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The Geometric Traveling Salesman
Problem in the Heisenberg Group

Fausto Ferrari, Bruno Franchi and Hervé Pajot

Abstract
In the Heisenberg group H (endowed with its Carnot-Carathéodory

structure), we prove that a compact set E ⊂ H which satisfies an ana-
log of Peter Jones’ geometric lemma is contained in a rectifiable curve.
This quantitative condition is given in terms of Heisenberg β num-
bers which measure how well the set E is approximated by Heisenberg
straight lines.

1. Introduction

Let (X, d) be a metric space. The geometric traveling salesman problem
could be stated as follows: Under which (quantitative) conditions is a com-
pact subset E ⊂ X contained in a rectifiable curve of X (that is a curve
of finite length)? Moreover, we would like also to control the length of the
shortest curve Γ containing E (if such a curve exists). The Euclidean case
has been considered by P. Jones [18] who introduced in [17] the β numbers.
Let E be a compact subset of the Euclidean space (Rn, dEuc). For any x ∈ Rn

and any t > 0, set

βEuc(x, t) = inf
L

sup
y∈E∩B(x,t)

dEuc(y, L)

t

where the infimum is taken over all straight lines L in Rn. The β numbers
measure how well the set E is approximated by straight lines at each point
and each scale. Set

βEuc(E) =

∫
Rn

∫ +∞

0

βEuc(x, t)
2dx

dt

tn

(where dx is the integration with respect to Lebesgue measure).
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Theorem 1.1. ([18], [21]) Let E ⊂ R
n be a compact set. Then, E is con-

tained in a rectifiable curve Γ if and only if βEuc(E) < +∞. Moreover,

inf
Γ⊃E

l(Γ) ≤ C(diamE + βEuc(E))

(where C > 0 is an absolute constant depending only on n).

Applications of this result to harmonic measures, limit sets of Kleinian
groups, Brownian motion, complex dynamics, singular integral operators are
given in [4], [5], [6], [14], [17]. The main goal of this paper is to extend The-
orem 1.1 to sub-Riemannian spaces, more precisely to Heisenberg groups.
It should be mentionned that a version of the geometric traveling salesman
theorem in general metric spaces is given in [16]. In this general setting, β
numbers are replaced by the Menger curvature (see the Appendix). How-
ever, in the Heisenberg group, we can define β numbers by using Heisenberg
straight lines and prove an exact counterpart of Theorem 1.1. Our interest
for this problem is basically of geometric nature, being meant to under-
stand more precisely the geometry of curves in the Heisenberg group, in the
spirit e. g. of [3], [15], [1], [11], [12]. Nevertheless, the problem attacked here
can be seen as the most simple example of the following situation: consider
a mechanical non-holonomic system X (a “robot”), and let E ⊂ X be a
set of configurations. We seek conditions on E that guarantee that we can
move the system through all the these configurations in a finite time. Before
stating our main results, we establish some notations. More details are given
in Section 2.

Let H be the (first) Heisenberg group endowed with its Carnot-Carathéo-
dory metric dc. The points in H will be denoted as P = [z, t] = [x + iy, t].
If P = [z, t], Q = [ζ, τ ] ∈ H, following the notations of [27], we define the
group operation

P ·Q = [z + ζ, t+ τ + 2�m(zζ̄)].

For s ≥ 0, denote by Hs
c the s-dimensional Hausdorff measure associated

with dc. In this paper, we shall call straight H-line any set � of the form
� = a ·r, where a is a point of H and r is any Euclidean straight line through
the origin lying in the set {[z, 0] z ∈ C}. We shall denote by G(H, 1) the
set of all straight H-lines. In addition, we denote by G0(H, 1) the set of all
Euclidean straight lines through the origin lying in the set {[z, 0] z ∈ C},
i.e. r ∈ G0(H, 1) if and only if r = {([λeiω, 0], λ ∈ R}.
Remark 1.1. Seeking an intrinsic notion of straight line we are naturally
lead to look for laterals of subgroups that are in addition invariant under dila-
tions and have intrinsic Hausdorff dimension equal to 1. It follows from [12]
that G(H, 1) is in fact the good choice.
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An important metric feature of the elements of G(H, 1) is that d is ad-
ditive on r ∈ G(H, 1).

Let E ⊂ H be a compact set, and let P ∈ H. For t > 0, we set

βH(P, t) = inf
L∈G(H,1)

sup
Q∈E∩Bc(P,t)

dc(Q,L)

t
.

Here, Bc(P, t) denotes the closed ball (with respect to dc) whose center is P
and whose radius is t. Set

βH(E) =

∫
H

∫ +∞

0

βH(P, t)2dP
dt

t4
,

where dP is the integration with respect to the Hausdorff measure H4
c of

(H, dc). Note that the exponent 4 in H4
c and in dt

t4
is the Hausdorff dimension

of (H, dc) .
Our main result is an analog of theorem 1.1 in the Heisenberg group.

Theorem 1.2. Let E ⊂ H be a compact set. Then, E is contained in a
rectifiable curve Γ if βH(E) < +∞. Moreover,

inf
Γ⊃E

l(Γ) ≤ C(diamE + βH(E))

(where C > 0 is an absolute constant)

The construction of the curve Γ is based on the algorithm given in [18]
(see also [22]). To estimate l(Γ), the main ingredient in [18] is the Pythago-
rean theorem. In the Heisenberg group, such result does not exist. Our idea
is to compare Euclidean triangles and Carnot-Carathéodory triangles. This
yields to a curvature type estimate for the Heisenberg group that we now
explain.

Let (X, d) be a connected length space. A triangle is a collection of three
points (= vertices) x, y, z of X connected by three shortest paths (= sides),
denoted by (x, y), (y, z) and (z, x). For such triangle, a comparison triangle
is a triangle in the Euclidean plane, with vertices x, y, z such that

d(x, y) = |x− y|; d(y, z) = |y − z|; d(z, x) = |z − x|.

We say that the metric space (X, d) is a space of nonnegative curvature
if in some neighborhood of each point the following holds:

For every triangle with vertices x, y, z and every point w ∈ (x, y), one has
d(z, w) ≥ d(z, w) where w is is the point on the side [x, y] of a comparison
triangle with vertices x, y, z such that d(w, x) = |w − x|.
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This condition means that comparison Euclidean triangles are thinner
than triangles in X. Following [8, chapter 10], an Alexandrov space is a
metric space with nonnegative curvature. For Alexandrov spaces, Hausdorff
dimension equals topological dimension. But, the Hausdorff dimension of
(H, dc) is 4 whereas its topological dimension is 3 (see below). Thus, the
Heisenberg group is not an Alexandrov space. However, for some particular
triangles (that is “almost equilateral”), comparison Euclidean triangles are
thinner than triangles in the Heisenberg group. More precisely, we have the

Theorem 1.3. Suppose P1, P2, P3 are points in H such that

(1.1) P1 and P2 belong to r0 ∈ G(H, 1)

and there exist ci,j > 0, Ci,j > 0 for i, j = 1, 2, 3, i �= j such that for
some t > 0

(1.2) ci,j t ≤ d(Pi, Pj) ≤ Ci,j t.

In addition denote by P̃i, i = 1, 2, 3 three points in the Euclidean space R2

such that
dEuc(P̃i, P̃j) = dc(Pi, Pj) i, j = 1, 2, 3,

and by r̃0 the straight line through P̃1 and P̃2. Then there exists c =
c(ci,j, Ci,j) > 0 independent of t > 0 such that

(1.3) dc(P3, r0) ≥ cdEuc(P̃3, r̃0).

From this comparison theorem and the classical Pythagorean theorem in
the complex plane, we get (with the same assumptions)

(1.4) dc(P1, P3) + dc(P2, P3) − dc(P1, P2) ≤ C
dc(P3, r0)

2

t
.

This estimate (as in the Euclidean case) is crucial to get a bound of the
length of the curve Γ. In fact, we will also prove that (1.4) remains true
without the assumption that P1 and P2 belong to the same straight line r0.

It is natural to ask whether the condition

(1.5)

∫
H

∫ 1

0

β2
H
(P, t)dP

dt

t4
<∞.

is necessary. In other words, to ask whether any compact set E contained
in a rectifiable curve γ satisfies (1.5). In the Euclidean case, this has been
proved by P. Jones [18] by using complex variables methods for n = 2 and
by K. Okikiolu [21] for any n with constants depending on the dimension
(see theorem 1.1). Recently, R. Schul [26] has considered the case of (infinite
dimensionnal) Hilbert spaces.
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The sub-Riemannian case we consider in this paper is quite different
from these situations. We will prove that for subsets of regular curves in the
Heisenberg group, (1.5) holds. More precisely, we have the

Theorem 1.4. For any C1,α-regular simple horizontal curve γ we have

(1.6)

∫
H

∫ 1

0

βH(P, t)2dP
dt

t4
<∞.

In particular, (1.6) holds for geodesics.

Notice that the horizontality assumption cannot be dropped: a rectifiable
Lipschitz continuous curve is horizontal (see for instance [24] or [25]), hence
a non-horizontal curve cannot be contained in a rectifiable curve. Note
also that a geodesic curve is smooth (see [13] or [1] and [3] where explicit
equations of geodesics are given).

More details concerning the Heisenberg group and its Carnot-Carathéo-
dory structure are given in the next section where the reader will find the
proof of Theorem 1.3. Section 3 is dedicated to the construction of the
curve Γ. The proof of Theorem 1.4 is given in Section 4. In an Appendix,
we collect some useful facts concerning rectifiable curves in general metric
spaces.

2. Some geometric results concerning the Heisenberg
group

2.1. Background concerning Heisenberg groups

In this paper we denote by H the 1-dimensional Heisenberg group H1 �
C × R � R3. Points in H will be written as P = [z, t] = [x + iy, t]. If
P = [z, t], Q = [ζ, τ ] ∈ H and r > 0, following the notations of [27], we
define the group operation

P ·Q = [z + ζ, t+ τ + 2�m(zζ̄)],

and the family of non isotropic dilations δr defined as

δr(P ) := [rz, r2t].

It is also useful to consider the group translations τP : H → H defined as

Q 
→ τP (Q) := P ·Q
for any fixed P ∈ H. We remind that P−1 := [−z,−t] is the inverse of P .
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We endow H with the homogeneous norm

‖P‖ = (‖z‖4 + |t|2)1/4 = ((z2
1 + z2

2)
2 + t2)1/4

and define the gauge distance (Korányi’s distance) as

(2.1) d(P,Q) := ‖P−1 ·Q‖.
We explicitly observe that

Proposition 2.1. The function d defined by (2.1) is a distance in H (see
[27, p. 638]) and the usual properties related with translations and dilations
hold, i.e. for any P,Q,Q′ ∈ H and for any r > 0

(2.2) d(τPQ, τPQ
′) = d(Q,Q′) and d(δrQ, δrQ

′) = r d(Q,Q′).

In addition, for any bounded subset Ω of H there exist positive constants
c1(Ω), c2(Ω) such that

(2.3) c1(Ω)|P −Q|R3 ≤ d(P,Q) ≤ c2(Ω)|P −Q|1/2
R3

for P,Q ∈ Ω. In particular, the topologies defined by d and by the Euclidean
distance coincide on H.

Remark 2.1. We stress that, because the topologies defined by d and by the
Euclidean distance coincide, the topological dimension of H is 3. On the
contrary the Hausdorff dimension of (H, d) is Q = 4 (see e.g. [20]).

From now on, U(P, r) and B(P, r) will be, respectively, the open and
closed balls with center P and radius r with respect to the distance d. We
notice explicitly that U(P, r) is an Euclidean smooth domain in R3.

We remind also that Lebesgue measure dL3 = dz dt in C×R is left (and
right) invariant under group translations and hence it is the Haar measure
of the group.

If s ≥ 0, following Federer [10, Section 2.10], denote by Hs
d the s-dimen-

sional Hausdorff measure obtained from the distance d in H. Recall that,
for any subset A ⊂ H, its Hausdorff measure Hs

d(A) (with respect to d) is
defined by

Hs
d(A) = lim

δ→0

(
inf

{∑
i∈I

α(s)2−s(diamAi)
s; diamAi < δ,A ⊂ ∪i∈IAi

})
,

where

α(s) = Γ

(
1

2

)s/
Γ
(s

2
+ 1
)
.

For further results about Hausdorff measures, we refer to [10]. Translation
invariance and homogeneity under dilations of Hausdorff measures follow as
usual from (2.2). More precisely we have
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Proposition 2.2. Let A ⊆ H, P ∈ H. Then, if s ≥ 0,

Hs
d(τPA) = Hs

d(A)

Hs
d(δr(A)) = rsHs

d(A).

The Lie algebra of the left invariant vector fields of Hn is generated by

X =
∂

∂x
+ 2y

∂

∂t
, Y =

∂

∂y
− 2x

∂

∂t
; T =

∂

∂t
,

and the only non-trivial commutation relation is

[X, Y ] = −4T.

In the following we shall identify vector fields and associated first order
differential operators. The vector fields X, Y define a vector bundle on H

(the horizontal vector bundle HH) that can be canonically identified with a
vector subbundle of the tangent vector bundle of R3. Since each fiber of HH

can be canonically identified with a two-dimensional vector subspace of R3,
each section φ of HH can be identified with a map φ : H → R3. At each
point P ∈ H the horizontal fiber is indicated as HHP and each fiber can
be endowed with the scalar product 〈·, ·〉P and the norm | · |P that make
the vector fields X, Y orthonormal. Hence we shall also identify a section
of HH with its canonical coordinates with respect to this moving frame. In
this way, a section φ will be identified with a function φ : H → R2. As it is
common in Riemannian geometry, when dealing with two sections φ and ψ
whose argument is not explicitly written, we shall drop the index P in the
scalar product writing 〈ψ, φ〉 for 〈ψ(P ), φ(P )〉P . The same convention shall
be adopted for the norm.

We say also that an absolutely continuous curve γ : [0, T ] → H is hori-
zontal if γ′ is a horizontal section, i.e. if γ′(t) ∈ HHγ(t) for a.e, t ∈ [0, T ].

We can remind now the notion of Carnot–Carathéodory distance (cc-
distance) in H.

Definition 2.3. If P,Q ∈ H, their cc-distance dc(P,Q) is defined by

dc(P,Q) = inf

{∫ T

0

|γ′(t)|γ(t)dt

}
,

where the infimum is taken over all horizontal curves γ : [0, T ] → H such
that γ(0) = P and γ(T ) = Q.

Open (respectively closed) balls with respect to dc will be denoted by
Uc(x, r) and B(x, r).
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It is well known ([28]) that

Proposition 2.4. There exist α1, α2 > 0 such that

α1d(P,Q) ≤ dc(P,Q) ≤ α2d(P,Q)

for all P,Q ∈ H.

Lemma 2.5. The distance d is invariant under cylindrical rotations of the
form

[z, t] → [eiθz, t], θ ∈ R.

Proof. It is enough to notice that

[eiθζ, τ ]−1[eiθz, t] = [eiθ(z − ζ), t− τ − 2�m(eiθζe−iθz̄)]. �

From now on, we call straight H-line any set � of the form � = a ·r, where
a is a point of H and r is any Euclidean straight line through the origin lying
in the set {[z, 0] z ∈ C}. We shall denote by G(H, 1) the set of all straight
H-lines. In addition, we denote by G0(H, 1) the set of all Euclidean straight
line through the origin lying in the set {[z, 0] z ∈ C}, i.e. r ∈ G0(H, 1) if
and only if r = {([λeiω, 0], λ ∈ R}.

In a more intrinsic way, r ∈ G0(H, 1) if and only if r is both a subgroup
of H that is dilation invariant and a 1-dimensional H-regular submanifold
(see [12]). The elements of r ∈ G(H, 1) are laterals of the elements of
r ∈ G0(H, 1).

An important metric feature of the elements of G(H, 1) is that d is ad-
ditive on r ∈ G(H, 1).

Lemma 2.6. Let r ∈ G(H, 1) be given, and let P1, P2, P3 be successive points
in r. Then d(P1, P3) = d(P1, P2) + d(P2, P3).

Proof. In fact, it is enough to check this property for r ∈ G0(H, 1), since the
distance is invariant under left translations. Thus, assume Pi = [λie

iω, 0],
i = 1, 2, 3, with λ1 < λ2 < λ3. It is enough to show that

d(Pi, Pj) = |λi − λj |.

Indeed we have (keeping into account that �m(λje
iω, λieiω)] = 0)

d(Pi, Pj) = ‖[−λje
iω, 0] · [λie

iω, 0]‖ = ‖[(λi − λj)e
iω, 0]‖ = |λi − λj|,

and we are done. �
We now give an other property of our straight lines.



The Geometric TSP in the Heisenberg group 445

Lemma 2.7. If y ∈ L with L = a · r, r ∈ G0(H, 1), then L = y · r.
Proof. If r = {([λeiω, 0], λ ∈ R}, by assumption, y = a ·w, w = [λeiω, 0] for
λ ∈ R suitable, so that y−1 · a = w−1 = [−λeiω, 0]. If z is any point in L,
then analogously z = a · [µeiω, 0] for µ ∈ R suitable. Then

z = y · y−1 · a · [µeiω, 0] = y · [−λeiω, 0] · [µeiω, 0] = y · [(µ− λ)eiω, 0].

Since [(µ− λ)eiω, 0] ∈ r, the proof is complete. �

Definition 2.8. We say that a curve γ : [0, T ] → H is a minimal geodesic
(a segment) if dc(γ(t), γ(τ)) = |t− τ | for all t, τ ∈ [0, T ].

Since H endowed with the distance dc is a complete and locally compact
metric length space in the sense of [15], Definition 1.7, then any two points
of H can be joined by (at least) a minimal geodesic ([15], Theorem 1.10).
If P,Q ∈ H, we denote by [P,Q] a minimal geodesic connecting P and Q.
This notion is not mesleading, since, if P,Q ∈ � ∈ G(H, 1), then [P,Q] is
precisely the segment of � with endpoints P and Q.

Let E ⊂ H be a compact set, and let P ∈ H. For t > 0, we set

βH(P, t) = inf
L∈G(H,1)

sup
Q∈E∩Bc(P,t)

dc(Q,L)

t
.

2.2. A curvature type estimate

The main goal of this section is to prove the following statement. As a
corollary, we will get theorem 1.3.

Theorem 2.9. Let ε0 ∈ [0, 1) be given. Then there exists c = c(ε0) > 0 such
that, if P1, P2, P3 are points in H such that

(2.4) P1 and P2 belong to r0 ∈ G(H, 1),

(2.5) d(P1, P2) ≥ d(P1, P3),

(2.6) d(P1, P3) ≥ d(P2, P3) ≥ (1 − ε0)d(P1, P3),

and in addition we denote by Qi, i = 1, 2, 3 the points in the Euclidean
space R2 such that

dEuc(Qi, Qj) = d(Pi, Pj) i, j = 1, 2, 3,

and by r̃0 the straight line through Q1 and Q2, then

(2.7) d(P3, r0) ≥ cdEuc(Q3, r̃0).
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Proof. By triangle inequality and (2.6), d(P1, P2) ≤ 2d(P1, P3), and we may
assume d(P1, P2) < 2d(P1, P3), since otherwise the point Q3 would lie on r̃0,
so that dEuc(Q3, r̃0) = 0, and the assertion would hold trivially.

By Lemma 2.7, r0 = y · r, with r = {([λeiω, 0], λ ∈ R} ∈ G0(H, 1).
Moreover, by Lemma 2.5, we can assume also ω = 0. Since the distance is
invariant under group translations, without loss of generality, we can assume
r0 = r and P1 = −P2.

Thanks to the dilations of the group, we may rescale the picture so that

1 = d(P1, P3) ≥ d(P2, P3) ≥ (1 − ε).

Let us consider first the case d(P1, P3) = d(P2, P3) = 1.

We can write P1 = [α/2 + i0, 0], P2 = [−α/2 + i0, 0], with 1 ≤ α < 2
(since 1 = d(P1, P3) ≤ d(P1, P2) ≤ 2d(P1, P3) = 2 and d(P1, P2) = 1), and
P3 = [z1 + iz2, z3]. Hence r0 = {[η + i0, 0], η ∈ R}. Since d(P1, P2) =
d(P2, P3) = 1, we have

(2.8)

(
z2
1 + z2

2 +
α2

4
− αz1

)2

+ z2
3 + 2αz3z2 + α2z2

2 = 1

and

(2.9)

(
z2
1 + z2

2 +
α2

4
+ αz1

)2

+ z2
3 − 2αz3z2 + α2z2

2 = 1.

Subtracting we get

(2.10) z3z2 = z1

(
z2
1 + z2

2 +
α2

4

)
,

and then adding

(2.11)

(
z2
1 + z2

2 +
α2

4

)2

+ α2z2
1 + z2

3 + α2z2
2 = 1.

We assume also zi �= 0, i = 1, 2, 3. Replacing (2.10) in (2.11) we obtain
that (2.10) and (2.11) imply

(2.12)

⎧⎨
⎩

z3z2 = z1

(
z2
1 + z2

2 + α2

4

)
,(

z2z3

z1

)2

+ α2z2
1 + z2

3 + α2z2
2 = 1,

i.e.

(2.13)

⎧⎨
⎩ z3z2 = z1

(
z2
1 + z2

2 + α2

4

)
,

(z2
3 + α2z2

1)(z
2
1 + z2

2) = z2
1 .
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Putting now z1 = ρ cos θ, z2 = ρ sin θ, θ ∈ (0, 2π), θ �= k π
2
, k = 1, 2, 3 (the

last restriction will be dropped soon), formula (2.13) becomes

(2.14)

⎧⎨
⎩ z3 =

cos θ

sin θ

(
ρ2 + α2

4

)
,

ρ2(z2
3 + α2ρ2 cos2 θ) = ρ2 cos2 θ.

After some elementary algebraic manipulations we get

(2.15)

⎧⎨
⎩

z2
3 + α2 sin θ cos θ z3 −

(
1 + α4

4

)
cos2 θ = 0,

ρ2 =
cos2 θ − z2

3

α2 cos2 θ
.

Since our aim to provide a lower bound for the distance of P3 from r0 when P3

satisfy (2.8) and (2.9), it is enough to estimate the same quantity when
(2.16)

z3 =
1

2

(
−α2 sin θ ±

√
α4 sin2 θ + α4 + 4

)
cos θ :=

1

2
β cos θ, 0 ≤ θ ≤ 2π.

In addition, because of the second identity in (2.15), we must restrict our-
selves to those choices of θ and of the sign ± in β such that |β| = |β(θ)| ≤ 2.
This implies that β can be written better as follows

(2.17) β =

{ −α2 sin θ +
√
α4 sin2 θ + α4 + 4, when sin θ > 0

−α2 sin θ −
√
α4 sin2 θ + α4 + 4, when sin θ < 0.

In particular

(2.18) |β| =
√
α4 sin2 θ + α4 + 4 − α2| sin θ|.

Replacing then (2.16) in (2.15) we get

(2.19) ρ2 =
1

α2

(
1 − β2

4

)
,

(2.20) z1 =
cos θ

α

√
1 − β2

4
and z2 =

sin θ

α

√
1 − β2

4
0 ≤ θ ≤ 2π.

If η ∈ R, we put ψθ(η) := d(z, (η, 0, 0))4, where z = (z1, z2, z3) satisfies (2.16)
and (2.20). Hence

(2.21) ψθ(η) = (ρ2 − 2ηρ cos θ + η2)2 +

(
β

2
cos θ + 2ηρ sin θ

)2

= I2
1 + I2

2 ,

where

I1 = ρ2 − 2ηρ cos θ + η2, I2 =
β

2
cos θ + 2ηρ sin θ.
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We want to provide a lower bound of

m := inf
η∈R

inf
0≤θ≤2π

ψθ(η).

In addition, we can restrict ourselves to assume |η| ≤ 2α, since e.g. for
η > 2α we have

d(z, (η, 0, 0)) ≥ d((
α

2
, 0, 0), (η, 0, 0))−d((α

2
, 0, 0), z) = |α

2
−η|−1 ≥ 3α

2
> 1.

The strategy of the proof is the following one: first we check that ψθ is
convex. This implies that

(2.22) ψθ(η) ≥ ψθ(0) + ηψ′
θ(0).

Indeed

1

2
ψ′′

θ (η) = (−2ρ cos θ + 2η)2 + 4ρ2 sin2 θ + 2(ρ2 − 2ηρ cos θ + η2) ≥ 0,

since ρ2 − 2ηρ cos θ + η2 ≥ ρ2 − 2|ηρ| + η2 = (|ρ| − |η|)2.

The next step consists of proving the following lemma.

Lemma 2.10. There exists c1 > 0 such that

ηψ′
θ(0) ≥ −c1ψθ(η) − 1

2
ψθ(0).

Combining (2.22) and Lemma 2.10, it follows easily that there exists
c2 > 0 such that

(2.23) ψθ(η) ≥ c2ψθ(0),

for η ∈ R and 0 ≤ θ ≤ 2π.

Finally, we prove the following lemma.

Lemma 2.11. There exist c3 > 0 (independent of α) such that

ψθ(0) ≥ c3

(
1 − α2

4

)2

.

In such a way, we have proved the following estimate.

Proposition 2.12. There exists c4 > 0 (independent of α) such that

d(P3, r0) ≥ c4

√
1 − α2

4
.
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Proof of Lemma 2.10. We have

ψ′
θ(η) = 2I1(−2ρ cos θ + 2η) + 4I2ρ sin θ,

and hence

(2.24) ψ′
θ(0) = 4ρ

(β
2

sin θ cos θ − ρ2 cos θ
)
.

First, we want to show that

(2.25) |η|ρ3 ≤ c(I2
1 + I2

2 ) = c ψθ(η),

or, equivalently,
(2.26)∣∣∣∣ηρ
∣∣∣∣
2

≤ c
1

ρ4
(I2

1 + I2
2 ) = c

[(
1 − 2

η

ρ
cos θ +

η2

ρ2

)2

+

(
β

2ρ2
cos θ + 2

η

ρ
sin θ

)2
]
.

Let ε1 be a positive number close to zero that will be explicitly chosen later
(see (2.29)), and distinguish two cases:

i) | cos θ| < 1 − ε1:
ii) | cos θ| ≥ 1 − ε1.

Case i). In this case

(2.27)
1

ρ2
I1 = 1 − 2

η

ρ
cos θ +

η2

ρ2
≥ 1 − 2(1 − ε1)

∣∣∣∣ηρ
∣∣∣∣ + η2

ρ2
≥ 2ε1

∣∣∣∣ηρ
∣∣∣∣ ,

since for any b ∈ R we have 1 − 2(1 − ε1)b + b2 − 2ε1b > 0. Thus in this
case (2.26) is proved.

Case ii). In this case | sin θ| ≤√1 − (1 − ε1)2 ≤ √
2ε1. Then

1

ρ2
|I2| ≥

∣∣∣∣ |β|2ρ2
| cos θ| − 2

|η|
ρ
| sin θ|

∣∣∣∣ = α

ρ

∣∣∣∣ |β|2αρ
| cos θ| − 2

|η|
α
| sin θ|

∣∣∣∣ .(2.28)

Notice now that, by (2.16),

|β| ≥
√
α4 sin2 θ + α4 + 4 − α2| sin θ| =

α4 + 4√
α4 sin2 θ + α4 + 4 + α2| sin θ|

≥ α4 + 4

2
√
α4 sin2 θ + α4 + 4

≥ α4 + 4

2
√

2(α4 + 4)
=

√
α4 + 4

2
√

2
≥
√

5

8
,

since α ≥ 1.
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Now, by (2.19), keeping into account that the function t → t√
4−t2

is

increasing on (0, 2), we have

|β|
2αρ

| cos θ| =
|β|

2
√

1 − β2/4
| cos θ| =

|β|√
4 − β2

| cos θ|

≥
√

5
8√

4 − 5/8
| cos θ| := γ0| cos θ| ≥ (1 − ε1)γ0,

by ii). On the other hand

(2.29) 2
|η|
α
| sin θ| ≤ 4| sin θ| ≤ 4

√
2ε1 <

1

2
(1 − ε1)γ0,

provided we choose ε1 sufficiently small. Thus, going back to (2.28), we get

(2.30)
1

ρ2
|I2| ≥ α

2ρ
(1 − ε1)γ0 ≥ |η|

4ρ
(1 − ε1)γ0.

Recall that η ≤ 2α (see above).
Thus, combining (2.27) and (2.30), (2.26) follows with

c = min{1

4
(1 − ε1)γ0, ε1}−2.

The next step consists of proving that there exists C > 0 such that

(2.31) J :=
∣∣4ρηβ

2
sin θ cos θ

∣∣ ≤ 1

2
ψθ(0) + Cψθ(η)

An elementary argument and (2.26) yield

J ≤ 1

2

β2

4
cos2 θ + 8η2ρ2 sin2 θ ≤ 1

2

β2

4
cos2 θ + 8η2ρ2 ≤ 1

2
ψθ(0) + 8η2ρ2

=
1

2
ψθ(0) + 8ρ4

(
η

ρ

)2

≤ 1

2
ψθ(0) + 8ρ4 min{1

4
(1 − ε1)γ0, ε1}−2 1

ρ4
(I2

1 + I2
2 )

=
1

2
ψθ(0) + 8 min{1

4
(1 − ε1)γ0, ε1}−2ψθ(η),

(2.32)

and (2.31) follows.

Combining eventually (2.24), (2.25) and (2.31), Lemma 2.10 is com-
pletely proved. �
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Proof of Lemma 2.11. Let us write δ := t
√

1 − α2

4
, where t > 0 will be

fixed later, and distinguish two cases:

i) |β| ≤ 2
√

1 − α2δ2.

ii) |β| > 2
√

1 − α2δ2;

Case i). In this case (remember (2.19))

(2.33) ψθ(0) = ρ4 +
β2

4
cos2 θ ≥ ρ4 =

1

α4

(
1 − β2

4

)2

≥ δ4 = t4
(

1 − α2

4

)2

.

Case ii). By (2.18),√
α4 sin2 θ + α4 + 4 > α2| sin θ| + 2

√
1 − α2δ2,

and hence

α4 sin2 θ + α4 + 4 > α4 sin2 θ + 4(1 − α2δ2) + 4α2| sin θ|
√

1 − α2δ2,

that yields
α4 + 4α2δ2 > 4α2| sin θ|

√
1 − α2δ2,

and eventually

| sin θ| < α2 + 4δ2

4
√

1 − α2δ2
.

Thus

| cos θ| >
√

1 − (α2 + 4δ2)2

16(1 − α2δ2)
=

√
16(1 − α2δ2) − (α2 + 4δ2)2

4
√

1 − α2δ2
.

Now a direct computation shows that

16(1 − α2δ2) − (α2 + 4δ2)2 = 4
(
1 − α2

4

) (
α2 + 4 − 6α2t2 + t4α2 − 4t4

)
= 4
(
1 − α2

4

)(
α2 + 4 − t2(t2(4 − α2) + 6α2)

)
≥ 16
(
1 − α2

4

)
,

provided we can choose t > 0 sufficiently small but independent of α such
that

α2 + 4 − t2(t2(4 − α2) + 6α2) > 4.

By the way, this is possible since 1 ≤ α ≤ 2.
Then, in case ii), we have the estimate

(2.34) ψθ(0) = ρ4 +
β2

4
cos2 θ ≥ β2

4
cos2 θ ≥

(
1 − α2

4

)2

.

Combining (2.33) and (2.34) we achieve the proof of Lemma 2.11. �
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To achieve now the proof of the Theorem we have but to get rid of the
assumption d(P2, P3) = 1. Thus, we assume d(P2, P3) = 1 − ε. If we denote
by [P1, P2] the segment {[s, 0] , −α

2
≤ s ≤ α

2
}, we can distinguish two cases:

i) d(P3, Q) ≥ 1 − ε for any Q ∈ [P1, P2];
ii) there exists Q′ ∈ [P1, P2] such that d(P3, Q

′) < 1 − ε.

Suppose first case i) holds. Then, let us show that there exists c5 > 0
(independent of ε and α) such that

(2.35) d(P3, r0) ≥ c5(1 − ε).

Notice first that the d-ball B(P3, 1−ε) is a closed convex set (in the standard
sense), since B(0, 1 − ε) is convex and group translations carry (Euclidean)
straight lines into (Euclidean) straight lines. Thus, keeping into account that
P2 ∈ ∂B(P3, 1−ε) and that ∂B(P3, 1−ε) does not contain segments, we can
conclude that either r0 ∩B(P3, 1− ε) = {P2} and then (2.35) is proved with
c5 = 1, or there exists Q1 = [α

2
+ h, 0], h > 0 such that r0 ∩ B(P3, 1 − ε) =

[P2, Q1]. Moreover, by triangle inequality, h < 2(1 − ε). Now, by continuity
of d(P3, ·), necessarily d(P3, Q1) = 1 − ε. Rescaling the picture of a factor
1/(1−ε), the points P2, Q1, and P3 satisfy the assumption of Proposition 2.12
with α = h/(1 − ε). Thus

(2.36) d(P3, r0) ≥ c4(1 − ε)

√
1 − h2

4(1 − ε)2
.

On the other hand, if we consider the points P1, Q1 and P3, by triangle
inequality we get d(P1, Q1) ≤ 2 − ε. But the distance is additive in r0, so
that d(P1, Q1) = α+h, and hence h ≤ 2−α− ε. Replacing in (2.36), we get

d(P3, r0) ≥ c4(1 − ε)

√
1 − (2 − α− ε)2

4(1 − ε)2
.

But α ≥ 1, and hence 2 − α− ε ≤ 1 − ε. Therefore (2.35) holds with

c5 = c4

√
3

4
.

Finally, keeping in mind that α ≤ 2 − ε by triangle inequality, by (2.35) we
get that, if i) holds, then

(2.37) c6 (1 − ε)

√
1 − α2

(2 − ε)2
≤ d(P3, r0).
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We can consider now the case ii). By continuity, there exists Q ∈
[P1, Q

′] ⊂ [P1, P2] such that d(P3, Q) = 1 − ε = d(P3, P2). Rescaling again
the picture of a factor 1/(1− ε), the points Q,P2, P3 satisfy the assumption
of Proposition 2.12 with α = d(Q,P2)/(1 − ε), and then we get

(2.38) d(P3, r0) ≥ c(1 − ε)

√
1 − d(Q,P2)2

4(1 − ε)2
.

On the other hand, by triangle inequality, d(P1, Q)≥d(P3, P1) − d(P3, Q)= ε,
and hence, keeping in mind that the distance in r0 is additive, d(Q,P2) =
d(P1, P2) − d(P1, Q) ≤ α− ε. Thus

(2.39)
d(Q,P2)

2

4(1 − ε)2
≤ (α− ε)2

4(1 − ε)2
<

α2

(2 − ε)2
≤ 1,

since
(2 − ε)(α− ε) − 2α(1 − ε) = ε(α + ε− 2) < 0,

because α < 2 − ε, by triangle inequality. Replacing then (2.39) in (2.38),
we get eventually

(2.40) d(P3, r0) ≥ c(1 − ε)

√
1 − α2

(2 − ε)2
.

In other words, (2.37) still holds also in case ii). Notice that Proposition 2.12
is but a particular case of the above statement when ε = 0.

We can achieve now the proof of Theorem 2.9 providing an estimate
from above of dEuc(Q3, r̃0). Again, we can rescale the picture assuming that
dEuc(Q1, Q3) = 1, and putting dEuc(Q2, Q3) = 1 − ε and dEuc(Q1, Q2) = α.
We stress that the rescaling does not affect the final result, since both d and
dEuc are homogeneous of degree one under their respective intrinsic dilations,
and the rescaling factor d(P1.P3) in the Heisenberg group equals by definition
the rescaling factor dEuc(Q1, Q3) in the Euclidean plane.

We can obtain dEuc(Q3, r̃0) using Hero’s theorem as follows

dEuc(Q3, r̃0) =
1

2α

√
(2 + α− ε)(α− ε)(α + ε)(2 − α− ε).

On the other hand (α− ε)(α + ε) ≤ α2, and hence

dEuc(Q3, r̃0) ≤ 1

2

√
(2 + α− ε)(2 − α− ε) =

2 − ε

2

√
1 − α2

(2 − ε)2

≤
√

1 − α2

(2 − ε)2
≤ 1

c(1 − ε0)
d(P3, r0),

(2.41)

by (2.40) and (2.37). This completes the proof of Theorem 2.9. �
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We now can prove theorem 1.3 for the Heisenberg group equiped with
the metric d. The case of the Carnot-Carathéodory metric dc follows easily
by proposition 2.4 (see also the discussion at the end of section 2.3).

Proof. Without loss of generality we may assume that

(2.42) d(P1, P3) ≥ d(P2, P3).

Suppose first

(2.43) d(P1, P2) ≥ d(P1, P3) ≥ d(P2, P3),

We apply Theorem 2.9. To this end, we notice that

d(P2, P3) ≥ c2,3 t =
c2,3

C1,3

C1,3 t ≥ c2,3

C1,3

d(P1, P3).

By (2.42), c2,3

C1,3
≤ 1. Therefore we can set ε0 = 1− c2,3

C1,3
and then we apply

Theorem 2.9. Thus we are left with the case

d(P1, P3) ≥ d(P2, P3) and d(P1, P2) ≤ d(P1, P3).

We can rescale the picture assuming t = 1. An elementary argument in
the Euclidean plane shows that in this case 0 < c1 ≤ dEuc(P̃3, r̃0) ≤ c2,
where c1, c2 are absolute geometric constants depending only on ci,j and
Ci,j, i,= 1, 2, 3. Thus, we must prove that there exists a geometric constant
c3 > 0 (independent of Pi, i = 1, 2, 3) such that

(2.44) d(P3, r0) ≥ c3.

By contradiction, suppose (2.44) fails to hold. Then for any n ∈ N there
exist P n

i such that

(2.45) P n
1 and P n

2 belong to rn
0 ∈ G(H, 1),

(2.46) d(P n
1 , P

n
3 ) ≥ d(P n

2 , P
n
3 ),

(2.47) ci,j ≤ d(P n
i , P

n
j ) ≤ Ci,j,

where ci,j and Ci,j are the constants of (1.2), and

(2.48) d(P n
3 , r

n
0 ) <

1

n
.
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Since (2.45)–(2.48) are invariant under group translations, without loss of
generality we may assume that P n

3 ≡ 0, and hence that P n
1 , P

n
2 belong to a

compact set, because of (2.47). Thus, we can assume that P n
i → Pi as n→∞

for i = 1, 2. By Lemma 2.7, we can assume rn
0 = P n

1 · {[λeiωn , 0] : λ ∈ R},
with ωn → ω as n → ∞, so that also P2 ∈ r0 := P1 · {[λeiω, 0] : λ ∈ R}.
By (2.48), for any n ∈ N there exists λn ∈ R such that [λne

iωn , 0] = (P n
1 )−1 ·

Qn, with d(Qn, 0) < 1
n
. Again by compactness, we can assume λn → λ and

hence P1 · [λeiω, 0] = 0, i.e. 0 ∈ r0. Since d is additive on r0 and in addition
d(P1, 0) ≥ d(P2, 0), and d(P1, P2) ≤ d(P1, 0), then 0 cannot lie between P1

and P2, and, analogously, P2 cannot lie between 0 and P1. Thus we get a
contradiction, keeping in mind that all these distances do no vanish (they
are in fact comparable to 1). �

Corollary 2.13. Let P1, P2, P3 be as in Theorem 1.3. Then there exists
C = C(ci,j, Ci,j) > 0 such that

d(P1, P3) + d(P2, P3) − d(P1, P2) ≤ C
d(P3, r0)

2

t
.

Proof. With the notations of Theorem 1.3, an elementary argument in the
Euclidean plane shows that

d(P1, P3) + d(P2, P3) − d(P1, P2)

= d(P̃1, P̃3) + d(P̃2, P̃3) − d(P̃1, P̃2) ≤ Cd2
Euc(P̃3, r̃0).

(2.49)

Applying (1.3) in Theorem 1.3 we achieve the proof.

We now prove (2.49). For this, let H be the orthogonal projection of P̃3

on r̃0 and set h = dEuc(P̃3, r̃0). Then, by Pythagorean Theorem, we get

dEuc(P̃1, P̃3) + dEuc(P̃2, P̃3) − dEuc(P̃1, P̃2)

=

√
dEuc(P̃1, H)2 + h2 +

√
dEuc(P̃2, H) + h2 − dEuc(P̃1, H) − dEuc(P̃2, H)

≤ dEuc(P̃1, H)

(√
1 +

h2

dEuc(P̃1, H)2
− 1

)
+

+ dEuc(P̃2, H)

(√
1 +

h2

dEuc(P̃2, H)2
− 1

)

≤ C
h2

t
.

�
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2.3. The main estimate

Let t > 0; we are now in position to give a sharp upper bound of the quantity

d(P3, P1) + d(P3, P2) − d(P1, P2).

in terms of
max{t−1d(Pi, r0) : i = 1, 2, 3},

where r0 ∈ G(H, 1) and Pi ∈ H, are i = 1, 2, 3 any three given points at
comparable mutual distance with t.

Theorem 2.14. Let r0 ∈ G(H, 1) and t > 0 be given, and let P1, P2, P3 ∈ H

be such that

i) d(P1, P2) ≥ d(P1, P3) ≥ d(P2, P3);

ii) there exist ci,j > 0, Ci,j > 0 for i, j = 1, 2, 3, i �= j such that

ci,j t ≤ d(Pi, Pj) ≤ Ci,j t.

Assume now

β := max{t−1d(Pi, r0) : i = 1, 2, 3}(2.50)

≤ β0 :=
1

6
min{ci,j, i, j = 1, 2, 3 , i �= j}.

Then there exists C > 0, C = C(ci,j, Ci,j) such that

d(P3, P1) + d(P3, P2) − d(P1, P2) ≤ Ct β2.(2.51)

Proof. As usual, taking into account all invariance properties under left
translations, without loss of generality we can assume r0 = {[s, 0] : s ∈ R}.

By definition, U(Pi, 3β0t) ∩ r0 �= ∅ for i = 1, 2, 3, and, in addition,
B(Pi, 3β0t) ∩B(Pj , 3β0t) = ∅ for i �= j, since, if ξ ∈ B(Pi, 3β0t), then

d(ξ, Pj) ≥ d(Pi, Pj) − d(ξ, Pi) ≥ ci,jt− 3β0t ≥ (6β0 − 3β0)t ≥ 3β0t.

Thus, we may choose two couples of points PiA, PiB ∈ ∂U(Pi, 3β0t) ∩ r0,
i = 1, 2.

In addition, we can assume that, giving an order < on the straight line
r0, then P1B < P1A < P2A < P2B since the points can be chosen in such
a way the segments [P1B, P1A] and [P2A, P2B] are contained respectively in
B(P1, 3β0t) ∩ r0 and B(P2, 3β0t) ∩ r0 and therefore are disjoint.

The core of the following argument consists of applying successively
Corollary 2.13 at the scale t to the triplets of points {Pi, PjA, PjB}, i = 1, 2, 3,
j = 1, 2.
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To this end, we have but to show that

d(Pi, PjA) ≈ d(Pi, PjB) ≈ d(PjA, PjB) ≈ t,

since PiA, PiB ∈ r0. Indeed, d(Pi, PiA) = d(Pi, PiB) = 3β0t; on the other
hand, there exist M1 ∈ U(P1, 3β0t) ∩ [P1B, P1A] and M2 ∈ U(P2, 3β0t) ∩
[P2A, P2B] such that d(Pi,Mi) = d(Pi, r0) ≤ β0t, i = 1, 2. Keeping in mind
that d is additive on r0 (Lemma 2.6), we have (for instance)

6β ≥ d(P1B, P1A) = d(P1B,M1) + d(M1, P1A)

≥ d(P1B, P1) − d(P1,M1) + d(P1A, P1) − d(P1,M1) ≥ 4β0t.

Moreover,

(3β0t+ C1,3)t ≥ d(P1A, P1) + d(P1, P3)

≥ d(P1A, P3) ≥ d(P3, P1) − d(P1, P1A) ≥ ci,jt− 3β0t ≥ 3β0t.

By triangle inequality and keeping in mind Corollary 2.13, we get:

(2.52) d(P1, P3) + d(P2, P3) − d(P1, P2)

≤ d(P1, P1A) + d(P1A, P3) + d(P2, P3) − d(P1, P2)

=
(
d(P1, P1A) + d(P1, P1B) − d(P1A, P1B)

)− d(P1, P1B) + d(P1A, P1B)

+ d(P1A, P3) + d(P2, P3) − d(P1, P2)

≤ C
d2(P1, r0)

t
− d(P1, P1B) + d(P1A, P1B) + d(P1A, P3)

+ d(P2, P3) − d(P1, P2)

≤ C
d2(P1, r0)

t
+ d(P2A, P3) + d(P2A, P2)

− d(P1, P1B) + d(P1A, P1B) + d(P1A, P3) − d(P1, P2)

= C
d2(P1, r0)

t
+
(
d(P2A, P2) + d(P2B, P2) − d(P2B, P2A)

)− d(P2B, P2)

+ d(P2B, P2A) + d(P2A, P3) − d(P1, P1B) + d(P1A, P1B)

+ d(P1A, P3) − d(P1, P2)

≤ C
d2(P1, r0)

t
+ C

d2(P2, r0)

t
− d(P2B, P2) + d(P2B, P2A)

+ d(P2A, P3) − d(P1, P1B) + d(P1A, P1B) + d(P1A, P3) − d(P1, P2)

= Cd2(P1, r0) + Cd2(P2, r0) +
(
d(P2A, P3) + d(P1A, P3) − d(P1A, P2A)

)
+ d(P1A, P2A) − d(P2B, P2) + d(P2B, P2A) − d(P1, P1B)

+ d(P1A, P1B) − d(P1, P2)

≤ C
d2(P1, r0)

t
+ C

d2(P2, r0)

t
+ C

d2(P3, r0)

t
+
(
d(P1A, P2A) + d(P2B, P2A)

+ d(P1A, P1B)
)− (d(P2B, P2) + d(P1, P1B) + d(P1, P2)

)
.
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Let us recall now that d is additive on r0 (Lemma 2.6), so that

d(P1A, P2A) + d(P2B, P2A) + d(P1A, P1B) = d(P1B, P2B).

On the other hand

d(P1B, P2B) ≤ d(P2B, P2) + d(P1, P1B) + d(P1, P2)

hence from (2.52) we conclude the proof since

d(P3, P1)+ d(P3, P2) − d(P1, P2) ≤ C

(
d2(P1, r0)

t
+
d2(P2, r0)

t
+
d2(P3, r0)

t

)
≤ C ′β2t, �

The proof of Theorem 2.14 relies on Theorem 1.3 via Corollary 2.13, as
well as on the fact that d is additive on r0 ∈ G(H, 1). On the other hand, by
Proposition 2.4, Theorem 1.3 still holds when we replace d by the Carnot–
Carathéodory distance dc, and it is easy to see that the same happens for
Corollary 2.13. Now, also dc is additive on r0 ∈ G(H, 1), as we can see by
the explicit forms of geodesics in H. Thus, the following theorem holds.

Theorem 2.15. Let r0 ∈ G(H, 1) and t > 0 be given, and let P1, P2, P3 ∈ H

be such that

i) dc(P1, P2) ≥ dc(P1, P3) ≥ dc(P2, P3);

ii) there exist ci,j > 0, Ci,j > 0 for i, j = 1, 2, 3, i �= j such that

ci,j t ≤ dc(Pi, Pj) ≤ Ci,j t.

Assume now

βc := max{t−1dc(Pi, r0) : i = 1, 2, 3}(2.53)

≤ β0 :=
1

4
min{ci,j, i, j = 1, 2, 3 , i �= j}.

Then there exists C > 0, C = C(ci,j, Ci,j) such that

dc(P3, P1) + dc(P3, P2) − dc(P1, P2) ≤ Ct β2
c .(2.54)

Corollary 2.16. Let P1, P2, P3 ∈ E be as in Theorem 2.15, and let Pi be a
fixed point among them. If βH(Pi, C0t) ≤ β0/2, with C0 ≥ max{Cij}, then

dc(P0, P1) + dc(P2, P3) − dc(P1, P2) ≤ CtβH(Pi, C0t).
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Proof. By definition, there exists r0 ∈ G(H, 1) such that

βc : = max{t−1dc(Pj, r0) , j = 1, 2, 3}
≤ sup

Q∈E∩Uc(Pi,C0t)

dc(Q, r0)

t
≤ 2βH(Pi, C0t) ≤ β0,

(2.55)

since Pj ∈ B(Pi, C0t) for i, j = 1, 2, 3, by ii) and our choice of C0.
Thus, we can apply Theorem 2.15, and the assertion follows combin-

ing (2.53) and (2.55). �

3. Construction of the curve Γ

Throughout all this section, we assume that the Heisenberg group H is
endowed with its Carnot-Carathéodory metric dc. Let E be a compact
subset of H. Without loss of generality, we may assume that diamE = 1.

For any j ∈ N, we consider a maximal subset ∆j of E such that

(i) For any P ∈ ∆j , any Q ∈ ∆j with P �= Q, dc(P,Q) > 2−j.

(ii) For any P ∈ E, there exists Q ∈ ∆j such that dc(P,Q) ≤ 2−j.

In other words, ∆j is a 2−j-dense subset of E and ∪j∈N∆j is a net associated
with E. By construction, we may assume that ∆j ⊂ ∆j+1 for j ∈ N. For
any l ∈ N, set Al = ∆l \ ∆l−1. We say that P ∈ ∪+∞

j=0∆j is of generation
l if P ∈ Al. Recall that (H, dc) is Ahlfors-regular of dimension 4. More
precisely, there exists CAR ≥ 1 such that, for any P ∈ H, any r > 0,

H4
c(Uc(P, r)) = CARr

4.

Remember Uc(P, r) denotes the open ball (with respect to dc) with center P
and radius r. Thus, if P is of generation l and if δ > 0, the number of points
in Al ∩ Uc(P, δ2

−l) is bounded by a constant depending only on δ.
Suppose that βH(E) < +∞. Our goal is to construct a rectifiable curve Γ

such that E ⊂ Γ and l(Γ) ≤ C(H1(E) + diamE). Here, l(Γ) denotes the
length of Γ with respect to dc. Note that it is enough to construct a con-
tinuum Γ such that E ⊂ Γ and H1

c(Γ) ≤ C(βH(E) + diamE). To see this,
adapt the argument of [9, Theorem 1.8] (see the Appendix). To construct
the continuum Γ, we will follow the algorithm given by P. Jones in [18]. The
basic idea is to join the points of ∆j by geodesics in a reasonnable way to
get a continuum Γj . The continuum Γ will be the limit of the sequence (Γj).
The first key observation is that we need to “order” the points of ∆j before
joining them and we now discuss how to do this.
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Let F be a finite subset of H. We say that [P0, . . . , Pn] is an order of F
if F = {P0, P1, . . . , Pn} and

(3.1) dc(Pi, Pk) ≥ max(dc(Pi, Pj), dc(Pj, Pk))

whenever i < j < k. In this case, we say that F is orderable. Note that,
if [P1, . . . , Pn] is an order of F , then [Pn, . . . , P1] is also an order of F (the
reverse order). By convention, [P ] is an order of {P}, and [P,Q] (or [Q,P ])
is an order of {P,Q}. First, we prove that a subset of an Heisenberg straight
line has an order.

Lemma 3.1. Let F be a finite subset of an Heisenberg straight line L in
G(H, 1). Then, F is orderable.

Proof. Without loss of generality, we can assume that L is contained in
{[x, 0]; x ∈ R}. Label the points P0 = [x0, 0], . . . , Pn = [xn, 0] of F such that
x0 < x1 < · · · < xn. Fix i < j < k. Recall that, by Lemma 2.6, dc(Pi, Pk) =
dc(Pi, Pj)+dc(Pj, Pk). Thus, dc(Pi, Pk) > max(dc(Pi, Pj), dc(Pj, Pk)). Hence,
[P1, . . . , Pn] is an order of F . �

This result remains true if the set F is sufficiently closed to an Heisenberg
straigth line.

Proposition 3.2. Let E ⊂ H. Fix C0 > c0 > 0. Then, there exists ε0 =
c0/(100C0) such that the following holds. If P ∈ H and t > 0 are such that
βH(P,C0t) ≤ ε0 (the βH is associated with the set E), and F ⊂ E∩Uc(P,C0t)
is such that dc(Q,Q

′) ≥ c0t whenever Q, Q′ ∈ F, Q �= Q′, then F is finite
and orderable.

Proof. The fact that F is finite comes from the Ahlfors-regularity of (H, dc).
Since βH(P,C0t) ≤ ε0, there exists an Heisenberg straigth line L such that
for all Q ∈ Uc(P,C0t),

dc(Q,L) ≤ 2C0ε0t.

For any Q ∈ Uc(P,C0t) denote by ΠL(Q) a point of L such that dc(Q,ΠL(Q))
= dc(Q,L). If Q and Q′ are two distinct points of F , then ΠL(Q) �=
ΠL(Q′). Indeed, if you assume that ΠL(Q) = ΠL(Q′), then dc(Q,Q

′) ≤
dc(Q,ΠL(Q)) + dc(ΠL(Q), Q′) ≤ 4C0ε0t. Thus, we get a contradiction if
ε0 < c0/(4C0). By the previous lemma, the set ΠL(F ) := {ΠL(Q), Q ∈ F}
is orderable. In fact, we can write ΠL(F ) = {Ai, i = 1, . . . , n} such that

dc(Ai, Ak) = dc(Ai, Aj) + dc(Aj , Ak)

whenever i < j < k. Label now the points Q1, . . . , Qn of F such that, for
any i = 1, . . . , n, ΠL(Qi) = Ai. To conclude, we check that [Q1, . . . , Qn] is
an order of F .
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To see this, fix i < j < k. Then, by the triangle inequality and the choice
of L, we easily get

dc(ΠL(Qi),ΠL(Qk)) ≤ dc(Qi, Qk) + 4ε0C0t,

dc(Qi, Qj) ≤ dc(ΠL(Qi),ΠL(Qj)) + 4ε0C0t,

dc(Qj , Qk) ≤ dc(ΠL(Qj),ΠL(Qk)) + 4ε0C0t.

Recall that

dc(ΠL(Qi),ΠL(Qk)) = dc(Ai, Ak)

= dc(Ai, Aj) + dc(Aj, Ak)

= dc(ΠL(Qi),ΠL(Qj)) + dc(ΠL(Qj),ΠL(Qk)).

Hence, we get

dc(Qi, Qk) ≥ dc(Qi, Qj) + dc(Qj , Qk) − 12ε0C0t.

Assume for instance that max(dc(Qi, Qj), dc(Qj, Qk)) = dc(Qi, Qj). Since
dc(Qj, Qk) ≥ c0t, we get dc(Qi, Qk) > dc(Qi, Qj) if ε0 < c0/(12C0). �

We could expect to order a finite set F ⊂ H by considering a fixed pointQ
and labelling the points P1,. . . , Pn of F such that dc(Pi, Q) decreases with i.
In fact, we have the following result.

Proposition 3.3. Let F ⊂ H be a finite set. Let Q, Q′ in F such that
diam(F ) = dc(Q,Q

′). Assume that F has an order. Then, if we label the
point of F by P1 = Q, P2,. . . , Pn = Q′ such that dc(Q,P2) < dc(Q,P3) <
· · · < dc(Q,Pn) = diamF , then [P1, . . . , Pn] is an order of F . More precisely,
either [P1, . . . , Pn] is the given order, or it is the reverse order

Proof. Denote by [A1, . . . , An] an order of F . We claim that Ai = Pi for
any i = 1, . . . , n or Ai = Pn−i for any i = 1, . . . , n. Indeed, assume for
instance that P1 = Ai with i ∈ {2, . . . , n− 1} and Pn = Aj with i > j (the
case i < j is the same). Then,

dc(A1, Ai)= dc(A1, Q) ≥ max(dc(A1, Aj), dc(Ai, Aj)) ≥ dc(Q,Q
′)= diam(F ).

We get a contradiction. Hence, {A1, An} = {P1, Pn}. From now on, assume
that A1 = P1 and An = Pn. Assume that A2 �= P2. Hence, there exists i > 2
such that P2 = Ai. This yields to a contradiction:

dc(P1, P2) = dc(A1, Ai) ≥ max(dc(A1, A2)), dc(A2, Ai)) ≥ dc(P1, A2).

Thus, A2 = P2.
By induction, we easily prove that Ai = Pi for any i = 2, . . . , n−1. Thus,

[P1, . . . , Pn] is an order of F . The case An = P1 and An = P1 is similar by
noting that [B1, . . . , Bn] with Bi = An−i is also an order of F . �
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Remark 3.1. The notion of order could be defined for more general sets in
general metric spaces (see [16]): Let E be a subset of a metric space (X, d).
Then, E is said to have an order if there exists an injective map φ : E → R

such that, for any distinct points x, y and z in E,

φ(x) < φ(y) < φ(z) ⇒ d(x, z) > max(d(x, y), d(y, z)).

For the simplicity of the presentation, we prefer here to consider finite sub-
sets of the Heisenberg group. However, all the previous results remain true
in general Carnot groups.

We now start the construction of the Γj’s. For this, fix C1, C2 > 0 large
enough and ε0 > 0 small enough (see below). On the other hand, the letter C
will denote a constant which can vary from one line to the other one. We
remind that, if P and Q are in H, [P,Q] denotes a minimizing geodesic
segment in H joining P to Q.

To simplify, assume that ∆0 = {P0, Q0}. Then, there exist geodesic seg-
ments [P0, a(P0)] and [Q0, a(Q0)] such that dc(P0, a(P0)) = d(Q0, a(Q0)) =
C1d(P0, Q0). We can always take a(P0), a(Q0) such that

dc(Q0, a(P0)) ≥ C1 = C1diamE, dc(P0, a(Q0)) ≥ C1 = C1diamE.

This can be proved by contradiction argument thanks to the fact that the
dc-diameter of Bc(P, r) is 2r. Then, we set Γ0 = [a(P0), P0] ∪ [P0, Q0] ∪
[Q0, a(Q0)]. Note that

(3.2) diam E ≤ l(Γ0) ≤ (1 + 4C1)diamE.

Assume by induction that continua Γ1,. . . , Γj−1 have been constructed
such that, for any k = 1,. . . , j−1, Γk is a connected union of a finite number
of geodesic segments, that is Γk =

⋃
P,Q∈Gk

[P,Q] (Gk is the set of endpoints
of geodesics segments of Γk). Moreover, we assume that the following holds.

(P1) The set ∆k is contained in the set Gk of endpoints of geodesic segments
of Γk. Moreover, if S is a geodesic segment in Γk, we assume that at least
one endpoint of S is in ∆k.

Notations. Let S be a geodesic of Γk. We say that S is a primary segment
if its two endpoints are in ∆k. Otherwise, we call it a secondary segment
(that is, when one endpoint of S is in ∆k, but the other one is outside ∆k).

(P2) For any P ∈ ∆k, if ∆k ∩Uc(P,C12
−k−3) has an order [P1, . . . , Pn], then

[Pi, Pi+1] ⊂ Γk (for any i = 1, . . . , n− 1).
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(P3) For any P ∈ ∆k, if ∆k ∩ Uc(P,C12
−k−3) has an order [P1, . . . , Pn] such

that P = Pn, then P belongs to a segment [P, α(P )] such that dc(P, α(P )) ≥
C12

−k and [Pn−1, P, α(P )] is an order of {Pn−1, P, α(P )}. Moreover, if
∆k−1∩B(P,C12

−k−1) = {P}, then there exists Q1 and Q2 such that the seg-
ments [Q1, P ] and [P,Q2] are in Γk and have length ≥ C12

−k, and [Q1, P,Q2]
is an order of {Q1, P,Q2}. To start with let us show that (P1)–(P3) hold
at the step k = 0. As for (P1),(P2), this is trivial. On the other hand, (P3)
follows, since dc(a(P0), Q0) ≥ C1 = max{dc(a(P0), P0), dc(P0, Q0)}. Analo-
gously, follows, since dc(a(Q0), P0) ≥ C1 = max{dc(a(Q0), Q0), dc(Q0, P0)}.
Finally ∆k−1 = ∅.

We now start the construction of Γj . Let P ∈ Aj (that is P ∈ ∆j \ ∆j−1).
Assume that P /∈ Γj−1 (Otherwise, there is nothing to do). There ex-
ists R0 ∈ ∆j−1 such that dc(P,R0) ≤ 2−j+1. Note that this implies that
Uc(R0, C12

−j−2) ⊂ Uc(P,C1, 2
−j) (if C1 is large enough). By “deforming”

Γj−1 in the neighborhood of R0, we would like to construct a new curve
passing through P . The fact that the “new” curve Γj satifies (P1) and (P3)
is clear and is left to the reader. We will prove at the end of the construction
that Γj satisfies (P2).

Case A: βH(P,C12
−j) ≥ ε0.

For any Q ∈ Uc(P,C12
−j) ∩ ∆j, consider a geodesic segment [Q, a(Q)]

such that dc(Q, a(Q)) = C12
−j and [P,Q, a(Q)] is an order of {P,Q, a(Q)}.

The “curve” Γj(S) is obtained by adding the geodesic segment [P,Q] and
the geodesic segment [Q, a(Q)] for any Q ∈ Uc(P,C12

−j)∩∆j . Since (H, dc)
is Ahlfors-regular, card(Uc(P, 2

−j) ∩ ∆j) is bounded uniformly in j. Hence,

(3.3) l(Γj) − l(Γj−1) ≤ C2−j ≤ C

ε2
0

2−jβH(P,C12
−j)2 ≤ CβH(P,C12

−j)22−j.

We notice that the symbol Γj is not correct since what we are dealing
with is more precisely the localization of Γj around the point P at the scale
2−j. Hence at the very end we have to sum up over all the localizations.
Nevertheless we proceed in this way to avoid cumbersome notations.

Case B: βH(P,C12
−j) ≤ ε0.

In this case, by proposition 3.2, ∆j∩Uc(P,C12
−j) has (at least) one order

[P1, . . . , Pn]. This order implies an order on the set ∆j−1 ∩ Uc(P,C12
−j)

(and also on ∆j−1 ∩Uc(R0, C12
−j−2)) in a natural way. Indeed, if we denote

by m the cardinal of ∆j−1 ∩ Uc(P,C12
−j), we can consider an increasing

map r : {1, . . . , m} → {1, . . . , n} such that [Pr(1), . . . , Pr(m)] is an order of
∆j−1 ∩ Uc(P,C12

−j). We emphasize on the fact that property (P2) will be
maintained at this step of the construction since we will join the points of
∆j ∩ Uc(P,C12

−j) by following the order [P1, . . . , Pn].
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Case B1: There exists an order [Q1, . . . , Qm] of ∆j−1 ∩ Uc(P,C12
−j) such

that R0 �= Q1 and R0 �= Qm. Hence, there exists i0 ∈ {2, . . . , m − 1} such
that R0 = Qi0 . Then, there exists an order [P1, . . . , Pn] of ∆j ∩Uc(P,C12

−j)
and an increasing map r : {1, . . . , m} → {1, . . . , n} such that Qi = Pr(i).
Recall that by property (P2), [Qi0−1, Qi0 ] and [Qi0 , Qi0+1] are in Γj−1.

Then, Γj is obtained by replacing [Qi0−1, Qi0 ] ∪ [Qi0 , Qi0+1] by

[Pr(i0−1), Pr(i0−1)+1]∪. . . [Pr(i0)−1, Pr(i0)]∪[Pr(i0), Pr(i0)+1] · · ·∪[Pr(i0+1)−1, Pr(i0+1)].

We should now estimate

l(Γj) − l(Γj−1) =

r(i0+1)−1∑
k=r(i0−1)

dc(Pk, Pk+1) − (dc(Qi0−1, Qi0) + dc(Qi0 , Qi0+1))

= S1 + S2.

where

S1 =

r(i0)−1∑
k=r(i0−1)

dc(Pk, Pk+1) − dc(Pr(i0−1), Pr(i0)),

S2 =

r(i0+1)−1∑
k=r(i0)

dc(Pk, Pk+1) − dc(Pr(i0), Pr(i0+1)).

Now we estimate S1. Note that, if r(i0−1) = r(i0)−1, then S1 = 0. This
happens when there is no points of Aj “between” Qi0−1 and Qi0 . From now
on, we assume that we are not in this situation. To simplify the notation,
we assume that r(i0 − 1) = 1 and r(i0) = s0. Then,

S1 =

s0−1∑
k=1

dc(Pk, Pk+1) − dc(P1, Ps0)

=

s0−2∑
k=1

(dc(Pk, Pk+1) + dc(Pk+1, Ps0) − dc(Pk, Ps0)).

We now should estimate dc(Pk, Pk+1)+dc(Pk+1, Ps0)−dc(Pk, Ps0) for any
k = 1, . . . , s0 − 2. To do this, we apply corollary 2.16. Since k < k+ 1 < s0,
the fact that [P1, P2, . . . , Pn] is an order gives

dc(Pk, Ps0) ≥ max(dc(Pk, Pk+1), dc(Pk+1, Ps0).

Moreover, the distances dc(Pk, Ps0), dc(Pk, Pk+1) and dc(Pk+1, Ps0) are mu-
tually comparable. Thus, if ε0 is small enough, by corollary 2.16, we get

dc(Pk, Pk+1) + dc(Pk+1, Ps0) − dc(Pk, Ps0) ≤ CβH(P,C12
−j)22−j.

Since the cardinal of Uc(P,C12
−j) ∩ ∆j is uniformly bounded, we get

S1 ≤ CβH(P,C12
−j)22−j.
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For the same reason, we get the same estimate for S2. Eventually, this
yields to

(3.4) l(Γj) − l(Γj−1) ≤ CβH(P,C12
−j)22−j .

Case B2: There exists an order [S1, . . . , Sm] of ∆j−1 ∩ Uc(P,C12
−j) such

that R0 = S1 or R0 = Sm. Thus, by property (P3), there exists (at least)
one segment γR0 = [R0, α(R0)] such that l(γR0) ≥ C12

−j+1 ≥ C12
−j. This

segment is either a primary segment or a secondary segment. A crucial ob-
servation is that this segment belongs to the continuum Γ (which is obtained
as a limit of the Γj ’s). In fact, for any k ≥ j, [R0, α(R0)] ⊂ Γk. Indeed,
a segment of some Γk could be modified only by the method described in
case B1 (see for instance what happens to the segment [Qi0−1, Qi0 ] in case
B1 above). But, this method is used to modify primary segments of length
less than C12

−k. This is not the case for [R0, α(R0)] for any k ≥ j.

Notation: Let A be the set of (geodesic) segments [R,R′] such that there
exists k ∈ N so that for, any l ≥ k, R,R′ ∈ Gl (that is [R,R′] ⊂ Γl). For
I ∈ A, we denote by τ1(I) (respectively τ2(I)) the total length added to I
by applying case 1 (respectively case 2) of case B2(i).

Case B2(i): Uc(P,C12
−j) ∩ ∆j−1 = {R0}.

Then, by property (P3), there exist Q1 and Q2 such that the segments
[Q1, R0] and [R0, Q2] are in Γj−1 and have length ≥ C12

−j. Moreover,
[Q1, R0, Q2] is an order of {Q1, R0, Q2}, that is,

dc(Q1, Q2) ≥ max(dc(Q1, R0), dc(R0, Q2)).

We would like to insert points “between” Q1 and R0 (the case of points
between R0 and Q2 is similar).

Case 1. dc(Q1, R0) ≥ C22
−j.

By proposition 3.2, there exists an order [P1, . . . , Pn] of Uc(P,C12
−j)∩∆j .

We first consider the points Q1, P1, . . . , Pi0 where R0 = Pi0. We assume that
such a point P1 exists (Otherwise, there is nothing to do).

Consider a point a(P1) such that dc(a(P1), P1) = C12
−j and [a(P1), P1, R0]

is an order of {a(P1), P1, R0}. Then, Γj is obtained by adding to Γj−1

the segments [a(P1), P1] ∪ [P1, P2] ∪ · · · ∪ [Pi0−1, Pi0]. Since the cardinal
of Uc(P,C12

−j) ∩ ∆j is bounded (uniformly in P and j), we get

l(Γj) − l(Γj−1) = dc(a(P1), P1) +

i0−1∑
k=1

dc(Pk, Pk+1))(3.5)

≤ (C1 + C)2−j.(3.6)
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It could happen that the same method involving the segment [Q1, R0] has
been used to construct Γk (k < j) or will be used to construct Γk (k > j).
Denote by l0 (l0 ≤ j) the first generation for which this happens. Note that
dc(Q1, R0) ≥ C22

−l0. Hence, since the same situation could happen at Q1,
we get

τ1([Q1, R0]) ≤ 2
+∞∑
k=l0

(C1 + C)2−j(3.7)

≤ 4(C + C1)2
−l0(3.8)

≤ 4
C + C1

C2

dc(Q1, R0).(3.9)

Thus, if C2 is big enough, we get

(3.10) τ1([Q1, R0]) ≤ dc(Q1, R0)

106

We use the same method for Pii0
, . . . , Pn, Q2 (if dc(R0, Q2) ≥ C22

−j) and
we get the same estimate, that is

τ1([Q2, R0]) ≤ dc(Q2, R0)

106
.

Case 2. dc(Q1, R0) ≤ C22
−j.

Fix N0 ∈ N big enough. We go directly to the step j + N0 of the
construction. By proposition 3.2, there exists an order [P0 = Q1, P1, . . . , Pm]
of (Uc(P, 10.2−j) ∩ ∆j+N0) ∪ {Q1}. Then, there exists n ∈ {1, . . . , m} such
that Pn = R0. We first consider the points P0, P1, . . . , Pn. Choose a point
a(P1) such that dc(P1, a(P1)) = C12

−j−N0 and [a(P1), P1, R0] is an order of
{a(P1), P1, R0}. First, we add to Γj−1 the segments [a(P1), P1] ∪ [P1, R0].
Then, Γj+N0 is obtained by replacing [P1, R0] by [P1, P2] ∪ · · · ∪ [Pn−1, R0].
The key observation is that this case is used only one time for the segment
[Q1, R0] at R0. Indeed, the next time this situation will occur at R0, we will
use the segment [Pn−1, R0] instead of the segment [Q1, R0].

Thus, since the same situation could also happen at Q1, we get

τ2([R0, Q1]) ≤ 2(dc(a(P1), P1))+dc(P1, R0))+2(

n−1∑
k=1

dc(Pk, Pk+1)−dc(P1, R0)).

By using the same method as in case B1, we get that

n−1∑
k=1

dc(Pk, Pk+1) − dc(P1, R0) ≤ CβH(P,C12
−j)22−j.
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Moreover, if C1 is big enough, we have

dc(a(P1), P1)) + dc(P1, P ) ≤ C12
−j−N0 + 10.2−j ≤ C1

103
2−j ≤ 1

103
dc(Q1, R0).

Hence,

(3.11) τ2([Q1, P ]) ≤ CβH(P,C12
−j)22−j +

1

103
dc(Q1, R0).

We use the same method for Pn = R0, . . . , Pm, Q2 (if dc(R0, Q2) ≤ C22
−j)

and we get the same estimate, that is

τ2([Q2, R0]) ≤ CβH(P,C12
−j)22−j +

1

103
dc(Q1, P ).

Case B2 (ii): Uc(P,C12
−j) ∩ ∆j−1 �= {R0}. Thus, there exists an or-

der [S1, . . . , Sm] of ∆j−1 ∩ Uc(P,C12
−j) such that R0 = Sm and m > 1.

By proposition 3.2, there exists an order [P1, . . . , Pn] of Uc(P,C12
−j) ∩ ∆j

such that there exist j0 < i0 with Sm−1 = Pj0 and R0 = Pi0 . For the
points Pj0, Pj0+1, . . . , Pi0 , use case B1. For the points Pi0, Pi0+1, . . . , Pn, use
case B2 (i).

The continuum Γj is constructed by applying the previous procedure
to any point P ∈ ∆j . We now check that Γj satisfies (P2). For this,
consider P ∈ ∆j such that Uc(P,C12

−j−2) ∩ ∆j has an order [P1, . . . , Pn].
Fix i ∈ {1, . . . , n− 1}.
Case 1. Pi or Pi+1 belongs to Aj = ∆j \ ∆j−1. Assume for instance that
Pi ∈ Aj . If βH(Pi, C12

−j) ≤ ε0, then Pi has been inserted in Γj by following
the order in Uc(Pi, C12

−j)∩∆j . Hence, [Pi, Pi+1] ⊂ Γj. If βH(Pi, C12
−j) ≥ ε0,

Γj has been obtained by joining Pi to any points of Uc(Pi, C12
−j)∩∆j . Hence,

[Pi, Pi+1] ⊂ Γj .

Case 2. Pi and Pi+1 are not in Aj . Denote by li and li+1 the integers
such that Pi ∈ Ali and Pi+1 ∈ Ali+1

. Assume for instance that li ≥ li+1.
Note that Pi and Pi+1 are also neighbour in ∆li . If there exists an order in
Uc(Pi, C12

−li)∩∆li (that is βH(Pi, C12
−li) ≤ ε0), then since Γli satisfies (P2)

by induction, [Pi, Pi+1] ⊂ Γli . Hence, since Pi and Pi+1 are also neighbour
in ∆j , it follows that case B has never been used to insert points between Pi

and Pi+1 in the step k = li, . . . , j of the construction. Thus, [Pi, Pi+1] ⊂ Γj.
If βH(Pi, C12

−j) ≥ ε0, we conclude as in case 1.

By iterating the following algorithm, we construct a sequence of continua
(Γj) such that, for any j ∈ N, ∆j ⊂ Γj. By theorem 5.1 (see the appendix),
(Γj) converges (up to a subsequence) to a continuum Γ which contains E.
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Moreover, by (3.3), (3.4), (3.10), (3.11), we get

H1(Γ) ≤
∑
j∈N

(l(Γj+1) − l(Γj)) + l(Γ0)

≤ C
∑
j∈N

∑
P∈∆j

βH(P,C32
−j)22−j +

∑
I∈A

τ1(I) +
∑
I∈A

τ2(I) + CdiamE

≤ C
∑
j∈N

∑
P∈∆j

βH(P,C32
−j)22−j +

1

106
H1(Γ) +

1

103
H1(Γ) + CdiamE.

Recall that the first term of the previous sum comes from case A and case
B1, the second and the third one come from case B2, and the last one is the
length of Γ0. Note that

∑
j∈N

∑
P∈∆j

βH(P,C32
−j)22−j is a discrete version

of βH(E). Hence, H1(Γ) ≤ C(βH(E) + diamE) and the proof of the main
theorem is complete.

4. Subsets of regular curves

In this section, we prove Theorem 1.4. A simple curve γ : [0, T ] → H is a
C1,α-regular horizontal Jordan (i.e. injective) curve if γ = (γ1, γ2, γ3) with

1. γ is injective and continuously differentiable, with γ′(t) �= 0 for t ∈
[0, T ];

2. |γ′(t) − γ′(s)| ≤ c|t− s|α for all t, s ∈ [0, T ];

3. γ′3 ≡ 2(γ′1γ2 − γ1γ
′
2).

Proof of Theorem 1.4. Put m := min0≤s≤T |γ′(s)| > 0. If Ω is a bounded
fixed neighborhood of γ and t, θ ∈ [0, T ], then, by Proposition 2.4 and (2.3),

dc(γ(θ), γ(t)) ≥ α1d(γ(θ), γ(t))

≥ α1c1(Ω)|γ(θ) − γ(t)| = α1c1(Ω)

∣∣∣∣
∫ θ−t

0

γ′(t+ s) ds

∣∣∣∣
= α1c1(Ω)

∣∣∣∣
∫ θ−t

0

(γ′(t+ s) − γ′(t)) ds+ (θ − t)γ′(t)

∣∣∣∣
≥ mα1c1(Ω)|θ − t| − c

∫ |θ−t|

0

|s|α ds ≥ m

2
α1c1(Ω)|θ − t|,

(4.1)

provided |θ − t| ≤ δ0, δ0 depending only on γ. We want to show now that
there exists ε0 > 0 such that

(4.2) dc(γ(θ), γ(t)) ≥ m

4
α1c1(Ω)|θ − t| :=

1

c2
|θ − t|

for any t, θ ∈ [0, T ] such that dc(γ(θ), γ(t)) < ε0.
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By contradiction, assume there exist tn, θn ∈ [0, T ] such that

dc(γ(θn), γ(tn)) → 0 as n→ ∞
and

(4.3) dc(γ(θn), γ(tn)) <
m

4
α1c1(Ω)|θn − tn|.

By compactness, we can assume that θn → θ and tn → t as n → ∞. Hence
γ(θ) = γ(t) that yields t = θ, since γ is simple. Thus |θn − tn| < δ0 for n
large, and (4.3) contradicts (4.1). Hence (4.2) is proved.

In addition, before attacking the core of the proof, we notice that our
assumptions on γ are invariant under group translations, in the sense that,
if q ∈ γ and we denote by γq the curve τq−1(γ), then γq still satisfies (1),
(2) and (3) with constants that can be chosen independently of q ∈ γ. This
properties relies on the fact that the map (p, q) → τq−1(p) can be written as
a polynomial of degree 2 in p and q (of degree 1 in p for fixed q), so that∣∣∣∣∂τq−1

∂p

∣∣∣∣ ≤ C for p ∈ H and q ∈ γ.

Let now t ∈ [0, T ] be fixed, and let p0 be such that dc(p0, γ) < t. Then there
exists q0 ∈ γ ∩ Uc(p, t). If r ∈ G(H, 1) is arbitrary, then

sup
p∈γ∩Uc(p0,t)

dc(p, r)

t
≤ sup

p∈γ∩Uc(q0,3t)

dc(p, r)

t
,

so that

(4.4) βH(p0, t) ≤ sup
p∈γ∩Uc(q0,3t)

dc(p, r)

t

for any r ∈ G(H, 1). In particular, (4.4) holds if r is the tangent straight
line to γ at q0 (notice since we are dealing with an horizontal curve, then
its Euclidean tangent straight line is a lateral of a 1-dimensional subgroup
of H – see e.g. [12]).

Keeping in mind the invariance of the distance dc under group transla-
tions and rotations around the t-axis, as well as our previous remark on the
invariance of our assumptions, we can assume without loss of generality that
q0 = 0 and r = {(ρ, 0, 0), ρ ∈ R}. Then, if p ∈ γ ∩ Uc(q0, 3t), we can write
p = γ(θ), 0 ≤ θ ≤ T , and we have

dc(p, r)
4 ≤ c3 inf

s∈R

{(
(γ1(θ) − s)2 + γ2

2(θ)
)2

+ (γ3(θ) − 2sγ2(θ))
2
}

≤ c3
{
γ4

2(θ) + (γ3(θ) − 2γ1(θ)γ2(θ))
2
}
.

Keeping in mind that γ2(0) = γ′2(0) = 0, for a suitable σ ∈ (0, 1) we have:

|γ2(θ)| = |γ2(θ) − γ2(0)| = |θ||γ′2(σθ) − γ′2(0)| ≤ C|θ|1+α.
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Now, if dc(γ2(θ), 0) < ε0 then |θ| ≤ c2dc(γ(θ), 0). But dc(γ(θ), 0) =
dc(p, 0) < 3t, so that the assumption dc(γ2(θ), 0) < ε0 is satisfied provided t
is small enough (3c2t < ε0). Hence, if t is small enough,

|γ2(θ)| ≤ c4t
1+α.

On the other hand

γ3(θ) − 2γ1(θ)γ2(θ) = θ(γ′3(σ) − 2γ′1(σ)γ2(σ) − 2γ1(σ)γ′2(σ))

with | σ |<| θ |. But

γ′3 = 2(γ′1γ2 − γ1γ
′
2),

so that

| γ3(θ) − 2γ1(θ)γ2(θ) |= 4 | θ || γ1(σ)γ′2(σ) |≤ C | θ || σ |1+α

since γ1(0) = 0, γ′2(0) = 0. On the other hand

| σ |1+α≤| θ |1+α≤ c5t
1+α,

so that

| γ3(θ) − 2γ1(θ)γ2(θ) |≤ c6t
2+α.

This yields

dc(p, r) ≤ c7t
1+ α

2 .

Replacing in (4.4), we get

(4.5) βH(p0, t) ≤ c8t
α/2,

provided t ≤ ε0. On the other hand

dc(p, r) ≤ dc(p, q0) ≤ 3t

and hence, if ε0 ≤ t ≤ 1,

βH(p0, t) ≤ 3

ε
α/2
0

tα/2,

so that (4.5) holds for 0 < t ≤ 1.
Eventually we have

(4.6)

∫
H

dp

∫ 1

0

dt

t4
β2

H
(p, t)dt ≤ c9

∫ 1

0

dt

t4
| {q ∈ H : dc(p, γ) < t} | tαdt.
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Let us show that

(4.7) | {q ∈ H : dc(p, γ) < t} |≤ c10�(γ)t
3,

where �(γ) is the length of γ with respect to Carnot-Carathéodory distance.
By definition

{q ∈ H : dc(p, γ) < t} ⊂
⋃
p∈γ

Uc(p, t).

By Vitali covering lemma, there exists a (finite, by compactness) family of
points {pj : j ∈ J} such that

i) {q ∈ H : dc(p, γ) < t} ⊂ ⋃j∈J Uc(pj, 5t).

ii) Uc(pi, t) ∩ Uc(pj, t) = ∅, i �= j.

Now ii) implies that

(4.8)
∑
j∈J

�(γ ∩ Uc(pj , t)) ≤ �(γ).

Consider now j fixed and notice that there exists at least a point q ∈ γ
such that q �∈ Uc(pj , t), so that if pj = γ(θj), we can take p̃j of the form
p̃j = γ(θ̃j), where either

θ̃j = sup{θ > θj : dc(γ(s), pj) < r, for 0 < s < θj}
or

θ̃j = inf{θ < θj : dc(γ(s), pj) < r, for 0 < s < θj}
In other words, p̃j is the first point where γ reaches the boundary of Uc(pj, t).
Denoting by γj the arc of γ between pj and γ(θ̃j),

t = dc(γ(θ̃j), pj) ≤ �(γj) ≤ �(γ ∩ Uc(pj, t)).

Replacing in (4.8) we have card(J)t ≤ �(γ).
By i)

| {q ∈ H : dc(p, γ) < t} |≤ c11�(γ)t
3.

Replacing (4.7) in (4.6) we get∫
H

∫ 1

0

β2
H
(p, t)dp

dt

t4
≤ c12l(γ)

∫ 1

0

tα−1dt = c13�(γ).
�

In fact we showed above that γ is chord-arc (i.e.) dc(γ(t), γ(θ)) ≥ c0 |
t− θ |, for t, θ ∈ [0, T ], and that∫

H

∫ 1

0

β2
H
(p, t)dp

dt

t4
≤ c(c0)�(γ).

In particular we have
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Corollary 4.1. If γ is a minimizing geodesic, then∫
H

∫ 1

0

β2
H
(p, t)dp

dt

t4
≤ C�(γ),

where C is an absolute constant.

Corollary 4.2. Let γ be a finite union of C1,α-regular simple horizontal
curves γ1, . . . , γN . Then,∫

H

∫ 1

0

β2
H
(p, t)dp

dt

t4
< +∞.

Proof. It is enough to notice that

sup
p∈γ∩Uc(p0,t)

dc(p, r)

t
≤

N∑
j=1

sup
q∈γj∩Uc(p0,t)

dc(p, r)

t
.

�

Remark 4.1. It is evident from the proof of previous theorem that the Hölder
regularity assumption (2) could be weakened by requiring only a Dini-type
condition for γ′ as follows: denote by σ the modulus of continuity of γ′ (i.e.
let σ be such that |γ′(t) − γ′(s)| ≤ σ(|t− s|) for t, s ∈ [0, T ]). Then∫ 1

0

σ(t)

t
dt <∞.

5. Appendix: Rectifiable curves in metric spaces

In this appendix, we collect some results we used in the special setting of
the Heisenberg group. Throughout all this section, (X, d) is a metric space.

5.1. Rectifiable curves in metric spaces

A curve γ is a continuous map γ : I → X (or is its image) where I ⊂ R is an
interval. If γ is an injective map, we say that γ is a Jordan curve. If γ is a
Lipschitz map, we say that γ is a Lipschitz curve. For simplicity, we assume
that I is a compact interval, that is of the form I = [a, b], where a < b. The
length of the curve γ : I → X is given by

�(γ) = sup

N∑
i=1

d(γ(ti), γ(ti−1))

where the supremum is taken over all subdivisions t0 = a < t1 < . . . .tN−1 <
tN = b of [a, b].
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A curve γ is said to be rectifiable if its length is finite. For instance,
a Lipschitz curve is rectifiable and its length is less than M |a − b| (where
M is the Lipschitz constant of γ) . For any rectifiable curve, there are its
associated length functions s : I → [0, �(γ)] and a unique 1-Lipschitz map
γs : [0, �(γ)] → X such that γ = γs ◦ s. The map γs is called the arc-length
parametrization of γ.

We define the metric derivative of γ at the point x ∈ I as the limit (if it
exists)

lim
t→0

d(γ(x+ t), γ(x))

|t| .

We denote by |γ̇|(x) this limit (whenever this limit exists). For each Lip-
schitz curve γ : [a, b] → X, the metric derivative exists almost everywhere.

Moreover, �(γ) =
∫ b

a
|γ̇|(t)dt (see [2] for more details).

5.2. Hausdorff measures and Hausdorff distance

Let A be a subset of X. We define its 1-Hausdorff measure H1(A) by

H1(A) = lim
δ→0

(
inf

{∑
i∈I

(diamAi); diamAi < δ,A ⊂ ∪i∈IAi

})
.

We now recall basic things about Hausdorff distance (see [10], [2], [8] for
more details). Let A, B be two subsets of the metric space (X, d). We define
the Hausdorff distance between A and B by

dH(A,B) = inf{r > 0, A ⊂ Ur(B) and B ⊂ Ur(A)}
where Ur(S) is the r-neighborhood of S, that is Ur(S) = {x ∈ X; d(x, S) < r}
(or equivalently Ur(S) =

⋃
x∈S B(x, r)).

Let M(X) be the set of closed subsets of X. Then, if X is compact,
M(X) equiped with the Hausdorff distance is compact.

A sequence of closed sets (Kn) in the metric space (X, d) is said to
converge in the Kuratowski sense to a closed set K if the following conditions
hold:

(i) If x = limk→+∞ xnk
for some subsequence (xnk

) of a sequence (xn) such
that xn ∈ Kn for any n, then x ∈ K;

(ii) If x ∈ K, then there exists a sequence (xn) such that xn ∈ Kn for any
n and x = limn→+∞ xn.

In fact, if the sequence of closed sets (Kn) converges to the closed set K with
respect to the Hausdorff distance, then (Kn) converges to K in the sense of
Kuratowski. Moreover, if the space X is compact, then the converse is true.
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The classical Golab theorem states that if (Kn) is a sequence of compact
connected sets in X which converges to K (in the Hausdorff sense), then K
is connected and H1(K) ≤ lim infn→+∞H1(Kn). From all these results, we
get the following statement.

Theorem 5.1. Let X be a proper metric space and let E be a compact,
closed subset of X. Let (xj

n)j∈Z,n=1,...,Nj
be a net associated with E and let

(Γj) be a sequence of continua such that diam Γj are uniformly bounded,
and, for any j ∈ Z, any n = 1, . . . , Nj, x

j
n ∈ Γj. Then there exists a

Hausdorff-convergent subsequence of (Γj). Moreover, if we denote by Γ the
limit of this subsequence (Γnk

), Γ is a continuum which contains E and

H1(Γ) ≤ lim inf
k→+∞

H1(Γnk
).

Recall that a continuum K in X is a compact, connected subset of X
which contains more than one point and that a metric space (X, d) is proper
if closed balls are compact in X. The fact that (xj

n)j∈Z,n=1,...,Nj
is a net of E

means that, for any j ∈ Z,

(i) d(xj
n, x

j
m) > 2−j if n �= m.

ii) For any x ∈ E, there exists n ∈ {1, . . . , Nj} such that d(x, xj
n) ≤ 2−j.

5.3. Geodesic spaces

We say that γ : [a, b] → X is a shortest path (connecting x and y) if γ(a) = x,
γ(b) = y and l(γ) = d(x, y). A curve I → X is geodesic if for every t ∈ I,
there exists a sub-interval J of I containing a neighborhood of t in I such
that the restriction of γ to J is a shortest path. In other words, a geodesic
is a curve which is locally a shortest path. A curve γ : I → X is a minimal
geodesic if its restriction to any interval J ⊂ I is a shortest path. We say
that X is a geodesic space if any pair of points x, y in X can be connected
by a shortest path.

The next result says that a continuum with finite 1-Hausdorff measure
is almost a rectifiable curve.

Proposition 5.2. Let X be a doubling geodesic space and let E be a con-
tinuum in X with H1(E) < +∞. Then, there exists a Lipschitz curve
Γ = γ([0, L]) in X such that

(i) E ⊂ Γ;

(ii) H1(E) ≤ L ≤ CH1(E) where C > 0 depends only the doubling con-
stant Cd of X;

(iii) |γ̇|(t) = 1 for almost every t ∈ [0, L].
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Note that L is comparable to �(Γ). Hence, C−1H1(E) ≤ �(Γ) ≤ CH1(E).
Recall that X is a doubling metric space if there exists Cd ∈ N \ {0} such
that for any x ∈ X, any R > 0, the open ball B(x,R) can be covered by at
most Cd open balls of radius R/2. A typical example of doubling geodesic
space is the Heisenberg group H equipped with its Carnot-Carathéodory
metric dc.

Proof. We adapt the proof of Theorem 1.8 of [9]. This argument is based
on the following classical result of graph theory, which can be proved by
induction on the number of edges.

Lemma 5.3. Let G be a connected graph with only finitely many edges.
Then there is a path that traverses each edge exactly twice (once in each
direction).

Without loss of generality, we assume that diamE = 1. For any δ ∈ (0, 1),
consider a set Aδ of points of E such that

(P1) For any x, y ∈ Aδ, x �= y, d(x, y) ≥ 2δ.

(P2) For any x ∈ E, there exists y ∈ Aδ such that d(x, y) < 2δ.

Note that, since the metric space (X, d) is doubling, Aδ is finite for any
δ ∈ (0, 1). Now, we construct a graph Eδ associated with Aδ in the following
way. The vertices of Eδ are points of Aδ and two vertices x and y are joined
by an edge if d(x, y) ≤ 4δ. The graph Eδ could be also seen as a subset ∆δ

of X. Indeed, the set ∆δ is obtained by joining, for any edge (x, y) of Eδ, the
corresponding points of Aδ by a geodesic segment, denoted by [x, y]. The
graph Eδ has finitely many edges. In order to apply Lemma 5.3, we should
prove that Eδ is also connected. Assume that this is not the case, that is we
can write Eδ = Y ∪ Z where Y and Z are disjoint, nonempty, and satisfy
d(y, z) > 4δ for any y ∈ Y and any z ∈ Z. Consider now

A1 = E ∩
(
∪y∈YB(x, 2δ)

)
and A2 = E ∩

(
∪y∈ZB(x, 2δ)

)
.

Then, A1 and A2 are nonempty, closed and disjoint. Moreover, A = A1 ∪A2

by property (P2) above. This contradicts the fact that E is connected.
Hence, for any δ ∈ (0, 1), Eδ is connected. Moreover, we claim that H1(∆δ)≤
CH1(E). This follows from these two observations. Let Nδ the number of
points of Aδ. Then, we have

1) Since X is doubling, the number of neighbours in Eδ of a point of Aδ

is bounded uniformly in δ. Thus, H1(∆δ) ≤ CδNδ (where C > 0 does not
depend on δ).
2) Since E is connected, H1(E ∩ B(x, δ)) ≥ δ. To see this, fix x ∈ E and
r < (diamE)/2. Set φ(y) = d(x, y) for any y ∈ E. It is clear that φ is
1-Lipschitz.
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Thus, we get

H1(φ(E ∩B(x, r))) ≤ H1(E ∩ B(x, r)).

But, H1 on R is an outer Lebesgue measure. Hence, since φ(E ∩B(x, r)) is
an interval of the form [0, a], we also have

H1(φ(E ∩B(x, r))) = sup
y,z∈B(x,r)

|d(x, y) − d(y, z)| = sup
y∈B(x,r)

d(x, y).

Since E is connected, by continutiy of the metric d, supy∈B(x,r) d(x, y) ≥ r
and then

H1(E ∩ B(x, r)) ≥ H1(φ(E ∩ B(x, r))) ≥ r.

Moreover, the E ∩ B(x, δ), x ∈ Aδ, are disjoint. Thus, H1(E) ≥ Nδδ and
then H1(∆δ) ≤ CH1(E).

We can now apply Lemma 5.3 to ∆δ. Using the path given by Lemma 5.3,
we can easily construct a Lipschitz mapping (and hence a Lipschitz curve)
γδ : [0, 1] → ∆δ such that γδ([0, 1]) = ∆δ and || |γ̇δ| ||∞ ≤ CH1(E). Recall
that |γ̇δ| is the metric derivative of γδ. Now, by the Arzelà-Ascoli theorem,
we find a sequence δj which converges to 0 and such that the γδj

converge
uniformly on [0, 1]. The limit function γ̃ : [0, 1] → X is Lipschitz continu-
ous, with Lipschitz norm ≤ CH1(E) and such that γ̃([0, 1]) = E. We get
the desired Lipschitz function γ by applying the following reparametriation
result (see [2] for a proof).

Theorem 5.4. Let φ : [a, b] → X be a Lipschitz mapping and let L be its
total variation (or equivalently the length of its range). Then there exists a

Lipschitz curve φ̃ : [0, L] → X such that | ˙̃φ| = 1 almost everywhere on [0, L]
and φ̃(0, L) = φ([a, b]).

5.4. Menger curvature and rectifiable curves

If x, y and z are three pairwise distinct points in the metric space (X, d), a
comparison triangle of the triple (x, y, z) is a triangle with vertices x, y, z
in the Euclidean plane R2 such that

d(x, y) = |x− y|, d(y, z) = |y − z|, d(z, x) = |z − x|
where |.− .| denotes the Euclidean metric in R2.

Let x, y and z be three pairwise disjoint points of the metric space (X, d).
The Menger curvature of the triple (x, y, z) is defined by

c(x, y, z) = 2
sin θ(x z y)

|x− y|
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where x y z is a comparison triangle of (x, y, z) and where θ(x z y) denotes
the angle at z of the triangle with vertices x, y, z. By elementary geometry,
we get

c(x, y, z) =
4S(x, y, z)

|x− y||y − z||z − x|
where S(x, y, z) denotes the area of the Euclidean triangle with vertices x, y
and z. Therefore,

c(x, y, z) =
2 sin θ(x y z)

|x− z| =
2 sin θ(y x z)

|y − z| .

Moreover,

c(x, y, z) =
2d(x, Ly,z)

|x− y||x− z|
where Ly,z is the line in R2 passing through y and z.

Let E ⊂ X. If p ∈ E, we define the Menger curvature of E at p (denoted
by cE(p)) by (if the limit exists)

cE(p) = lim
q,r,s∈E→p

c(q, r, s).

In the book of Blumenthal and Menger [7] is proved the following result.

Theorem 5.5. Let E be a continuum in the metric space (X, d).

(i) If cE(p) < +∞ for p ∈ E, then in a neighborhood of p, E is a rectifiable
Jordan curve.

(ii) If cE(p) < +∞ for all p ∈ E, then E is a rectifiable Jordan curve.

From Theorem 2, we easily get the followings results.

Proposition 5.6. Let X be a geodesic metric space and let E be a continuum
in X. Then,

(i) E is a geodesic curve if and only if cE(x) = 0 for every x∈E.

(ii) E is a minimal geodesic curve if and only if c(x, y, z) = 0 for all x, y
and z in E.

Before giving Hahlomaa’s version of the geometric traveling theorem in
metric spaces, we need to define β numbers in this general setting. Let
E ⊂ X be a compact set and let C1 ≥ C2 large enough. For any x ∈ X and
any t > 0, set

βX(x, t) = sup{c(z1, z2, z3) : z1, z2, z3 ∈ E∩B(x, t), d(zi, zj) ≥ C−1
1 t, ∀i �= j}.
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Recall that ∆ = (∆k)k∈Z is a net of E if ∆k, k ∈ Z, are subsets of E
such that

(i) For any x, y ∈ ∆k with x �= y, d(x, y) > 2−k.

(ii) For any x ∈ E, there exists y ∈ ∆k such that d(x, y) ≤ 2−k.

Set

βX(E) = inf

{∑
k∈Z

∑
x∈∆k

β2
X(x, C22

−k)(2−k)3; (∆k) is a net of E

}
.

Theorem 5.7. ([16]) Let E be a compact subset of the metric space (X, d).
If βX(E) < +∞, then E is contained in a rectifiable curve Γ. Moreover,
there exists an absolute constant C > 0 (which does not depend on E) such
that infΓ⊃E l(Γ) ≤ C(βX(E) + diamE).

It should be noted that in a previous version of this paper, we proved The-
orem 5.7 under the extra assumptions that the metric space X is doubling
and geodesic. Our construction was similar to the one given in Section 3.
In [23], comparison results between Euclidean β numbers and Menger curva-
ture are given. In fact, in the Euclidean setting, β numbers are easier to work
with than the Menger curvature. In the special case (X, d) = (Rn, dEuc),
Hahlomaa’s condition on the β’s is equivalent to Jones’one.
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