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On monochromatic solutions
of equations in groups

Peter Cameron, Javier Cilleruelo and Oriol Serra

Abstract

We show that the number of monochromatic solutions of the equa-
tion xα1

1 xα2
2 · · · xαr

r = g in a 2-coloring of a finite group G, where
α1, . . . , αr are permutations and g ∈ G, depends only on the cardi-
nalities of the chromatic classes but not on their distribution. We
give some applications to arithmetic Ramsey statements.

1. Introduction

A well-known theorem of Schur establishes that, for n ≥ n0(k) and every
coloring of the integers in [1, n] with a finite number k of colors, there is
a monochromatic triple (x, y, z) satisfying x + y = z. Graham, Rödl and
Ruczinsky [3] proved that the minimal number S(n) of Schur triples in a
2-coloring of [1, n] verifies S(n) ≥ n2/38 + O(n) and enquired about the
value of the limit S(n)/n2 as n → ∞. The answer S(n) = n2/22 + O(n)
was given in three independent papers by Robertson and Zeilberger [5],
Schoen [4] and Datskovsky [1].

In the last reference, Datskovsky also shows the somewhat surprising
fact that the number of Schur triples in a 2-coloring of Z/nZ depends only
on the cardinalities of the color classes (and not on the distribution of the
colors.) The purpose of this note is to show that such phenomenon occurs
in a broader combinatorial setting which can be applied to other Ramsey
arithmetical statements.

Our main theorem is a result about 2-colorings of orthogonal arrays,
stated and proved in the next section of the paper. The result immediately
specialises to a statement about finite groups as follows:
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Theorem 1.1 Let G be a finite group, α1, . . . , αr a set of permutations of G
and g ∈ G. For any 2-coloring of the elements of G with color classes A
and B, let A∗ and B∗ denote the sets of r-tuples (x1, . . . , xr) satisfying the
equation

(1.1) xα1
1 xα2

2 · · ·xαr
r = g,

with all elements in A and B respectively. Then,

|A∗| + (−1)r+1|B∗| =
1

|G|(|A|r + (−1)r+1|B|r).

Note that this theorem can be specialised to the equation

α1x1 + α2x2 + · · ·+ αrxr = g

in an abelian group G, where α1, . . . , αr are integers coprime to the order
of G.

We present applications of this result in three areas: monochromatic
arithmetic progressions, monochromatic Schur triples, and Pythagorean
triples. These are discussed in the following three sections of the paper.

2. The main theorem for orthogonal arrays and groups

A set S of r-vectors with entries in a finite set X is an orthogonal array
of degree r, strength k and index λ if, for any choice of k columns, each
k-vector of Xk appears in these columns exactly in λ vectors of S.

Theorem 2.1 Let S an orthogonal array of degree r, strength k and index λ.
Given a 2-coloring of X with color classes A and B, let ui denote the number
of r-vectors in S with exactly i elements in A. Then

k∑
j=0

(
r

j

)
(−1)j |X|r−j|A|j = λ(u0 +

r∑
i=k+1

(−1)k

(
i − 1

k

)
ui).

Proof. Let f be a function on the set of subsets of {1, . . . , r} of cardinality
at most k, which assigns to each such subset J ⊂ {1, . . . , r} of cardinality
at most k a subset f(J) such that J ∩ f(J) = ∅ and |J | + |f(J)| = k.

For each subset J ⊂ {1, . . . , r} of cardinality j ≤ k, choose an arbitrary j-
vector (xi, i ∈ J) ∈ Aj and an arbitrary (k−j)-vector (xi, i ∈ f(J)) ∈ Xk−j.
Since S is an orthogonal array with strength k and index λ, each such choice
determines exactly λ r-vectors of S. In the multiset of the obtained vectors
from S, each vector with exactly i entries from A is counted λ

(
i
j

)
times
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(where
(

i
j

)
= 0 if 0 < j < i and

(
0
0

)
= 1.) Therefore, we get the following

linear system in the variables ui:

(2.1)

(
r

j

)
|X|k−j|A|j = λ

r∑
i=0

(
i

j

)
ui, j = 0, 1, . . . , k.

The alternating sum of the equations in (2.1) gives

k∑
j=0

(
r

j

)
(−1)j |X|k−j|A|j =

k∑
j=0

(−1)jλ
r∑

i=0

(
i

j

)
ui

= λ
r∑

i=0

ui

k∑
j=0

(−1)j

(
i

j

)

= λ(u0 +

r∑
i=k+1

(−1)k

(
i − 1

k

)
ui),

as claimed. �
Theorem 1.1 is a direct consequence of Theorem 2.1, as the set S of

solutions of the equation

xα1
1 xα2

2 · · ·xαr
r = g,

forms an orthogonal array of degree r, strength k = r − 1 and index λ = 1
with entries in G. (Any choice of r−1 of x1, . . . , xr uniquely determines the
last of these elements.)

3. Schur triples

In a group G, a Schur triple is a triple (x, y, z) of group elements satisfying
xy = z. More generally, a Schur r-tuple has the form (x1, . . . , xr−1, z), where
x1 · · ·xr−1 = z.

Corollary 3.1 Let G be a finite group. For any 2-coloring of the elements
of G with color classes A and B, the number of Schur triples (x, y, z) is

|A|2 − |A| · |B| + |B|2.
In particular, there are at least n2/4 monochromatic Schur triples in any
2-coloring of G.

Proof. This is immediate from our main theorem, on taking α1 and α2 to
be the identity permutation, α3 to be inversion, and g = 1. The last sentence
follows because the function x2 − x(n − x) + (n − x)2 = 3x2 − 3nx + n2 has
its minimum value when x = n/2. �

Almost exactly the same proof gives the following result:
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Corollary 3.2 (Datskovsky [1, Corollary 1]) Let Sr(A, B, n) denote the
number of monochromatic Schur r-tuples in a 2-coloring of Z/nZ with color
classes A and B. Then, for r odd,

Sr(A, B, n) =
1

n
(|A|r + |B|r).

Our proof is purely combinatorial. A proof can be also obtained by using
trigonometric sums as in [1].

4. Arithmetic progressions

An arithmetic progression in a group G is a set of elements of the form
{a, ad, ad2, . . . , adk−1}. It is degenerate if d = 1 and non-degenerate other-
wise.

If the order of G contains no prime factors smaller than k, then the
elements of a non-degenerate arithmetic progression are all distinct. If it
contains no prime factors smaller than 2k − 1, then such a progression de-
termines a and d up to just two possibilities, the other being obtained by
reading the progression backwards. For if the first two terms are taken to be
adi and adj , with {i, j} 	= {0, 1} and {i, j} 	= {n, n− 1}, then some member
of the progression will have the form adl where l is outside the range [0, k−1]
but in the range [−(k − 1), 2k − 2]; but no such element can belong to the
interval [0, k − 1] if the order of d is at least 2k − 1.

Corollary 4.1 In any 2-coloring of a group of order coprime to 6, the num-
ber of monochromatic 3-term arithmetic progressions with no repeated ele-
ments is

1

2
(|A|2 − |A| · |B| + |B|2 − n),

where A and B are the color classes. In particular, there are at least 1
8
n2− 1

2
n

such triples.

Proof. The set of 3-term arithmetic progressions in a group G of odd order
forms an orthogonal array of degree 3, strength 2 and index 1. (To show
that a and ad2 determine d, use the fact that every element of such a group
has a unique square root.) We remark that if G is abelian, then this set can
be expressed as in our main theorem, but in the non-abelian case the more
general result about orthogonal arrays seems to be needed.

Now as in the proof of Corollary 3.1, there are |A|2 − |A| · |B| + |B|2
monochromatic ordered arithmetic progressions of length 3; we have to sub-
tract n (the number of degenerate progressions) and divide by 2 (for the
possible orderings of the progression), since the smallest prime divisor of G
is at least 5 by assumption. �
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The extension to 3-colorings is a little more complicated. We first show
the following extension of the main theorem.

Theorem 4.2 Let G be a finite group, α1, α2, α3 permutations of G and
g ∈ G. For any 3-coloring of the elements of G with color classes A1, A2

and A3, let M (Monochromatic) and R (Rainbow) denote the sets of 3-tuples
(x1, x2, x3) satisfying the equation

(4.1) xα1
1 xα2

2 xα3
3 = g,

with all elements in the same color, and the three different colors respectively.
Then,

|M | =
1

2

(
3(|A1|2 + |A2|2 + |A3|2) − |G|2 + |R|) .

Proof. Consider the 2-coloring G = (Ai ∪ Aj) ∪ Ak. Then

(4.2) |(Ai ∪ Aj)
∗| + |A∗

k| = (|Ai| + |Aj|)2 − (|Ai| + |Aj|)|Ak| + |Ak|2.
We can write

|(Ai ∪ Aj)
∗| = |A∗

i | + |A∗
j | + |{3-tuples using the two colors Ai and Aj}|.

We write the last term Xij for short. Then

(4.3) |M | = (|Ai| + |Aj |)2 − (|Ai| + |Aj |)|Ak| + |Ak|2 − |Xij|.
Adding this identity for (i, j, k) = (1, 2, 3), (3, 1, 2) and (2, 3, 1) we have

3|M | = 3(|A1|2 + |A2|2 + |A3|2) − |X12| − |X13| − |X23|.(4.4)

On the other hand it is clear that

(4.5) |G|2 = |M | + |X12| + |X13| + |X23| + |R|.
Putting this in the formula above we obtain the theorem. �

Corollary 4.3 Any 3-coloring of a group of order n whose smallest prime
divisor is at least 17 has at least

n2 + 15n + 32

48

monochromatic arithmetic progressions of length 3.

Proof. We look at 9-term arithmetic progressions in the group, noting
that, by our assumption, each unordered progression can be ordered in just
two ways (the reverses of each other).
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In the table below we have marked in bold a monochromatic or rainbow
arithmetic progression in each 3-coloring of the 9-tuples. This proves that
any 3-coloring of any 9-tuple contains a non-degenerate arithmetic progres-
sion of length 3 belonging to M or R.

1 1 1 ∗ ∗ ∗ ∗ ∗ ∗
1 1 2 1 1 1 ∗ ∗ ∗
1 1 2 1 1 2 1 ∗ ∗
1 1 2 1 1 2 2 1 ∗
1 1 2 1 1 2 2 2 ∗
1 1 2 1 1 2 2 3 ∗
1 1 2 1 1 2 3 ∗ ∗
1 1 2 1 1 3 1 ∗ ∗
1 1 2 1 1 3 2 ∗ ∗
1 1 2 1 1 3 3 ∗ ∗
1 1 2 1 2 1 ∗ ∗ ∗
1 1 2 1 2 2 1 ∗ ∗
1 1 2 1 2 2 2 ∗ ∗
1 1 2 1 2 2 3 1 ∗
1 1 2 1 2 2 3 2 1
1 1 2 1 2 2 3 2 2
1 1 2 1 2 2 3 2 3
1 1 2 1 2 2 3 3 ∗
1 1 2 1 2 3 ∗ ∗ ∗
1 1 2 1 3 ∗ ∗ ∗ ∗
1 1 2 2 1 1 1 ∗ ∗
1 1 2 2 1 1 2 1 ∗
1 1 2 2 1 1 2 2 1
1 1 2 2 1 1 2 2 2
1 1 2 2 1 1 2 2 3
1 1 2 2 1 1 2 3 ∗
1 1 2 2 1 1 3 ∗ ∗
1 1 2 2 1 2 1 1 ∗
1 1 2 2 1 2 1 2 ∗
1 1 2 2 1 2 1 3 ∗

1 1 2 2 1 2 2 1 ∗
1 1 2 2 1 2 2 2 ∗
1 1 2 2 1 2 2 3 1
1 1 2 2 1 2 2 3 2
1 1 2 2 1 2 2 3 3
1 1 2 2 1 2 3 ∗ ∗
1 1 2 2 1 3 ∗ ∗∗
1 1 2 2 2 ∗ ∗ ∗ ∗
1 1 2 2 3 ∗ ∗ ∗ ∗
1 1 2 3 ∗ ∗ ∗ ∗∗
1 2 1 1 1 ∗ ∗ ∗ ∗
1 2 1 1 2 1 1 ∗ ∗
1 2 1 1 2 1 2 1 ∗
1 2 1 1 2 1 2 2 ∗
1 2 1 1 2 1 2 3 ∗
1 2 1 1 2 1 3 ∗ ∗
1 2 1 1 2 2 1 ∗ ∗
1 2 1 1 2 2 2 ∗ ∗
1 2 1 1 2 2 3 ∗ ∗
1 2 1 1 2 3 ∗ ∗ ∗
1 2 1 1 3 1 1 ∗ ∗
1 2 1 1 3 1 2 ∗ ∗
1 2 1 1 3 1 3 1 ∗
1 2 1 1 3 1 3 2 ∗
1 2 1 1 3 1 3 3 1
1 2 1 1 3 1 3 3 2
1 2 1 1 3 1 3 3 3
1 2 1 1 3 2 ∗ ∗ ∗
1 2 1 1 3 3 ∗ ∗ ∗
1 2 1 2 1 ∗ ∗ ∗ ∗

1 2 1 2 2 1 1 1 ∗
1 2 1 2 2 1 1 2 ∗
1 2 1 2 2 1 1 3 ∗
1 2 1 2 2 1 2 1 1
1 2 1 2 2 1 2 1 2
1 2 1 2 2 1 2 1 3
1 2 1 2 2 1 2 2 ∗
1 2 1 2 2 1 2 3 ∗
1 2 1 2 2 1 3 ∗ ∗
1 2 1 2 2 2 ∗ ∗ ∗
1 2 1 2 2 3 1 ∗ ∗
1 2 1 2 2 3 2 1 ∗
1 2 1 2 2 3 2 2 ∗
1 2 1 2 2 3 2 3 1
1 2 1 2 2 3 2 3 2
1 2 1 2 2 3 2 3 3
1 2 1 2 2 3 3 ∗ ∗
1 2 1 2 3 ∗ ∗ ∗ ∗
1 2 1 3 ∗ ∗ ∗ ∗ ∗
1 2 2 1 1 1 ∗ ∗ ∗
1 2 2 1 1 2 1 ∗ ∗
1 2 2 1 1 2 2 1 1
1 2 2 1 1 2 2 1 2
1 2 2 1 1 2 2 1 3
1 2 2 1 1 2 2 2 ∗
1 2 2 1 1 2 2 3 ∗
1 2 2 1 1 2 3 ∗ ∗
1 2 2 1 1 3 ∗ ∗ ∗
1 2 2 1 2 1 1 ∗ ∗
1 2 2 1 2 1 2 ∗ ∗

1 2 2 1 2 1 3 ∗ ∗
1 2 2 1 2 2 1 ∗ ∗
1 2 2 1 2 2 2 ∗ ∗
1 2 2 1 2 2 3 1 ∗
1 2 2 1 2 2 3 2 ∗
1 2 2 1 2 2 3 3 ∗
1 2 2 1 2 3 ∗ ∗ ∗
1 2 2 1 3 ∗ ∗ ∗ ∗
1 2 2 2 ∗ ∗ ∗ ∗ ∗
1 2 2 3 1 ∗ ∗ ∗ ∗
1 2 2 3 2 1 ∗ ∗ ∗
1 2 2 3 2 2 1 1 ∗
1 2 2 3 2 2 1 2 ∗
1 2 2 3 2 2 1 3 ∗
1 2 2 3 2 2 2 ∗ ∗
1 2 2 3 2 2 3 1 ∗
1 2 2 3 2 2 3 2 ∗
1 2 2 3 2 2 3 3 1
1 2 2 3 2 2 3 3 2
1 2 2 3 2 2 3 3 3
1 2 2 3 2 3 1 ∗ ∗
1 2 2 3 2 3 2 ∗ ∗
1 2 2 3 2 3 3 1 1
1 2 2 3 2 3 3 1 2
1 2 2 3 2 3 3 1 3
1 2 2 3 2 3 3 2 ∗
1 2 2 3 2 3 3 3 ∗
1 2 2 3 3 ∗ ∗ ∗ ∗
1 2 3 ∗ ∗ ∗ ∗ ∗ ∗

But the number of non-degenerate 9-tuples is n2−n and the number of non-
degenerate 3-tuples contained in a 9-tuple is exactly 16 (corresponding to
positions (1, 2, 3), . . . , (7, 8, 9), (1, 3, 5), . . . , (5, 7, 9), (1, 4, 7), . . . , (3, 6, 9),
and (1, 5, 9)). Then

|M | + |R| ≥ p2 − p

16
+ p,

where the last p counts the degenerate progressions. We obtain the result
adding the two inequalities. �



On monochromatic solutions of equations in groups 391

Remark The result of this theorem can be improved. For example, a
similar table shows that, in any 3-colored 11-term arithmetic progression,
we can find at least two 3-term arithmetic progressions which are either
monochromatic or rainbow. This improves the factor 1/16 in the proof to
2/25, and 1/48 in the result of the theorem to 2/75.

Computation using GAP [2] shows that this can be further improved.
The best fraction we found to replace the constant 1/16 was 7/60, which is
demonstrated by the fact that any 3-colored 28-term arithmetic progression
contains at least 32 monochromatic or rainbow 3-term progressions.

Of course, these improvements require further restrictions on the group:
in the last case, we have to assume that the smallest prime divisor of the
group order is at least 59.

This suggests the combinatorial problem:

What can be said about the function f(n), the least number m
such that any 3-coloured m-term arithmetic progression contains
at least n monochromatic or rainbow 3-term progressions?

For 4-term arithmetic progressions we have the following result:

Theorem 4.4 Any 2-coloring of a group of order n whose smallest prime
divisor is at least 13 has at least n2−16n+15

40
monochromatic arithmetic pro-

gressions of length 4.

Proof. The set of four-term arithmetic progressions in G (including the
degenerate ones (a, ad, ad2, ad3) with d = 1) forms an orthogonal array of
degree r = 4, strength k = 2 and index λ = 1 of 4-tuples, since any element
of G has a unique square root or cube root. By Theorem 2.1 we have

(4.6) n2 − 4n|A| + 6|A|2 = u0 + u3 + 3u4,

where, as in Theorem 2.1, A is one of the color classes and ui is the number
of solutions with exactly i elements from A. By exchanging the role of A
and B we get

(4.7) n2 − 4n|B| + 6|B|2 = u4 + u1 + 3u0.

By adding (4.6) and (4.7) we have

(4.8) 6(|A|2 + |B|2) − 2n2 = 4(u0 + u4) + (u1 + u3).

The identity u0 + u1 + u2 + u3 + u4 = n2 gives

(4.9) u0 + u4 =
u2

3
+ 2(|A|2 + |B|2) − n2 ≥ u2

3
+ 1.
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Let us show that

(4.10) u0 + u2 + u4 ≥ n2 − n

5
+ n.

Note that each arithmetic progression of length 7 contains at least one arith-
metic progression counted in u0 + u2 + u4 (see the table below).

1 1 1 1 ∗ ∗ ∗
1 1 1 2 1 1 1
1 1 1 2 1 1 2
1 1 1 2 1 2 ∗

1 1 1 2 2 ∗ ∗
1 1 2 1 1 1 1
1 1 2 1 1 1 2
1 1 2 1 1 2 ∗

1 1 2 1 2 ∗ ∗
1 1 2 2 ∗ ∗ ∗
1 2 1 1 1 1 ∗
1 2 1 1 1 2 1

1 2 1 1 1 2 2
1 2 1 1 2 ∗ ∗
1 2 1 2 ∗ ∗ ∗
1 2 2 1 ∗ ∗ ∗

1 2 2 2 1 1 ∗
1 2 2 2 1 2 1
1 2 2 2 1 2 2
1 2 2 2 2 ∗ ∗

On the other hand, each 4-term progression is contained in five 7-progressions,
those in which it occurs in positions (1, 2, 3, 4), . . . , (4, 5, 6, 7) or (1, 3, 5, 7).
Since there are n(n − 1) non-degenerate 7-progressions and n degenerate
ones, we get inequality (4.10). Combining (4.10) and (4.8) we obtain

u0 + u4 ≥ n2 + 4n + 15

20
.

Our assumptions also show that a given 4-set which is an arithmetic pro-
gression occurs as such in just two orders, one the reverse of the other. This
gives the lower bound

n2 − 16n + 15

40

for the number of monochromatic 4-progressions. �

Remark. Just as for Theorem 4.2, this can be improved. We found by
a similar computation that among progressions of length 33 we can always
find at least 40 four-term progressions with the patterns counted by u0 +
u2 + u4; this allows us to replace the constant 1/5 by 8/33. As before, we
can formulate a combinatorial problem here.

5. Pythagorean triples

Corollary 3.1 can be used to count the number of Pythagorean triples in
Z/pZ. A Pythagorean triple is any 3-tuple (x2, y2, z2) satisfying x2+y2 = z2,
and is non-degenerate if xyz 	= 0. For any r 	= 0, we define εp(r) = 1 if the
equation x2 ≡ r (mod p) has solution and εp(r) = 0 otherwise. Theorem 5.1,
Theorem 5.2 and Corollary 5.3 are well known but these proofs are new.
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Theorem 5.1 Let p be an odd prime. The number of Pythagorean triples
in Z/pZ is

(p + 1)(p + 3)

8
+ εp(−1)

p − 1

4

and the number of non-degenerate Pythagorean triples in Z/pZ is

(p − 1)(p − 3)

8
− εp(−1)

p − 1

4
.

Proof. Consider the 2-coloring of Z/pZ given by Z/pZ = S ∪ N with
S = {x2 : x ∈ Z/pZ} the set of squares and N = (Z/pZ) \ S. Denote by Ui

the set of Schur triples with exactly i elements in S, so that U3 is the set of
Pythagorean triples. By Corollary 3.2 we have

|U0| + |U3| =

(
p + 1

2

)2

−
(

p + 1

2

) (
p − 1

2

)
+

(
p − 1

2

)2

=
p2 + 3

4
.

Let U ′
3 = {(a, b, c) ∈ U3 : abc = 0}. For r a non quadratic residue mod-

ulo p, the map (a, b, c) 
→ (ra, rb, rc) is a bijection between U0 and U3 \ U ′
3.

Therefore,

|U3| = |U0| + |U ′
3| =

p2 + 3

8
+

|U ′
3|

2
.

The triples in U ′
3 are

(0, 0, 0), {(0, x, x) : x ∈ S \ {0}}, {(x, 0, x) : x ∈ S \ {0}}

and, if −1 ∈ S, {(x,−x, 0), x ∈ S}, so that

|U ′
3| = p + εp(−1)

p − 1

2
,

which gives the result. �

Of course it is well known for which primes p the equation x2 ≡ −1
(mod p) has a solution, but we want to present it as a consequence of the
next result.

Theorem 5.2 For any t 	= 0 let Rp(t) denote the set of the pairs (x2, y2) ∈
Zp \ {0} such that x2 + y2 = t. Then

|Rp(t)| =
p + 1 − 2εp(−1)

4
− εp(t).
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Proof. There exists an obvious bijection between Rp(t) and Rp(t
′) if t, t′

are quadratic residues or are both non quadratic residues. If t is a quadratic
residue we have that

|{(x2, y2, z2), x2 + y2 = z2, xyz 	= 0}| =
∑

r quadratic
residue

|Rp(r)| = |Rp(t)|p − 1

2

and we obtain the theorem by applying the result obtained in theorem 5.1.
If t is a non quadratic residue we can write

(
p − 1

2

)2

=
∑

r quadratic
residue

|Rp(r)| +
∑

r non quadratic
residue

|Rp(r)| + |Rp(0)|

=
(p − 1)(p − 3)

8
− εp(−1)

p − 1

4
+

p − 1

2
|Rp(t)| + εp(−1)

p − 1

2
,

and we can compute |Rp(t)|. �

Corollary 5.3 For any odd prime p we have

(−1

p

)
= (−1)

p−1
4 ,

(
2

p

)
= (−1)

p2−1
8 .

Proof. To calculate
(

−1
p

)
, observe

|Rp(1)| =
p + 1 − 2εp(−1)

4
− 1

must be an integer. To calculate
(

2
p

)
, notice that

|Rp(2)| =
p + 1 − 2εp(−1)

4
− εp(2)

is always an odd number because

x2 + y2 = y2 + x2 = 2

give two solutions except in the case 1 + 1 = 2. �
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