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On uniqueness of automorphisms
groups of Riemann surfaces

Maximiliano Leyton A. and Rubén A. Hidalgo

Abstract

Let γ, r, s, ≥ 1 be non-negative integers. If p is a prime sufficiently
large relative to the values γ, r and s, then a group H of conformal
automorphisms of a closed Riemann surface S of order ps so that S/H
has signature (γ, r) is the unique such subgroup in Aut(S). Explicit
sharp lower bounds for p in the case (γ, r, s) ∈ {(1, 2, 1), (0, 4, 1)} are
provided. Some consequences are also derived.

1. Introduction

Let S be a closed Riemann surface S, Aut(S) be its full group of confor-
mal automorphism and Aut±(S) be its full group of conformal and anti-
conformal automorphisms of S. If S is either hyperelliptic or has genus
g ∈ {0, 1, 2, 3, 4}, then complete lists for the possibilities for Aut(S) are
known (see, for instance, [13, 14, 25]). For g ≥ 5 such kind of lists are not
complete for the non-hyperelliptic case. In the hyperelliptic case, of genus
at least two, the order two cyclic group H generated by the hyperelliptic
involution is normal subgroup, in particular, Aut±(S) induces a group of
conformal/anticonformal automorphisms of the quotient orbifold S/H ; the
Riemann sphere with exactly 2(g + 1) special points, all of them of order 2.
As the group of conformal/anticonformal automorphisms of the Riemann
sphere is the group of (extended) Möbius transformations, the computation
of the induced group can be done explicitly. The above procedure may be
done for any closed Riemann surface S admitting a groupH < Aut(S) which
is normal in Aut±(S) (for example, if H is unique in Aut(S)). It seems then
interesting to provide concrete examples on which we have such a normality
(or uniqueness) situation for given algebraic classes of groups H < Aut(S).
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In this note we consider a class of groups for which the normality property
holds. First we need some definitions. An orbifold O is said to have signa-
ture (γ, r; v1, ..., vr) if its underlying topological space is a closed orientable
surface of genus γ, the number of special (or conical) points is exactly r and
the branching orders are v1, ..., vr; if we are not interested on the branching
orders vj, then we just say that it has type (γ, r). A triple (γ, r, s) is called
admissible if γ, r, s are non-negative integers so that 2γ−2+r > 0 and s ≥ 1.
If p is a prime and s some positive integer, then we say that a group H is a
ps-group if |H| = ps. If moreover S/H is an orbifold of signature (γ, r), then
we say that H is a ps-group of type (γ, r). In Section 4 we provide a simple
and short proof of the following.

Theorem 1. Let (γ, r, s) be an admissible triple. Then, there exists a posi-
tive integer B(γ, r, s), depending only on γ, r and s, so that , if p ≥ B(γ, r, s)
is a prime, S is a closed Riemann surface of genus at least 2 and H < Aut(S)
is a ps-group of type (γ, r), then H is the unique such subgroup of Aut(S)
and, in particular, H is a normal subgroup of Aut±(S).

Theorem 1 may not be a surprise for many of the specialists, but we have
not found it explicitly in the literature. Such a result has various applications
which we detail in Section 2. Let us fix an admissible triple (γ, r, s). Theorem
1 permits us to do the following definitions. Let q(γ, r, s) to be the minimal
positive integer value ensuring the property that: if p ≥ q(γ, r, s) is a prime
and S is a closed Riemann surface of genus at least 2 and H < Aut(S) is a
ps-group of type (γ, r), then H�Aut(S); and let q̂(γ, r, s) to be the minimal
positive integer value ensuring the property that: if p ≥ q̂(γ, r, s) is a prime
and S is a closed Riemann surface of genus at least 2 and H < Aut(S) is
a ps-group of type (γ, r), then H is unique in Aut(S). By the definition
q̂(γ, r, s) ≥ q(γ, r, s). It seems that in the literature there is not explicit
formula for these values. Next, we present only two cases.

Theorem 2. q(1, 2, 1) = q̂(1, 2, 1) = 11, q(0, 4, 1) = q̂(0, 4, 1) = 7.

1.1. Some examples

Next, we provide some examples we need in order to obtain the above values.

(1) The classical Klein’s curve S3 (given by the curve x3y+y3z+z3x = 0)
has genus p = 3 and it has total group of automorphisms of order 168;
this being isomorphic to the simple group PSL(2, 7). This surface has
a cyclic group of order 3 which is non-normal with quotient an orbifold
of signature (1, 2; 3, 3) (see also [21, 25]).
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(2) In genus p = 5 we have a Riemann surface S5 with a total group of
order 160 (the quotient S5/Aut(S5) being of signature (0, 3; 2, 4, 5))
[13]. In this surface we have a conformal automorphism of order 5
which quotient S5 to an orbifold of signature (1, 2; 5, 5). The cyclic
group H of order 5 generated by such a conformal automorphism can-
not be normal in Aut(S5). In fact, in such a case, the group Aut(S5)
will induce a group of order 12, say G12, of conformal automorphisms
on the orbifold S5/H that preserves the two branch points (both of
order 5). This asserts the existence of an automorphism of order 3 in
G12 that fixes both of them. This is a contradiction to the fact that
such an orbifold quotient by G12 must be of signature (0, 3; 2, 4, 5).

(3) In genus p = 7 we have Fricke’s curve S7 [16] with total group of auto-
morphisms of order 504; this being the simple group PSL(2, 8). The
quotient S7/PSL(2, 8) has signature (0, 3; 2, 3, 7). The cyclic group of
order 7 is then a non-normal subgroup of Aut(S7) with quotient an
orbifold of signature (1, 2; 7, 7).

(4) The closed Riemann surface S4 of genus 4 (given as the complete in-
tersection of the quadric x1x4 + x2x3 = 0 and the cubic x2

1x3 + x2
2x1 +

x2
3x4 +x2

4x2 = 0 in the 3-dimensional complex projective space), called
the Bring’s curve, has Aut(S4) ∼= S5, the symmetric group in five let-
ters S5 (see, for instance, [1, 22]). In this way, we have a cyclic group
of order 5 which is non-normal in Aut(S4) and whose quotient is an
orbifold of signature (0, 4; 5, 5, 5, 5).

2. Some Applications

Corollary 1. Let (γ, r, s) be an admissible triple, p ≥ q̂(γ, r, s) be a prime,
O be an orbifold of signature (γ, r; p, ...., p) and M(O) be its moduli space.
If S is a closed Riemann surface of genus g admitting a ps-group of type
(γ, r), say H < Aut(S), then M(O) injects holomorphically into the moduli
space Mg of closed Riemann surfaces of genus g as the locus Mg(H) of
those classes that admit a conformal action topologically equivalent to H.

If O is an orbifold, then we denote by Autorb(O) (respectively, Aut±orb(O))
the group of orbifold conformal (respectively, conformal and anticonfor-
mal) automorphisms of O, that is, the group of conformal (respectively,
conformal and anticonformal) automorphisms of the underlying Riemann
surface that preserves the special points (branch values) with same order.
In this way, if use the notation Aut(O) (respectively, Aut±(O)) to denote
the group of conformal (respectively, conformal and anticonformal) auto-
morphisms of the underlying Riemann surface, then Autorb(O) < Aut(O)
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and Aut±orb(O) < Aut±(O). If S is a closed Riemann surface and H <
Aut(S), then we denote by AutH(S) (respectively, Aut±H(S)) the normal-
izer of H in Aut(S) (respectively, in Aut±(S)). If k ∈ AutH(S) (respec-
tively, k ∈ Aut±H(S) − AutH(S)), then k induces an (orbifold) conformal
(respectively, anticonformal) automorphism of the quotient orbifold S/H .
An (orbifold) conformal (respectively, anticonformal) automorphism of S/H
obtained in this way it is said to lift to S. We set AutH

orb(S/H) (respectively,
Aut±H

orb (S/H) ) the subgroup of Autorb(S/H) (respectively, Aut±orb(S/H))
consisting of those (orbifold) conformal (respectively, conformal and anticon-
formal) automorphisms that lift to S. Clearly, AutH

orb(S/H) ∼= AutH(S)/H
and Aut±H

orb (S/H) ∼= Aut±H(S)/H .

Corollary 2. Let (γ, r, s) be an admissible triple, p be a prime number
and S be a closed Riemann surface admitting a ps-group H < Aut(S) of
type (γ, r). If p ≥ q(γ, r, s), then Aut(S) induces a group of (orbifold)
conformal automorphisms of S/H, and Aut(S)/H ∼= AutH

orb(S/H). Also,
if p ≥ q̂(γ, r, s), then we have that Aut±(S) induces a group of (orbifold)
conformal and anticonformal automorphisms of S/H and Aut±(S)/H ∼=
Aut±H

orb (S/H).

As an example, in Section 6 we compute Aut(S) in the case of admissible
triples (1, 2, 1).

Corollary 3. Let S be a closed Riemann surface of genus a prime number
p ≥ 11 admitting a conformal automorphism η: S → S of order p. Then,

(i) S is non-hyperelliptic;

(ii) generically, Aut(S) = Dp and

(iii) there is a discrete set of parameters in the corresponding Teichmüller
space for which Aut(S) = 〈u, v: u3p = v2 = 1, vuv = utp−1〉, where
t = 1 for the case (3, p− 1) = 1 and t = 2 otherwise. Such a discrete
set corresponds to the case when the underlying torus S/〈η〉 is the one
admitting a conformal automorphism of order 6 with fixed points.

Another examples which may we considered are those admitting H = Z
s
p

as a subgroup of conformal automorphisms so that the quotient S/H is an
orbifold of signature (0, s+ 1; p, ..., p) (see [5]).

A Fuchsian group Γ < PSL(2,R) uniformizing an orbifold of signature
(γ, t;m1,...,mt) will be said to be a Fuchsian group of signature (γ, t;m1,...,mt).

Corollary 4. Let (γ, r, s) be an admissible triple. If p ≥ q̂(γ, r, s), then any
Fuchsian group Γ of signature (γ, r; p, ...., p) is uniquely determined by any
torsion free normal subgroup of index ps.
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Proof. If Γ is a Fuchsian group of signature (γ, r; p, ..., p), then any torsion
free normal subgroup K � Γ of index ps produces a closed Riemann surface
S admitting a group ps-group H of conformal automorphisms of type (γ, r).
If we have two two different Fuchsian groups Γ1 and Γ2, both of them with
the same signature (γ, r; p..., p), with a common normal subgroup K, of in-
dex ps in each one, then K will produce a closed Riemann surface S with two
different subgroups, say H1 and H2, so that |Hj| = ps and S/Hj is orbifold
of type (γ, r). If p ≥ q̂(γ, r, s), then this a contradiction with the statement
of Theorem 1 and the definition of q̂(γ, r, s). �

The previous result may be stated, making the suitable modifications,
for discrete groups of conformal and anticonformal automorphisms of the
hyperbolic plane whose index two orientation-preserving half is a Fuchsian
group as above.

In [19] B. Maskit observed that every co-compact torsion free Fuchsian
group is uniquely determined by its commutator subgroup. This commuta-
tor rigidity property has been extended to the class of torsion free non-
elementary function groups [9] and to the more general class of torsion
free non-elementary Kleinian groups with an invariant component in its ex-
tended region of discontinuity (the union of its region of discontinuity with
its double-cusped parabolic fixed points) in [10]. In the presence of torsion,
the above rigidity property in general fails for the class of non-elementary
Kleinian groups as can be seen in [11]. The following asserts that in some
particular classes the presence of torsion do not destroy such a commutator
rigidity property.

Corollary 5. Let r ∈ {3, 4, 5, ...} and p be a prime integer so that r(1 −
1/p) > 2 and let a(r) = max{r + 1, q(0, r, r − 1)}. If p ≥ a(r) is a prime,
then a Fuchsian group of signature (0, r; p, ..., p) is uniquely determined by
its commutator subgroup.

Proof. Let us fix the value of r ≥ 3. The commutator subgroup Γ′ of a
group Γ as above is necessarily torsion free [17, 15] and it uniformizes a closed
Riemann surface S of genus g = (2 + (r − 2)pr−1 − rpr−2)/2. The Fuchsian
group Γ uniformizes an orbifold O of signature (0, r; p, ..., p). We have that
H = Γ/Γ′ ∼= Z

r−1
p is an Abelian group of conformal automorphisms of S so

that S/H = O.
Let us assume we have two groups Γ1 and Γ2, with the same presenta-

tion as desired, so that they have the same commutator subgroup, say K.
Let us denote by S the closed Riemann surface uniformized by K and by
Oj the orbifold uniformized by Γj , for j = 1, 2. In this case, we have two
Abelian groups Hj

∼= Z
r−1
p acting on S so that S/Hj = Oj . If we assume

p ≥ q(0, r, r − 1), then Theorem 1 asserts that both H1 and H2 are normal
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subgroups of Aut(S). In order to prove our result we only need to verify
that H1 = H2. If p ≥ a(r) and H1 �= H2, then we have some h ∈ H2 − H1

of order p. As H1 is normal subgroup, we have that h induces an automor-
phism h∗ (as orbifold) of order p of O1. But h∗ should preserve the r special
points of order p on O1, a contradiction to the fact that p > r. �

3. Generalities

In this section we recall some general facts and fix some notations we need
in this note. As consequence of results of L. Keen [12] a Fuchsian group
uniformizing an orbifold of signature (h, t;m1, ..., mt) has a presentation of
the form

Γ =
〈
a1, ..., ah, b1, ..., bh, x1, ..., xt :(3.1)

xm1
1 = · · · = xmt

t =
h∏

i=1

aibia
−1
i b−1

i

t∏
j=1

xj = 1
〉
,

where m1, ..., mt ∈ {2, 3, 4, ...}.

We use the notation G(h;m1,...,mt) to denote a group with presentation as
in (3.1). If h = 0, we just use the notation G(m1,...,mt). We denote by ∆(a,b,c)

a Fuchsian group of signature (0, 3; a, b, c).
In [24], D. Singerman consider the (reduced) Teichmüller space T �(G),

where G is a finitely generated Fuchsian. The space T �(G) has the struc-
ture of a real analytic variety of dimension d(G) < ∞. If G has signature
(h;m1, ...ms), then d(G) = 6h − 6 + 2s. Another of the known main facts,
also referenced in [24], asserts that if we consider two finitely generated
Fuchsian groups, say G1 and G2, so that G1 < G2 with finite index, then
T �(G2) can be embedded as a closed real analytic sub-variety of T �(G1);
in particular, d(G2) ≤ d(G1). We say that G1 has Fuchsian growth to the
group G2, if G1 < G2 with finite index. In [24] D. Singerman studies and
classifies the Fuchsian growths G1 < G2 so that d(G2) = d(G1).

The moduli space Mg is defined as the space of holomorphic equivalence
classes of Riemann surfaces of genus g. This space is an analytic space
whose (orbifold) universal cover is the Teichmüller space of genus g, which,
for g ≥ 2, is isomorphic to the Teichmüller space of a Fuchsian group that
uniformizes a closed Riemann surface of genus g (see, for instance, [20] for
generalities on Teichmüller and moduli spaces).

We also need the moduli space of orbifolds. If we have orbifolds O1

and O2, then we say that they are holomorphically equivalent if there is a
conformal homeomorphism between the underlying Riemann surface struc-
tures preserving the special points and their orders. As in the cases in here
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considered all special points have the same order, the conformal homeomor-
phism is only required to preserve the special points. If we fix the type of an
orbifold O, then we have associated the moduli space M(O) of orbifolds of
such types whose points are the holomorphic equivalent classes of orbifolds
of the fixed type.

Let S be a closed Riemann surface of genus g ≥ 2, H be a cyclic group
of conformal automorphisms of S and set O = S/H . Denote by Mg(H) the
locus in Mg (the moduli space of genus g) consisting of classes of Riemann
surfaces admitting a group of conformal automorphisms which is topolog-
ically equivalent to H . We have that Mg(H) is an irreducible subvariety
of Mg of dimension 3γ−3+r, where O has type (γ, r), [3, 4]. In the general
situation, that is when H is any (finite) group of conformal automorphisms of
a closed Riemann surface S of genus g, then the above asserts that Mg(H),
the locus in Mg consisting of classes of Riemann surfaces admitting a group
of conformal automorphisms which is topologically equivalent to H , is an
irreducible algebraic variety of complex dimension 3γ − 3 + r, where S/H
has type (γ, r). The moduli space Mg(H) is the normalization of M(O)
and in general they are not equivalent.

Let (γ, r, s) be an admissible triple and S be a closed Riemann surfaces
admitting a ps-group of conformal automorphisms of type (γ, r). Riemann-
Hurwitz’s formula [2] asserts that S must have genus

(3.2) g(p) = ps(γ − 1) + 1 +
1

2

r∑
j=1

ps−lj(plj − 1),

for certain values lj ∈ {1, ..., s}. Let us denote by Xγ,r,s,p ⊂ Mg(p) the locus
in moduli space consisting of the classes of closed Riemann surfaces of genus
g(p) admitting a ps-group H of conformal automorphisms of type (γ, r).
We have that Xγ,r,s,p is an algebraic variety, of dimension 3γ − 3 + r, which
is a finite union of irreducible subvarieties of Mg(p); the different components
corresponding to the different topological actions of H (if the topological ac-
tion of the group H is rigid, then such a locus has only one component).
These components may or not intersect (or self-intersect) inside the moduli
space. The main result of this paper asserts in particular that if p is suffi-
ciently large in comparison to γ, r and s, then they do not (self-) intersect.

If we have a conformal automorphism h of some Riemann surface S and
x ∈ S is a fixed point of h, then there is a unique value α ∈ [−π, π) so that
in local coordinates h(z) = eiαz; such a value is called the rotation number
of h about x.



800 M. Leyton A. and R. A. Hidalgo

4. Proof of Theorem 1

Let S be a closed Riemann surface (uniformized by the hyperbolic plane)
admitting a ps-group H as group of conformal automorphisms, where p ≥ 3
is a prime, of type (γ, r), We denote by O the quotient orbifold S/H . Koebe-
Poincaré’s uniformization theorem asserts the existence of a co-compact tor-
sion free Fuchsian group Γ so that S = H

2/Γ. If we denote by N [Γ] the nor-
malizer of Γ in the group of conformal automorphisms of H

2, then we have
that N [Γ] is again a co-compact Fuchsian group [18] maybe with torsion so
that Aut(S) = N [Γ]/Γ and S/Aut(S) = H

2/N [Γ]. Also there is a group Γ1

so that Γ � Γ1 < N [Γ], H = Γ1/Γ and O = H
2/Γ1. We set n1(0; r) = r + 1,

n1(1; r) = max{5, r + 1} and, for γ ≥ 2, n1(γ, r) = 2γ + 2, for γ ≥ 2.
The choice we have made of n1(γ, r) ensures that if p ≥ n1(γ, r) is a prime,
then no orbifold of type (γ, r) admits an orbifold automorphism of order p.
In fact, note that very (orbifold) conformal automorphism of an orbifold of
type (γ, r) is a conformal automorphism of the underlying closed Riemann
surface of genus γ that permutes the r special conical points. In this way,
the choice of n1(0; r) is clear.

As conformal automorphism of prime order p ≥ 5 acts free fixed points
on a genus one Riemann surface, the choice for n1(1; r) is correct. In the
case that γ ≥ 2, as a consequence of Riemann-Hurwitz formula, if h is a
conformal automorphism of order p prime on a closed Riemann surface of
genus γ ≥ 2, then p ≤ 2γ + 1.

Lemma 1. If p ≥ n1(γ, r) is a prime so that ps divides |Aut(S)|, then
|Aut(S)| = aps, where a ∈ N is relative prime to p.

Proof. Assume |Aut(S)| = aps+1, where a ∈ N. Sylow’s theorem asserts
the existence of a group Kp < Aut(S) so that |Kp| = ps+1 and H � Kp.
In particular, this asserts that on the orbifold S/H should be an (orbifold)
automorphism of order p ≥ n1(γ, r), a contradiction. �

As a consequence of lemma 1, for p ≥ n1(γ, r) the p-Sylow subgroups of
Aut(S) are groups of order ps, all of them conjugate to H . The number of
possible different p-subgroups of Aut(S) has the form Np = (1+kp), certain
k ≥ 0 and, in particular, the order of Aut(S) may be written as |Aut(S)| =
bpsNp, where (p, b) = 1. We assume from now on that p ≥ n1(γ, r). If we
are able to find a value n2(γ, r) ≥ n1(γ, r) so that for p ≥ n2(γ, r) we have
k = 0, then we will be done with the proof.

The group N [Γ] has a canonical presentation as in (3.1). By Riemann-
Hurwitz’s formula

|Aut(S)| =
2(g(p) − 1)

M [N [Γ]]
,
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where

M [N [Γ]] = 2(h− 1) +

t∑
j=1

(
1 − 1

mj

)

and g(p) as in equation (3.2). If we set A(γ, r) = γ+r/2−1, then g(p)−1 ≤
A(γ, r)ps and, in particular,

(4.1) bpsNp = |Aut(S)| ≤ 2A(γ, r)ps

M [N [Γ]]
, (p, b) = 1.

On the other hand, the minimum value that M [N [Γ]] may have is 1/42.
It follows from (4.1) that bNp ≤ 84A(γ, r). If k > 0, that is Np ≥ 1 + p,
then, as b ≥ 1, the last inequality obligates to have p ≤ 84A(γ, r)−1. In this
way, if we choose n2(γ, r) = max{n1(γ, r), 84A(γ, r)}, then the above asserts
that for primes p ≥ n2(γ, r) we have Np = 1 as desired and, in particular,
|Aut(S)| = bps, where (b, p) = 1. This finishes the proof of Theorem 1. �

5. Proof of Theorem 2

Let S be a closed Riemann surface admitting a group H ∼= Zp as group of
conformal automorphisms, where p ≥ 3 is a prime, so that S/H is an orb-
ifold O of type (γ, r), where (γ, r) ∈ {(0, 4), (1, 2)}. Let Γ and Γ1 be Fuchsian
groups acting on the hyperbolic plane H

2 so that H
2/Γ = S, H

2/Γ1 = S/H
and Γ � Γ1 of index p. If N [Γ] is the normalizer of Γ in the group of con-
formal automorphisms of H

2, then N [Γ] is a co-compact Fuchsian group,
maybe with torsion, so that Aut(S) = N [Γ]/Γ, S/Aut(S) = H

2/N [Γ] and
Γ � Γ1 < N [Γ]. We need to prove that for prime integers p ≥ q(γ, r, 1) it
holds that Γ1 �N [Γ] and that for primes values of p < q(γ, r, 1) the normal-
ity property fails. In our cases n(γ, r) = 5. It follows from Lemma 1 that
bpNp = |Aut(S)| = 2(p− h)/M [N [Γ]], for some b ∈ {1, 2, 3, ...}, (b, p) = 1,
where Np = (1 + kp) stands for the number of possible different p-Sylow
subgroups of Aut(S), h = 1 for (γ, r) = (1, 2) and h = 2 for (γ, r) = (0, 4).

5.1. q(1, 2, 1) ≥ 11.

Let p ≥ 11 be a prime. As Γ1 has signature (1, 2; p, p), then d(Γ1) = 4,
in particular, d(N [Γ]) ∈ {0, 2, 4}. If d(N [Γ]) = 4, then N [Γ] has signa-
ture (0, 5; 2, 2, 2, 2, p) [24]. In this case [N [Γ] : Γ1] = 2, so Γ1 � N [Γ] . If
d(N [Γ]) = 2, then 6g − 6 + 2r = 2. We need to consider two cases.

(i) If g = r = 1, then [24] the only possible Fuchsian growth of Γ1 contains
it as an index two, then as a normal subgroup.
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(ii) If g = 0 and r = 4, then

(5.1) b(1 + kp)p =
2(p− 1)

2 − 1
m1

− 1
m2

− 1
m3

− 1
ρp

≤ 2(p− 1)
1
2
− 1

p

.

The term 1
ρp

in the formula (5.1) is due to the fact that in a Fuch-
sian group the finite order elements are conjugate to powers of the
finite order elements in a canonical presentation. As b ≥ 1, p ≥ 11
and k ≥ 0 is integer, the above asserts that necessarily k = 0. It
follows that there is a unique Sylow p-subgroup, so H � Aut(S).

If d(N [Γ]) = 0, then N [Γ] is a triangular group and

(5.2) b(1 + kp)p =
2(p− 1)

1 − 1
m1

− 1
m2

− 1
ρp

≤ 2(p− 1)
1
6
− 1

p

.

If p ≥ 17, then k = 0 and, in particular, H � Aut(S). Let us assume
now that p ∈ {11, 13}. We search for all possible combinations of m1, m2

and ρ for some k ≥ 1 satisfying the equality (5.2). We obtain that the only
possibility happens for p = 11; in which caseN [Γ] has signature (0, 3; 2, 3, 11)
and |Aut(S)| = 264. We now proceed to show that this case is not possible.
In fact, let us assume the existence of this possibility. It is known that every
group of order 264 is not simple; moreover, no divisor of 264 can be the
order of some non-abelian simple group. This asserts that we may construct
a non-trivial chain K1 �K2 � · · ·KN �Aut(S), so that Aut(S)/KN is a non-
trivial abelian group. But, as the group N [Γ] has signature (0, 3; 2, 3, 11),
then we have N [Γ] = N [Γ]′, where N [Γ]′ denotes the commutator subgroup
of N [Γ], a contradiction to the existence of the above chain. All the above
asserts that q(1, 2, 1) ≤ 11. Examples (1), (2) and (3) of Section 1.1 permit
us to obtain q(1, 2, 1) = 11

5.2. q(0, 4, 1) ≥ 7

Let us assume p ≥ 7. The arguments are similar to the previous case. As
d(Γ1) = 1, then d(N [Γ]) ∈ {0, 1}. If d(N [Γ]) = 1, then by [24], there are
only normal Fuchsian growths of Γ1. Let us assume now on d(N [Γ]) = 0,
then

(5.3) b(1 + kp)p = (2p− 4)/
(
1 − 1

k1

− 1

k2

− 1

ρp

)
, ρ ∈ {1, 2, ...}.

As p ≥ 7, (5.3) asserts k ≤ f(p) = 12(p−2)
p(5p−6)

and, in particular, for p ≥ 17,

we get k = 0. We need to consider the cases p ∈ {7, 11, 13}.
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5.2.1. Case: p ∈ {11, 13}
We only need to consider the case k = 1. As b ≤ 12(p−2)/((p+1)(5p−6)),
then b = 1. By direct inspection, since ρ is a positive integer, we only need
to take care of the case p = 11, k1 = 2 and k2 = 3; in which case ρ = 3 and
N [Γ] ∼= ∆(2,3,33). The triangular group ∆(2,3,33) contains no no-normal sub-
group of signature (0, 4; 11, 11, 11, 11) [15] and the only normal subgroups of
∆(2,3,33) have signature (0, 4; 2, 2, 2, 11), all of them of index 3. If we consider
one of them, say G(2,2,2,11), then Γ1/(Γ1∩G(2,2,2,11))<∆(2,3,33)/G(2,2,2,11)

∼=Z3.
(i) If Γ1 = Γ1 ∩ G(2,2,2,11), then Γ1 < G(2,2,2,11). As Γ1 is the commutator
subgroup of G(2,2,2,11) [15] and G(2,2,2,11) is normal subgroup of ∆(2,3,33), Γ1 is
normal subgroup of ∆(2,3,33). This is a contradiction to the fact that signa-
ture of Γ1 is not of the form (0, 4; 2, 2, 2, 11). (ii) If [Γ1 : Γ1 ∩G(2,2,2,11)] = 3,
then the commutator subgroup of Γ1 is a normal subgroup of Γ1∩G(2,2,2,11), a
contradiction to the fact that the commutator subgroup of Γ1 has index 113

in Γ1.

5.2.2. Case: p = 7 and k ≥ 1

In this case, b(1 + 7k) ≤ 60. If we assume equality, then (b, k) = (4, 2) and
it follows that N [Γ] = ∆(2,3,7), in particular, |Aut(S)| = 420 and Aut(S)
must contain 15 7-Sylow subgroups. As there is no simple group of order 420,
there is a non-trivial normal subgroup H0�Aut(S), in particular, H0 cannot
be of order 7; so |Aut(S)/H0| �= 60. Now, if we check at all possible orders
of Aut(S)/H0, we obtain that Aut(S)/H0 is either non-simple or Abelian.
In this way we may construct a non trivial chain of normal subgroups H0 �
H1... � HN � Aut(S), so that Aut(S)/HN is a non-trivial Abelian group.
As ∆(2,3,7) is its own commutator subgroup, we get a contradiction. As a
consequence, b(1+7k) < 60, then b(1+7k) ≤ 15 and, in particular, k ∈ {1, 2}
and b = 1.

If k = 1, as ρ is a positive integer, then the only case we need to take
care is k1 = 2 and k2 = 4. In this situation ρ = 2 and N [Γ] ∼= ∆(2,4,14). The
only normal subgroups of ∆(2,4,14) have signature (0, 4; 2, 2, 2, 7), all of them
of index two. Let one of them be G(2,2,2,7). In this way Γ1/(Γ1 ∩G(2,2,2,7)) <
∆(2,4,14)/G(2,2,2,7)

∼= Z2. (i) If Γ1 = Γ1 ∩ G(2,2,2,7), then Γ1 < G(2,2,2,7). As
Γ1 is the commutator of G(2,2,2,7) [15], and, as G(2,2,2,7) is normal in ∆(2,4,14),
we have that Γ1 is normal subgroup of ∆(2,4,14). This is a contradiction
to the fact that signature of Γ1 is not of the form (0, 4; 2, 2, 2, 7). (ii) If
[Γ1 : Γ1 ∩ G(2,2,2,7)] = 2, then the commutator subgroup of Γ1 is a normal
subgroup of Γ1 ∩ G(2,2,2,7), a contradiction to the fact that the commutator
subgroup of Γ1 has index 73 in Γ1.
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If k = 2, then we only need to take of the case k1 = 2 and k2 = 3, so ρ = 2
and N [Γ] ∼= ∆(2,3,14). This obligates to ∆(2,3,14) to contain the group Γ1 with
index 15, in particular, there is a homomorphism θ: ∆(2,3,14) −→ S15, where
S15 is the permutation group in 15 letters, so that θ(∆(2,3,14)) is transitive.
Choose x1 ∈ ∆(2,3,14) so that x2

1 = 1 and x1 is primitive. We have that
θ(x1) should fix a letter, in particular, it follows that Γ1 must contain an
element of order 2, a contradiction. All the above asserts that q(0, 4, 1) ≤ 7.
Example (4) of Section 1.1 asserts q(0, 4, 1) = 7.

5.3. q(1, 2, 1) = q̂(1, 2, 1) and q(0, 4, 1) = q̂(0, 4, 1)

As q̂(γ, r, s) ≥ q(γ, r, s), we have that q̂(1, 2, 1) ≥ 11. If we have two different
groups H1, H2 < Aut(S), Hj

∼= Zp, S/Hj of type (1, 2), for some prime inte-
ger p ≥ 11, then both of them are normal subgroups of Aut(S). In this way,
H2 induces a cyclic group of order p as a group of orbifold conformal auto-
morphisms of S/H1, a contradiction; obtaining that q̂(1, 2, 1) = 11. Similar
arguments show that q̂(0, 4, 1) = 7. �

6. Proof of Corollary 3

Let us consider a closed Riemann surface S of genus p ∈ {2, 3, 4, ....} admit-
ting a conformal automorphism η: S → S of order p (at this moment not
necessarily prime) so that (i) Fix(η) = Fix(ηl) = {a, b}, for l = 1, 2, ..., p−1;
and (ii) the rotation number of η about a is opposite to the rotation num-
ber of η about b (this is the situation when p is a prime number). Let
π: S → S/H be the branched covering induced by the action of the cyclic
group H = 〈η〉 ∼= Zp, and K < Autorb(S/H) be the subgroup whose ele-
ments are the automorphisms that lift to S under π. On S/H there is a (not
unique) simple geodesic arc γ (which we fix now on) having as its end points
the two branch values π(a) and π(b), so that π−1(S/H − γ) consists on ex-
actly p components, each one homeomorphic to S/H − γ under π. We have
that π−1(γ) is homeomorphic to a connected graph consisting on two vertices
(a and b) and p edges connecting them (see figure 1). If t ∈ Autorb(S/H)
preserves the arc γ, then it lifts, that is, t ∈ K. Unfortunately, the arc γ
is not unique and it may happen that an automorphism belongs to K and
does not preserve γ. It is not hard to see that we may find a conformal
involution (with 4 fixed points) τ1: S/H → S/H permuting both branch
values so that τ1(γ) = γ−1; that is, τ1 ∈ K. If we lift this involution to S
we obtain a conformal automorphism τ so that τ 2 ∈ H = 〈η〉 that should
permute both fixed points of the conformal automorphism η of order p. As
the rotation number of η at these two fixed points are opposite τ cannot
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commute with η. Also, as τ must conjugate η in either η or η−1 (as it should
preserve the absolute value of angle of rotation) we have that (τη)2 = 1.
As τ1 has fixed points which are different from the branch values, τ may be
chosen to have fixed points which are different from those of η. If τ 2 �= 1,
then a non-trivial power of η with different fixed points as η exists, a con-
tradiction to our assumptions. It follows that τ 2 = 1 and, in particular, the
group Dp = 〈η, τ〉 is the dihedral group of order 2p (already observed by
Ries in [23]).

X

X

π

S

S/H

γX

η

Figure 1

As generically an orbifold of signature (1, 2; p, p) has no more automor-
phisms other than the involution τ1, the subgroup K is generically 〈τ1〉. In
particular, if p ≥ 11 is a prime number, then Theorem 2 asserts that gener-
ically Aut(S) = Dp and that there are exactly two possible ways to obtain
an extra automorphism in K.

(a) Both branch values are permuted by a conformal involution without
fixed points or

(b) The induced genus one surface has automorphisms with fixed points
of order 3, 4 or 6 and preserve the branch values.

Any simple loop α ⊂ S/H , disjoint from γ lifts to exactly p pairwise
disjoint simple loops. Also, if a simple loop α ⊂ S/H , disjoint from the two
branch values, intersects transversally γ at exactly one point, then π−1(α)
has exactly one component (then invariant under η). In this way, if h ∈
Autorb(S/H) and α ∈ S/H is a simple loop disjoint from γ so that h(α)
intersects γ (transversally) exactly at one point, then we have that h /∈ K.
This observation permits us to see that if both branched values are permuted
by a conformal involution h, acting free fixed points on S/H , then h /∈ K.
The reason of this is that we may find a simple loop α ⊂ S/H , disjoint form γ
so that h(α) intersects γ (transversally) exactly at one point. In this way,
case (a) does not give extra automorphisms in K. In a similar way, if h is a
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conformal involution that fixes each of the two branch values, then h /∈ K,
taking care of one case in (b). In particular, we have obtained part (i) and
(ii) of Corollary 3. Now, to obtain part (iii) of the Corollary we assume the
torus S/H admits a conformal automorphism ρ of order 6 with fixed points
(it has exactly one fixed point, its square has exactly three fixed points and
its cube has exactly four fixed points). In this case, as the two branch values
of S/H are invariant under ρ and ρ has exactly one fixed point, we must have
that it permutes them, that is, the automorphism h = ρ2, of order 3, has
them as two of its three fixed points. In this case, S/Aut(S) = (S/H)/〈ρ〉 is
the orbifold of signature (0; 2, 6, 3p). Let us consider the Fuchsian group G
that uniformizes our orbifold S/H , which has the presentation as follows

G = 〈a, b, x1, x2: x
p
1 = xp

2 = aba−1b−1x−1
2 x−1

1 = 1〉.

Let us consider the external automorphism θ : G → G defined as (see
figure 2) θ(a) = b, θ(b) = b−1a−1x1, θ(x1) = a−1x1a and θ(x2) = a−1b−1x2ba,
which is geometrically induced by the automorphism h.

x

1

2

b

a

x

Figure 2

The branched cyclic covering π: S → S/H is defined by the smaller normal
subgroup N of G containing xk

1a and xk
1b, where 3k ≡ −1 mod p. Clearly,

θ leaves invariant N , in particular, h ∈ K. Now, we have an automorphism
ζ : S → S, a lifting of the automorphism h: S/H → S/H , so that 〈ζ, η〉 =
〈ψ〉 ∼= Z3p and ψ: S → S has the same fixed points as for η. We proceed to
give a concrete description of the group Aut(S) in this case. Let us consider
an orbifold O0 of signature (0; 2, 6, 3p), Köbe’s uniformization theorem gives
us a Fuchsian uniformization of O0 by a Fuchsian group

K0 = 〈U, V : U3p = V 2 = (V U)6 = 1〉.
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A fundamental domain P0 of K0 is given by a hyperbolic triangle with
angles 2π/3p, π/6 and π/6. The transformation V is given by the involution
with fixed point at the middle point of the side of P0 determined by the
two vertices with angle π/6, and U is given by the elliptic element fixing
the vertex with angle 2π/3p and sending one of the sides at such a vertex

to the other. Let us set S = U3, W = UV U−1, R = U2V U−2, Ŝ = WSW ,
A = WR, B = WV , and consider the subgroups

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K1 = 〈S, V,W,R: Sp = V 2 = W 2 = R2 = (VWRS)2 = 1〉
K2 = 〈S, Ŝ, A,B: Sp = Ŝp = SB−1A−1ŜBA = 1〉
K3 = 〈SŜ, S(SŜ)S−1, . . . , S−1(SŜ)S, SkA, S(SkA)S−1, . . . ,

S−1(SkA)S, SlB, S(SlB)S−1, . . . , S−1(SlB)S 〉.

It is clear that K2�K1 of index two. The groupK1 is normal subgroup of
index three in K0 and uniformizes an orbifold O1 of signature (0; 2, 2, 2, 2, p).
In fact, a fundamental domain P1 for K1 can be obtained by P1 = P0 ∪
U(P0)∪U2(P0). To get normality, we only need to observe that USU−1 = S,
UV U−1 = V , UWU−1 = R and URU−1 = SV S−1.

The group K2 = [K0, K0] is a normal subgroup of index six in K0 and
uniformizes an orbifold of signature (1, 2; p, p). In fact, a fundamental do-
main P2 for K2 is given by P2 = P1 ∪W (P1), in particular, we have that K2

has index two in K1, then of index 6 in K0. We also have that USU−1 = S,
UŜU−1 = A−1ŜA, UAU−1 = A−1ŜBS−1, UBU−1 = A−1, V SV = B−1ŜB,
V ŜV = B−1SB, V AV = B−1A−1B and V BV = B−1, providing the nor-
mality. As K0/K2

∼= Z6, we have that K ′
0, the commutator subgroup of K0,

is a subgroup of K2. Since, K0/K
′
0
∼= Z6, we obtain the equality K2 = K ′

0.

If l+k ≡ 0 mod p and 3l+2 ≡ 0 mod p, then the group K3 is a normal
subgroup of index 6p in K0 that uniformizes a closed Riemann surface of
genus p. In fact, for every integer a, we have SaŜa ∈ K3. Under the
assumptions on l and k, we have the equalities

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(SŜ)U−1 = S(SkA)−1(Sk−1(SŜ)S−k+1)(S−1(SkA)S)S−1

V (SŜ)V = (SlB)−1(Sl−1(SŜ)S−l+1)(SlB)

U(SkA)U−1 = Sk(SkA)−1(Sk−1(SŜ)S−k+1)(Sk−l−1(SlB)S−k+l+1)S−k

V (SkA)V = (SlB)−1(S−2k(SkŜk)(SkA)−1S2k)(SlB)

U(SlB)U−1 = Sl(SkA)−1S−l

V (SlB)V = (SlB)−1(SlŜl).
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The above ensures the normality ofK3 inK0. ThatK3 has index 6p inK0

follows from the fact that a fundamental domain forK3 is given by P3 = P2∪
S(P2)∪ · · · ∪S−1(P2). The surface uniformized by K3 admits the conformal
automorphisms S of order p with quotient the orbifold uniformized by the
group K2. The rest is just consequence of Poincaré’s polygon theorem.

Now, under the conditions on k and l as above, we have

K0/K3 = 〈u, v: u3p = v2 = (vu)6 = u3vu3v = u3k−1vuv = u3l+1vu−1v = 1〉
= 〈u, v: u3p = v2 = 1, vuv = utp−1〉,

where t ∈ {0, 1, 2}. We claim that t �= 0. In fact, t = 0 will assert that
K0/K3 is the dihedral group of order 6p, a contradiction to the fact that
every dihedral conformal action on a closed Riemann surface is of Schottky
type and, in particular, cannot quotient to an orbifold of genus zero with
exactly three branch values [6, 7]. If we denote by (a, b) the greatest common
divisor between a and b, then we have the following. In the case t = 1 we
should have (3, p− 1) = 1. In fact, on the contrary we have (3, p− 1) = 3
and we obtain that the presentation of K0/K3 gives a group of order 2p.
Similarly, in the case t = 2 we should have (3, 2p−1) = 1. As a consequence
of all the above, we have obtained Corollary 3.
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[5] González-D́ıez, G., Hidalgo, R.A. and Leyton, M.: Generalized
Fermat’s curves. Preprint.

[6] Hidalgo, R.A.: Dihedral groups are of Schottky type. Proyecciones 18
(1999), 23–48.

[7] Hidalgo, R.A.: On Schottky groups with automorphisms. Ann. Acad.
Sci. Fenn. Ser. A I Math. 19 (1994), 259–289.

[8] Hidalgo, R.A.: Homology coverings of Riemann surfaces. Tôhoku
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UTFSM Casilla 110-V
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