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Integration Operators on Bergman
Spaces with exponential weight

Milutin R. Dostanić

Dedicated to the memory of my mother Nadežda Dostanić

Abstract

We study operators of the form Tgf (z) =
∫ z
0 f (ξ) g′ (ξ) d (ξ) (g is

an analytic function unity disc) on weighted Bergman spaces Lp
a (w)

of the unit disc where symbol g is analytic function on the disc. For
the case of

w(r) = exp
( −a

(1 − r)β
)

(a > 0, 0 < β ≤ 1)

it is shown that operator Tg is bounded (compact) on L2
a (w) if and

only if (1 − |z|)β+1 |g′ (z)| = O (1) (= o (1)) as |z| → 1−, thus solving
a problem formulated in [2].

1. Introduction and notation

Let D be the unit disc in the complex plane and dA (z) the Lebesgue area
measure on D. Let w (r) (0 ≤ r < 1) be a strictly positive weight function
which is integrable on (0, 1) . Let dµ (z) be a measure on D defined by

dµ (z) = |w (z)| dA (z) .

For 1 ≤ p < ∞ the weighted Bergman space Lp
a (w) is the space of all

analytic functions f : D → C such that

‖f‖p
p =

∫
D

|f (z)|p dµ (z) < ∞.
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Standard estimates show that point evaluations are bounded linear function-
als on Lp

a (w) , and Lp
a (w) is a Banach space. It is a Hilbert space for p = 2.

We are interested in certain operators Tg acting on Lp
a (w). They are de-

fined by

Tgf (z) =

∫ z

o

f (ξ) g′ (ξ) dξ, f ∈ Lp
a (w)

where g is an analytic function on D.

See [1] regarding reasons for studying the properties of such an operator.
There, for a large class of weights it was shown that Tg is bounded on Lp

a (w)
if and only if g is in the Bloch space. Also, for the standard weight

w (r) = (1 − r)α , α > −1,

it was shown that operator Tg belongs to the Schatten p-class on Lp
a (w)

(p > 1) if and only if g belongs to the analytic Besov p-class.
However, for the weight

w (r) = exp

( −a

(1 − r)β

)
a > 0, β > 0

it was shown that the conditions

(1 − |z|)β+1 |g′ (z)| = O (1) (= o (1)) as |z| → 1 − 0

are sufficient for operator Tg to be bounded (compact) on Lp
a (w), and a

conjecture was formulated that these conditions are necessary as well. (this
type of weight does not satisfy condition (P2) in [2], used to obtain the main
result, i.e. Theorem 1, hence, the method used in [2] cannot be applied to
establish that the above conditions are necessary.)

The study of similar problems can be traced back to the works of Hardy
and Littlewood about fractional integration operators acting from one Hardy
(or similar) space to another. Even though the problem is apparently very
specific, this is deceiving because by varying the function g one gets many
different operators, some of them important, notably the integration opera-
tor and the Cesáro operator. Among the relevant references we also mention
[1], [2], [3] and [8]

In this paper we show that the above mentioned conjecture is correct for
p = 2 and 0 < β ≤ 1.

The key of our proof is finding a suitable test function and a precise esti-
mate of its norm as well as an estimate of the norm of the partial derivative
(with respect to z) of the Bergman kernel.
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From now on in this paper, even when not explicitly stated it is as-
sumed that

w (r) = exp

( −a

(1 − r)β

)
, 0 ≤ r < 1, a > 0, 0 < β ≤ 1.

for functions f, g : [D, +∞) −→ (0, +∞) (sequences (an)∞n=1 , (bn)∞n=1) we
use the symbol f (t) � g (t) , t −→ +∞ (an � bn, n −→ ∞) if there exist
positive constants C1, C2 such that C1g (t) ≤ f (t) ≤ C2g (t) for t ≥ t0
(C1an ≤ bn ≤ C2an for n ≥ n0).

2. Main result

Theorem 1 Let

w (r) = exp

( −a

(1 − r)β

)
, a > 0, 0 < β ≤ 1.

Then

a) Tg is bounded on L2
a (w) if and only if

(1 − |z|)β+1 |g′ (z)| = O (1) , |z| → 1−

b) Tg is compact on L2
a (w) if and only if

(1 − |z|)β+1 |g′ (z)| = o (1) , |z| → 1 − .

Remark 1 From Theorem 1, if Tg is bounded (compact) operator on L2
a (w)

then
(1 − |z|)β+1 |g′ (z)| = O (1) (= o (1)) as |z| → 1−

and hence (according to the sufficient condition proven in [1, p. 353]) it fol-
lows that Tg is bounded (compact) on Lp

a (w) for any p ≥ 1.

It would be interesting to establish the converse : If Tg bounded (com-
pact) on Lp

a (w) for some p ≥ 1 does it follow that it is bounded (compact)
on L2

a (w) ? If that were to be true, then , according to Theorem 1, it would
follow that

(1 − |z|)β+1 |g′ (z)| = O (1) (= o (1)) as |z| → 1−
and so this condition would be necessary and sufficient for operator Tg to
be bounded (compact) on any space Lp

a (w) for any p ≥ 1.
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3. Proof

In order to prove Theorem 1, we first need to prove several Lemmas.

Lemma 1 If 0 < β ≤ 1 and

F (λ) =

∫ 1

0

(1 − r)−s−1 · rλ · exp

( −a

(1 − r)β

)
dr (s ∈ R, a > 0)

then
F (λ) � λ

2s−β
2β+2 exp

(
−c0λ

β
β+1

)
, λ → ∞

where
c0 = a

1
β+1 ·

(
β

1
β+1 + β− 1

β+1

)
.

Proof. The proof is given for 0 < β < 1. (It is similar for β = 1)
Consider the function F and introduce the substitution r = e−x. We obtain

F (λ) = G (λ + 1)

where

G (λ) =

∫ ∞

0

(
1 − e−x

)−s−1 · e−λx · e−a·x−β ·
�

x
1−e−x

�β

dx.

Let G0 (λ) =
∫∞

0
(1 − e−x)

−s−1 · e−λx−ax−β
dx. Let us show that

G0 (λ) � λ
2s−β
2β+2 · exp

(
−c0λ

β
β+1

)
, λ → +∞ and that lim

λ→+∞
G (λ)

G0 (λ)
= 1

from which Lemma 1 will follow.

Let us first show that

(3.1) G0 (λ) � λ
2s−β
2β+2 · exp

(
−c0λ

β
β+1

)
, λ → +∞.

Introducing substitution x =
(

aβ
λ

) 1
β+1 · t into integral

G0 (λ) =

∫ ∞

0

x−s−1 exp
(−λx − ax−β

)
dx

we get

(3.2) G0 (λ) =

(
λ

aβ

) s
β+1
∫ ∞

0

t−s−1eS(t)·λ
β

β+1

dt

where
S (t) = − (aβ)

1
β+1 · t − a (aβ)

β
β+1 · t−β.
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Let A (µ) =
∫∞

0
t−s−1eµS(t)dt, µ = λ

β
β+1 . By applying the Laplace method

([5, p. 66]) to integral
∫∞

0
t−s−1eµS(t)dt we get

(3.3) A (µ) = const
e−µc0

√
µ

(1 + o (1)) , µ → ∞

where const denotes a constant that does not depend on µ. From (3.2)
and (3.3), (3.1) follows directly.

Let us now show that

(3.4) lim
λ→+∞

G (λ)

G0 (λ)
= 1.

Let

g (x) =

(
1 − e−x

x

)−s−1

exp

(
− ax−β

(
x

1 − e−x

)β

+ ax−β

)
− 1.

If 0 < β < 1 then limx→0+ g (x) = 0, and so, for given ε > 0 there exists
δ > 0 such that

(3.5) |g (x)| <
ε

2
for x ∈ (0, δ) .

Since

G (λ)

G0 (λ)
− 1 =

1

G0 (λ)

∫ ∞

0

x−s−1 · exp
(−λx − ax−β

) · g (x) dx

then, having in mind (3.5) we get∣∣∣∣ G (λ)

G0 (λ)
− 1

∣∣∣∣ ≤ ε

2
· 1

G0 (λ)

∫ ∞

0

x−s−1 · exp
(−λx − ax−β

)
dx+(3.6)

+
1

G0 (λ)

∫ ∞

0

x−s−1 |g (x)| · exp
(−λx − ax−β

)
dx.

Since |g (x)| ≤ c1x
1+|s| for x ≥ δ (c1 does not depend on x) from (3.6) we get∣∣∣∣ G (λ)

G0 (λ)
− 1

∣∣∣∣ <
ε

2
+

c1

G0 (λ)

∫ ∞

δ

x|s|−se−λx−ax−β

dx

<
ε

2
+

c1

G0 (λ)

∫ ∞

δ

x|s|−se
−λx

2 · e−λδ
2 · e−ax−β

dx

<
ε

2
+

c1

G0 (λ)
e

−λδ
2

∫ ∞

0

x|s|−se
−λx

2 dx

=
ε

2
+

c1e
−λδ

2

G0 (λ)
· 2|s|−s+1Γ (|s| − s + 1)

λ|s|−s+1

(Γ is the Euler Gamma-function).
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Since

lim
λ→+∞

e−
λδ
2

G0 (λ)
· 1

λ|s|−s+1
= 0 ,

from the previous inequality it follows that∣∣∣∣ G (λ)

G0 (λ)
− 1

∣∣∣∣ < ε when λ ≥ λ0.

This proves (3.4). Lemma 1 follows from(3.1) and (3.4). �

Lemma 2 Let 0 < β < 2, α ∈ R and

ϕ (t) =

∞∑
k=0

tk

k! Γ (kβ + α + 1)

then
ϕ (t) � t−

2α+1
2β+2 · exp

(
d0 t

1
β+1

)
, t → +∞

where
d0 = β

1
β+1 + β− 1

β+1 .

Proof. Let us first assume that α > 0. Let A (t) =
∫ t

0
ϕ (s) ds, t > 0; then

for any p, Re p > 0 the following holds:

∫ ∞

0

e−pt dA (t) =
1

p

∞∑
k=0

(
1
p

)k

Γ (kβ + α + 1)
=

1

p
E 1

β

(
1

p
, α + 1

)

where Eρ (z; µ) =
∞∑

k=0

zk

Γ(µ+ k
ρ)

is the Mittag-Leffler function (see [4, p.117]).

According to Lemma 3.4 from [4, p. 133], if 1
β

> 1
2

i.e. β < 2 the following
holds:

(3.7)

∫ ∞

0

e−pt dA (t) =
1

β
p

α
β
−1 · exp

(
1

p
1
β

)
−

r∑
k=1

pk−1

Γ (α + 1 − kβ)
+O (|p|r)

as p → 0 remaining inside the angle |arg p| < θ where πβ
2

< θ < min {π, πβ} .
Let 0 < θ1 < θ such that

θ1

β
<

π

2
.

Then, if |arg p| < θ, from (3.7) we get

(3.8)

∫ ∞

0

e−pt dA (t) =
1

β
p

α
β
−1 · exp

(
1

p
1
β

)
· (1 + o (1))

as p → 0 remaining inside the angle |arg p| < θ1. Equality (3.8) holds
uniformly over arg p inside the angle |arg p| < θ1.
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Now, from (3.8) by the Thauberian theorem of Ingham (see [9, p. 78-81]
or [10]) we get

A (t) � t
2β=2α−1

2β+2 · exp
(
d0 t

1
β+1

)
t → +∞.

Therefore

(3.9)

∫ t

0

ϕ (s) ds � t
2β=2α−1

2β+2 · exp
(
d0 t

1
β+1

)
t → +∞.

Since ϕ′ (t) =
∞∑

k=0

tk

k! Γ(kβ+α+β+1)
, function ϕ′ has the same form as function ϕ,

except that α is replaced by α+β in the defining series. therefore from (3.9)
it follows that∫ t

0

ϕ′ (s) ds � t
2β=2(α+β)−1

2β+2 · exp
(
d0 t

1
β+1

)
t → +∞.

i.e.

ϕ (t) − ϕ (0) � t−
2α+1
2β+2 · exp

(
d0 t

1
β+1

)
t → +∞

and hence

ϕ (t) � t−
2α+1
2β+2 · exp

(
d0 t

1
β+1

)
t → +∞.

If α ≤ 0, the first finitely many (possible negative) terms of the series defin-
ing the function ϕ cannot change the asymptotic behavior of ϕ as t→+∞. �

Let us now consider the function

z 
−→ (1 − z)−α−1 exp

( −x

(1 − z)β

)
(α ∈ R, x ∈ R, 0 < β ≤ 1) .

Here (1 − z)−α−1
∣∣
z=0

= (1 − z)β
∣∣
z=0

= 1. This function is analytic in D.

Let its Taylor coefficients be L
(α)
n (x; β) , i.e.

(3.10) (1 − z)−α−1 exp

( −x

(1 − z)β

)
=

∞∑
n=0

L(α)
n (x; β) zn

Lemma 3 If α ∈ R, x > 0 and 0 < β ≤ 1 then

L(α)
n (−x; β) � n

2α−β
2β+2 · exp

(
d0 x

1
β+1 · n β

β+1

)
.
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Proof. From

L(α)
n (x; β) =

1

2πi

∫
|ξ|=r<1

(1 − ξ)−α−1 exp
(

−x

(1−ξ)β

)
ξn+1

dξ,

by expanding the function z 
−→ (1 − z)−α−1 exp
( −x

(1−z)β

)
into the series in

−x

(1−z)β and integrating we get

L(α)
n (x; β) =

∞∑
k=0

(−x)k

k!
(−1)n

(−kβ − α − 1

n

)
.

Keeping in mind that

(−1)n

(−kβ − α − 1

n

)
=

(kβ + α + 1) (kβ + α + 2) · · · (kβ + α + n)

n!

we obtain
(3.11)

L(α)
n (−x; β) =

∞∑
k=0

xk

k!

(kβ + α + 1) (kβ + α + 2) · · · (kβ + α + n)

n!
; x > 0.

Consider first α > 0. Since for s > 0

(s + 1) (s + 2) · · · (s + n)

n!
≥ ns

Γ (s + 1)
,

by letting s = kβ + α from (3.11) we obtain

(3.12) L(α)
n (−x; β) ≥

∞∑
k=0

xk

k!

nkβ+α

Γ (kβ + α + 1)
= nαϕ

(
xnβ

)
.

Since according to Lemma 2, ϕ (t) � t−
2α+1
2β+2 · exp

(
d0 t

1
β+1

)
t → +∞,

from (3.12), for fixed x > 0, we get

(3.13) L(α)
n (−x; β) ≥ C1 · n

2α−β
2β+2 · exp

(
d0 x

1
β+1 · n β

β+1

)
where C1 > 0 and n ≥ n1 (C1 does not depend on n).

Let us now prove the reverse inequality. A direct inspection shows that
(by changing the order of integration and summation) we have

L(α)
n (−x; β) =

1

n!

∫ ∞

0

tα+ne−t

( ∞∑
k=0

(
xtβ
)k

k! Γ (kβ + α + 1)

)
dt.
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From Lemma 2 it follows that there exists a constant A0, which does not
depend on s, such that

∞∑
k=0

sk

k! Γ (kβ + α + 1)
≤ A0 · s−

2α+1
2β+2 exp

(
d0 s

1
β+1

)
, ∀s ≥ 1

and so

(3.14)

∞∑
k=0

(
xtβ
)k

k! Γ (kβ + α + 1)
≤ A0 · x− 2α+1

2β+2 · t−
(2α+1)β

2β+2
exp

(
d0 x

1
β+1 · t β

β+1

)

if xtβ ≥ 1, i.e. if t ≥ x− 1
β .

Since

1

n!

∫ x
− 1

β

0

tα+ne−t

( ∞∑
k=0

(
xtβ
)k

k! Γ (kβ + α + 1)

)
dt = o (1) , n → ∞

from (3.14) and the equality

L(α)
n (−x; β) =

1

n!

(∫ x
− 1

β

0

(·) dt +

∫ ∞

x
− 1

β

(·) dt

)

we obtain

L(α)
n (−x; β) ≤ o (1) + A0 x− 2α+1

2β+2 · 1

n!

∫ ∞

0

tα+n− (2α+1)β
2β+2 e−t+d0x

1
β+1 ·t

β
β+1

dt.

To complete the proof of Lemma 3, it is therefore sufficient to demonstrate
that for the sequence

cn =
1

n!

∫ ∞

0

tα+n− (2α+1)β
2β+2 exp

(
−t + d0 x

1
β+1 · t β

β+1

)
dt

the following holds:

cn = O
(
n

2α−β
2β+2 · exp

(
d0 x

1
β+1 · n β

β+1

))
, n → ∞.

Let

B = α − (2α + 1)β

2β + 2

(
=

2α − β

2β + 2

)

C = d0 x
1

β+1 and δ =
β

β + 1
.
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Hence we need to show that

(3.15) cn = O
(
nB exp

(
Cnδ

))
, n → ∞.

Introducing the substitution t = ns to the integral cn = 1
n!

∫∞
0

tn+Be−t+Cδdt,
we obtain

(3.16) cn =
nn+B+1

n!
eCnδ ·

∫ ∞

0

sn+Be−ns+C·nδ·(sδ−1) ds.

Applying the generalized Laplace method (which concerns asymptotic be-
haviour of the integral of the form

∫
f (x, λ) exp S (x, λ) dx, when λ → ∞,

see [5, p. 99-101]) to the integral∫ ∞

0

sB exp
(
n ln s − ns + C nδ

(
sδ − 1

))
ds

we get (if δ ≤ 1
2
, which is true here because β

β+1
and 0 < β ≤ 1):

∫ ∞

0

sn+Be−ns · eC nδ(sδ−1) ds = O

(
e−n

√
n

)
, n → ∞

and so, from (3.16) it follows that

cn = O

(
nn+B+1

n!

eC nδ−n

√
n

)
.

From the above equality and the Stirling formula we obtain (3.15). This
proves Lemma 3 for α > 0.

If α ≤ 0, only finitely many terms of the series

∞∑
k=0

xk

k!

(kβ + α + 1) (kβ + α + 2) · · · (kβ + α + n)

n!

are negative and they increase polinomialy in n and cannot change the as-
ymptotic behavior of L

(α)
n (−x; β) . This proves Lemma 3. �

Lemma 4 Let fλ (z) = exp
(

A

(1−λz)
β

)
, fλ (0) = eA where A = 2β · a,

0 < β ≤ 1, λ ∈ D. Then

‖fλ‖2 ≤ K1 (1 − |λ|)1+ β
2 exp

(
A/2(

1 − |λ|2)β
)

where K1 is constant which does not depend on λ ∈ D.
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Proof. From (3.10) it follows that

exp

(
A(

1 − λreiθ
)β
)

=
∑
n≥0

L(−1)
n (−A; β) λ

n
rn einθ

and so keeping in mind that

‖fλ‖2
2 =

∫
D

|fλ (z)|2 dµ (z) =

∫ 1

0

r w (r) dr

∫ 2π

0

∣∣∣∣ exp

(
A(

1 − λreiθ
)β
)∣∣∣∣

2

dθ

by applying the Parseval equality, we get

‖fλ‖2
2 = 2π

∫ 1

0

r w (r)

∞∑
n=0

∣∣L(−1)
n (−A; β)

∣∣2 |λ|2n r2n dr(3.17)

= 2π

∞∑
n=0

∣∣L(−1)
n (−A; β)

∣∣2 |λ|2n

∫ 1

0

r2n+1 w (r) dr.

From Lemmas 1 and 3 and (3.17), we obtain

‖fλ‖2
2 ≤ const

∑
n

|λ|2n ·
(
n− β+2

2β+2 exp
(
n

β
β+1 · A 1

β+1 · d0

))2

· n− β+2
2β+2 · exp

(
−d0 · n

β
β+1 · 2 β

β+1 · a 1
β+1

)
that is, after simplification

(3.18) ‖fλ‖2
2 ≤ const

∑
n

|λ|2n · n− 3β+6
2β+2 exp

(
d0 · n

β
β+1 · 2 β

β+1 · a 1
β+1

)
(const does not depend on λ ∈ D). Since according to Lemma 3

n− 3β+6
2β+2 exp

(
d0 n

β
β+1

(
2βa
) 1

β+1

)
� L(−3−β)

n

(−2βa; β
)

then from (3.18) it follows that

‖fλ‖2
2 ≤ const

∑
n

|λ|2n L(−3−β)
n (−A; β)

and keeping in mind the equality (3.10) we have

‖fλ‖2
2 ≤ const

(
1 − |λ|2)β+2

exp

(
A(

1 − |λ|2)β
)

(where const constant which does not depend on λ ∈ D). From this, it
follows that

‖fλ‖2 ≤ K1 (1 − |λ|)1+ β
2 exp

(
A/2(

1 − |λ|2)β
)

and K1 does not depend on λ ∈ D. This proves Lemma 4. �
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Let δn =
( ∫

D
|zn|2 dµ

)1/2
=
(
2π
∫ 1

0
r2n+1w (r) dr

)1/2
. The system of func-

tions {zn/δn}∞n=o is an orthonormal basis of space L2
a (w) and function

K (z, ξ) =
∞∑

n=0

zn ξ
n

δ2
n

is the corresponding Bergman reproductive kernel (see [6]).

Lemma 5 The following inequality holds(∫
D

|Kz (z, ξ)|2 dµ (ξ)

) 1
2

≤ K2 (1 − |z|)− 4+3β
2 exp

(
A/2(

1 − |z|2)β
)

where the constant K2 does not depend on z ∈ D. Here Kz (z, ξ) = ∂K(z,ξ)
∂z

.

Proof. The proof is similar to proof of Lemma 4 (by applying the Parseval
equality, Lemmas 1 and 3 and equality (3.10). �

Lemma 6 If Tg is a bounded operator on L2
a (w) then, for any f ∈ L2

a (w) ,
the following inequalities hold

a) (1 − |z|)β+1 |g′ (z)| ≤ D1
(1 − |z|)−1−β

2

|f (z)| · exp

(
A/2(

1 − |z|2)β
)
· ‖f‖2 · ‖Tg‖

b) (1 − |z|)β+1 |g′ (z)| ≤ D2
(1 − |z|)−1−β

2

|f (z)| · exp

(
A/2(

1 − |z|2)β
)
· ‖Tgf‖2

Here A = 2βa. The constants D1 and D2 does not depend on f ∈ L2
a (w) nor

on z ∈ D.

Proof. For a bounded operator Tg on L2
a(w) it is sufficient to prove the

inequality b) since a) follows directly from b).
As K (z, ξ) the Bergman reproducing kernel we have

f (z) =

∫
D

K (z, ξ) f (ξ) dµ (ξ) , f ∈ L2
a (w)

and so, if f ∈ L2
a (w) and Tg is bounded operator on L2

a (w) we get

Tg f (z) =

∫
D

K (z, ξ) (Tgf) (ξ) dµ (ξ) .

Keeping in mind the way operator Tg is defined from the previous equality,
by differentiating with respect to z, we get

f (z) g′ (z) =

∫
D

Kz (z, ξ) (Tgf) (ξ) dµ (ξ)
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i.e.

(1 − |z|)β+1 g′ (z) =
(1 − |z|)1+β

f (z)

∫
D

Kz (z, ξ) (Tgf) (ξ) dµ (ξ) .

Applying the Cauchy inequality to the integral on the right-hand side of the
previous equality we get

(1 − |z|)β+1 |g′ (z)| ≤ (1 − |z|)1β+1

|f (z)|
(∫

D

|Kz (z, ξ)|2 dµ (ξ)

)
· ‖Tgf‖2 .

The inequality, together with Lemma 5, proves Lemma 6 part b). �

4. Proof of Theorem 1

It is enough to show that conditions listed in Theorem 1 are necessary. (It
was demonstrated in [2] that they are sufficient.)

a) Let Tg be a bounded operator on L2
a (w) .

Let us show that

(1 − |z|)β+1 |g′ (z)| = O (1) as z → 1 − .

According to Lemma 6 part a), the following holds

(4.1) (1 − |z|)β+1 |g′ (z)| ≤ D′
1

(1 − |z|)−1−β
2

|f (z)| · exp

(
A/2(

1 − |z|2)β
)
· ‖f‖2

for any function f ∈ L2
a (w) ; constant D′

1 does not depend on f ∈ L2
a (w)

nor on z ∈ D. Replace f in (4.1) with fλ (z) = exp
(

A

(1−λz)
β

)
, λ ∈ D. Then

(1 − |z|)β+1 |g′ (z)| ≤ D′
1

(1 − |z|)−1−β
2

|fλ (z)| · exp

(
A/2(

1 − |z|2)β
)
· ‖fλ‖2

and so, letting z = λ, we get

(4.2) (1 − |λ|)β+1 |g′ (λ)| ≤ D′
1

(1 − |λ|)−1−β
2

|fλ (λ)| · exp

(
A/2(

1 − |λ|2)β
)
· ‖fλ‖2

(D′
1 does not depend on λ). According to Lemma 4, we have

(4.3) ‖fλ‖2 ≤ K1 (1 − |λ|)1+ β
2 exp

(
A/2(

1 − |λ|2)β
)

(K1 does not depend on λ).
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Since fλ (λ) = exp
(

A

(1−|λ|2)β

)
, from (4.2) and (4.3) it follows that

(1 − |λ|)β+1 |g′ (λ)| ≤ K1D
′
1 for λ ∈ D

i.e.
(1 − |λ|)β+1 |g′ (λ)| = O (1) , |λ| → 1 − .

b) Let Tg be a compact operator on L2
a (w) .

According to Lemma 6 part b), the following holds

(4.4) (1 − |z|)β+1 |g′ (z)| ≤ D2
(1 − |z|)−1−β

2

|f (z)| · exp

(
A/2(

1 − |z|2)β
)
· ‖Tgf‖2

for any f ∈ L2
a (w) . Here constant D2 does not depend on f ∈ L2

a (w)
and z ∈ D. Let

ϕλ (z) = exp

(
A(

1 − λz
)β
)
· (1 − |λ|)−1−β

2 · e−
A
2

(1−|λ|2)β
.

From Lemma 4, it follows that

‖ϕλ‖2 ≤ C1

(C1 does not depend on λ ∈ D). Replacing f in inequality (4.4) with ϕλ

we get

(1 − |z|)β+1 |g′ (z)| ≤ D2
(1 − |z|)−1−β

2

|ϕλ (z)| · exp

(
A
2(

1 − |z|2)β
)

· ‖Tgϕλ‖2

(D2 does not depend on λ and z). Letting z = λ in the previous inequality
and simplifying we get

(4.5) (1 − |z|)β+1 |g′ (z)| ≤ D2 ‖Tgϕλ‖2

(D2 does not depend on λ ∈ D ).

Let us show that ϕλ weakly converges to zero as |λ| → 1 − . Since
‖ϕλ‖2 ≤ C1 it is sufficient to show that for every n = 0, 1, 2, . . .

(4.6) 〈ϕλ, z
n〉L2

a(w) → 0 as |λ| → 1 − .

(Here 〈·, ·〉 denotes the scalar product in the Hilbert space L2
a (w) .)

Since

〈ϕλ, λ
n〉L2

a(w) =
(1 − |λ|)−1−β

2

|ϕλ (λ)| · exp

( −A/2(
1 − |λ|2)β

)
· λn · L(−1)

n (−A; β) · δ2
n

it follows that (4.6) is true.
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Since ϕλ weakly converges to zero as |λ| → 1 − 0 and Tg is a compact
operator, it follows that

‖Tgϕλ‖2 → 0 as |λ| → 1−
and so from (4.5) we get

(1 − |λ|)β+1 |g′ (λ)| = o (1) , |λ| → 1 − .

This proves Theorem 1. �

Remark 2 Let w (r) = e
− 1

(1−r)β . If Tg is bounded on L2
a (w) then

f (z) g′ (z) =

∫
D

Kz (z, ξ) Tgf (ξ) dµ (ξ)

so

|f (z) g′ (z)|2 ≤ ‖Tg‖2

∫
D

|Kz (z, ξ)|2 dµ (ξ)

∫
D

|f |2 dµ (z)

whence by integration with respect to dA (z) , we get

(4.7)

∫
D

|f (z)|2 |g′ (z)|2∫
D
|Kz (z, ξ)|2 dµ (ξ)

dA (z) ≤ π ‖Tg‖2

∫
D

|f |2 dµ (z) .

Let

dν (z) =
|g′ (z)|2∫

D
|Kz (z, ξ)|2 dµ (ξ)

dA (z) .

Then from (4.7) it follows that∫
D

|f (z)|2 dν (z) ≤ π ‖Tg‖2

∫
D

|f |2 dµ (z)

for every f ∈ L2
a (w) . If β > 1, then by Oleinik’s theorem [7] there holds

sup
z∈D

(1 − |z|)−2−β ·
∫
|ξ−z|≤(1−|z|)1+ β

2

e
1

(1−|z|)β dν (z) < +∞.

In order that the preceding condition (via application of the sub-mean-value
property ) can be perhaps reduced to the form

sup
z∈D

(1 − |z|)β+1 |g′ (z)| < +∞.

it is necessary to give a precise estimate from above of the function∫
D

|Kz (z, ξ)|2 dµ (ξ) .

If 0 < β ≤ 1 we have done this by using Lemmas 3 and 4. However,
if β > 1, this is connected with necessity of more precise (and mush more

difficult) estimates of the function F and the sequence L
(α)
n (−x, β) .
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Question. Is the condition (1 − |z|)β+1 |g′ (z)| = o (1) , |z| → 1−, neces-
sary for the compactness of the operator Tg in the case β > 1?

Acknowledgement. The author is grateful to the referee for many useful
remarks.
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