ∫

f 2dµΦ = 1 and EntµΦ

(
f 2
)

� 1

we have

(2.7) EntµΦ

(
f 2
)

� A′VarµΦ
(f) + A

∫
f2�2

HΦ

(
f ′

f

)
f 2dµΦ,

where

HΦ(x) =

{
x2 if |x| < D,

Φ∗(Bx) if |x| � D.

As we will see in the proof, A′ does not depend on the function Φ.

Proof of Proposition 2.4. Let f � 0 satisfying
∫
f 2dµΦ = 1. A careful

study of the function

x→ −x2 log x2 + 5(x− 1)2 + x2 − 1 + (x− 2)2
+ log(x− 2)2

+

proves that for every x � 0

x2 log x2 � 5(x− 1)2 + x2 − 1 + (x− 2)2
+ log(x− 2)2

+.

We know that
∫

(f − 1)2dµΦ � 2VarµΦ
(f), recalling that

∫
f 2dµΦ = 1

and f � 0,∫
f 2 log f 2dµΦ � 5

∫
(f − 1)2dµΦ +

∫
(f 2 − 1)dµΦ

+

∫
(f − 2)2

+ log(f − 2)2
+dµΦ

� 10VarµΦ
(f) +

∫
(f − 2)2

+ log(f − 2)2
+dµΦ.
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Since
∫
f 2dµΦ = 1, one can easily prove that∫

(f − 2)2
+dµΦ � 1,

then
∫

(f − 2)2
+ log(f − 2)2

+dµΦ � EntµΦ

(
(f − 2)2

+

)
, and

EntµΦ

(
f 2
)

� 10VarµΦ
(f) + EntµΦ

(
(f − 2)2

+

)
.

Lemma 2.2 with g = (f − 2)+ gives

(2.8) EntµΦ

(
(f − 2)2

+

)
� Ch

∫
(f − 2)′2+hdµΦ = Ch

∫
f�2

f ′2hdµΦ.

Due to the assumption (H), the function h(x) = x2/Φ(x), is increasing
on [M,∞[ and

lim
x→∞

h(x) = ∞.

We can assume that Φ(M) > 0. We note m = h(M) > 0 Let us define the
function τ as follow

(2.9) τ(x) =

{
xΦ(h−1(m))/(8Chm) if 0 � x � m
Φ(h−1(x))/(8Ch) if x � m

For all x � M , we have τ(h(x)) = Φ(x)/(8Ch) and then, an easy calculus
gives that τ is increasing on [0,∞[.

Let u > 0,

Ch

∫
f�2

f ′2hdµΦ = Ch

∫
f�2

u

(
f ′

f

)2
h

u
f 2dµΦ

� Ch

∫
f�2

τ ∗
{
u

(
f ′

f

)2
}
f 2dµΦ +

∫
f�2

Chτ

(
h

u

)
f 2dµΦ

For every function f such that
∫
f 2dµΦ = 1 and for every measurable

function g such that
∫
f 2gdµΦ exists we get∫

f 2gdµ � EntµΦ

(
f 2
)

+ log

∫
egdµΦ.

Indeed, this inequality is also true for all function g � 0 even if the above
integrals are infinite.

We apply the previous inequality with g = 4Chτ(h/u) and we obtain∫
f�2

Chτ

(
h

u

)
f 2dµΦ � 1

4

∫
4Chτ

(
h

u

)
f 2dµΦ �

1

4

(
EntµΦ

(
f 2
)

+ log

∫
e4Chτ(h

u)dµΦ

)
.
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If u = 1 we have, by construction,
∫
e4Chτ(h

u)dµΦ <∞, then we get

lim
u→∞

∫
e4Chτ( h

u)dµΦ = 1.

Then, by the bounded convergence theorem, there exists u0 such that we

get
∫
e
4Chτ

�
h

u0

�
dµΦ � e.

Thus we have

EntµΦ

(
(f − 2)+

2) � Ch

∫
f�2

τ ∗
{
u0

(
f ′

f

)2}
f 2dµΦ +

1

4
EntµΦ

(
f 2
)

+
1

4

EntµΦ
(f 2) � 1, implies

EntµΦ

(
f 2
)

� 20VarµΦ
(f) + 2Ch

∫
f�2

τ ∗
{
u0

(
f ′

f

)2}
f 2dµΦ.

Then Lemma 2.5 gives the proof of inequality (2.7). �

Lemma 2.5 There exist constants A,B,C,D � 0 such that

∀x � 0, τ ∗(x2) �
{
Bx2 if x < D,
AΦ∗(Cx) if x � D.

Proof. Let x > 0, then τ ∗(x) = supy�0 {xy − τ(y)}. Let nowm = h(M) > 0,
then

τ ∗(x) = max

{
sup

y∈[0,m[

{xy − τ(y)}, sup
y�m

{xy − τ(y)}
}
,

� sup
y∈[0,m[

{xy − τ(y)} + sup
y�m

{xy − τ(y)}.

We have supy∈[0,m[ {xy − τ(y)} � xm, because τ is positive. Then the defi-
nition of τ implies that

sup
y�m

{xy − τ(y)} = sup
y�M

{
x
y2

Φ(y)
− Φ(y)

8Ch

}
.

Let define ψx(y) = xy2/Φ(y) − Φ(y)/(8Ch) for y � M . We have

ψ′
x(y) = xy

2Φ(y) − yΦ′(y)
Φ2(y)

− Φ′(y)
8Ch

.

Due to the property (H), there is D > 0 such that

∀x � D, sup
y�m

{xy − τ(y)} = x
y2

x

Φ(yx)
− Φ(yx)

8Ch
,
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where yx � M satisfies

x =
1

8Ch

Φ′(yx)Φ
2(yx)

yx(2Φ(yx) − yxΦ′(yx))
.

The assumption (H) implies that

εyxΦ
′(yx) � 2Φ(yx) − yxΦ

′(yx) � 1 − ε

1 + ε
yxΦ

′(yx),

then using the last inequality and again the assumption (H) one get

(2.10)
1

8Ch(1 − ε)(2 − ε)
Φ′2(yx) � x � 1

8Chε(1 + ε)
Φ′2(yx).

We get with the assumption (H),

∀x � D, sup
y�m

{xy − τ(y)} � 1

8Chε(1 + ε)
Φ′2(yx)

y2
x

Φ(yx)
− 1

8Cy

Φ(yx)

� (2 − ε)2

8Chε(1 + ε)
Φ(yx).

Equation (2.10) gives,

yx � Φ′−1(
√
Cx)

where C > 0. Then we get

∀x � D, sup
y�m

{xy − τ(y)} � (2 − ε)2

8Chε(1 + ε)
Φ
(
Φ′−1(

√
Cx)

)
.

We obtain, using inequality (2.2) of Lemma 2.1,

∀x � D, sup
y�m

{xy − τ(y)} � 1

8Chε2(1 + ε)
Φ∗
(√

Cx
)
.

then,

∀x � D, τ ∗(x) � xm+KΦ∗
(√

Cx
)
.

Using inequality (2.1) of Lemma 2.1 we get

∀x � D, τ ∗(x) � K ′Φ∗
(√

Cx
)
,

for some K ′ � 0.
On the other hand, the function τ is non-negative and satisfy τ(0) = 0

then τ ∗(0) = 0. τ ∗ is also a convex function, then there exists m′ such that

∀x ∈ [0, D], τ ∗(x) � xm′,

which proves the lemma. �
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Corollary 2.6 For any smooth functions f > 0 on R satisfying∫
f 2dµΦ = 1, and EntµΦ

(
f 2
)

� 1,

we have

EntµΦ

(
f 2
)

� C

∫
HΦ

(
f ′

f

)
f 2dµΦ,

where

HΦ(x) =

{
x2 if |x| < D,

Φ∗(Bx) if |x| � D,

and B,D � 0.

Proof. Due to the property (H) the measure µΦ satisfies a Spectral Gap
inequality,

VarµΦ
(f) � CSG

∫
f ′2dµΦ,

with CSG � 0. We apply inequality (2.7) to get the result. �

2.2. Small entropy

Lemma 2.7 Let λ > 0 and define the function ψ by

ψ(x) =
{
(Φ∗)−1(λ log x)

}2
.

Then for all λ > 0 there exists Aλ > 0 such that the function ψ is well
defined, positive, increasing, concave on [Aλ,∞[ and satisfies ψ(Aλ) � 1.

Proof. Let λ > 0 be fixed. Classical property of the Legendre-Frenchel
transform implies that Φ∗ is convex. Due to the property (H), (Φ∗)−1(λ log x)
is well defined for x � M1 with M1 > 0. Then we get on [M1,∞[,

ψ′(x) = 2g′(λ log x)g(λ logx)
λ

x
,

ψ′′(x) = 2g(λ logx)
λ2

x2

(
g′′(λ log x) − g′(λ log x)

λ
+
g′2(λ log x)

g(λ logx)

)
,

where, for simplicity, we have noted g = (Φ∗)−1.
For x large enough g is non-negative and increasing and then ψ is in-

creasing on [M2,∞[, with M2 � 0.
An easy estimation gives that as x goes to infinity,

(2.11)
g′(x)
g(x)

= o∞(1),

then since (Φ∗)−1 is concave, for all large enough x, ψ′′(x) � 0. Then one
can find Aλ > 0 such that properties on the Lemma 2.7 are true. �
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The proof of MLSI for small entropy is based on the next lemma, we
give a MLSI saturate on the right.

Lemma 2.8 Let T1, T2 ∈ R such that T1 < T2. Then there exists λ > 0
which depends on the function Φ such that for all g defined on [T,∞[ with
T ∈ [T1, T2], and verifying that

g(T ) =
√
Aλ, g �

√
Aλ and

∫ ∞

T

g2dµα � 2Aλ + 2,

where Aλ is defined on Lemma 2.7.
Then we get

(2.12)

∫ ∞

T

(g −
√
Aλ)

2
+ψ(g2)µΦ � C1

∫
[T,∞[

g′2dµΦ,

where ψ is defined on Lemma 2.7.
The constant C1 depends on Φ and λ but does not depend on the value

of T ∈ [T1, T2].

Proof. Let use Hardy’s inequality as explained in the introduction. We
have g(T ) = Aλ. We apply inequality (1.12) on [T,∞[ with the function
(g −√

Aλ)+ and the following measures

dµ = ψ(g2)dµΦ and ν = µΦ.

Then the constant C in inequality (2.12) is finite if and only if

B = sup
x�T

∫ x

T

eΦ(t)dt

∫ ∞

x

ψ(g2)dµΦ,

is finite.
By Lemma 2.7, ψ is concave on [Aλ,∞[ then by Jensen inequality, for

all x � T we get∫ ∞

x

ψ
(
g2
)
dµΦ � µΦ([x,∞[)ψ

( ∫∞
x
g2dµΦ

µΦ([x,∞[)

)
.

Then we have

B � sup
x>T1

{∫ x

T1

eΦ(t)dtµΦ([x,∞[)ψ

( ∫∞
x
g2dµΦ

µΦ([x,∞[)

)}
(2.13)

Due to the property (H) there exists K > 1 such that

(2.14) Φ′(x)eΦ(x) � eKΦ(x),

and ∫ x

T1

eΦ(t)dt � KeΦ(x)

Φ′(x)
,

∫ ∞

x

e−Φ(t)dt � e−Φ(x)

Φ′(x)
,

for large enough x.
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By (2.14) we get also for large enough x that

e−KΦ(x)

ZΦ
�
∫∞

x
e−Φ(t)dt

ZΦ
.

Then for large enough x, uniformly in the previous g, one have∫ x

T1

eΦ(t)dtµΦ([x,∞[)ψ

( ∫∞
x
g2dµΦ

µΦ([x,∞[)

)
� K

(Φ′(x))2ψ

(∫∞
x
g2dµΦ

K
eKΦ(x)

)
.

For x large enough, ∫∞
x
g2dµΦ

K
� 1.

Then, by definition of ψ, for large enough x,∫ x

T1

eΦ(t)dtµΦ([x,∞[)ψ

( ∫∞
x
g2dµΦ

µΦ([x,∞[)

)
� K

(
Φ∗−1(λKΦ(x))

Φ′(x)

)2

.

There is also Cε such that, for x large enough

Φ∗−1(x) � Φ′(Φ−1(Cεx)
)
,

as one can see from equation (2.2).
Then one can choose λ = 1/(KCε) and the lemma is proved. Note that λ

depends only on the function Φ.
The constant B on (2.13) is bounded by K which does not depend on T

on [T1, T2]. �

Proposition 2.9 There exists A,A′, B,D,Aλ > 0 such that for any func-
tions f � 0 satisfying∫

f 2dµα = 1 and Entµα

(
f 2
)

� 1,

we have

EntµΦ

(
f 2
)

� AVarµΦ
(f) + A′

∫
f2�Aλ

HΦ

(
f ′

f

)
f 2dµΦ,

where

HΦ(x) =

{
x2 if |x| < D,

Φ∗(Bx) if |x| � D.

Note that contrary to Proposition 2.4, constant A depends on the function Φ.
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Proof. Let f � 0 satisfying
∫
f 2dµα = 1.

We can assume that Aλ � 2. A careful study of the function

x→ −x2 log x2 + A(x− 1)2 + x2 − 1 + (x−
√
Aλ)

2
+ log(x−

√
Aλ)

2
+

proves that there exists A such that for every x ∈ R
+

x2 log x2 � A(x− 1)2 + x2 − 1 + (x−
√
Aλ)

2
+ log(x−

√
Aλ)

2
+.

Then we get

(2.15) Entµα

(
f 2
)
=

∫
f 2 log f 2dµα �AVarµα(f)+

∫ (
f−
√
Aλ

)2
+

log f 2dµα,

where
√
Aλ is defined as in Lemma 2.8.

Fix λ as in Lemma 2.8. We define the function K on [Aλ,∞[ by

K(x) =

√
log x2

ψ(x2)
.

Let now define T1 < T2 such that

µΦ(]∞, T1]) =
3

8
, µΦ([T1, T2]) =

1

4
and µΦ([T2,+∞[) =

3

8
.

Since
∫
f 2dµΦ = 1 there exists T ∈ [T1, T2] such that f(T ) � Aλ.

Let us define g on [T,∞] as follow

g =
√
Aλ +

(
f −

√
Aλ

)
+
K(f) on [T,∞[.

Function g satisfies g(T ) =
√
Aλ and g(x) �

√
Aλ for all x � T . Then we have∫ ∞

T

g2dµΦ � 2Aλ + 2

∫
[T1,∞[∩{f2�Aλ}

f 2K2(f)dµΦ

� 2Aλ + 2

∫
[T1,∞[

f 2 log(f 2)dµΦ

� 2Aλ + 2,

(2.16)

where we are using the growth of ψ on [Aλ,∞[ and ψ(Aλ) � 1.
Assumptions on Lemma 2.8 are satisfied, we obtain by inequality (2.12)∫ ∞

T

(g −
√
Aλ)

2
+ψ(g2)dµΦ � C1

∫
[T,∞[∩{f2�Aλ}

g′2dµΦ.

Let us compare the various terms now.
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Due to the property (H), K is lower bounded on [
√
Aλ,∞[ by α � 1

(maybe for Aλ larger), then we get firstly√
Aλ +

(
f −

√
Aλ

)
+
K(f) �

√
Aλ +

(
f −

√
Aλ

)
+
α � f on

{
f 2 � Aλ

}
.

Then(
g −

√
Aλ

)2

+
ψ(g2) �

(
f −

√
Aλ

)2

+
K(f)2ψ(f 2) =

(
f −

√
Aλ

)2

+
log f 2,

by the definition of K, then we obtain

(2.17)

∫ ∞

T

(f −
√
Aλ)

2
+ log f 2dµΦ �

∫ ∞

T

(g −
√
Aλ)

2
+ψ(g2)dµΦ.

Secondly we have on
{
f �

√
Aλ

}
g′ = f ′K(f) +

(
f −

√
Aλ

)
+
f ′K ′(f)

= f ′K(f)

(
1 +

(
f −

√
Aλ

)
+

K ′(f)

K(f)

)
.

But we have, for x �
√
Aλ,∣∣∣∣1 + (x−

√
Aλ)

K ′(x)
K(x)

∣∣∣∣ � 1 + x

∣∣∣∣K ′(x)
K(x)

∣∣∣∣
� 1 +

1

log x
+ 4

∣∣∣∣λx g′(λ2 log x)

g(λ2 logx)

∣∣∣∣,
where g(x) = Φ∗−1(x). Using the estimation (2.11) we obtain that there
exists C > 0 such that for all x �

√
Aλ,∣∣∣∣1 + (x−

√
Aλ)

K ′(x)
K(x)

∣∣∣∣ � C.

We get then

g′2 � Cf ′2K2(f) on
{
f 2 � Aλ

}
,

for some C <∞ and then

(2.18)

∫
[T,∞[∩{f2�Aλ}

g′2dµΦ � C

∫
[T,∞[∩{f2�Aλ}

f ′2K2(f)dµΦ.

By equation (2.17) and (2.18) we obtain∫ ∞

T

(f −
√
Aλ)

2
+ log f 2dµΦ � C

∫
[T,∞[∩{f2�Aλ}

f ′2K2(f)dµΦ.
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Let u0 > 0,∫ ∞

T

(f −
√
Aλ)

2
+ log f 2dµΦ �

C

∫
[T,∞[∩{f2�Aλ}

τ ∗2

(
u0

(
f ′

f

)2
)
f 2dµΦ +

∫
[T,∞[∩{f2�Aλ}

τ2

(
K2(f)

u0

)
f 2dµΦ,

where the function τ2 is defined as in equation (2.9) by

(2.19) τ2(x) =

⎧⎪⎨⎪⎩
xΦ
(
h−1(m)

)1 − ε

2λm
if 0 � x < m

Φ
(
h−1(x)

)1 − ε

2λ
if x � m,

where h is defined on equation (2.5) andm on equation (2.9). The function τ2
is equal to τ up to a constant factor.

Using Lemma 2.10 we get∫ ∞

T

(f −
√
Aλ)

2
+ log f 2dµΦ �

C

∫
[T,∞[∩{f2�Aλ}

τ ∗2

(
u0

(
f ′

f

)2
)
f 2dµΦ +

1

2

∫
[T,∞[∩{f2�Aλ}

f 2 log f 2dµΦ.

The same method can be used on ] −∞, T ] and then there is C ′ < ∞
such that∫ T

−∞
(f −

√
Aλ)

2
+ log f 2dµΦ �

C ′
∫

]−∞,T ]∩{f2�Aλ}
τ ∗2

(
u0

(
f ′

f

)2
)
f 2dµΦ +

1

2

∫
]−∞,T ]∩{f2�Aλ}

f 2 log f 2dµΦ.

And then we get∫
(f −

√
Aλ)

2
+ log f 2dµΦ �

(C + C ′)
∫
{f2�Aλ}

τ ∗2

(
u0

(
f ′

f

)2
)
f 2dµΦ +

1

2

∫
{f2�Aλ}

f 2 log f 2dµΦ.

Note that constants C and C ′ do not depend on T ∈ [T1, T2].
Then by inequality (2.15) and Lemma 2.5, Proposition 2.9 is proved. �
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Lemma 2.10 There exists u0 > 0 such that, for all x � Aλ we have

τ2

(
K2(x)

u0

)
� 1

2
log x2.

Proof. Let κ = 2λ/(1 − ε). For all x � M , where M is defined on equa-
tion (2.9), we have

τ2(h(x)) =
Φ(x)

κ
,

τ2

(
x2

Φ(x)

)
=

Φ(x)

κ
.

τ2 is increasing, then due to the property (H) we have for x � M

τ2

(
(1 + ε)2 Φ(x)

Φ′(x)2

)
� Φ(x)

κ
.

Using now inequality (2.2) one has

1

Φ′(x)
� 1

Φ∗−1((1 − ε)Φ(x))
,

then for all x � M ,

τ2

(
(1 + ε)2 Φ(x)

Φ∗−1((1 − ε)Φ(x))2

)
� Φ(x)

κ
.

Take now z = (1 − ε)Φ(x),

τ2

(
(1 + ε)2

1 − ε

z

Φ∗−1(z)2

)
� z

(1 − ε)κ
,

to finish take

x = exp

(
z

(1 − ε)κ

)
to obtain

τ2

(
(1 + ε)2κ

log x2

Φ∗−1
(

(1−ε)κ
2

log x2
)2

)
� 1

2
log x2.

Recall that λ = (1− ε)κ/2 and let take u0 = 1/((1 + ε)2κ), to obtain the
result for x � C, where C is a constant depending on Φ.

If we have Aλ < C, one can change the value of u0 to obtain also the
result on [Aλ, C]. �
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Proof of Theorem 1.2. To give the proof of the theorem we need to give
an other result like Proposition 2.4. By the same argument as in Proposi-
tion 2.4 one can also prove that there exists A,A′, B,D > 0 such that for
any functions f � 0 satisfying∫

f 2dµα = 1 and Entµα

(
f 2
)

� 1

we have for some C ′(Aλ), C(Aλ)

(2.20) EntµΦ

(
f 2
)

� C ′(Aλ)VarµΦ
(f) + C(Aλ)

∫
f2�Aλ

HΦ

(
f ′

f

)
f 2dµΦ,

where HΦ is defined on (1.10) and Aλ on the Proposition 2.9.

Then the proof of the theorem is a simple consequence of (2.20) and
Proposition 2.9. �

3. Classical properties and applications

Let us give here properties inherited directly from the methodology known
for classical logarithmic Sobolev inequalities.

Proposition 3.1 1 This property is known under the name of tensoriza-
tion.

Let µ1 and µ2 two probability measures on R
n1 and R

n2. Suppose that µ1

(resp. µ2) satisfies the a MLSI with function HΦ and constant A1 (resp.
with constant A2) then the probability µ1⊗µ2 on R

n1+n2, satisfies a MLSI
with function HΦ and constant max {A1, A2}.

2 This property is known under the name of perturbation.

Let µ a measure on R
n a MLSI with function HΦ and constant A. Let h

a bounded function on R
n and defined µ̃ as

dµ̃ =
eh

Z
dµ,

where Z =
∫
ehdµ.

Then the measure µ̃ satisfies a MLSI with function HΦ and the constant

D = Ae2osc(h), where osc(h) = sup(h) − inf(h).
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3 Link between MLSI of function HΦ with Poincaré inequality.

Let µ a measure on R
n. If µ satisfies a MLSI with function HΦ and

constant A, then µ satisfies a Poincaré inequality with the constant A.
Let us recall that µ satisfies a Poincaré inequality with constant A if

Varµ(f) � A

∫
|∇f |2dµ,

for all smooth function f .

Proof. One can find the details of the proof of the properties of tensorization
and perturbation and the implication of the Poincaré inequality in chapters 1
and 3 of [1, Section 1.2.6., Theorem 3.2.1 and Theorem 3.4.3]. �

Proposition 3.2 Assume that the probability measure µ on R satisfies a
MLSI with function HΦ and constant A. Then there exists three constants
B,C,D � 0, independent of n such that: if F is a function on R

n such that
∀i, ‖∂iF‖∞ � ζ, then we get for λ � 0,

(3.1) µ⊗n(
∣∣F − µ⊗n(F )

∣∣ � λ)

�

⎧⎪⎪⎨⎪⎪⎩
2 exp

(
−nBΦ

(
C
λ

nζ

))
if λ > nDζ,

2 exp

(
−B λ2

nζ2

)
if 0 � λ � nDζ.

Proof. Let us first present the proof when n = 1. Assume, without loss of
generality, that

∫
Fdµ = 0. Due to the homogeneous property of (3.1) on

can suppose that ζ = 1.
Let us recall briefly Herbst’s argument (see [1, Chapter 7] for more de-

tails). Denote ψ(t) =
∫
etFdµ, and remark that MLSI of function HΦ

applied to f 2 = etF , using basic properties of HΦ, yields to

(3.2) tψ′(t) − ψ(t) logψ(t) ≤ AHΦ

(
t

2

)
ψ(t)

which, denoting K(t) = (1/t) logψ(t), entails

K ′(t) � A

t2
HΦ

(
t

2

)
.

Then, integrating, and using K(0) =
∫
Fdµ = 0, we obtain

(3.3) ψ(t) ≤ exp

(
At

∫ t

0

1

s2
HΦ

(s
2

)
ds

)
.
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Then we get using Markov inequality

µ(|F − µ(F )| � λ) � 2 exp

(
min
t�0

{
At

∫ t

0

1

s2
HΦ

(s
2

)
ds− λt

})
.

Let note, for t � 0,

G(t) = At

∫ t

0

1

s2
HΦ

(s
2

)
ds− λt.

An easy study proves that G admits a minimum on R
+ on the value t0 which

satisfies for λ > 0 G′(t0) = 0. Then due to the definition of HΦ we get that

min
t�0

{G(t)} = −λ
2

A
, if λ � AD.

Assume now that λ � AD then we obtain after derivation

(3.4) min
t�0

{G(t)} = −AΦ∗
(
t0
B

2

)
,

with

λt0 = At0

∫ t0

0

1

s2
HΦ

(s
2

)
ds+ AHΦ

(
t0
2

)
.

We first prove that there exists C � 0 such that for all t0 large enough

(3.5) t0

∫ t0

0

1

s2
HΦ

(s
2

)
ds � CHΦ

(
t0
2

)
.

For κ � 0 large enough and t0 � κ we get using then inequality (2.2) we get

t0

∫ t0

κ

1

s2
HΦ

(s
2

)
ds � Ct0

∫ t0

κ

1

s2
Φ
(
Φ′−1

(s
2

))
ds,

with C � 0. Then by a change of variables and integration by parts, for
large enough t0,

t0

∫ t0

κ

1

s2
Φ
(
Φ′−1

(s
2

))
ds =

t0
2

∫ Φ′−1( t0
2 )

Φ′−1(κ
2 )

Φ(u)

Φ′(u)2
Φ′′(u)du

� t0
2

Φ(Φ−1(κ/2))

Φ′(Φ−1(κ/2))
+
t0
2

Φ′−1
(t0/2)

� Ct0Φ
′−1

(t0/2),

for some other C � 0. Then we get, using inequality (2.3), for t0 large
enough,

t0

∫ t0

0

1

s2
HΦ

(s
2

)
ds � Ct0Φ

′−1
(t0/2) � C ′Φ∗(t0/2).
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for some constant C ′ � 0 and for t0 large enough. Then inequality (3.5) is
proved. By (3.5) and (3.4) one get for t0 large enough,

λt0 � A′Φ∗
(
t0
2

)
,

for some constant A′ � 0. But, using inequality (2.3) and property (H) we
get then, for other constants C,C ′, A,

Φ′(Aλ) � Ct0,

mint�0 {G(t)} � −AΦ∗(BΦ′(Cλ)) � −AΦ∗(Φ′(C ′λ)),

if λ is large enough and for some other constants A,B,C, C ′ � 0. Using
inequality (2.2), we obtain the result in dimension 1.

For the n-dimensional extension, use the tensorization property ofMLSI
of function HΦ and

n∑
i=1

HΦ

(
t

2
∂iF

)
� nHΦ

(
t

2

)
.

Then we can use the case of dimension 1 with the constant A replaced
by An. �

Remark 3.3 Let us present a simple application of the preceding proposition
to deviation inequality of the empirical mean of a function. Consider the
real valued function f , with |f ′| ≤ 1. Let apply Proposition 3.2 with the two
functions

F (x1, . . . , xn) =
1

n

n∑
k=1

f(xk) and F (x1, . . . , xn) =
1√
n

n∑
k=1

f(xi).

We obtain then

P

(
1

n

∣∣∣∣ n∑
k=1

f(Xk)−µ(f)

∣∣∣∣ > λ

)
�
{

2 exp (−nAΦ(Bλ)) if λ � D,
2 exp

(−nAλ2
)

if 0 � λ � D,

P

(
1√
n

∣∣∣∣ n∑
k=1

f(Xk)−µ(f)

∣∣∣∣ > λ

)

�
{

2 exp

(
−nAΦ

(
B

λ√
n

))
if λ � D

√
n,

2 exp
(−Aλ2

)
if 0 � λ � D

√
n.
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probabilités, XIX, 1983/84, 177–206. Lecture Notes in Mathematics 1123.
Springer, Berlin, 1985.

[4] Barthe, F., Cattiaux, P. and Roberto, C.: Interpolated inequal-
ities between exponential and Gaussian, Orlicz hypercontractivity and
isoperimetry. Rev. Mat. Iberoamericana 22 (2006), no. 3, 993–1067.

[5] Barthe, F. and Roberto, C.: Sobolev inequalities for probability mea-
sures on the real line. Studia Math. 159 (2003), 481–497.

[6] Bobkov, S.G. and Götze, F.: Exponential integrability and transporta-
tion cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163
(1999), 1–28.

[7] Bobkov, S. G. and Ledoux, M.: Poincaré’s inequalities and Talagrand’s
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